1
|
Willemsen S, Yengej FAY, Puschhof J, Rookmaaker MB, Verhaar MC, van Es J, Beumer J, Clevers H. A comprehensive transcriptome characterization of individual nuclear receptor pathways in the human small intestine. Proc Natl Acad Sci U S A 2024; 121:e2411189121. [PMID: 39475639 PMCID: PMC11551338 DOI: 10.1073/pnas.2411189121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 09/24/2024] [Indexed: 11/13/2024] Open
Abstract
Nuclear receptors (NRs) are widely expressed transcription factors that bind small, lipophilic compounds and regulate diverse biological processes. In the small intestine, NRs are known to act as sensors that control transcriptional responses to endogenous and exogenous signals, yet their downstream effects have not been characterized extensively. Here, we investigate the activation of six different NRs individually in human intestinal organoids using small molecules agonists. We observe changes in key enterocyte functions such as lipid, glucose, and amino acid absorption, the regulation of electrolyte balance, and drug metabolism. Our findings reinforce PXR, LXR, FXR, and PPARα as regulators of lipid absorption. Furthermore, known hepatic effects of AHR and VDR activation were recapitulated in the human small intestine. Finally, we identify unique target genes for intestinal PXR activation (ERG28, TMEM97, and TM7SF2), LXR activation (RAB6B), and VDR activation (CA12). This study provides an unbiased and comprehensive transcriptomic description of individual NR pathways in the human small intestine. By gaining a deeper understanding of the effects of individual NRs, we might better harness their pharmacological and therapeutic potential.
Collapse
Affiliation(s)
- Sam Willemsen
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Fjodor A. Yousef Yengej
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
| | - Jens Puschhof
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Junior Research Group Epithelium Microbiome Interactions, German Cancer Research Center, Heidelberg69120, Germany
| | | | | | - Johan van Es
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
| | - Joep Beumer
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- Institute of Human Biology, Roche Innovation Center Basel, Basel4058, Switzerland
| | - Hans Clevers
- Hubrecht Institute, Royal Netherlands Academy of Arts and Sciences, Utrecht3584 CT, The Netherlands
- University Medical Centre Utrecht, Utrecht3584 CX, The Netherlands
- Oncode Institute, Utrecht3584 CT, The Netherlands
- The Princess Máxima Center for Pediatric Oncology, Utrecht3584 CS, The Netherlands
- Pharma, Research and Early Development of F. Hoffmann-La Roche Ltd, BaselCH-4070, Switzerland
| |
Collapse
|
2
|
Shan L, Tao M, Zhang W, Zhao JD, Liu XC, Fang ZH, Gao JR. Comprehensive analysis of the m 6A demethylase FTO in endothelial dysfunction by MeRIP sequencing. Exp Cell Res 2024; 442:114268. [PMID: 39343042 DOI: 10.1016/j.yexcr.2024.114268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 09/17/2024] [Accepted: 09/22/2024] [Indexed: 10/01/2024]
Abstract
N6-methyladenosine (m6A) is the most general post-transcriptional modification of eukaryotic mRNAs and long-stranded non-coding RNAs. In this process, It has been shown that FTO associates with the m6A mRNA demethylase and plays a role in diabetic vascular endothelial dysfunction. In the present study, we detected FTO protein expression in HUVECs by Western blot and found that FTO was highly expressed in all disease groups relative to the control group. To explore the mechanism of FTO in T2DM vasculopathy, we performed an analysis by methylated RNA immunoprecipitation sequencing (MeRIP-seq) to elucidate the role of aberrant m6A modification and mRNA expression in endothelial dysfunction. The results showed 202 overlapping genes with varying m6A modifications and varied mRNA expression, and GO and KEGG enrichment analysis revealed that these genes were predominantly enriched in pathways associated with T2DM complications and endothelial dysfunction. By an integrated analysis of MeRIP-seq and RNA-seq results, the IGV plots showed elevated kurtosis of downstream candidate gene modifications, which may be downstream targets for FTO to exercise biological functions. HOXA9 and PLAU mRNA expression levels were significantly down after FTO inhibition. In the current work, we set up a typological profile of the m6A genes among HUVECs as well as uncovered a hidden relationship between RNA methylation modifications for T2DM vasculopathy-associated genes. Taken together, this study indicates that endothelial functional impairment is present in T2DM patients and may be related to aberrant expression of FTO.
Collapse
Affiliation(s)
- Li Shan
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Meng Tao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Wei Zhang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China; College of Pharmacy, Anhui University of Chinese Medicine, Hefei, 230011, Anhui, China
| | - Jin-Dong Zhao
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Xiao-Chuang Liu
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China
| | - Zhao-Hui Fang
- The Key Laboratory of Xin'an Medicine, Hefei, 230012, China
| | - Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, 230031, Anhui, China.
| |
Collapse
|
3
|
Wang Y, Du Y, Huang H, Cao Y, Pan K, Zhou Y, He J, Yao W, Chen S, Gao X. Targeting aberrant glycosylation to modulate microglial response and improve cognition in models of Alzheimer's disease. Pharmacol Res 2024; 202:107133. [PMID: 38458367 DOI: 10.1016/j.phrs.2024.107133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 03/02/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
Altered glycosylation profiles have been correlated with potential drug targets in various diseases, including Alzheimer's disease (AD). In this area, the linkage between bisecting N-acetylglucosamine (GlcNAc), a product of N-acetylglucosaminyltransferase III (GnT-III), and AD has been recognized, however, our understanding of the cause and the causative role of this aberrant glycosylation in AD are far from completion. Moreover, the effects and mechanisms of glycosylation-targeting interventions on memory and cognition, and novel targeting strategies are worth further study. Here, we showed the characteristic amyloid pathology-induced and age-related changes of GnT-III, and identified transcription factor 7-like 2 as the key transcription factor responsible for the abnormal expression of GnT-III in AD. Upregulation of GnT-III aggravated cognitive dysfunction and Alzheimer-like pathologies. In contrast, loss of GnT-III could improve cognition and alleviate pathologies. Furthermore, we found that an increase in bisecting GlcNAc modified ICAM-1 resulted in impairment of microglial responses, and genetic inactivation of GnT-III protected against AD mechanistically by blocking the aberrant glycosylation of ICAM-1 and subsequently modulating microglial responses, including microglial motility, phagocytosis ability, homeostatic/reactive state and neuroinflammation. Moreover, by target-based screening of GnT-III inhibitors from FDA-approved drug library, we identified two compounds, regorafenib and dihydroergocristine mesylate, showing pharmacological potential leading to modulation of aberrant glycosylation and microglial responses, and rescue of memory and cognition deficits.
