1
|
Fare CM, Rothstein JD. Nuclear pore dysfunction and disease: a complex opportunity. Nucleus 2024; 15:2314297. [PMID: 38383349 PMCID: PMC10883112 DOI: 10.1080/19491034.2024.2314297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 01/30/2024] [Indexed: 02/23/2024] Open
Abstract
The separation of genetic material from bulk cytoplasm has enabled the evolution of increasingly complex organisms, allowing for the development of sophisticated forms of life. However, this complexity has created new categories of dysfunction, including those related to the movement of material between cellular compartments. In eukaryotic cells, nucleocytoplasmic trafficking is a fundamental biological process, and cumulative disruptions to nuclear integrity and nucleocytoplasmic transport are detrimental to cell survival. This is particularly true in post-mitotic neurons, where nuclear pore injury and errors to nucleocytoplasmic trafficking are strongly associated with neurodegenerative disease. In this review, we summarize the current understanding of nuclear pore biology in physiological and pathological contexts and discuss potential therapeutic approaches for addressing nuclear pore injury and dysfunctional nucleocytoplasmic transport.
Collapse
Affiliation(s)
- Charlotte M Fare
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| | - Jeffrey D Rothstein
- Department of Neurology and Brain Science Institute, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
2
|
AlQot HE, Rylett RJ. Primate-specific 82-kDa choline acetyltransferase attenuates progression of Alzheimer's disease-like pathology in the APP NL-G-F knock-in mouse model. Sci Rep 2024; 14:27614. [PMID: 39528509 PMCID: PMC11555257 DOI: 10.1038/s41598-024-78751-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Alzheimer's disease (AD) is characterized by amyloidosis, neuroinflammation, cholinergic dysfunction and cognitive impairment. In AD, the cholinergic neuronal marker choline acetyltransferase (ChAT) is reduced and the primate-specific nuclear isoform, 82-kDa ChAT, is mislocalized to cytoplasm. Cell-based studies suggest a role for 82-kDa ChAT in regulating expression of AD-related genes with potential reductions in β-amyloid (Aβ) levels. To study this further, we crossed transgenic mice expressing human 82-kDa ChAT with the AD mouse model APPNL-G-F and used molecular techniques and neurobehavioral tests to study the impact of 82-kDa ChAT on AD pathology. These mice had altered expression of genes linked to Aβ clearance and inflammation, and reduced cognitive decline, amyloidosis and gliosis. These effects were inversely related to age and Aβ plaque load and correlated best with 82-kDa ChAT localized to nuclei of neurons. The study suggests a role for 82-kDa ChAT in decreasing AD-like pathology.
Collapse
Affiliation(s)
- Hadir E AlQot
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada
| | - Rebecca Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, Robarts Research Institute, University of Western Ontario, London, ON, N6A 5K8, Canada.
| |
Collapse
|
3
|
Wang S, Greenbaum J, Qiu C, Swerdlow RH, Haeri M, Gong Y, Shen H, Xiao H, Deng H. Gene interactions analysis of brain spatial transcriptome for Alzheimer's disease. Genes Dis 2024; 11:101337. [PMID: 39281834 PMCID: PMC11402150 DOI: 10.1016/j.gendis.2024.101337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/25/2023] [Accepted: 02/21/2024] [Indexed: 09/18/2024] Open
Abstract
Recent studies have explored the spatial transcriptomics patterns of Alzheimer's disease (AD) brain by spatial sequencing in mouse models, enabling the identification of unique genome-wide transcriptomic features associated with different spatial regions and pathological status. However, the dynamics of gene interactions that occur during amyloid-β accumulation remain largely unknown. In this study, we performed analyses on ligand-receptor communication, transcription factor regulatory network, and spot-specific network to reveal the dependence and the dynamics of gene associations/interactions on spatial regions and pathological status with mouse and human brains. We first used a spatial transcriptomics dataset of the App NL-G-F knock-in AD and wild-type mouse model. We revealed 17 ligand-receptor pairs with opposite tendencies throughout the amyloid-β accumulation process and showed the specific ligand-receptor interactions across the hippocampus layers at different extents of pathological changes. We then identified nerve function related transcription factors in the hippocampus and entorhinal cortex, as well as genes with different transcriptomic association degrees in AD versus wild-type mice. Finally, another independent spatial transcriptomics dataset from different AD mouse models and human single-nuclei RNA-seq data/AlzData database were used for validation. This is the first study to identify various gene associations throughout amyloid-β accumulation based on spatial transcriptomics, establishing the foundations to reveal advanced and in-depth AD etiology from a novel perspective based on the comprehensive analyses of gene interactions that are spatio-temporal dependent.
Collapse
Affiliation(s)
- Shengran Wang
- Reproductive Medicine Center, The Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510120, China
- Center for System Biology, Data Sciences and Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Jonathan Greenbaum
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Chuan Qiu
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Russell H Swerdlow
- Department of Pathology and KU Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Mohammad Haeri
- Department of Pathology and KU Alzheimer's Disease Research Center, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Yun Gong
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hui Shen
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| | - Hongmei Xiao
- Institute of Reproductive & Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
- Center of Reproductive Health, School of Basic Medical Science, Central South University, Changsha, Hunan 410008, China
| | - Hongwen Deng
- Tulane Center of Biomedical Informatics and Genomics, Deming Department of Medicine, Tulane University School of Medicine, Tulane University, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Grovola MR, Cullen DK. Neuropathological mRNA Expression Changes after Single Mild Traumatic Brain Injury in Pigs. Biomedicines 2024; 12:2019. [PMID: 39335533 PMCID: PMC11428889 DOI: 10.3390/biomedicines12092019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
Traumatic brain injury (TBI) is a public health concern, with an estimated 42 million cases globally every year. The majority of TBIs are mild TBIs, also known as concussion, and result from the application of mechanical forces on the head. Most patients make a complete recovery and mortality is rare; therefore, studies investigating cellular changes after mild TBI in a clinical setting are limited. To address this constraint, our group utilized a pig model of closed-head rotational acceleration-induced TBI, which recreated the biomechanical loading parameters associated with concussion on a large gyrencephalic brain similar to humans. While our previous research has focused on immunohistochemical characterization of neuropathology, the current study utilized transcriptomic assays to evaluate an array of TBI-induced neurodegenerative analytes. Pigs subjected to mild TBI were survived for 3 days post-injury (DPI) (n = 3), 30 DPI (n = 3), or 1 year post-injury (YPI) (n = 3) and compared to animals undergoing a sham procedure (n = 8). RNA was isolated from whole coronal sections of fixed tissue and multiplexed on a Nanostring neuropathology panel. Differential expression analysis revealed 11 differentially expressed genes at 3 DPI versus sham, including downregulation of the synaptotagmin calcium sensor gene (SYT1), upregulation of the neurofibromin gene (NF1), and upregulation of the Alzheimer's disease-associated receptor gene (SORL1). There were no differentially expressed genes at 30 DPI or 1 YPI compared to shams. Additionally, high-magnitude undirected global significance scores (GSS) were detected at 3 DPI for chromatin modification and autophagy gene sets, and at 30 DPI for cytokine gene sets, while many dysregulated gene sets were highlighted by directed GSSs out to 1 YPI. This study adds to a growing body of literature on transcriptomic changes in a clinically relevant large animal model of closed-head TBI, which highlights potential therapeutic targets following mild TBI.
Collapse
Affiliation(s)
- Michael R Grovola
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - D Kacy Cullen
- Center for Neurotrauma, Neurodegeneration & Restoration, Corporal Michael J. Crescenz VA Medical Center, Philadelphia, PA 19104, USA
- Center for Brain Injury & Repair, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Bioengineering, School of Engineering and Applied Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
5
|
de Ávila C, Suazo C, Nolz J, Nicholas Cochran J, Wang Q, Velazquez R, Dammer E, Readhead B, Mastroeni D. Reduced PIN1 expression in neocortical and limbic brain regions in female Alzheimer's patients correlates with cognitive and neuropathological phenotypes. Neurobiol Aging 2024; 141:160-170. [PMID: 38964013 DOI: 10.1016/j.neurobiolaging.2024.06.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/19/2024] [Accepted: 06/24/2024] [Indexed: 07/06/2024]
Abstract
Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify genes that underpin sex-associated risk of AD. PIN1 is a key regulator of the tau phosphorylation signaling pathway; however, potential differences in PIN1 expression, in males and females, are still unknown. We analyzed brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels in an aging and AD cohort, which revealed reduced PIN1 levels primarily within females. We validated this observation in an independent dataset (ROS/MAP), which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again driven predominantly by female subjects. Histochemical analysis of PIN1 in AD and control male and female neocortex revealed an overall decrease in axonal PIN1 protein levels in females. These findings emphasize the importance of considering sex differences in AD research.
Collapse
Affiliation(s)
- Camila de Ávila
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Crystal Suazo
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Jennifer Nolz
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - J Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL 35806, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Ramon Velazquez
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Eric Dammer
- Goizueta Alzheimer's Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, USA.
| |
Collapse
|
6
|
Lindamood HL, Liu TM, Read TA, Vitriol EA. Using ALS to understand profilin 1's diverse roles in cellular physiology. Cytoskeleton (Hoboken) 2024. [PMID: 39056295 DOI: 10.1002/cm.21896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/03/2024] [Accepted: 07/10/2024] [Indexed: 07/28/2024]
Abstract
Profilin is an actin monomer-binding protein whose role in actin polymerization has been studied for nearly 50 years. While its principal biochemical features are now well understood, many questions remain about how profilin controls diverse processes within the cell. Dysregulation of profilin has been implicated in a broad range of human diseases, including neurodegeneration, inflammatory disorders, cardiac disease, and cancer. For example, mutations in the profilin 1 gene (PFN1) can cause amyotrophic lateral sclerosis (ALS), although the precise mechanisms that drive neurodegeneration remain unclear. While initial work suggested proteostasis and actin cytoskeleton defects as the main pathological pathways, multiple novel functions for PFN1 have since been discovered that may also contribute to ALS, including the regulation of nucleocytoplasmic transport, stress granules, mitochondria, and microtubules. Here, we will review these newly discovered roles for PFN1, speculate on their contribution to ALS, and discuss how defects in actin can contribute to these processes. By understanding profilin 1's involvement in ALS pathogenesis, we hope to gain insight into this functionally complex protein with significant influence over cellular physiology.
