1
|
Mendes M, Jonnalagadda M, Ozarkar S, Lima Torres FC, Borda Pua V, Kendall C, Tarazona-Santos E, Parra EJ. Identifying signatures of natural selection in Indian populations. PLoS One 2022; 17:e0271767. [PMID: 35925921 PMCID: PMC9352006 DOI: 10.1371/journal.pone.0271767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/06/2022] [Indexed: 11/18/2022] Open
Abstract
In this study, we present the results of a genome-wide scan for signatures of positive selection using data from four tribal groups (Kokana, Warli, Bhil, and Pawara) and two caste groups (Deshastha Brahmin and Kunbi Maratha) from West of the Maharashtra State In India, as well as two samples of South Asian ancestry from the 1KG project (Gujarati Indian from Houston, Texas and Indian Telugu from UK). We used an outlier approach based on different statistics, including PBS, xpEHH, iHS, CLR, Tajima's D, as well as two recently developed methods: Graph-aware Retrieval of Selective Sweeps (GRoSS) and Ascertained Sequentially Markovian Coalescent (ASMC). In order to minimize the risk of false positives, we selected regions that are outliers in all the samples included in the study using more than one method. We identified putative selection signals in 107 regions encompassing 434 genes. Many of the regions overlap with only one gene. The signals observed using microarray-based data are very consistent with our analyses using high-coverage sequencing data, as well as those identified with a novel coalescence-based method (ASMC). Importantly, at least 24 of these genomic regions have been identified in previous selection scans in South Asian populations or in other population groups. Our study highlights genomic regions that may have played a role in the adaptation of anatomically modern humans to novel environmental conditions after the out of Africa migration.
Collapse
Affiliation(s)
- Marla Mendes
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| | - Manjari Jonnalagadda
- Symbiosis School for Liberal Arts (SSLA), Symbiosis International University (SIU), Pune, India
| | - Shantanu Ozarkar
- Department of Anthropology, Savitribai Phule Pune University, Pune, India
| | - Flávia Carolina Lima Torres
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Victor Borda Pua
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Christopher Kendall
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| | - Eduardo Tarazona-Santos
- Departamento de Genética, Ecologia e Evolução, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Esteban J. Parra
- Department of Anthropology, University of Toronto—Mississauga Campus, Mississauga, ON, Canada
| |
Collapse
|
2
|
Hashemi SMA, Thijssen M, Hosseini SY, Tabarraei A, Pourkarim MR, Sarvari J. Human gene polymorphisms and their possible impact on the clinical outcome of SARS-CoV-2 infection. Arch Virol 2021; 166:2089-2108. [PMID: 33934196 PMCID: PMC8088757 DOI: 10.1007/s00705-021-05070-6] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 02/23/2021] [Indexed: 12/13/2022]
Abstract
The SARS-CoV-2 pandemic has become one of the most serious health concerns globally. Although multiple vaccines have recently been approved for the prevention of coronavirus disease 2019 (COVID-19), an effective treatment is still lacking. Our knowledge of the pathogenicity of this virus is still incomplete. Studies have revealed that viral factors such as the viral load, duration of exposure to the virus, and viral mutations are important variables in COVID-19 outcome. Furthermore, host factors, including age, health condition, co-morbidities, and genetic background, might also be involved in clinical manifestations and infection outcome. This review focuses on the importance of variations in the host genetic background and pathogenesis of SARS-CoV-2. We will discuss the significance of polymorphisms in the ACE-2, TMPRSS2, vitamin D receptor, vitamin D binding protein, CD147, glucose-regulated protein 78 kDa, dipeptidyl peptidase-4 (DPP4), neuropilin-1, heme oxygenase, apolipoprotein L1, vitamin K epoxide reductase complex 1 (VKORC1), and immune system genes for the clinical outcome of COVID-19.