Collapse
Affiliation(s)
- Yue Wang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yixuan Du
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Hongfei Huang
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yiming Cao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Kemeng Pan
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yueqian Zhou
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jiawei He
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Wenbing Yao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Song Chen
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| | - Xiangdong Gao
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China.
| |
Collapse
|
4
|
Yang Y, Wang Q, Zhan F. Unraveling the Action Mechanism of Tubeimoside-1 against Tumor Microvessels via Network Pharmacology and Experimental Validation. J Cancer 2024; 15:955-965. [PMID: 38230220 PMCID: PMC10788730 DOI: 10.7150/jca.90391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 11/27/2023] [Indexed: 01/18/2024] Open
Abstract
Objective: Tubeimoside-1 (TBMS1) is a plant-derived triterpenoid saponin that exhibits pharmacological properties and anti-tumor effects, but the anti-tumor microvessels of action of TBMS1 remains to be completely elucidated. This study aims to verify the effect of TBMS1 on tumor microvessels and its underlying mechanism. Methods: A SKOV3 xenografted mouse model were constructed to evaluate the anti-tumor microvessels of TBMS1 in vivo, followed by function assays to verify the effects of TBMS1 on the proliferation, cell cycle, migration, and tubule formation of vascular endothelial cells in vitro. Next, based on network pharmacology, the drug/disease-target protein-protein interaction (PPI) networks, biological functions and gene enrichment analyses were performed to predict the underlying mechanism. Finally, molecules and pathways associated with tumor trans-endothelial migration were identified. Results: TBMS1 treatment effectively reduced tumor microvessel density in ovarian cancer model and inhibited the proliferation, cell cycle, migration, and induced apoptosis of vascular endothelial cells in vitro. Network pharmacological data suggested that tumor cell adhesion and trans-endothelial migration may participate in antiangiogenic effects of TBMS1. By endothelial adhesion and permeability assay, we identified that tumor adhesion and the permeability of endothelial monolayers were reduced by TBMS1. Furthermore, adhesion protein (VCAM-1and ICAM-1) and tight junction (TJ) proteins (VE-cadhsion, ZO-1 and claudin-5) were found to be regulated. Finally, Akt, Erk1/2, Stat3 and NF-κB signaling were decreased by TBMS1 treatment. Conclusion: To sum up, our findings strongly suggest that clinical application of TBSM1 may serve as a vasoactive drug treatment to suppress tumor progression.
Collapse
Affiliation(s)
- YinRong Yang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University (Qingdao), Qingdao, Shandong 266035, China
| | - Qian Wang
- Department of Clinical Laboratory, Qilu Hospital, Shandong University (Qingdao), Qingdao, Shandong 266035, China
- Department of Clinical Laboratory, Qilu Hospital, Shandong University, Jinan, Shandong 250012, China
| | - FengXia Zhan
- Department of Clinical Laboratory, Shandong University School Hospital, Jinan, Shandong, 250012, China
| |
Collapse
|
5
|
Krug J, Rodrian G, Petter K, Yang H, Khoziainova S, Guo W, Bénard A, Merkel S, Gellert S, Maschauer S, Spermann M, Waldner M, Bailey P, Pilarsky C, Liebl A, Tripal P, Christoph J, Naschberger E, Croner R, Schellerer VS, Becker C, Hartmann A, Tüting T, Prante O, Grützmann R, Grivennikov SI, Stürzl M, Britzen-Laurent N. N-glycosylation Regulates Intrinsic IFN-γ Resistance in Colorectal Cancer: Implications for Immunotherapy. Gastroenterology 2023; 164:392-406.e5. [PMID: 36402190 PMCID: PMC10009756 DOI: 10.1053/j.gastro.2022.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 11/07/2022] [Accepted: 11/08/2022] [Indexed: 11/18/2022]
Abstract
BACKGROUND & AIMS Advanced colorectal carcinoma (CRC) is characterized by a high frequency of primary immune evasion and refractoriness to immunotherapy. Given the importance of interferon (IFN)-γ in CRC immunosurveillance, we investigated whether and how acquired IFN-γ resistance in tumor cells would promote tumor growth, and whether IFN-γ sensitivity could be restored. METHODS Spontaneous and colitis-associated CRC development was induced in mice with a specific IFN-γ pathway inhibition in intestinal epithelial cells. The influence of IFN-γ pathway gene status and expression on survival was assessed in patients with CRC. The mechanisms underlying IFN-γ resistance were investigated in CRC cell lines. RESULTS The conditional knockout of the IFN-γ receptor in intestinal epithelial cells enhanced spontaneous and colitis-associated colon tumorigenesis in mice, and the loss of IFN-γ receptor α (IFNγRα) expression by tumor cells predicted poor prognosis in patients with CRC. IFNγRα expression was repressed in human CRC cells through changes in N-glycosylation, which decreased protein stability via proteasome-dependent degradation, inhibiting IFNγR-signaling. Downregulation of the bisecting N-acetylglucosaminyltransferase III (MGAT3) expression was associated with IFN-γ resistance in all IFN-γ-resistant cells, and highly correlated with low IFNγRα expression in CRC tissues. Both ectopic and pharmacological reconstitution of MGAT3 expression with all-trans retinoic acid increased bisecting N-glycosylation, as well as IFNγRα protein stability and signaling. CONCLUSIONS Together, our results demonstrated that tumor-associated changes in N-glycosylation destabilize IFNγRα, causing IFN-γ resistance in CRC. IFN-γ sensitivity could be reestablished through the increase in MGAT3 expression, notably via all-trans retinoic acid treatment, providing new prospects for the treatment of immune-resistant CRC.