Collapse
Affiliation(s)
- Halli L Lindamood
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tatiana M Liu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Tracy-Ann Read
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| | - Eric A Vitriol
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, Georgia, USA
| |
Collapse
|
7
|
Branciamore S, Gogoshin G, Rodin AS, Myers AJ. Changes in expression of VGF, SPECC1L, HLA-DRA and RANBP3L act with APOE E4 to alter risk for late onset Alzheimer's disease. Sci Rep 2024; 14:14954. [PMID: 38942763 PMCID: PMC11213882 DOI: 10.1038/s41598-024-65010-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/16/2024] [Indexed: 06/30/2024] Open
Abstract
While there are currently over 40 replicated genes with mapped risk alleles for Late Onset Alzheimer's disease (LOAD), the Apolipoprotein E locus E4 haplotype is still the biggest driver of risk, with odds ratios for neuropathologically confirmed E44 carriers exceeding 30 (95% confidence interval 16.59-58.75). We sought to address whether the APOE E4 haplotype modifies expression globally through networks of expression to increase LOAD risk. We have used the Human Brainome data to build expression networks comparing APOE E4 carriers to non-carriers using scalable mixed-datatypes Bayesian network (BN) modeling. We have found that VGF had the greatest explanatory weight. High expression of VGF is a protective signal, even on the background of APOE E4 alleles. LOAD risk signals, considering an APOE background, include high levels of SPECC1L, HLA-DRA and RANBP3L. Our findings nominate several new transcripts, taking a combined approach to network building including known LOAD risk loci.
Collapse
Affiliation(s)
- Sergio Branciamore
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Grigoriy Gogoshin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA
| | - Andrei S Rodin
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, Duarte, CA, 91010, USA.
| | - Amanda J Myers
- Department of Cell Biology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Institute for Data Science and Computing, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Interdepartmental Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Interdepartmental Program in Human Genetics and Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
8
|
Axenhus M, Doeswijk T, Nilsson P, Matton A, Winblad B, Tjernberg L, Schedin-Weiss S. DEAD Box Helicase 24 Is Increased in the Brain in Alzheimer's Disease and AppN-LF Mice and Influences Presymptomatic Pathology. Int J Mol Sci 2024; 25:3622. [PMID: 38612434 PMCID: PMC11011903 DOI: 10.3390/ijms25073622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/14/2024] Open
Abstract
At the time of diagnosis, Alzheimer's disease (AD) patients already suffer from significant neuronal loss. The identification of proteins that influence disease progression before the onset of symptoms is thus an essential part of the development of new effective drugs and biomarkers. Here, we used an unbiased 18O labelling proteomics approach to identify proteins showing altered levels in the AD brain. We studied the relationship between the protein with the highest increase in hippocampus, DEAD box Helicase 24 (DDX24), and AD pathology. We visualised DDX24 in the human brain and in a mouse model for Aβ42-induced AD pathology-AppNL-F-and studied the interaction between Aβ and DDX24 in primary neurons. Immunohistochemistry in the AD brain confirmed the increased levels and indicated an altered subcellular distribution of DDX24. Immunohistochemical studies in AppNL-F mice showed that the increase of DDX24 starts before amyloid pathology or memory impairment is observed. Immunocytochemistry in AppNL-F primary hippocampal neurons showed increased DDX24 intensity in the soma, nucleus and nucleolus. Furthermore, siRNA targeting of DDX24 in neurons decreased APP and Aβ42 levels, and the addition of Aβ42 to the medium reduced DDX24. In conclusion, we have identified DDX24 as a protein with a potential role in Aβ-induced AD pathology.
Collapse
Affiliation(s)
- Michael Axenhus
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Tosca Doeswijk
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
- Faculty of Psychology and Neuroscience, Maastricht University, 6211 LK Maastricht, The Netherlands
| | - Per Nilsson
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Anna Matton
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Bengt Winblad
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
- Campus Huddinge, Theme Inflammation and Aging, Karolinska University Hospital, 141 57 Huddinge, Sweden
| | - Lars Tjernberg
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| | - Sophia Schedin-Weiss
- Department of Neurobiology, Care Sciences and Society, Division of Neurogeriatrics, Karolinska Institutet, 171 64 Solna, Sweden; (M.A.); (T.D.); (P.N.); (A.M.); (L.T.)
| |
Collapse
|
9
|
Branciamore S, Gogoshin G, Rodin AS, Myers AJ. The Human Brainome: changes in expression of VGF, SPECC1L, HLA-DRA and RANBP3L act with APOE E4 to alter risk for late onset Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-3678057. [PMID: 38168398 PMCID: PMC10760217 DOI: 10.21203/rs.3.rs-3678057/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
While there are currently over 40 replicated genes with mapped risk alleles for Late Onset Alzheimer's disease (LOAD), the Apolipoprotein E locus E4 haplotype is still the biggest driver of risk, with odds ratios for neuropathologically confirmed E44 carriers exceeding 30 (95% confidence interval 16.59-58.75). We sought to address whether the APOE E4 haplotype modifies expression globally through networks of expression to increase LOAD risk. We have used the Human Brainome data to build expression networks comparing APOE E4 carriers to non-carriers using scalable mixed-datatypes Bayesian network (BN) modeling. We have found that VGF had the greatest explanatory weight. High expression of VGF is a protective signal, even on the background of APOE E4 alleles. LOAD risk signals, considering an APOE background, include high levels of SPECC1L, HLA-DRA and RANBP3L. Our findings nominate several new transcripts, taking a combined approach to network building including known LOAD risk loci.
Collapse
|
10
|
Chen KS, Noureldein MH, Rigan DM, Hayes JM, Savelieff MG, Feldman EL. Regional interneuron transcriptional changes reveal pathologic markers of disease progression in a mouse model of Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.01.565165. [PMID: 37961679 PMCID: PMC10635060 DOI: 10.1101/2023.11.01.565165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disorder and leading cause of dementia, characterized by neuronal and synapse loss, amyloid-β and tau protein aggregates, and a multifactorial pathology involving neuroinflammation, vascular dysfunction, and disrupted metabolism. Additionally, there is growing evidence of imbalance between neuronal excitation and inhibition in the AD brain secondary to dysfunction of parvalbumin (PV)- and somatostatin (SST)-positive interneurons, which differentially modulate neuronal activity. Importantly, impaired interneuron activity in AD may occur upstream of amyloid-β pathology rendering it a potential therapeutic target. To determine the underlying pathologic processes involved in interneuron dysfunction, we spatially profiled the brain transcriptome of the 5XFAD AD mouse model versus controls, across four brain regions, dentate gyrus, hippocampal CA1 and CA3, and cortex, at early-stage (12 weeks-of-age) and late-stage (30 weeks-of-age) disease. Global comparison of differentially expressed genes (DEGs) followed by enrichment analysis of 5XFAD versus control highlighted various biological pathways related to RNA and protein processing, transport, and clearance in early-stage disease and neurodegeneration pathways at late-stage disease. Early-stage DEGs examination found shared, e.g ., RNA and protein biology, and distinct, e.g ., N-glycan biosynthesis, pathways enriched in PV-versus somatostatin SST-positive interneurons and in excitatory neurons, which expressed neurodegenerative and axon- and synapse-related pathways. At late-stage disease, PV-positive interneurons featured cancer and cancer signaling pathways along with neuronal and synapse pathways, whereas SST-positive interneurons showcased glycan biosynthesis and various infection pathways. Late-state excitatory neurons were primarily characterized by neurodegenerative pathways. These fine-grained transcriptomic profiles for PV- and SST-positive interneurons in a time- and spatial-dependent manner offer new insight into potential AD pathophysiology and therapeutic targets.
Collapse
|
11
|
Desgraupes S, Etienne L, Arhel NJ. RANBP2 evolution and human disease. FEBS Lett 2023; 597:2519-2533. [PMID: 37795679 DOI: 10.1002/1873-3468.14749] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/23/2023] [Accepted: 09/25/2023] [Indexed: 10/06/2023]
Abstract
Ran-binding protein 2 (RANBP2)/Nup358 is a nucleoporin and a key component of the nuclear pore complex. Through its multiple functions (e.g., SUMOylation, regulation of nucleocytoplasmic transport) and subcellular localizations (e.g., at the nuclear envelope, kinetochores, annulate lamellae), it is involved in many cellular processes. RANBP2 dysregulation or mutation leads to the development of human pathologies, such as acute necrotizing encephalopathy 1, cancer, neurodegenerative diseases, and it is also involved in viral infections. The chromosomal region containing the RANBP2 gene is highly dynamic, with high structural variation and recombination events that led to the appearance of a gene family called RANBP2 and GCC2 Protein Domains (RGPD), with multiple gene loss/duplication events during ape evolution. Although RGPD homoplasy and maintenance during evolution suggest they might confer an advantage to their hosts, their functions are still unknown and understudied. In this review, we discuss the appearance and importance of RANBP2 in metazoans and its function-related pathologies, caused by an alteration of its expression levels (through promotor activity, post-transcriptional, or post-translational modifications), its localization, or genetic mutations.
Collapse
Affiliation(s)
- Sophie Desgraupes
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, France
| | - Lucie Etienne
- Centre International de Recherche en Infectiologie (CIRI), Inserm U1111, UCBL1, CNRS UMR 5308, ENS de Lyon, Université de Lyon, France
| | - Nathalie J Arhel
- Institut de Recherche en Infectiologie de Montpellier (IRIM), University of Montpellier, France
| |
Collapse
|
12
|
de Ávila C, Suazo C, Nolz J, Cochran JN, Wang Q, Velazquez R, Dammer E, Readhead B, Mastroeni D. Reduced PIN1 gene expression in neocortical and limbic brain regions in female Alzheimer's patients correlates with cognitive and neuropathological phenotypes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.14.553279. [PMID: 37645898 PMCID: PMC10462057 DOI: 10.1101/2023.08.14.553279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Women have a higher incidence of Alzheimer's disease (AD), even after adjusting for increased longevity. Thus, there is an urgent need to identify the molecular networks that underpin the sex-associated risk of AD. Recent efforts have identified PIN1 as a key regulator of tau phosphorylation signaling pathway. Pin1 is the only gene, to date, that when deleted can cause both tau and Aβ-related pathologies in an age-dependent manner. We analyzed multiple brain transcriptomic datasets focusing on sex differences in PIN1 mRNA levels, in an aging and AD cohort, which revealed reduced PIN1 levels driven by females. Then, we validated this observation in an independent dataset (ROS/MAP) which also revealed that PIN1 is negatively correlated with multiregional neurofibrillary tangle density and global cognitive function, in females only. Additional analysis revealed a decrease in PIN1 in subjects with mild cognitive impairment (MCI) compared with aged individuals, again, driven predominantly by female subjects. Our results show that while both male and female AD patients show decreased PIN1 expression, changes occur before the onset of clinical symptoms of AD in females and correlate to early events associated with AD risk (e.g., synaptic dysfunction). These changes are specific to neurons, and may be a potential prognostic marker to assess AD risk in the aging population and even more so in AD females with increased risk of AD.