Collapse
Affiliation(s)
- Seyed Mohammad Ali Hashemi
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Microbiology, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marijn Thijssen
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
| | - Seyed Younes Hosseini
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Alijan Tabarraei
- Infectious Diseases Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mahmoud Reza Pourkarim
- Laboratory for Clinical and Epidemiological Virology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, 3000 Leuven, Belgium
- Health Policy Research Centre, Institute of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Jamal Sarvari
- Department of Bacteriology and Virology, Shiraz University of Medical Sciences, Shiraz, Iran
- Gastroenterohepatology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
3
|
Gao W, Li Z, Chen W, Zhang S. Performance Evaluation of Warfarin Dose Prediction Algorithms and Effects of Clinical Factors on Warfarin Dose in Chinese Patients. Ther Drug Monit 2021; 43:527-535. [PMID: 34250965 DOI: 10.1097/ftd.0000000000000880] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/06/2021] [Indexed: 11/25/2022]
Abstract
BACKGROUND The clinical utility of warfarin dose prediction algorithms remains controversial, our purpose is to evaluate the performance of warfarin dose prediction algorithms and the effects of clinical factors on warfarin dose in Chinese patients. METHODS Clinical data of 217 patients who received warfarin treatment were used to assess 6 warfarin dose prediction algorithms (OHNO, IWPC [International Warfarin Pharmacogenetics Consortium], HUANG, KIM, BRESS, and MIAO). The predicted dose (PD) was compared with the warfarin optimal dose (WOD, defined as the dose that maintains the international normalized ratio within the target range of 2.0-3.0). A multiple regression analysis with WOD as the dependent variable was performed to evaluate the effects of clinical factors on warfarin dose. RESULTS The mean absolute error analysis ranked the predictive accuracies of the algorithms as OHNO > IWPC > HUANG > KIM > BRESS > MIAO. Stratified analysis indicated that HUANG most accurately predicted that patients required lower WODs (≤3 mg/d), whereas OHNO was the most effective in predicting medium WODs (3-5 mg/d). KIM was effective in predicting high WODs (>5 mg/d). Multiple linear regression analysis showed that VKORC1 (rs9923231) and body mass index were significantly positively correlated with WOD, whereas concurrent atrial fibrillation status, CYP2C9*3 (rs1057910), and sex were significantly negatively correlated with WOD. CONCLUSIONS In Chinese patients, OHNO should be given priority during the prediction and selection of warfarin dose. When using OHNO to predict warfarin dose (≤3 mg/d or >5 mg/d), HUANG or KIM algorithms can provide precise predictions. At the same time, physicians should pay close attention to clinical factors, such as VKORC1 (rs9923231), concurrent atrial fibrillation status, CYP2C9*3 (rs1057910), body mass index, and sex, to improve warfarin dose adjustment strategies in Chinese patients.
Collapse
Affiliation(s)
- Weiqi Gao
- School of Pharmacy, Shanxi Medical University, Taiyuan, China; and
- Department of Pharmacy, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Zhihong Li
- Department of Pharmacy, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Weihong Chen
- Department of Pharmacy, Shanxi Bethune Hospital, Third Hospital of Shanxi Medical University, Shanxi Academy of Medical Sciences, Taiyuan, China
| | - Shuqiu Zhang
- School of Pharmacy, Shanxi Medical University, Taiyuan, China; and
| |
Collapse
|
4
|
Janssen R, Walk J. Vitamin K epoxide reductase complex subunit 1 (VKORC1) gene polymorphism as determinant of differences in Covid-19-related disease severity. Med Hypotheses 2020; 144:110218. [PMID: 33254525 PMCID: PMC7446614 DOI: 10.1016/j.mehy.2020.110218] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 08/20/2020] [Indexed: 01/30/2023]
Abstract
Covid-19, caused by SARS-CoV-2, has major world-wide health-related and socio-economic consequences. There are large disparities in the burden of Covid-19 with an apparent lower risk of poor outcomes in East Asians compared to populations in the West. A recent study suggested that Covid-19 leads to a severe extrahepatic vitamin K insufficiency, which could lead to impaired activation of extrahepatic proteins like endothelial anticoagulant protein S in the presence of normal hepatic procoagulant activity. This would be compatible with the enhanced thrombogenicity in severe Covid-19. The same study showed that vitamin K antagonists (VKA) that inhibit vitamin K recycling, had a greater impact on procoagulant activity than on the activation of extrahepatic vitamin K-dependent proteins during SARS-CoV-2 infections. A genetic polymorphism in the vitamin K epoxide reductase complex 1, VKORC1 -1639A, is particularly prevalent in East Asia and associates with low vitamin K recycling rates. Carriage of the allele may be regarded as bioequivalent to low-dose VKA use. We speculate that VKORC1 -1639A confers protection against thrombotic complications of Covid-19 and that differences in its allele frequency are partially responsible for the differences in Covid-19 severity between East and West.