Collapse
Affiliation(s)
- Julia Krug
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Gabriele Rodrian
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Katja Petter
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Hai Yang
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Svetlana Khoziainova
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Wei Guo
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Alan Bénard
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susanne Merkel
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Susan Gellert
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Simone Maschauer
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Monika Spermann
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Maximilian Waldner
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Peter Bailey
- Wolfson Wohl Cancer Research Centre, Institute of Cancer Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christian Pilarsky
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Andrea Liebl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Philipp Tripal
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jan Christoph
- Department of Medical Informatics, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Tennenlohe, Germany
| | - Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Roland Croner
- Department of General, Visceral, Vascular and Transplant Surgery, University Hospital Magdeburg, Otto-von-Guericke-University, Magdeburg, Germany
| | - Vera S Schellerer
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christoph Becker
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Arndt Hartmann
- Department of Pathology, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Thomas Tüting
- Laboratory of Experimental Dermatology, Department of Dermatology, University Hospital and Health Campus Immunology Infectiology and Inflammation (GC-I3), Otto-von-Guericke-University, Magdeburg, Germany
| | - Olaf Prante
- Department of Nuclear Medicine, Molecular Imaging and Radiochemistry, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Robert Grützmann
- Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sergei I Grivennikov
- Cancer Prevention and Control Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania; Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, California
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Nathalie Britzen-Laurent
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany; Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany.
| |
Collapse
|
6
|
Zheng J, Shen G, Hu S, Han X, Zhu S, Liu J, He R, Zhang N, Hsieh CW, Xue H, Zhang B, Shen Y, Mao Y, Zhu B. Small-scale spatiotemporal epidemiology of notifiable infectious diseases in China: a systematic review. BMC Infect Dis 2022; 22:723. [PMID: 36064333 PMCID: PMC9442567 DOI: 10.1186/s12879-022-07669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 08/03/2022] [Indexed: 11/20/2022] Open
Abstract
Background The prevalence of infectious diseases remains one of the major challenges faced by the Chinese health sector. Policymakers have a tremendous interest in investigating the spatiotemporal epidemiology of infectious diseases. We aimed to review the small-scale (city level, county level, or below) spatiotemporal epidemiology of notifiable infectious diseases in China through a systematic review, thus summarizing the evidence to facilitate more effective prevention and control of the diseases. Methods We searched four English language databases (PubMed, EMBASE, Cochrane Library, and Web of Science) and three Chinese databases (CNKI, WanFang, and SinoMed), for studies published between January 1, 2004 (the year in which China’s Internet-based disease reporting system was established) and December 31, 2021. Eligible works were small-scale spatial or spatiotemporal studies focusing on at least one notifiable infectious disease, with the entire territory of mainland China as the study area. Two independent reviewers completed the review process based on the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. Results A total of 18,195 articles were identified, with 71 eligible for inclusion, focusing on 22 diseases. Thirty-one studies (43.66%) were analyzed using city-level data, 34 (47.89%) were analyzed using county-level data, and six (8.45%) used community or individual data. Approximately four-fifths (80.28%) of the studies visualized incidence using rate maps. Of these, 76.06% employed various spatial clustering methods to explore the spatial variations in the burden, with Moran’s I statistic being the most common. Of the studies, 40.85% explored risk factors, in which the geographically weighted regression model was the most commonly used method. Climate, socioeconomic factors, and population density were the three most considered factors. Conclusions Small-scale spatiotemporal epidemiology has been applied in studies on notifiable infectious diseases in China, involving spatiotemporal distribution and risk factors. Health authorities should improve prevention strategies and clarify the direction of future work in the field of infectious disease research in China. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07669-9.
Collapse
Affiliation(s)
- Junyao Zheng
- China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai, China.,School of International and Public Affairs, Shanghai Jiao Tong University, Shanghai, China
| | - Guoquan Shen
- School of Public Administration and Policy, Renmin University of China, Beijing, China
| | - Siqi Hu
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Xinxin Han
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Siyu Zhu
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Jinlin Liu
- School of Public Policy and Administration, Northwestern Polytechnical University, Xi'an, China
| | - Rongxin He
- Vanke School of Public Health, Tsinghua University, Beijing, China
| | - Ning Zhang
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China.,MRC Centre for Global Infectious Disease Analysis and the Abdul Latif Jameel Institute for Disease and Emergency Analytics, School of Public Health, Imperial College, London, UK
| | - Chih-Wei Hsieh
- Department of Public Policy, City University of Hong Kong, Hong Kong, China
| | - Hao Xue
- Freeman Spogli Institute for International Studies, Stanford University, Stanford, CA, USA
| | - Bo Zhang
- Department of Earth System Science, Tsinghua University, Beijing, China
| | - Yue Shen
- Laboratory for Urban Future, School of Urban Planning and Design, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ying Mao
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Bin Zhu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China.