Collapse
Affiliation(s)
- Camila de Ávila
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Crystal Suazo
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Jennifer Nolz
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - J. Nicholas Cochran
- HudsonAlpha Institute for Biotechnology, 601 Genome Way, Huntsville, AL, 35806, USA
| | - Qi Wang
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Ramon Velazquez
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Eric Dammer
- Goizueta Alzheimer’s Disease Research Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Benjamin Readhead
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| | - Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, and School of Life Sciences, Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
13
|
Yin G, Huang J, Petela J, Jiang H, Zhang Y, Gong S, Wu J, Liu B, Shi J, Gao Y. Targeting small GTPases: emerging grasps on previously untamable targets, pioneered by KRAS. Signal Transduct Target Ther 2023; 8:212. [PMID: 37221195 DOI: 10.1038/s41392-023-01441-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/28/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Small GTPases including Ras, Rho, Rab, Arf, and Ran are omnipresent molecular switches in regulating key cellular functions. Their dysregulation is a therapeutic target for tumors, neurodegeneration, cardiomyopathies, and infection. However, small GTPases have been historically recognized as "undruggable". Targeting KRAS, one of the most frequently mutated oncogenes, has only come into reality in the last decade due to the development of breakthrough strategies such as fragment-based screening, covalent ligands, macromolecule inhibitors, and PROTACs. Two KRASG12C covalent inhibitors have obtained accelerated approval for treating KRASG12C mutant lung cancer, and allele-specific hotspot mutations on G12D/S/R have been demonstrated as viable targets. New methods of targeting KRAS are quickly evolving, including transcription, immunogenic neoepitopes, and combinatory targeting with immunotherapy. Nevertheless, the vast majority of small GTPases and hotspot mutations remain elusive, and clinical resistance to G12C inhibitors poses new challenges. In this article, we summarize diversified biological functions, shared structural properties, and complex regulatory mechanisms of small GTPases and their relationships with human diseases. Furthermore, we review the status of drug discovery for targeting small GTPases and the most recent strategic progress focused on targeting KRAS. The discovery of new regulatory mechanisms and development of targeting approaches will together promote drug discovery for small GTPases.
Collapse
Affiliation(s)
- Guowei Yin
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China.
| | - Jing Huang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Johnny Petela
- Wake Forest University School of Medicine, Winston-Salem, NC, 27101, USA
| | - Hongmei Jiang
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
| | - Yuetong Zhang
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Siqi Gong
- The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, 518107, China
- School of Medicine, Sun Yat-Sen University, Shenzhen, 518107, China
| | - Jiaxin Wu
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Bei Liu
- National Biomedical Imaging Center, School of Future Technology, Peking University, Beijing, 100871, China
| | - Jianyou Shi
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology, Chengdu, 610072, China.
| | - Yijun Gao
- State Key Laboratory of Oncology in South China, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
14
|
Yeo EJ, Shin MJ, Youn GS, Park JH, Yeo HJ, Kwon HJ, Lee LR, Kim NY, Kwon SY, Kim SM, Lee J, Lee KW, Lee CH, Cho YJ, Kwon OS, Kim DW, Jung HY, Eum WS, Choi SY. Tat-RAN attenuates brain ischemic injury in hippocampal HT-22 cells and ischemia animal model. Neurochem Int 2023; 167:105538. [PMID: 37207854 DOI: 10.1016/j.neuint.2023.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/30/2023] [Accepted: 05/07/2023] [Indexed: 05/21/2023]
Abstract
Oxidative stress plays a key role in the pathogenesis of neuronal injury, including ischemia. Ras-related nuclear protein (RAN), a member of the Ras superfamily, involves in a variety of biological roles, such as cell division, proliferation, and signal transduction. Although RAN reveals antioxidant effect, its precise neuroprotective mechanisms are still unclear. Therefore, we investigated the effects of RAN on HT-22 cell which were exposed to H2O2-induced oxidative stress and ischemia animal model by using the cell permeable Tat-RAN fusion protein. We showed that Tat-RAN transduced into HT-22 cells, and markedly inhibited cell death, DNA fragmentation, and reactive oxygen species (ROS) generation under oxidative stress. This fusion protein also controlled cellular signaling pathways, including mitogen-activated protein kinases (MAPKs), NF-κB, and apoptosis (Caspase-3, p53, Bax and Bcl-2). In the cerebral forebrain ischemia animal model, Tat-RAN significantly inhibited both neuronal cell death, and astrocyte and microglia activation. These results indicate that RAN significantly protects against hippocampal neuronal cell death, suggesting Tat-RAN will help to develop the therapies for neuronal brain diseases including ischemic injury.
Collapse
Affiliation(s)
- Eun Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Min Jea Shin
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Gi Soo Youn
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Jung Hwan Park
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyeon Ji Yeo
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Hyun Jung Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Lee Re Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Na Yeon Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Su Yeon Kwon
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Su Min Kim
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Jaehak Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Keun Wook Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Chan Hee Lee
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea
| | - Yong-Jun Cho
- Department of Neurosurgery, Hallym University Medical Center, Chuncheon, 24253, South Korea
| | - Oh-Shin Kwon
- School of Life Sciences, College of Natural Sciences Kyungpook National University, Taegu, 41566, South Korea
| | - Dae Won Kim
- Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University, Gangneung, 25457, South Korea
| | - Hyo Young Jung
- Department of Veterinary Medicine & Institute of Veterinary Science, Chungnam National University, Daejeon, 34134, South Korea
| | - Won Sik Eum
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| | - Soo Young Choi
- Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University, Chuncheon, 24252, South Korea.
| |
Collapse
|
15
|
Jayawardena BM, Menon R, Jones MR, Jones CE. Spectral Phasor Analysis of Nile Red Identifies Membrane Microenvironment Changes in the Presence of Amyloid Peptides. Cell Biochem Biophys 2023; 81:19-27. [PMID: 36203076 DOI: 10.1007/s12013-022-01105-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 09/24/2022] [Indexed: 11/29/2022]
Abstract
The interaction of protein and peptide amyloid oligomers with membranes is thought to be one of the mechanisms contributing to cellular toxicity. However, techniques to study these interactions in the complex membrane environment of live cells are lacking. Spectral phasor analysis is a recently developed biophysical technique that can enable visualisation and analysis of membrane-associated fluorescent dyes. When the spectral profile of these dyes changes as a result of changes to the membrane microenvironment, spectral phasor analysis can localise those changes to discrete membrane regions. In this study, we investigated whether spectral phasor analysis could detect changes in the membrane microenvironment of live cells in the presence of fibrillar aggregates of the disease-related Aβ42 peptide or the functional amyloid neurokinin B. Our results show that the fibrils cause distinct changes to the microenvironment of nile red associated with both the plasma and the nuclear membrane. We attribute these shifts in nile red spectral properties to changes in membrane fluidity. Results from this work suggest that cells have mechanisms to avoid or control membrane interactions arising from functional amyloids which have implications for how these peptides are stored in dense core vesicles. Furthermore, the work highlights the utility of spectral phasor analysis to monitor microenvironment changes to fluorescent probes in live cells.
Collapse
Affiliation(s)
- Bhawantha M Jayawardena
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Resmi Menon
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia.,PYC Therapeutics, QEII Medical Centre, 6 Verdun St, Nedlands, 6009, WA, Australia
| | - Mark R Jones
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia
| | - Christopher E Jones
- School of Science, Western Sydney University, Locked Bag 1797, Penrith, 2751, NSW, Australia.
| |
Collapse
|
16
|
Dubey T, Sonawane SK, Mannava MKC, Nangia AK, Chandrashekar M, Chinnathambi S. The inhibitory effect of Curcumin-Artemisinin co-amorphous on Tau aggregation and Tau phosphorylation. Colloids Surf B Biointerfaces 2023; 221:112970. [DOI: 10.1016/j.colsurfb.2022.112970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 10/19/2022] [Accepted: 10/22/2022] [Indexed: 11/08/2022]
|
17
|
Nag N, Tripathi T. Tau-FG-nucleoporin98 interaction and impaired nucleocytoplasmic transport in Alzheimer's disease. Brief Funct Genomics 2022; 22:161-167. [PMID: 35923096 DOI: 10.1093/bfgp/elac022] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 06/29/2022] [Accepted: 07/11/2022] [Indexed: 11/14/2022] Open
Abstract
An emerging pathophysiology associated with the neurodegenerative Alzheimer's disease (AD) is the impairment of nucleocytoplasmic transport (NCT). The impairment can originate from damage to the nuclear pore complex (NPC) or other factors involved in NCT. The phenylalanine-glycine nucleoporins (FG-Nups) form a crucial component of the NPC, which is central to NCT. Recent discoveries have highlighted that the neuropathological protein tau is involved in direct interactions with the FG-Nups and impairment of the NCT process. Targeting such interactions may lead to the identification of novel interaction inhibitors and offer new therapeutic alternatives for the treatment of AD. This review highlights recent findings associated with impaired NCT in AD and the interaction between tau and the FG-Nups.
Collapse
Affiliation(s)
- Niharika Nag
- Molecular and Structural Biophysics Laboratory, Department of Biochemistry, North-Eastern Hill University, Shillong 793022, India
| | - Timir Tripathi
- Regional Director's Office, Indira Gandhi National Open University (IGNOU), Regional Centre Kohima, Kenuozou, Kohima 797001, India
| |
Collapse
|
18
|
Unravelling the neuroprotective mechanisms of carotenes in differentiated human neural cells: Biochemical and proteomic approaches. FOOD CHEMISTRY. MOLECULAR SCIENCES 2022; 4:100088. [PMID: 35415676 PMCID: PMC8991711 DOI: 10.1016/j.fochms.2022.100088] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 02/08/2022] [Accepted: 02/11/2022] [Indexed: 12/20/2022]
Abstract
Total mixed carotenes (TMC) protect differentiated human neural cells against 6-hydroxydopamine-induced toxicity. TMC elevated the antioxidant enzymes activities and suppressed generation of reactive oxygen species. TMC augmented the dopamine and tyrosine hydroxylase levels. TMC exerted differential protein expression in human neural cells.