Collapse
Affiliation(s)
- Rob Janssen
- Department of Pulmonary Medicine, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands.
| | - Jona Walk
- Department of Internal Medicine, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Cho EH, Lee K, Yang M, Choi R, Baek SY, Sohn I, Kim JS, On YK, Bang OY, Cho HJ, Lee SY. Development and Validation of a Novel Warfarin Dosing Algorithm for Korean Patients With VKORC1 1173C. Ann Lab Med 2020; 40:216-223. [PMID: 31858761 PMCID: PMC6933054 DOI: 10.3343/alm.2020.40.3.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Revised: 08/08/2019] [Accepted: 11/22/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Differences in the performance of suggested warfarin dosing algorithms among different ethnicities and genotypes have been reported; this necessitates the development of an algorithm with enhanced performance for specific population groups. Previous warfarin dosing algorithms underestimated warfarin doses in VKORC1 1173C carriers. We aimed to develop and validate a new warfarin dosing algorithm for Korean patients with VKORC1 1173C. METHODS A total of 109 patients carrying VKORC1 1173CT (N=105) or 1173CC (N=4) were included in this study. Multiple regression analysis was performed to deduce a new dosing algorithm. Following literature searches for genotype-guided warfarin dosing algorithms, 21 algorithms were selected and evaluated using the correlation coefficient (ρ) of actual dose and estimated dose, mean error, and root mean square error. RESULTS The developed algorithm is as follows: maintenance dose (mg/week)=exp [3.223-0.009×(age)+0.577×(body surface area [BSA])+0.178×(sex)-0.481×(CYP2C9 genotype)+0.227×(VKORC1 genotype)]. Integrated variables explained 44% of the variance in the maintenance dose. The predicted and actual doses showed moderate correlation (ρ=0.641) with the best performance with a mean error of -1.30 mg/week. The proportion of underestimated groups was 17%, which was lower than with the other algorithms. CONCLUSIONS This is the first study to develop and validate a warfarin dosing algorithm based on data from VKORC1 1173C carriers; it showed superior predictive performance compared with previously published algorithms.
Collapse
Affiliation(s)
- Eun Hye Cho
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Kyunghoon Lee
- Department of Laboratory Medicine, Kangbuk Samsung Hospital, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Mina Yang
- Department of Laboratory Medicine, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Korea
| | - Rihwa Choi
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Laboratory Medicine, Green Cross Laboratories, Yongin, Korea
| | - Sun Young Baek
- Statistics and Data Center, Samsung Medical Center, Seoul, Korea
| | - Insuk Sohn
- Statistics and Data Center, Samsung Medical Center, Seoul, Korea
| | - June Soo Kim
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Young Keun On
- Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Oh Young Bang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Hyun Jung Cho
- Department of Laboratory Medicine, Konyang University Hospital, Konyang University School of Medicine, Daejeon, Korea.
| | - Soo Youn Lee
- Department of Laboratory Medicine and Genetics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.,Department of Clinical Pharmacology & Therapeutics, Samsung Medical Center, Seoul, Korea.,Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, Korea.
| |
Collapse
|
6
|
Ahsan T, Urmi NJ, Sajib AA. Heterogeneity in the distribution of 159 drug-response related SNPs in world populations and their genetic relatedness. PLoS One 2020; 15:e0228000. [PMID: 31971968 PMCID: PMC6977754 DOI: 10.1371/journal.pone.0228000] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 01/03/2020] [Indexed: 12/25/2022] Open
Abstract
Interethnic variability in drug response arises from genetic differences associated with drug metabolism, action and transport. These genetic variations can affect drug efficacy as well as cause adverse drug reactions (ADRs). We retrieved drug-response related single nucleotide polymorphism (SNP) associated data from databases and analyzed to elucidate population specific distribution of 159 drug-response related SNPs in twenty six populations belonging to five super-populations (African, Admixed Americans, East Asian, European and South Asian). Significant interpopulation differences exist in the minor (variant) allele frequencies (MAFs), linkage disequilibrium (LD) and haplotype distributions among these populations. 65 of the drug-response related alleles, which are considered as minor (variant) in global population, are present as the major alleles (frequency ≥0.5) in at least one or more populations. Populations that belong to the same super-population have similar distribution pattern for majority of the variant alleles. These drug response related variant allele frequencies and their pairwise LD measure (r2) can clearly distinguish the populations in a way that correspond to the known evolutionary history of human and current geographic distributions, while D' cannot. The data presented here may aid in identifying drugs that are more appropriate and/or require pharmacogenetic testing in these populations. Our findings emphasize on the importance of distinct, ethnicity-specific clinical guidelines, especially for the African populations, to avoid ADRs and ensure effective drug treatment.