| |
Collapse
|
7
|
Mehmood M, Khan MJ, Khan MJ, Akhtar N, Mughal F, Shah STA, Hyder MZ, Farrakh S, Sadiq I. Systematic analysis of HD-ZIP transcription factors in sesame genome and gene expression profiling of SiHD-ZIP class I entailing drought stress responses at early seedling stage. Mol Biol Rep 2022; 49:2059-2071. [PMID: 34993726 DOI: 10.1007/s11033-021-07024-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 11/26/2021] [Indexed: 10/19/2022]
Abstract
BACKGROUND Sesame is an ancient oilseed crop, known for its high oil content and quality. Its sensitivity to drought at early seedling stage is one of the limiting factors affecting its world-wide growth and productivity. Among plant specific transcription factors, the association of HD-ZIPs with sesame drought responses at early seedling stage is not well-established yet and is very important to develop our molecular understanding on sesame drought tolerance. METHODS AND RESULTS In this study, total 61 sesame HD-ZIP proteins were identified, based on their protein sequence homology with Arabidopsis and protein domain(s) architecture prediction, followed by their phylogenetic, conserved domain(s) motifs and gene structure analyses to classify them into four classes (HD-ZIP Class I-IV). HD-ZIP Class I was also subdivided into four subgroups: α (SiHZ25, SiHZ43, SiHZ9 and SiHZ16), β1 (SiHZ10, SiHZ30, SiHZ32 and SiHZ26), β2 (SiHZ42 and SiHZ45) and γ (SiHZ17, SiHZ7 and SiHZ35) by a comparative phylogenetic analysis of sesame with Arabidopsis and maize. Afterwards, twenty-one days old sesame seedlings were exposed to drought stress by withholding water for 7 days (when soil moisture content reduced to ~16%) and gene expression of HD-ZIP Class I (13 members) was performed in well- watered (control) and drought stressed seedlings. The gene expression analysis showed that the expressions of SiHZ7 (6.8 fold) and SiHZ35 (2.6 fold) from γ subgroup were significantly high in drought seedlings. CONCLUSIONS This study is useful in demonstrating the role of SiHD-ZIP Class I in sesame drought responses at early seedling stage and to develop its novel drought tolerant varieties.
Collapse
Affiliation(s)
- Maryam Mehmood
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Muhammad Jadoon Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Muhammad Jawad Khan
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Nadeem Akhtar
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | - Fizza Mughal
- Illinois Informatics Institute, University of Illinois, Urbana-Champaign, USA
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan
| | | | - Sumaira Farrakh
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.
| | - Irfan Sadiq
- Department of Biosciences, COMSATS University Islamabad, Park Road, Islamabad, Pakistan.
| |
Collapse
|
8
|
Zhang Y, Wang M, Liu W, Peng X. Optical Imaging of Triple-Negative Breast Cancer Cells in Xenograft Athymic Mice Using an ICAM-1-Targeting Small-Molecule Probe. Mol Imaging Biol 2020; 21:835-841. [PMID: 30623283 DOI: 10.1007/s11307-018-01312-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE The development of early, accurate diagnostic strategies for triple-negative breast cancer (TNBC) remains a significant challenge. Intercellular adhesion molecule-1 (ICAM-1) overexpressed in human TNBC cells is a potential molecular target and biomarker for diagnosis. In this study, small-molecule probe (denoted as γ3-Cy5.5) constructed with a short 17-mer linear peptide (γ3) and near-infrared fluorescence (NIRF) dye cyanine 5.5 (Cy5.5) was used to detect the expression of ICAM-1 in vitro and in vivo, and to diagnose TNBC via NIRF imaging. PROCEDURES Western blotting and flow cytometric analysis were used for the detection of ICAM-1 expression in MDA-MB-231 and MCF-7 cells. The cytotoxicity of the small-molecule probe γ3-Cy5.5 was detected using the CCK8 assay. The in vitro targeting of the small-molecule probe γ3-Cy5.5 was verified via flow cytometry and a laser scanning confocal microscope. Finally, the targeting of small-molecule probe in vivo and ex vivo was observed by NIRF imaging. RESULTS Western blotting and flow cytometry demonstrate that ICAM-1 was highly expressed in the MDA-MB-231 TNBC cell line. Laser confocal microscopy and flow cytometry results show that TNBC cells have an increased cellular uptake of γ3-Cy5.5 compared to the control probe γ3S-Cy5.5. With in vivo NIRF, a significantly higher Cy5.5 signal appeared in the tumors of mice administered γ3-Cy5.5 than those treated with γ3S-Cy5.5. The target-to-background ratio observed on the NIRF images was significantly higher in the γ3-Cy5.5 group (10.2, 13.6) compared with the γ3S-Cy5.5 group (4.4, 4.0) at 1 and 2 h, respectively. CONCLUSIONS This is the first report of the use of ICAM-1-specific small-molecule probe for in vivo NIRF optical imaging of TNBC. This method provides a noninvasive and specific strategy for the early diagnosis of TNBC.
Collapse
Affiliation(s)
- Yanqiu Zhang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.,Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, 210002, Jiangsu, People's Republic of China
| | - Mengru Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| | - Wanhua Liu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China.