Carotenoids, fat-soluble pigments found ubiquitously in plants and fruits, have been reported to exert significant neuroprotective effects against free radicals. However, the neuroprotective effects of total mixed carotenes complex (TMC) derived from virgin crude palm oil have not been studied extensively. Therefore, the present study was designed to establish the neuroprotective role of TMC on differentiated human neural cells against 6-hydroxydopamine (6-OHDA)-induced cytotoxicity. The human neural cells were differentiated using retinoic acid for six days. Then, the differentiated neural cells were pre-treated for 24 hr with TMC before exposure to 6-OHDA. TMC pre-treated neurons showed significant alleviation of 6-OHDA-induced cytotoxicity as evidenced by enhanced activity of the superoxide dismutase (SOD) and catalase (CAT) enzymes. Furthermore, TMC elevated the levels of intra-neuronal dopamine and tyrosine hydroxylase (TH) in differentiated neural cells. The 6-OHDA induced overexpression of α-synuclein was significantly hindered in neural cells pre-treated with TMC. In proteomic analysis, TMC altered the expression of ribosomal proteins, α/β isotypes of tubulins, protein disulphide isomerases (PDI) and heat shock proteins (HSP) in differentiated human neural cells. The natural palm phytonutrient TMC is a potent antioxidant with significant neuroprotective effects against free radical-induced oxidative stress.
Collapse
Key Words
- 6-OHDA, 6-hydroxydopamine
- 6-hydroxydopamine
- AD, Alzheimer’s disease
- BCM, beta-carotene-15,15′-monooxygenase
- CAT, catalase
- DRD2, dopamine receptor D2
- Dopamine
- ER, endoplasmic reticulum
- GO, gene ontology
- HSP, Heat shock protein
- HSPA9, Heat shock protein family A (HSP70) member 9
- HSPD1, Heat shock protein family D (HSP60) member 1
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- LC-MS/MS, liquid chromatography-double mass spectrometry
- LDH, lactate dehydrogenase
- MCODE, minimal common oncology data elements
- MS, mass spectrometry
- Mixed carotene
- PD, Parkinson's disease
- PDI, protein disulphide isomerases
- PHB2, prohibitin 2
- PPI, protein–protein interaction
- RAN, Ras-related nuclear protein
- ROS, reactive oxygen species
- RPs, ribosomal proteins
- SH-SY5Y neuroblastoma cells
- SOD, superoxide dismutase
- TH, tyrosine hydroxylase
- TMC, total mixed carotene complex
Collapse
|
19
|
Regulating Phase Transition in Neurodegenerative Diseases by Nuclear Import Receptors. BIOLOGY 2022; 11:biology11071009. [PMID: 36101390 PMCID: PMC9311884 DOI: 10.3390/biology11071009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 11/17/2022]
Abstract
RNA-binding proteins (RBPs) with a low-complexity prion-like domain (PLD) can undergo aberrant phase transitions and have been implicated in neurodegenerative diseases such as ALS and FTD. Several nuclear RBPs mislocalize to cytoplasmic inclusions in disease conditions. Impairment in nucleocytoplasmic transport is another major event observed in ageing and in neurodegenerative disorders. Nuclear import receptors (NIRs) regulate the nucleocytoplasmic transport of different RBPs bearing a nuclear localization signal by restoring their nuclear localization. NIRs can also specifically dissolve or prevent the aggregation and liquid–liquid phase separation of wild-type or disease-linked mutant RBPs, due to their chaperoning activity. This review focuses on the LLPS of intrinsically disordered proteins and the role of NIRs in regulating LLPS in neurodegeneration. This review also discusses the implication of NIRs as therapeutic agents in neurogenerative diseases.
Collapse
|
20
|
Sisley EK, Hale OJ, Styles IB, Cooper HJ. Native Ambient Mass Spectrometry Imaging of Ligand-Bound and Metal-Bound Proteins in Rat Brain. J Am Chem Soc 2022; 144:2120-2128. [DOI: 10.1021/jacs.1c10032] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Emma K. Sisley
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Oliver J. Hale
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| | - Iain B. Styles
- School of Computer Science, University of Birmingham, Birmingham, B15 2TT, U.K
- The Alan Turing Institute, London, NW1 2DB, U.K
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham, Birmingham, B15 2TT, U.K
- University of Nottingham, Midlands, NG7 2RD, U.K
| | - Helen J. Cooper
- School of Biosciences, University of Birmingham, Birmingham, B15 2TT, U.K
| |
Collapse
|
21
|
Gao X, Chen Q, Yao H, Tan J, Liu Z, Zhou Y, Zou Z. Epigenetics in Alzheimer's Disease. Front Aging Neurosci 2022; 14:911635. [PMID: 35813941 PMCID: PMC9260511 DOI: 10.3389/fnagi.2022.911635] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/24/2022] [Indexed: 12/19/2022] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disease with unknown pathogenesis and complex pathological manifestations. At present, a large number of studies on targeted drugs for the typical pathological phenomenon of AD (Aβ) have ended in failure. Although there are some drugs on the market that indirectly act on AD, their efficacy is very low and the side effects are substantial, so there is an urgent need to develop a new strategy for the treatment of AD. An increasing number of studies have confirmed epigenetic changes in AD. Although it is not clear whether these epigenetic changes are the cause or result of AD, they provide a new avenue of treatment for medical researchers worldwide. This article summarizes various epigenetic changes in AD, including DNA methylation, histone modification and miRNA, and concludes that epigenetics has great potential as a new target for the treatment of AD.
Collapse
Affiliation(s)
- Xiaodie Gao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Qiang Chen
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
| | - Hua Yao
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Jie Tan
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
| | - Zheng Liu
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- *Correspondence: Zheng Liu,
| | - Yan Zhou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Yan Zhou,
| | - Zhenyou Zou
- Guangxi Key Lab of Brain and Cognitive Neuroscience, Guilin Medical University, Guilin, China
- Department of Scientific Research, Brain Hospital of Guangxi Zhuang Autonomous Region, Liuzhou, China
- Zhenyou Zou,
| |
Collapse
|
22
|
Pasha T, Zatorska A, Sharipov D, Rogelj B, Hortobágyi T, Hirth F. Karyopherin abnormalities in neurodegenerative proteinopathies. Brain 2021; 144:2915-2932. [PMID: 34019093 PMCID: PMC8194669 DOI: 10.1093/brain/awab201] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 04/08/2021] [Accepted: 05/11/2021] [Indexed: 11/12/2022] Open
Abstract
Neurodegenerative proteinopathies are characterized by progressive cell loss that is preceded by the mislocalization and aberrant accumulation of proteins prone to aggregation. Despite their different physiological functions, disease-related proteins like tau, α-synuclein, TAR DNA binding protein-43, fused in sarcoma and mutant huntingtin, all share low complexity regions that can mediate their liquid-liquid phase transitions. The proteins' phase transitions can range from native monomers to soluble oligomers, liquid droplets and further to irreversible, often-mislocalized aggregates that characterize the stages and severity of neurodegenerative diseases. Recent advances into the underlying pathogenic mechanisms have associated mislocalization and aberrant accumulation of disease-related proteins with defective nucleocytoplasmic transport and its mediators called karyopherins. These studies identify karyopherin abnormalities in amyotrophic lateral sclerosis, frontotemporal dementia, Alzheimer's disease, and synucleinopathies including Parkinson's disease and dementia with Lewy bodies, that range from altered expression levels to the subcellular mislocalization and aggregation of karyopherin α and β proteins. The reported findings reveal that in addition to their classical function in nuclear import and export, karyopherins can also act as chaperones by shielding aggregation-prone proteins against misfolding, accumulation and irreversible phase-transition into insoluble aggregates. Karyopherin abnormalities can, therefore, be both the cause and consequence of protein mislocalization and aggregate formation in degenerative proteinopathies. The resulting vicious feedback cycle of karyopherin pathology and proteinopathy identifies karyopherin abnormalities as a common denominator of onset and progression of neurodegenerative disease. Pharmacological targeting of karyopherins, already in clinical trials as therapeutic intervention targeting cancers such as glioblastoma and viral infections like COVID-19, may therefore represent a promising new avenue for disease-modifying treatments in neurodegenerative proteinopathies.
Collapse
Affiliation(s)
- Terouz Pasha
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Anna Zatorska
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Daulet Sharipov
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| | - Boris Rogelj
- Jozef Stefan Institute, Department of Biotechnology, 1000 Ljubljana, Slovenia
- University of Ljubljana, Faculty of Chemistry and Chemical Technology, 1000 Ljubljana, Slovenia
| | - Tibor Hortobágyi
- ELKH-DE Cerebrovascular and Neurodegenerative Research Group, Department of Neurology, University of Debrecen, 4032 Debrecen, Hungary
- King's College London, Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, London SE5 8AF, UK
| | - Frank Hirth
- King’s College London, Institute of Psychiatry, Psychology and Neuroscience, Maurice Wohl Clinical Neuroscience Institute, Department of Basic and Clinical Neuroscience, Institute of Psychiatry, Psychology and Neuroscience, London SE5 9RT, UK
| |
Collapse
|
23
|
Gil L, Niño SA, Guerrero C, Jiménez-Capdeville ME. Phospho-Tau and Chromatin Landscapes in Early and Late Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms221910283. [PMID: 34638632 PMCID: PMC8509045 DOI: 10.3390/ijms221910283] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/25/2022] Open
Abstract
Cellular identity is determined through complex patterns of gene expression. Chromatin, the dynamic structure containing genetic information, is regulated through epigenetic modulators, mainly by the histone code. One of the main challenges for the cell is maintaining functionality and identity, despite the accumulation of DNA damage throughout the aging process. Replicative cells can remain in a senescent state or develop a malign cancer phenotype. In contrast, post-mitotic cells such as pyramidal neurons maintain extraordinary functionality despite advanced age, but they lose their identity. This review focuses on tau, a protein that protects DNA, organizes chromatin, and plays a crucial role in genomic stability. In contrast, tau cytosolic aggregates are considered hallmarks of Alzheimer´s disease (AD) and other neurodegenerative disorders called tauopathies. Here, we explain AD as a phenomenon of chromatin dysregulation directly involving the epigenetic histone code and a progressive destabilization of the tau–chromatin interaction, leading to the consequent dysregulation of gene expression. Although this destabilization could be lethal for post-mitotic neurons, tau protein mediates profound cellular transformations that allow for their temporal survival.