Collapse
Affiliation(s)
- Tamim Ahsan
- Department of Genetic Engineering & Biotechnology, Bangabandhu Sheikh Mujibur Rahman Maritime University, Dhaka, Bangladesh
| | | | - Abu Ashfaqur Sajib
- Department of Genetic Engineering & Biotechnology, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
7
|
Allyn-Feuer A, Ade A, Luzum JA, Higgins GA, Athey BD. The pharmacoepigenomics informatics pipeline defines a pathway of novel and known warfarin pharmacogenomics variants. Pharmacogenomics 2018; 19:413-434. [PMID: 29400612 PMCID: PMC6021929 DOI: 10.2217/pgs-2017-0186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/16/2018] [Indexed: 12/21/2022] Open
Abstract
AIM 'Pharmacoepigenomics' methods informed by omics datasets and pre-existing knowledge have yielded discoveries in neuropsychiatric pharmacogenomics. Now we evaluate the generality of these methods by discovering an extended warfarin pharmacogenomics pathway. MATERIALS & METHODS We developed the pharmacoepigenomics informatics pipeline, a scalable multi-omics variant screening pipeline for pharmacogenomics, and conducted an experiment in the genomics of warfarin. RESULTS We discovered known and novel pharmacogenomics variants and genes, both coding and regulatory, for warfarin response, including adverse events. Such genes and variants cluster in a warfarin response pathway consolidating known and novel warfarin response variants and genes. CONCLUSION These results can inform a new warfarin test. The pharmacoepigenomics informatics pipeline may be able to discover new pharmacogenomics markers in other drug-disease systems.
Collapse
Affiliation(s)
- Ari Allyn-Feuer
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Alex Ade
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Jasmine A Luzum
- Department of Clinical Pharmacy, College of Pharmacy, University of Michigan, Ann Arbor, MI 48109, USA
| | - Gerald A Higgins
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
| | - Brian D Athey
- Department of Computational Medicine & Bioinformatics, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Department of Internal Medicine, University of Michigan Health System, Ann Arbor, MI 48109, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, MI 48109, USA
- Michigan Institute for Data Science, University of Michigan Office of Research, Ann Arbor, MI 48109, USA
| |
Collapse
|
8
|
Yang M, Choi R, Kim JS, On YK, Bang OY, Cho HJ, Lee SY. Evaluation of 16 genotype-guided Warfarin Dosing Algorithms in 310 Korean Patients Receiving Warfarin Treatment: Poor Prediction Performance in VKORC1 1173C Carriers. Clin Ther 2016; 38:2666-2674.e1. [PMID: 27887741 DOI: 10.1016/j.clinthera.2016.10.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 10/19/2016] [Accepted: 10/31/2016] [Indexed: 10/20/2022]
|
9
|
Oldenburg J, Müller CR, Rost S, Watzka M, Bevans CG. Comparative genetics of warfarin resistance. Hamostaseologie 2013; 34:143-59. [PMID: 24287886 DOI: 10.5482/hamo-13-09-0047] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Accepted: 09/25/2013] [Indexed: 11/05/2022] Open
Abstract
Warfarin and other 4-hydroxycoumarin-based oral anticoagulants targeting vitamin K 2,3-epoxide reductase complex subunit 1 (VKORC1) are administered to humans, mice and rats with different purposes in mind - to act as pesticides in high-dosage baits for killing rodents, but also to save lives when administered in low dosages as antithrombotic drugs in humans. However, high-dosage warfarin used to control rodent populations has resulted in numerous mutations causing warfarin resistance. Currently, six single missense mutations in mice, 12 distinct missense mutations in rats, as well as compound heterozygous or homozygous mutations with up to six distinct missense mutations per Vkorc1 allele have been described. Warfarin resistance missense mutations for human VKORC1 have also been found world-wide, but differ characteristically from those in rodents. In humans, 26 distinct mutations have been characterized, but occur only rarely either in heterozygous or, even rarer, in homozygous form. In this review, we summarize the known VKORC1 missense mutations causing warfarin and other 4-hydroxycoumarin drug resistance, identify genomics databases as new sources of data, explore possible underlying genetic mechanisms, and summarize similarities and differences between warfarin resistant VKORC1 variants in humans and rodents.
Collapse
Affiliation(s)
- J Oldenburg
- Prof. Dr. Johannes Oldenburg, Institute of Experimental Haematology and Transfusion Medicine, University Clinic Bonn, Sigmund Freud Str. 25, 53105 Bonn, Germany, E-mail: , Tel. +49/(0)228/287 51 75, Fax +49/(0)228/287 51 76
| | | | | | | | | |
Collapse
|