| | - Xin Peng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210009, Jiangsu, People's Republic of China
| |
Collapse
|
9
|
Spampinato SF, Bortolotto V, Canonico PL, Sortino MA, Grilli M. Astrocyte-Derived Paracrine Signals: Relevance for Neurogenic Niche Regulation and Blood-Brain Barrier Integrity. Front Pharmacol 2019; 10:1346. [PMID: 31824311 PMCID: PMC6881379 DOI: 10.3389/fphar.2019.01346] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 10/24/2019] [Indexed: 01/12/2023] Open
Abstract
Astrocytes are essential for proper regulation of the central nervous system (CNS). Importantly, these cells are highly secretory in nature. Indeed they can release hundreds of molecules which play pivotal physiological roles in nervous tissues and whose abnormal regulation has been associated with several CNS disorders. In agreement with these findings, recent studies have provided exciting insights into the key contribution of astrocyte-derived signals in the pleiotropic functions of these cells in brain health and diseases. In the future, deeper analysis of the astrocyte secretome is likely to further increase our current knowledge on the full potential of these cells and their secreted molecules not only as active participants in pathophysiological events, but as pharmacological targets or even as therapeutics for neurological and psychiatric diseases. Herein we will highlight recent findings in our and other laboratories on selected molecules that are actively secreted by astrocytes and contribute in two distinct functions with pathophysiological relevance for the astroglial population: i) regulation of neural stem cells (NSCs) and their progeny within adult neurogenic niches; ii) modulation of the blood–brain barrier (BBB) integrity and function.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Valeria Bortolotto
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Pier Luigi Canonico
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Mariagrazia Grilli
- Laboratory of Neuroplasticity, Department of Pharmaceutical Sciences, University of Piemonte Orientale, Novara, Italy
| |
Collapse
|
10
|
Spampinato SF, Merlo S, Fagone E, Fruciano M, Barbagallo C, Kanda T, Sano Y, Purrello M, Vancheri C, Ragusa M, Sortino MA. Astrocytes Modify Migration of PBMCs Induced by β-Amyloid in a Blood-Brain Barrier in vitro Model. Front Cell Neurosci 2019; 13:337. [PMID: 31396056 PMCID: PMC6664149 DOI: 10.3389/fncel.2019.00337] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 07/10/2019] [Indexed: 12/20/2022] Open
Abstract
Background The brain is protected by the blood-brain barrier (BBB), constituted by endothelial cells supported by pericytes and astrocytes. In Alzheimer’s disease a dysregulation of the BBB occurs since the early phases of the disease leading to an increased access of solutes and immune cells that can participate to the central inflammatory response. Here we investigated whether astrocytes may influence endothelial-leukocytes interaction in the presence of amyloid-β (Aβ). Methods We used an in vitro BBB model, where endothelial cells, cultured alone or with astrocytes were exposed for 5 h to Aβ, both under resting or inflammatory conditions (TNFα and IFNγ), to evaluate endothelial barrier properties, as well as transendothelial migration of peripheral blood mononuclear cells (PBMCs). Results In the co-culture model, barrier permeability to solutes was increased by all treatments, but migration was only observed in inflammatory conditions and was prevented by Aβ treatment. On the contrary, in endothelial monocultures, Aβ induced leukocytes migration under resting conditions and did not modify that induced by inflammatory cytokines. In endothelial astrocyte co-cultures, a low molecular weight (MW) isoform of the adhesion molecule ICAM-1, important to allow interaction with PBMCs, was increased after 5 h exposure to inflammatory cytokines, an effect that was prevented by Aβ. This modulation by Aβ was not observed in endothelial monocultures. In addition, endothelial expression of β-1,4-N-acetylglucosaminyltransferase III (Gnt-III), responsible for the formation of the low MW ICAM-1 isoform, was enhanced in inflammatory conditions, but negatively modulated by Aβ only in the co-culture model. miR-200b, increased in astrocytes following Aβ treatment and may represent one of the factors involved in the control of Gnt-III expression. Conclusion These data point out that, at least in the early phases of Aβ exposure, astrocytes play a role in the modulation of leukocytes migration through the endothelial layer.
Collapse
Affiliation(s)
- Simona Federica Spampinato
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sara Merlo
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Evelina Fagone
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Mary Fruciano
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Cristina Barbagallo
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Takashi Kanda
- Department of Neurology and Clinical Neuroscience, Yamaguchi University, Yamaguchi, Japan
| | - Yasuteru Sano
- Department of Neurology and Clinical Neuroscience, Yamaguchi University, Yamaguchi, Japan
| | - Michele Purrello
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Carlo Vancheri
- Department of Clinical and Experimental Medicine, University of Catania, Catania, Italy
| | - Marco Ragusa
- Section of Biology and Genetics, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.,Oasi Research Institute - IRCCS, Troina, Italy
| | - Maria Angela Sortino
- Section of Pharmacology, Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| |
Collapse
|
11
|
Zuo L, Yang X, Lu M, Hu R, Zhu H, Zhang S, Zhou Q, Chen F, Gui S, Wang Y. All-Trans Retinoic Acid Inhibits Human Colorectal Cancer Cells RKO Migration via Downregulating Myosin Light Chain Kinase Expression through MAPK Signaling Pathway. Nutr Cancer 2016; 68:1225-33. [PMID: 27564600 DOI: 10.1080/01635581.2016.1216138] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
All-trans-retinoic acid (ATRA) inhibits the invasive and metastatic potentials of various cancer cells. However, the underlying mechanism is unclear. Here, we demonstrate that ATRA inhibited colorectal cancer cells RKO (human colon adenocarcinoma cell) migration by downregulating cell movement and increasing cell adhesion. ATRA inhibited the expression and activation of myosin light chain kinase (MLCK) in RKO cells, while the expression level of MLC phosphatase (MLCP) had no change in RKO cells treated with or without ATRA. The expression and activity of MLC was also inhibited in RKO cells exposed to ATRA. Intriguingly, ATRA increased the expression of occludin messenger RNA (mRNA) and protein and its localization on cell membrane. However, ATRA did not change the expression of zonula occludens 1 (ZO-1), but increased the accumulation of ZO-1 on RKO cells membrane. ML-7, an inhibitor of MLCK, significantly inhibited RKO cell migration. Furthermore, knockdown of endogenous MLCK expression inhibited RKO migration. Mechanistically, we showed that MAPK-specific inhibitor PD98059 enhanced the inhibitory effect of ATRA on RKO migration. In contrast, phorbol 12-myristate 13-acetate (PMA) attenuated the effects of ATRA in RKO cells. Moreover, knocking down endogenous extracellular signal-regulated kinase (ERK) expression inhibited MLCK expression in the RKO cells. In conclusion, ATRA inhibits RKO migration by reducing MLCK expression via extracellular signal-regulated kinase 1/Mitogen-activated protein kinase (ERK1/MAPK) signaling pathway.