Collapse
Affiliation(s)
- Laura Gil
- Departamento de Genética, Escuela de Medicina, Universidad “Alfonso X el Sabio”, 28691 Madrid, Spain;
| | - Sandra A. Niño
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma, de San Luis Potosí 78210, Mexico;
| | - Carmen Guerrero
- Banco de Cerebros (Biobanco), Hospital Universitario Fundación Alcorcón, Alcorcón, 28922 Madrid, Spain;
| | - María E. Jiménez-Capdeville
- Departamento de Bioquímica, Facultad de Medicina, Universidad Autónoma, de San Luis Potosí 78210, Mexico;
- Correspondence: ; Tel.: +52-444-826-2366
| |
Collapse
|
24
|
Dickson JR, Yoon H, Frosch MP, Hyman BT. Cytoplasmic Mislocalization of RNA Polymerase II Subunit RPB1 in Alzheimer Disease Is Linked to Pathologic Tau. J Neuropathol Exp Neurol 2021; 80:530-540. [PMID: 33990839 PMCID: PMC8177848 DOI: 10.1093/jnen/nlab040] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Abnormal protein accumulation and mislocalization is a general hallmark of Alzheimer disease. Recent data suggest nucleocytoplasmic transport may be compromised by tau in Alzheimer disease. In this context, we have examined the RNA polymerase II subunit RPB1, which is the catalytic subunit that plays a critical role in transcription. Using immunofluorescence staining in control and Alzheimer disease hippocampal tissue, we show that 2 phosphoisoforms of RPB1 mislocalize from the nucleus to the cytoplasm of neurons in Alzheimer disease. The number of neurons with this cytoplasmic mislocalization is correlated with the burden of pathologic tau (AT8-immunopositive neurons). In order to test whether there is a causal relationship between pathologic tau and cytoplasmic RPB1 accumulation, we used the rTg4510 mouse model, which expresses a regulatable pathologic human tau species harboring the P301L mutation. Using immunofluorescence staining on brain tissue from young (2.5-month-old) and aged (8.5- to 10-month-old) rTg4510 mice, we found a tau- and age-dependent increase in cytoplasmic mislocalization of Rpb1. In summary, this study provides evidence that tau induces mislocalization of RPB1 in Alzheimer disease, and since RPB1 is essential for transcription, this raises the possibility that RPB1 mislocalization could lead to fundamental alterations in neuronal health.
Collapse
Affiliation(s)
- John R Dickson
- From the Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Hyejin Yoon
- From the Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Matthew P Frosch
- Harvard Medical School, Boston, Massachusetts.,C.S. Kubik Laboratory for Neuropathology, Department of Pathology, and Neurology Service, Massachusetts General Hospital, Boston, Massachusetts
| | - Bradley T Hyman
- From the Department of Neurology, MassGeneral Institute for Neurodegenerative Disease, Massachusetts General Hospital, Charlestown, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
25
|
Jones R, Wijesinghe S, Wilson C, Halsall J, Liloglou T, Kanhere A. A long intergenic non-coding RNA regulates nuclear localization of DNA methyl transferase-1. iScience 2021; 24:102273. [PMID: 33851096 PMCID: PMC8022221 DOI: 10.1016/j.isci.2021.102273] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 12/21/2020] [Accepted: 03/02/2021] [Indexed: 01/10/2023] Open
Abstract
DNA methyl transferase-1 or DNMT1 maintains DNA methylation in the genome and is important for regulating gene expression in cells. Aberrant changes in DNMT1 activity and DNA methylation are commonly observed in cancers and many other diseases. Recently, a number of long intergenic non-protein-coding RNAs or lincRNAs have been shown to play a role in regulating DNMT1 activity. CCDC26 is a nuclear lincRNA that is frequently mutated in cancers and is a hotbed for disease-associated single nucleotide changes. However, the functional mechanism of CCDC26 is not understood. Here, we show that this lincRNA is concentrated on the nuclear periphery. Strikingly, in the absence of CCDC26 lincRNA, DNMT1 is mis-located in the cytoplasm, and the genomic DNA is significantly hypomethylated. This is accompanied by double-stranded DNA breaks and increased cell death. These results point to a previously unrecognized mechanism of lincRNA-mediated subcellular localization of DNMT1 and regulation of DNA methylation.
Collapse
Affiliation(s)
- Rhian Jones
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Susanne Wijesinghe
- Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, UK
| | - Claire Wilson
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - John Halsall
- Institute of Genomic Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Triantafillos Liloglou
- Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| | - Aditi Kanhere
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK.,Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, UK
| |
Collapse
|
26
|
Mahady LJ, He B, Malek-Ahmadi M, Mufson EJ. Telomeric alterations in the default mode network during the progression of Alzheimer's disease: Selective vulnerability of the precuneus. Neuropathol Appl Neurobiol 2020; 47:428-440. [PMID: 33107640 DOI: 10.1111/nan.12672] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/14/2020] [Accepted: 10/16/2020] [Indexed: 12/13/2022]
Abstract
AIMS Although telomere length (TL) and telomere maintenance proteins (shelterins) are markers of cellular senescence and peripheral blood biomarkers of Alzheimer's disease (AD), little information is available on telomeric alterations during the prodromal stage (MCI) of AD. We investigated TL in the default mode network (DMN), which underlies episodic memory deficits in AD, as well as shelterin protein and mRNA levels in the precuneus (PreC). METHODS Telomere length was evaluated in DMN hubs and visual cortex using quantitative PCR (qPCR). In the PreC, western blotting and NanoString nCounter expression analyses evaluated shelterin protein and mRNA levels, respectively, in cases with an antemortem clinical diagnosis of no cognitive impairment (NCI), MCI and AD. RESULTS TL was significantly reduced in the PreC in MCI and AD compared to NCI, but stable in frontal, inferior temporal, posterior cingulate and visual cortex. PreC TL correlated significantly with performance on cognitive tests. NCI cases with high vs low Braak scores displayed significantly shorter TL in posterior cingulate and frontal cortex, which correlated significantly with neuritic and diffuse amyloid-β plaque counts. Shelterin protein levels (TIN2, TRF1, TRF2 and POT1) declined in MCI and AD compared to NCI. The PreC displayed stable expression of shelterins TERF1, TERF2, POT1, RAP1 and TPP1, while TINF2 mRNA significantly increased in AD compared to NCI. CONCLUSIONS These findings indicate a selective vulnerability to telomere attrition within different nodes of the DMN in prodromal AD and in aged NCI individuals with high Braak scores highlighting a putative role in the pathogenesis of AD.
Collapse
Affiliation(s)
- Laura J Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | - Bin He
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA
| | | | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, AZ, USA.,Department of Neurology, Barrow Neurological Institute, Phoenix, AZ, USA
| |
Collapse
|
27
|
Chen V, Moncalvo M, Tringali D, Tagliafierro L, Shriskanda A, Ilich E, Dong W, Kantor B, Chiba-Falek O. The mechanistic role of alpha-synuclein in the nucleus: impaired nuclear function caused by familial Parkinson's disease SNCA mutations. Hum Mol Genet 2020; 29:3107-3121. [PMID: 32954426 PMCID: PMC7645704 DOI: 10.1093/hmg/ddaa183] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/11/2020] [Accepted: 07/15/2020] [Indexed: 12/13/2022] Open
Abstract
Alpha-synuclein SNCA has been implicated in the etiology of Parkinson's disease (PD); however, the normal function of alpha-synuclein protein and the pathway that mediates its pathogenic effect is yet to be discovered. We investigated the mechanistic role of SNCA in the nucleus utilizing isogenic human-induced pluripotent stem cells-derived neurons from PD patients with autosomal dominant mutations, A53T and SNCA-triplication, and their corresponding corrected lines by genome- and epigenome-editing. Comparisons of shape and integrity of the nuclear envelope and its resistance to stresses found that both mutations result in similar nuclear envelope perturbations that were reversed in the isogenic mutation-corrected cells. Further mechanistic studies showed that SNCA mutation has adverse effects on the nucleus by trapping Ras-related nuclear protein (RAN) and preventing it from transporting key nuclear proteins such as, DNMT3A, for maintaining normal nuclear function. For the first time, we proposed that α-syn interacts with RAN and normally functions in the nucleocytoplasmic transport while exerts its pathogenic effect by sequestering RAN. We suggest that defects in the nucleocytoplasmic transport components may be a general pathomechanistic driver of neurodegenerative diseases.
Collapse
Affiliation(s)
- Vivian Chen
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Malik Moncalvo
- Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Dominic Tringali
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lidia Tagliafierro
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ahila Shriskanda
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ekaterina Ilich
- Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Wendy Dong
- Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Boris Kantor
- Viral Vector Core, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurobiology, Duke University Medical Center, Durham, NC 27710, USA
| | - Ornit Chiba-Falek
- Division of Translational Brain Sciences, Department of Neurology, Duke University Medical Center, Durham, NC 27710, USA
- Center for Genomic and Computational Biology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
28
|
Bitetto G, Di Fonzo A. Nucleo-cytoplasmic transport defects and protein aggregates in neurodegeneration. Transl Neurodegener 2020; 9:25. [PMID: 32616075 PMCID: PMC7333321 DOI: 10.1186/s40035-020-00205-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 06/01/2020] [Indexed: 02/06/2023] Open
Abstract
In the ongoing process of uncovering molecular abnormalities in neurodegenerative diseases characterized by toxic protein aggregates, nucleo-cytoplasmic transport defects have an emerging role. Several pieces of evidence suggest a link between neuronal protein inclusions and nuclear pore complex (NPC) damage. These processes lead to oxidative stress, inefficient transcription, and aberrant DNA/RNA maintenance. The clinical and neuropathological spectrum of NPC defects is broad, ranging from physiological aging to a suite of neurodegenerative diseases. A better understanding of the shared pathways among these conditions may represent a significant step toward dissecting their underlying molecular mechanisms, opening the way to a real possibility of identifying common therapeutic targets.
Collapse
Affiliation(s)
- Giacomo Bitetto
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy
| | - Alessio Di Fonzo
- IRCCS Foundation Ca' Granda Ospedale Maggiore Policlinico, Dino Ferrari Center, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, Via Francesco Sforza 35, 20122, Milan, Italy.
| |
Collapse
|
29
|
Hutten S, Dormann D. Nucleocytoplasmic transport defects in neurodegeneration — Cause or consequence? Semin Cell Dev Biol 2020; 99:151-162. [DOI: 10.1016/j.semcdb.2019.05.020] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 05/21/2019] [Accepted: 05/21/2019] [Indexed: 12/12/2022]
|
30
|
Moore S, Rabichow BE, Sattler R. The Hitchhiker's Guide to Nucleocytoplasmic Trafficking in Neurodegeneration. Neurochem Res 2020; 45:1306-1327. [PMID: 32086712 DOI: 10.1007/s11064-020-02989-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 02/12/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022]
Abstract
The widespread nature of nucleocytoplasmic trafficking defects and protein accumulation suggests distinct yet overlapping mechanisms in a variety of neurodegenerative diseases. Detailed understanding of the cellular pathways involved in nucleocytoplasmic transport and its dysregulation are essential for elucidating neurodegenerative pathogenesis and pinpointing potential areas for therapeutic intervention. The transport of cargos from the nucleus to the cytoplasm is generally regulated by the structure and function of the nuclear pore as well as the karyopherin α/β, importin, exportin, and mRNA export mechanisms. The disruption of these crucial transport mechanisms has been extensively described in the context of neurodegenerative diseases. One common theme in neurodegeneration is the cytoplasmic aggregation of proteins, including nuclear RNA binding proteins, repeat expansion associated gene products, and tau. These cytoplasmic aggregations are partly a consequence of failed nucleocytoplasmic transport machinery, but can also further disrupt transport, creating cyclical feed-forward mechanisms that exacerbate neurodegeneration. Here we describe the canonical mechanisms that regulate nucleocytoplasmic trafficking as well as how these mechanisms falter in neurodegenerative diseases.
Collapse
Affiliation(s)
- Stephen Moore
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.,School of Life Sciences, Arizona State University, Tempe, AZ, USA
| | - Benjamin E Rabichow
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA
| | - Rita Sattler
- Department of Neurobiology, Barrow Neurological Institute, 350 W Thomas Road, Phoenix, AZ, 85013, USA.
| |
Collapse
|
31
|
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019; 12:121. [PMID: 31213978 PMCID: PMC6555388 DOI: 10.3389/fnmol.2019.00121] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022] Open
Abstract
The small GTPases from the Ras superfamily play crucial roles in basic cellular processes during practically the entire process of neurodevelopment, including neurogenesis, differentiation, gene expression, membrane and protein traffic, vesicular trafficking, and synaptic plasticity. Small GTPases are key signal transducing enzymes that link extracellular cues to the neuronal responses required for the construction of neuronal networks, as well as for synaptic function and plasticity. Different subfamilies of small GTPases have been linked to a number of non-neoplastic cerebral diseases such as Alzheimer’s disease (AD), Parkinson’s disease (PD), intellectual disability, epilepsy, drug addiction, Huntington’s disease (HD), amyotrophic lateral sclerosis (ALS) and a large number of idiopathic cerebral diseases. Here, we attempted to make a clearer illustration of the relationship between Ras superfamily GTPases and non-neoplastic cerebral diseases, as well as their roles in the neural system. In future studies, potential treatments for non-neoplastic cerebral diseases which are based on small GTPase related signaling pathways should be explored further. In this paper, we review all the available literature in support of this possibility.
Collapse
Affiliation(s)
- Liang Qu
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Chao Pan
- Beijing Institute of Biotechnology, Beijing, China
| | - Shi-Ming He
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China.,Department of Neurosurgery, Xi'an International Medical Center, Xi'an, China
| | - Bing Lang
- The School of Medicine, Medical Sciences and Nutrition, Institute of Medical Sciences, University of Aberdeen, Aberdeen, United Kingdom.,Department of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Guo-Dong Gao
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Xue-Lian Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| | - Yuan Wang
- Department of Neurosurgery, Tangdu Hospital, Air Force Military Medical University, Xi'an, China
| |
Collapse
|
32
|
The exploration of novel Alzheimer's therapeutic agents from the pool of FDA approved medicines using drug repositioning, enzyme inhibition and kinetic mechanism approaches. Biomed Pharmacother 2018; 109:2513-2526. [PMID: 30551512 DOI: 10.1016/j.biopha.2018.11.115] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/19/2018] [Accepted: 11/25/2018] [Indexed: 12/11/2022] Open
Abstract
Novel drug development is onerous, time consuming and overpriced process with particularly low success and relatively high enfeebling rates. To overcome this burden, drug repositioning approach is being used to predict the possible therapeutic effects of FDA approved drugs in different diseases. Herein, we designed a computational and enzyme inhibitory mechanistic approach to fetch the promising drugs from the pool of FDA approved drugs against AD. The binding interaction patterns and conformations of screened drugs within active region of AChE were confirmed through molecular docking profiles. The possible associations of selected drugs with AD genes were predicted by pharmacogenomics analysis and confirmed through data mining. The stability behaviour of docked complexes (Drugs-AChE) were checked by MD simulations. The possible therapeutic potential of repositioned drugs against AChE were checked by in vitro analysis. Taken together, Cinitapride displayed a comparable results with standard and can be used as possible therapeutic agent in the treatment of AD.
Collapse
|
33
|
Lutz BM, Peng J. Deep Profiling of the Aggregated Proteome in Alzheimer's Disease: From Pathology to Disease Mechanisms. Proteomes 2018; 6:proteomes6040046. [PMID: 30424485 PMCID: PMC6313861 DOI: 10.3390/proteomes6040046] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Revised: 10/29/2018] [Accepted: 11/07/2018] [Indexed: 01/20/2023] Open
Abstract
Hallmarks of Alzheimer’s disease (AD), a progressive neurodegenerative disease causing dementia, include protein aggregates such as amyloid beta plaques and tau neurofibrillary tangles in a patient’s brain. Understanding the complete composition and structure of protein aggregates in AD can shed light on the as-yet unidentified underlying mechanisms of AD development and progression. Biochemical isolation of aggregates coupled with mass spectrometry (MS) provides a comprehensive proteomic analysis of aggregates in AD. Dissection of these AD-specific aggregate components, such as U1 small nuclear ribonucleoprotein complex (U1 snRNP), provides novel insights into the deregulation of RNA splicing in the disease. In this review, we summarize the methodologies of laser capture microdissection (LCM) and differential extraction to analyze the aggregated proteomes in AD samples, and discuss the derived novel insights that may contribute to AD pathogenesis.
Collapse
Affiliation(s)
- Brianna M Lutz
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Junmin Peng
- Departments of Structural Biology and Developmental Neurobiology, Center for Proteomics and Metabolomics, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
34
|
Eftekharzadeh B, Daigle JG, Kapinos LE, Coyne A, Schiantarelli J, Carlomagno Y, Cook C, Miller SJ, Dujardin S, Amaral AS, Grima JC, Bennett RE, Tepper K, DeTure M, Vanderburg CR, Corjuc BT, DeVos SL, Gonzalez JA, Chew J, Vidensky S, Gage FH, Mertens J, Troncoso J, Mandelkow E, Salvatella X, Lim RYH, Petrucelli L, Wegmann S, Rothstein JD, Hyman BT. Tau Protein Disrupts Nucleocytoplasmic Transport in Alzheimer's Disease. Neuron 2018; 99:925-940.e7. [PMID: 30189209 PMCID: PMC6240334 DOI: 10.1016/j.neuron.2018.07.039] [Citation(s) in RCA: 262] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 05/14/2018] [Accepted: 07/20/2018] [Indexed: 10/28/2022]
Abstract
Tau is the major constituent of neurofibrillary tangles in Alzheimer's disease (AD), but the mechanism underlying tau-associated neural damage remains unclear. Here, we show that tau can directly interact with nucleoporins of the nuclear pore complex (NPC) and affect their structural and functional integrity. Pathological tau impairs nuclear import and export in tau-overexpressing transgenic mice and in human AD brain tissue. Furthermore, the nucleoporin Nup98 accumulates in the cell bodies of some tangle-bearing neurons and can facilitate tau aggregation in vitro. These data support the hypothesis that tau can directly interact with NPC components, leading to their mislocalization and consequent disruption of NPC function. This raises the possibility that NPC dysfunction contributes to tau-induced neurotoxicity in AD and tauopathies.
Collapse
Affiliation(s)
- Bahareh Eftekharzadeh
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - J Gavin Daigle
- Brain Science Institute, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | | | - Alyssa Coyne
- Brain Science Institute, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Julia Schiantarelli
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Yari Carlomagno
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Casey Cook
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA
| | - Sean J Miller
- Brain Science Institute, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Simon Dujardin
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Ana S Amaral
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jonathan C Grima
- Brain Science Institute, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Rachel E Bennett
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Katharina Tepper
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Michael DeTure
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Charles R Vanderburg
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Bianca T Corjuc
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Sarah L DeVos
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jose Antonio Gonzalez
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeannie Chew
- Brain Science Institute, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Svetlana Vidensky
- Brain Science Institute, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA
| | - Fred H Gage
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Jerome Mertens
- Laboratory of Genetics, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Juan Troncoso
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, MD 21231, USA
| | - Eckhard Mandelkow
- German Center for Neurodegenerative Diseases (DZNE) and CAESAR Research Center, 53175 Bonn, Germany
| | | | | | | | - Susanne Wegmann
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA
| | - Jeffrey D Rothstein
- Brain Science Institute, Department of Neurology, Johns Hopkins School of Medicine, Baltimore, MD 21205, USA.
| | - Bradley T Hyman
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
35
|
Lardenoije R, Pishva E, Lunnon K, van den Hove DL. Neuroepigenetics of Aging and Age-Related Neurodegenerative Disorders. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 158:49-82. [PMID: 30072060 DOI: 10.1016/bs.pmbts.2018.04.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Neurodegenerative diseases are complex, progressive disorders and affect millions of people worldwide, contributing significantly to the global burden of disease. In recent years, research has begun to investigate epigenetic mechanisms for a potential role in disease etiology. In this chapter, we describe the current state of play for epigenetic research into neurodegenerative disorders including Alzheimer's disease, Parkinson's disease and Huntington's disease. We focus on the recent evidence for a potential role of DNA modifications, histone modifications and non-coding RNA in the etiology of these disorders. Finally, we discuss how new technological and bioinformatics advances in the field of epigenetics could further progress our understanding about the underlying mechanisms of neurodegenerative diseases.