Collapse
Affiliation(s)
- Li Zuo
- a Laboratory of Molecular Biology and Department of Biochemistry , Key Laboratory of Anti-inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University , Anhui , China
| | - Xiaoping Yang
- a Laboratory of Molecular Biology and Department of Biochemistry , Key Laboratory of Anti-inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University , Anhui , China
| | - Man Lu
- b Department of Reproductive Center , The People's Liberation Army 105 Hospital , Anhui , China
| | - Ruolei Hu
- c Laboratory of Molecular Biology and Department of Biochemistry , Key Laboratory of Anti-inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University , Anhui , China
| | - Huaqing Zhu
- c Laboratory of Molecular Biology and Department of Biochemistry , Key Laboratory of Anti-inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University , Anhui , China
| | - Sumei Zhang
- c Laboratory of Molecular Biology and Department of Biochemistry , Key Laboratory of Anti-inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University , Anhui , China
| | - Qing Zhou
- c Laboratory of Molecular Biology and Department of Biochemistry , Key Laboratory of Anti-inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University , Anhui , China
| | - Feihu Chen
- d College of Pharmacy, Anhui Medical University , China
| | - Shuyu Gui
- e Department of Respiratory Medicine , the First Affiliated Hospital, Anhui Medical University , Anhui , China
| | - Yuan Wang
- f Laboratory of Molecular Biology and Department of Biochemistry , Key Laboratory of Anti-inflammatory and Immunological Pharmacology, Ministry of Education and Key Laboratory of Gene Resource Utilization for Severe Disease of Anhui Province, Anhui Medical University , Anhui , China
| |
Collapse
|
12
|
Liu Y, Chen H, Mu D, Li D, Zhong Y, Jiang N, Zhang Y, Xia M. Association of Serum Retinoic Acid With Risk of Mortality in Patients With Coronary Artery Disease. Circ Res 2016; 119:557-63. [DOI: 10.1161/circresaha.116.308781] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 06/20/2016] [Indexed: 12/25/2022]
Abstract
Rationale:
Retinoic acid (RA) and its mediated nuclear receptor signaling have broad protective effects on vascular systems. Whether circulating levels of RA are associated with mortality in patients with coronary artery disease is still unknown.
Objective:
To evaluate the association of circulating RA with the risk of mortality.
Methods and Results:
We measured serum RA concentrations in 1499 patients with angiographically confirmed coronary artery disease (mean age, 61 years; male, 67%) recruited from October 2008 and December 2011 in the Expanded Guangdong Coronary Artery Disease Cohort. During a median (interquartile range) period of 4.4 (3.6 to 6.1) years of follow-up, there were 295 all-cause mortality, among which 208 had cardiovascular mortality. Serum RA level was significantly lower in participants with mortality (median 21 [11–47] nmol/L) than in those without mortality (median 39 [19–86] nmol/L). In multivariate analyses, the hazard ratios for total mortality among those in the lowest (referent) to highest quartiles of serum RA measured at study entry were 1.0, 0.83, 0.74, and 0.56, respectively (
P
-trend<0.001). For cardiovascular mortality, the comparable hazard ratios were 1.0, 0.76, 0.69, and 0.60 (
P
-trend<0.001). Furthermore, high RA levels (defined as >median) were associated with lower risk of total mortality (adjusted hazard ratios, 0.68; 95% confidence interval, 0.50–0.85;
P
=0.001) and cardiovascular mortality (adjusted hazard ratios, 0.62; 95% confidence interval, 0.45–0.78;
P
<0.001) compared with low RA (defined as ≤median).
Conclusions:
Serum RA level was associated with lower risk of mortality in a population-based coronary artery disease cohort.
Collapse
Affiliation(s)
- Yan Liu
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); and Department of Cardiology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, China (Y.Z.)
| | - Hongen Chen
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); and Department of Cardiology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, China (Y.Z.)
| | - Di Mu
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); and Department of Cardiology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, China (Y.Z.)
| | - Di Li
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); and Department of Cardiology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, China (Y.Z.)
| | - Yuan Zhong
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); and Department of Cardiology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, China (Y.Z.)
| | - Nan Jiang
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); and Department of Cardiology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, China (Y.Z.)
| | - Yuan Zhang
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); and Department of Cardiology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, China (Y.Z.)
| | - Min Xia
- From the Guangdong Provincial Key Laboratory of Food, Nutrition, and Health, Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); Department of Nutrition, School of Public Health, Sun Yat-sen University (Northern Campus), Guangzhou, Guangdong Province, China (Y.L., H.C., D.M., D.L., Y.Z., N.J., M.X.); and Department of Cardiology, General Hospital of Guangzhou Military Command of People’s Liberation Army, Guangdong, China (Y.Z.)