Collapse
Affiliation(s)
- Roy Lardenoije
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Ehsan Pishva
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands; University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Katie Lunnon
- University of Exeter Medical School, University of Exeter, Exeter, United Kingdom
| | - Daniel L van den Hove
- Department of Psychiatry and Neuropsychology, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
36
|
Winick-Ng W, Rylett RJ. Into the Fourth Dimension: Dysregulation of Genome Architecture in Aging and Alzheimer's Disease. Front Mol Neurosci 2018. [PMID: 29541020 PMCID: PMC5835833 DOI: 10.3389/fnmol.2018.00060] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by synapse dysfunction and cognitive impairment. Understanding the development and progression of AD is challenging, as the disease is highly complex and multifactorial. Both environmental and genetic factors play a role in AD pathogenesis, highlighted by observations of complex DNA modifications at the single gene level, and by new evidence that also implicates changes in genome architecture in AD patients. The four-dimensional structure of chromatin in space and time is essential for context-dependent regulation of gene expression in post-mitotic neurons. Dysregulation of epigenetic processes have been observed in the aging brain and in patients with AD, though there is not yet agreement on the impact of these changes on transcription. New evidence shows that proteins involved in genome organization have altered expression and localization in the AD brain, suggesting that the genomic landscape may play a critical role in the development of AD. This review discusses the role of the chromatin organizers and epigenetic modifiers in post-mitotic cells, the aging brain, and in the development and progression of AD. How these new insights can be used to help determine disease risk and inform treatment strategies will also be discussed.
Collapse
Affiliation(s)
- Warren Winick-Ng
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| | - R Jane Rylett
- Department of Physiology and Pharmacology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, ON, Canada.,Molecular Medicine Research Laboratories, Robarts Research Institute, University of Western Ontario, London, ON, Canada
| |
Collapse
|
37
|
Mastroeni D, Nolz J, Khdour OM, Sekar S, Delvaux E, Cuyugan L, Liang WS, Hecht SM, Coleman PD. Oligomeric amyloid β preferentially targets neuronal and not glial mitochondrial-encoded mRNAs. Alzheimers Dement 2018; 14:775-786. [PMID: 29396107 DOI: 10.1016/j.jalz.2017.12.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/28/2017] [Accepted: 12/07/2017] [Indexed: 01/04/2023]
Abstract
INTRODUCTION Our laboratories have demonstrated that accumulation of oligomeric amyloid β (OAβ) in neurons is an essential step leading to OAβ-mediated mitochondrial dysfunction. METHODS Alzheimer's disease (AD) and matching control hippocampal neurons, astrocytes, and microglia were isolated by laser-captured microdissection from the same subjects, followed by whole-transcriptome sequencing. Complementary in vitro work was performed in OAβ-treated differentiated SH-SY5Y, followed by the use of a novel CoQ10 analogue for protection. This compound is believed to be effective both in suppressing reactive oxygen species and also functioning in mitochondrial electron transport. RESULTS We report decreases in the same mitochondrial-encoded mRNAs in Alzheimer's disease laser-captured CA1 neurons and in OAβ-treated SH-SY5Y cells, but not in laser-captured microglia and astrocytes. Pretreatment with a novel CoQ10 analogue, protects neuronal mitochondria from OAβ-induced mitochondrial changes. DISCUSSION Similarity of expression changes in neurons from Alzheimer's disease brain and neuronal cells treated with OAβ, and the effect of a CoQ10 analogue on the latter, suggests a pretreatment option to prevent OAβ toxicity, long before the damage is apparent.
Collapse
Affiliation(s)
- Diego Mastroeni
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ.
| | - Jennifer Nolz
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| | - Omar M Khdour
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ
| | | | - Elaine Delvaux
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| | | | | | - Sidney M Hecht
- Biodesign Center for BioEnergetics, and School of Molecular Sciences, Arizona State University, Tempe, AZ
| | - Paul D Coleman
- ASU-Banner Biodesign Neurodegenerative Disease Research Center, Biodesign Institute, and School of Life Sciences, Arizona State University, Tempe, AZ
| |
Collapse
|
38
|
Kumar S, Vijayan M, Reddy PH. MicroRNA-455-3p as a potential peripheral biomarker for Alzheimer's disease. Hum Mol Genet 2017; 26:3808-3822. [PMID: 28934394 PMCID: PMC6075184 DOI: 10.1093/hmg/ddx267] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/30/2017] [Accepted: 07/04/2017] [Indexed: 01/15/2023] Open
Abstract
The purpose of our study was to identify microRNAs (miRNAs) as early detectable peripheral biomarkers in Alzheimer's disease (AD). To achieve our objective, we assessed miRNAs in serum samples from AD patients and Mild cognitive impairment (MCI) subjects relative to healthy controls. We used Affymetrix microarray analysis and validated differentially expressed miRNAs using qRT-PCR. We further validated miRNA data using AD postmortem brains, amyloid precursor protein transgenic mice and AD cell lines. We identified a gradual upregulation of four miRNAs: miR-455-3p, miR-4668-5p, miR-3613-3p and miR-4674. A fifth miRNA, mir-6722, was down-regulated in persons with AD and mild cognitive impairment compared with controls. Validation analysis by qRT-PCR showed significant upregulation of only miR-455-3p (P = 0.007) and miR-4668-5p (P = 0.016) in AD patients compared with healthy controls. Furthermore, qRT-PCR analysis of the AD postmortem brains with different Braak stages also showed upregulation of miR-455-3p (P = 0.016). However, receiver operating characteristic curves (ROC) curve analysis revealed a significant area under curve (AUC) value only for miR-455-3p in the serum (AUROC = 0.79; P = 0.015) and brains (AUROC = 0.86; P = 0.016) of AD patients. Expression analysis of amyloid precursor protein transgenic mice also revealed high level of mmu-miR-455-3p (P = 0.004) in the cerebral cortex (AD-affected) region of brain and low in the non-affected area, i.e. cerebellum. Furthermore, human and mouse neuroblastoma cells treated with the amyloid-β(1-42) peptide also showed a similarly higher expression of miR-455-3p. Functional analysis of differentially expressed miRNAs via the miR-path indicated that miR-455-3p was associated in the regulation of several biological pathways. Genes associated with these pathways were found to have a crucial role in AD pathogenesis. An increase in miR-455-3p expression found in AD patients and Aβ pathologies unveiled its biomarker characteristics and a precise role in AD pathogenesis.
Collapse
Affiliation(s)
| | | | - P. Hemachandra Reddy
- Biomarker Unit, Garrison Institute on Aging
- Department of Cell Biology & Biochemistry
- Department of Pharmacology & Neuroscience
- Department of Neurology
- Department of Speech, Language and Hearing Sciences
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
39
|
Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med 2017; 18:1-14. [PMID: 28752221 DOI: 10.1007/s10238-017-0467-0] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/16/2017] [Indexed: 12/12/2022]
Abstract
Cancer initiation and proliferation is regulated by both epigenetic and genetic events with epigenetic modifications being increasingly identified as important targets for cancer research. DNA methylation catalyzed by DNA methyltransferases (DNMTs) is one of the essential epigenetic mechanisms that control cell proliferation, apoptosis, differentiation, cell cycle, and transformation in eukaryotes. Recent progress in epigenetics revealed a deeper understanding of the mechanisms of tumorigenesis and provided biomarkers for early detection, diagnosis, and prognosis in cancer patients. Although DNA methylation biomarker possesses potential contributing to precision medicine, there are still limitations to be overcome before it reaches clinical setting. Hence, the current status of DNA methylation biomarkers was reviewed and the future use in clinic was also predicted.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Guohong Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Bojin Su
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX, 77030, USA.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
40
|
Wang H, Muiznieks LD, Ghosh P, Williams D, Solarski M, Fang A, Ruiz-Riquelme A, Pomès R, Watts JC, Chakrabartty A, Wille H, Sharpe S, Schmitt-Ulms G. Somatostatin binds to the human amyloid β peptide and favors the formation of distinct oligomers. eLife 2017. [PMID: 28650319 PMCID: PMC5505701 DOI: 10.7554/elife.28401] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The amyloid β peptide (Aβ) is a key player in the etiology of Alzheimer disease (AD), yet a systematic investigation of its molecular interactions has not been reported. Here we identified by quantitative mass spectrometry proteins in human brain extract that bind to oligomeric Aβ1-42 (oAβ1-42) and/or monomeric Aβ1-42 (mAβ1-42) baits. Remarkably, the cyclic neuroendocrine peptide somatostatin-14 (SST14) was observed to be the most selectively enriched oAβ1-42 binder. The binding interface comprises a central tryptophan within SST14 and the N-terminus of Aβ1-42. The presence of SST14 inhibited Aβ aggregation and masked the ability of several antibodies to detect Aβ. Notably, Aβ1-42, but not Aβ1-40, formed in the presence of SST14 oligomeric assemblies of 50 to 60 kDa that were visualized by gel electrophoresis, nanoparticle tracking analysis and electron microscopy. These findings may be relevant for Aβ-directed diagnostics and may signify a role of SST14 in the etiology of AD. DOI:http://dx.doi.org/10.7554/eLife.28401.001 Treating Alzheimer’s disease and related dementias is one of the major challenges currently facing healthcare providers worldwide. A hallmark of the disease is the formation of large deposits of a specific molecule, known as amyloid beta (Aβ), in the brain. However, more and more research suggests that smaller and particularly toxic amyloid beta clumps – often referred to as oligomeric Aβ – appear as an early sign of Alzheimer’s disease. To understand how the formation of these smaller amyloid beta clumps triggers other aspects of the disease, it is important to identify molecules in the human brain that oligomeric Aβ binds to. To this end, Wang et al. attached amyloid beta or oligomeric Aβ molecules to microscopically small beads. The beads were then exposed to human brain extracts in a test tube, which allowed molecules in the extracts to bind to the amyloid beta or oligomeric Aβ. The samples were then spun at high speed, meaning that the beads and any other molecules bound to them sunk and formed pellets at the bottom of the tubes. Each pellet was then analyzed to see which molecules it contained. The experiments identified more than a hundred human brain proteins that can bind to amyloid beta. One of them, known as somatostatin, selectively binds to oligomeric Aβ. Wang et al. were able to determine the structural features of somatostatin that control this binding. Finally, in further experiments performed in test tubes, Wang et al. noticed that smaller oligomeric Aβ clumps were more likely to form than larger amyloid beta deposits when somatostatin was present. This could signify a previously unrecognized role of somatostatin in the development of Alzheimer’s disease. Further studies are now needed to confirm whether the presence of somatostatin in the brain favors the formation of smaller, toxic oligomeric Aβ clumps over large innocuous amyloid beta deposits. If so, new treatments could be developed that aim to reduce oligomeric Aβ levels in the brain by preventing somatostatin from interacting with amyloid beta molecules. Wang et al. also suggest that somatostatin could be used in diagnostic tests to detect abnormal levels of oligomeric Aβ in the brain or body fluids of people who have Alzheimer’s disease. DOI:http://dx.doi.org/10.7554/eLife.28401.002