| |
Collapse
|
13
|
Liu K, Liu H, Zhang Z, Ye W, Xu X. The role of N-glycosylation in high glucose-induced upregulation of intercellular adhesion molecule-1 on bovine retinal endothelial cells. Acta Ophthalmol 2016; 94:353-7. [PMID: 27151646 DOI: 10.1111/aos.13028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 01/24/2016] [Indexed: 12/16/2022]
Abstract
PURPOSE The development of diabetic retinopathy has been implicated as a consequence of chronic inflammation. Given the role of the intercellular adhesion molecule-1 (ICAM-1) in inflammation, the potential effect of N-glycosylation on the upregulated expression of ICAM-1 at the surface of bovine retinal endothelial cells (BRECs) induced by high glucose concentrations was investigated. METHODS Gene and protein expression of ICAM-1 in primary BRECs cultured in medium containing increasing concentrations of mannose or glucose in the presence or absence of tunicamycin were studied with reverse transcription-polymerase chain reaction and Western blot analysis, and the expression level of ICAM-1 at the surface of BRECs was examined with an immunofluorescence analysis. A lectin blot assay with PHA-L was performed to explore the level of N-glycans on cell total proteins or immunoprecipitated ICAM-1 from cells treated or untreated with high glucose. RESULTS Both the mRNA and protein levels of ICAM-1, as well as the level of ICAM-1 on the cell surface, were significantly upregulated by increasing the concentration of glucose in the culture medium, with a peak concentration of 20 mm. Consistent with these results, a dramatic increase in the N-glycosylation of ICAM-1 in BRECs cultured with a high concentration of glucose was observed, which could be partially attenuated by tunicamycin treatment. CONCLUSION High glucose-induced upregulation of ICAM-1 on the surface of BRECs could be ascribed to the alterations in its N-glycosylation at least in part, indicating that interference with the glycosylation of ICAM-1 may contribute to improving the efficiency of current therapies with diabetic retinopathy.
Collapse
Affiliation(s)
- Kun Liu
- Department of Ophthalmology; Shanghai General Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Haiyun Liu
- Department of Ophthalmology; Shanghai General Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Zhihua Zhang
- Department of Ophthalmology; Shanghai General Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| | - Wen Ye
- Department of Ophthalmology; Huashan Hospital; Fudan University; Shanghai China
| | - Xun Xu
- Department of Ophthalmology; Shanghai General Hospital; Shanghai Jiao Tong University School of Medicine; Shanghai China
| |
Collapse
|
14
|
Mukai H, Muramatsu A, Mashud R, Kubouchi K, Tsujimoto S, Hongu T, Kanaho Y, Tsubaki M, Nishida S, Shioi G, Danno S, Mehruba M, Satoh R, Sugiura R. PKN3 is the major regulator of angiogenesis and tumor metastasis in mice. Sci Rep 2016; 6:18979. [PMID: 26742562 PMCID: PMC4705536 DOI: 10.1038/srep18979] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Accepted: 12/02/2015] [Indexed: 01/13/2023] Open
Abstract
PKN, a conserved family member related to PKC, was the first protein kinase identified as a target of the small GTPase Rho. PKN is involved in various functions including cytoskeletal arrangement and cell adhesion. Furthermore, the enrichment of PKN3 mRNA in some cancer cell lines as well as its requirement in malignant prostate cell growth suggested its involvement in oncogenesis. Despite intensive research efforts, physiological as well as pathological roles of PKN3 in vivo remain elusive. Here, we generated mice with a targeted deletion of PKN3. The PKN3 knockout (KO) mice are viable and develop normally. However, the absence of PKN3 had an impact on angiogenesis as evidenced by marked suppressions of micro-vessel sprouting in ex vivo aortic ring assay and in vivo corneal pocket assay. Furthermore, the PKN3 KO mice exhibited an impaired lung metastasis of melanoma cells when administered from the tail vein. Importantly, PKN3 knock-down by small interfering RNA (siRNA) induced a glycosylation defect of cell-surface glycoproteins, including ICAM-1, integrin β1 and integrin α5 in HUVECs. Our data provide the first in vivo genetic demonstration that PKN3 plays critical roles in angiogenesis and tumor metastasis, and that defective maturation of cell surface glycoproteins might underlie these phenotypes.
Collapse
Affiliation(s)
- Hideyuki Mukai
- Biosignal Research Center, Kobe University, Kobe 657-8501, Japan
| | - Aiko Muramatsu
- Graduate School of Science and Technology, Kobe University, Kobe 657-8501, Japan
| | - Rana Mashud
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Koji Kubouchi
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Sho Tsujimoto
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Tsunaki Hongu
- Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Yasunori Kanaho
- Graduate School of Comprehensive Human Sciences, Institute of Basic Medical Sciences, University of Tsukuba, Ibaraki 305-8575, Japan
| | - Masanobu Tsubaki
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Shozo Nishida
- Division of Pharmacotherapy, Kinki University School of Pharmacy, Kowakae, Higashi-Osaka 577-8502, Japan
| | - Go Shioi
- Genetic Engineering Team, Division of Bio-function Dynamics Imaging, RIKEN Center for Life Science Technologies (CLST), 2-2-3 Minatojima Minami,Chuou-ku, Kobe 650-0047
| | - Sally Danno
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Mona Mehruba
- Graduate School of Medicine, Kobe University, Kobe 657-8501, Japan
| | - Ryosuke Satoh
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| | - Reiko Sugiura
- Laboratory of Molecular Pharmacogenomics, School of Pharmaceutical Sciences, Kinki University, 3-4-1 Kowakae, Higashi-Osaka 577-8502, Japan
| |
Collapse
|
15
|
Fan TT, Cheng Y, Wang YF, Gui SY, Chen FH, Zhou Q, Wang Y. A novel all-trans retinoid acid derivative N-(3-trifluoromethyl- phenyl)- retinamide inhibits lung adenocarcinoma A549 cell migration through down-regulating expression of myosin light chain kinase. Asian Pac J Cancer Prev 2015; 15:7687-92. [PMID: 25292047 DOI: 10.7314/apjcp.2014.15.18.7687] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
AIM To observe the effects of a novel all-trans retinoid acid (ATRA) derivative, N-(3-trifluoromethyl-phenyl)- retinamide (ATPR), on lung adenocarcinoma A549 cells and to explore the potential mechanism of ATPR inhibiting of A549 cell migration. MATERIALS AND METHODS The cytotoxicity of ATRA and ATPR on A549 cells was assessed using MTT assay. Wound healing assays were used to analyze the influences of ATRA, ATPR, ML-7 (a highly selective inhibitor of myosin light chain kinase (MLCK)), PMA (an activator of MAPKs) and PD98059 (a selective inhibitor of ERK1/2) on the migration of A549 cells. Expression of MLCK and phosphorylation of myosin light chain (MLC) were assessed by Western blotting. RESULTS ATRA and ATPR inhibited the proliferation of A549 cells in a dose- and time-dependent manner, and the effect of ATPR was much more remarkable compared with ATRA. Relative migration rate and migration distance of A549 cells both decreased significantly after treatment with ATPR or ML-7. The effect on cell migration of PD98059 combining ATPR treatment was more notable than that of ATPR alone. Moreover, compared with control groups, the expression levels of MLCK and phosphorylated MLC in A549 cells were both clearly reduced in ATRA and ATPR groups. CONCLUSIONS ATPR could suppress the migration and invasion of A549 cells, and the mechanism might be concerned with down- regulating the expression of MLCK in the ERK-MAPK signaling pathway, pointing to therapeutic prospects in lung cancer.
Collapse
Affiliation(s)
- Ting-Ting Fan
- Department of Respiratory Medicine, the First Affiliated Hospital, Anhui Medical University, Hefei, Anhui, China E-mail : ,
| | | | | | | | | | | | | |
Collapse
|
16
|
Wang H, Gui SY, Chen FH, Zhou Q, Wang Y. New insights into 4-amino-2-tri-fluoromethyl-phenyl ester inhibition of cell growth and migration in the A549 lung adenocarcinoma cell line. Asian Pac J Cancer Prev 2015; 14:7265-70. [PMID: 24460286 DOI: 10.7314/apjcp.2013.14.12.7265] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The present study was designed to investigate the probable mechanisms of synthetic retinoid 4-amino-2-tri-fluoromethyl-phenyl ester (ATPR) inhibition of the proliferation and migration of A549 human lung carcinoma cells. MATERIALS AND METHODS After the A549 cells were treated with different concentrations of ATPR or all-trans retinoic acid (ATRA) for 72 h, scratch-wound assays were performed to assess migration. Immunofluorescence was used to determine the distribution of CAV1 and RXRα, while expression of CAV1, MLCK, MLC, P38, and phosphorylation of MLC and P38 were detected by Western blotting. RESULTS ATPR could block the migration of A549 cells. The relative migration rate of ML-7 group had significantly decreased compared with control group. In addition, ATPR decreased the expression of a migration related proteins, MLCK, and phosphorylation of MLC and P38. ATPR could also influence the expression of RARs or RXRs. At the same time, CAV1 accumulated at cell membranes, and RXRα relocated to the nucleus after ATPR treatment. CONCLUSIONS Caveolae may be implicate in the transport of ATPR to the nucleus. Change in the expression and distribution of RXRα may be implicated in ATPR inhibition of A549 cell proliferation. The mechanisms of ATPR reduction in A549 cell migration may be associated with expression of MLCK and phosphorylation of MLC and P38.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Medicine, the First Affiliated Hospital, Hefei, Anhui, China E-mail : ,
| | | | | | | | | |
Collapse
|
17
|
Bubka M, Link-Lenczowski P, Janik M, Pocheć E, Lityńska A. Overexpression of N-acetylglucosaminyltransferases III and V in human melanoma cells. Implications for MCAM N-glycosylation. Biochimie 2014; 103:37-49. [DOI: 10.1016/j.biochi.2014.04.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2013] [Accepted: 04/01/2014] [Indexed: 01/25/2023]
|
18
|
Zhang F, Li X, Xu X, Cai D, Zhang J. Relationship between the pH of enema solutions and intestinal damage in rabbits. Biol Res Nurs 2014; 17:78-86. [PMID: 25504953 DOI: 10.1177/1099800414527154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Mechanical enemas can lead to intestinal mucosal injuries and bowel barrier damage, presenting as electrolyte disturbances and functional intestinal disorders. Most researchers believe that the mechanism of injury is related to osmolality, volume and temperature of the solution, infusion pressure, and the composition of the enema tube. We hypothesized that the pH of the enema solution may also contribute to intestinal damage. We administered enema solutions--normal saline, soapsuds, or vinegar (neutral, alkaline, or acidic solutions, respectively)--to three groups of rabbits (n = 20 per group). The solutions were standardized for volume and temperature and the soapsuds and vinegar solutions were adjusted to be isotonic with normal saline or deionized water. We also included a control group (n = 20) in which the enema tubes were inserted but no solution was administered. We biopsied 3 sites (rectum and distal and proximal colon). Damage to intestinal mucosa was observed by light microscopy and transmission electron microscopy. In order to explore the detection of damage using noninvasive methods, cyclooxygenase (COX)-2 gene expression was measured in the exfoliated cells gathered from postenema defecation. Epithelial loss, inflammatory reaction, and cellular microstructure damage was increased in the vinegar and soapsuds groups. Also, exfoliated cells in these groups had higher COX-2 expression than the normal saline group. The acidic and alkaline enema solutions thus caused more severe damage to the intestinal mucosa compared to the neutral liquid, supporting our hypothesis. Further, the detection of COX-2 expression shows promise as a noninvasive method for estimating enema-induced damage.
Collapse
Affiliation(s)
- Feng Zhang
- School of Nursing, Nantong University, Nantong City, Jiangsu Province, China
| | - Xia Li
- School of Nursing, Nantong University, Nantong City, Jiangsu Province, China
| | - Xujuan Xu
- Affiliated hospital of Nantong University, Nantong City, Jiangsu Province, China
| | - Duanying Cai
- School of Nursing, Nantong University, Nantong City, Jiangsu Province, China
| | - Jianguo Zhang
- Affiliated hospital of Nantong University, Nantong City, Jiangsu Province, China
| |
Collapse
|