Collapse
Affiliation(s)
- Hansen Wang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Lisa D Muiznieks
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada
| | - Punam Ghosh
- Department of Medical Biophysics, University of Toronto, Toronto, Canada
| | - Declan Williams
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Michael Solarski
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| | - Andrew Fang
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Alejandro Ruiz-Riquelme
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada
| | - Régis Pomès
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Joel C Watts
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Avi Chakrabartty
- Department of Medical Biophysics, University of Toronto, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Holger Wille
- Department of Biochemistry, University of Alberta, Edmonton, Canada.,Centre for Prions and Protein Folding Diseases, University of Alberta, Edmonton, Canada
| | - Simon Sharpe
- Molecular Medicine Program, Research Institute, The Hospital for Sick Children, Toronto, Canada.,Department of Biochemistry, University of Toronto, Toronto, Canada
| | - Gerold Schmitt-Ulms
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada
| |
Collapse
|
41
|
Mishra M, Kowluru RA. The Role of DNA Methylation in the Metabolic Memory Phenomenon Associated With the Continued Progression of Diabetic Retinopathy. Invest Ophthalmol Vis Sci 2017; 57:5748-5757. [PMID: 27787562 PMCID: PMC5089211 DOI: 10.1167/iovs.16-19759] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Purpose Clinical and experimental studies have shown that diabetic retinopathy progression does not halt after termination of hyperglycemia, suggesting a “metabolic memory” phenomenon. DNA is highly dynamic, and cytosine methylation changes can last for several years. In diabetes, DNA methylation regulates expression of many genes associated with retinal mitochondrial homeostasis. Our aim was to investigate the role of DNA methylation in the metabolic memory. Methods Reversal of 4 days of 20 mM glucose by 4 to 8 days of 5 mM glucose, in the presence/absence of Dnmt inhibitor (5-aza-2′-deoxycytidine), was investigated on DNA methylation and its machinery in human retinal endothelial cells. The key parameters were confirmed in the retina from diabetic rats maintained in good glycemic control (glycated hemoglobin ∼6%) for 3 months after 3 months of poor control (glycated hemoglobin >10%). Results DNA methyltransferase 1 (Dnmt 1) remained active after 4 days of normal glucose that followed 4 days of high glucose, and mtDNA stayed hypermethylated with impaired transcription. Hydroxymethylating enzyme Tet2, and matrix metalloproteinase-9 (regulated by hydroxymethylation) also remained upregulated. But, 8 days of normal glucose after 4 days of high glucose ameliorated mtDNA methylation and MMP-9 hydroxymethylation. Direct Dnmt targeting by Aza during the reversal period benefited methylation status of mtDNA and MMP-9 DNA. Similarly, reinstitution of good control after 3 months of poor control in rats did not reverse diabetes-induced increase in retinal Dnmt1 and Tet2, and alter the methylation status of mtDNA and MMP-9. Conclusions Retinal DNA methylation-hydroxymethylation machinery does not benefit immediately from reversal of hyperglycemia. Maintenance of good glycemic control for longer duration, and/or direct targeting DNA methylation ameliorates continuous mitochondrial damage, and could retard/halt diabetic retinopathy progression.
Collapse
Affiliation(s)
- Manish Mishra
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| | - Renu A Kowluru
- Kresge Eye Institute, Wayne State University, Detroit, Michigan, United States
| |
Collapse
|
42
|
Friedman AK, Baker LA. Synthetic hydrogel mimics of the nuclear pore complex display selectivity dependent on FG-repeat concentration and electrostatics. SOFT MATTER 2016; 12:9477-9484. [PMID: 27849094 DOI: 10.1039/c6sm01689h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synthetic hydrogels were utilized to explore influence of both charge and phenylalanine-glycine (FG) repeat concentration on translocation of select proteins. Hydrogels studied represent a biomimetic platform of the nuclear pore complex (NPC) found in eukaryotic cells. Polyacrylamide/phenylalanine-serine-phenylalanine-glycine (FSFG) peptide copolymers have previously demonstrated similar selectivity to native NPCs. Entry of a nuclear transport receptor (Impβ) into hydrogels was monitored with fluorescence microscopy and observed to be greater within gels that contained larger concentrations of FG peptide. Low-resolution structural studies of gels demonstrated changes in morphology and porous network dimensions as FG-repeat concentration was varied. Copolymerization of charged acrylates within the polyacrylamide/FSFG matrix was performed to produce charged hydrogels. Enhanced entry of Impβ, which is negatively charged, was observed in positively charged hydrogels, whereas entry was greatly diminished in negatively charged gels. Synthetic NPC mimics provide a useful testbed for further investigation of nucleocytoplasmic transport and may illuminate new routes for biomimetic separations.
Collapse
Affiliation(s)
- Alicia K Friedman
- Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| | - Lane A Baker
- Department of Chemistry, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA.
| |
Collapse
|
43
|
Zong C, Garner CE, Huang C, Zhang X, Zhang L, Chang J, Toyokuni S, Ito H, Kato M, Sakurai T, Ichihara S, Ichihara G. Preliminary characterization of a murine model for 1-bromopropane neurotoxicity: Role of cytochrome P450. Toxicol Lett 2016; 258:249-258. [DOI: 10.1016/j.toxlet.2016.07.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/13/2016] [Accepted: 07/10/2016] [Indexed: 11/27/2022]
|
44
|
Konar A, Singh P, Thakur MK. Age-associated Cognitive Decline: Insights into Molecular Switches and Recovery Avenues. Aging Dis 2016; 7:121-9. [PMID: 27114845 PMCID: PMC4809604 DOI: 10.14336/ad.2015.1004] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/04/2015] [Indexed: 12/21/2022] Open
Abstract
Age-associated cognitive decline is an inevitable phenomenon that predisposes individuals for neurological and psychiatric disorders eventually affecting the quality of life. Scientists have endeavored to identify the key molecular switches that drive cognitive decline with advancing age. These newly identified molecules are then targeted as recovery of cognitive aging and related disorders. Cognitive decline during aging is multi-factorial and amongst several factors influencing this trajectory, gene expression changes are pivotal. Identifying these genes would elucidate the neurobiological underpinnings as well as offer clues that make certain individuals resilient to withstand the inevitable age-related deteriorations. Our laboratory has focused on this aspect and investigated a wide spectrum of genes involved in crucial brain functions that attribute to senescence induced cognitive deficits. We have recently identified master switches in the epigenome regulating gene expression alteration during brain aging. Interestingly, these factors when manipulated by chemical or genetic strategies successfully reverse the age-related cognitive impairments. In the present article, we review findings from our laboratory and others combined with supporting literary evidences on molecular switches of brain aging and their potential as recovery targets.
Collapse
Affiliation(s)
- Arpita Konar
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India; CSIR-Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Padmanabh Singh
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| | - Mahendra K Thakur
- Department of Zoology, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
45
|
Knyphausen P, Kuhlmann N, de Boor S, Lammers M. Lysine-acetylation as a fundamental regulator of Ran function: Implications for signaling of proteins of the Ras-superfamily. Small GTPases 2015; 6:189-95. [PMID: 26507377 PMCID: PMC4905271 DOI: 10.1080/21541248.2015.1103399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The small GTP-binding protein Ran is involved in the regulation of essential cellular processes in interphase but also in mitotic cells: Ran controls the nucleocytoplasmic transport of proteins and RNA, it regulates mitotic spindle formation and nuclear envelope assembly. Deregulations in Ran dependent processes were implicated in the development of severe diseases such as cancer and neurodegenerative disorders. To understand how Ran-function is regulated is therefore of highest importance. Recently, several lysine-acetylation sites in Ran were identified by quantitative mass-spectrometry, some being located in highly important regions such as the P-loop, switch I, switch II and the G5/SAK motif. We recently reported that lysine-acetylation regulates nearly all aspects of Ran-function such as RCC1 catalyzed nucleotide exchange, intrinsic nucleotide hydrolysis, its interaction with NTF2 and the formation of import- and export-complexes. As a hint for its biological importance, we identified Ran-specific lysine-deacetylases (KDACs) and -acetyltransferases (KATs). Also for other small GTPases such as Ras, Rho, Cdc42, and for many effectors and regulators thereof, lysine-acetylation sites were discovered. However, the functional impact of lysine-acetylation as a regulator of protein function has only been marginally investigated so far. We will discuss recent findings of lysine-acetylation as a novel modification to regulate Ras-protein signaling.
Collapse
Affiliation(s)
- Philipp Knyphausen
- a Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD ); University of Cologne ; Cologne , Germany
| | - Nora Kuhlmann
- a Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD ); University of Cologne ; Cologne , Germany
| | - Susanne de Boor
- a Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD ); University of Cologne ; Cologne , Germany
| | - Michael Lammers
- a Institute for Genetics and Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD ); University of Cologne ; Cologne , Germany
| |
Collapse
|
46
|
Hamidi T, Singh AK, Chen T. Genetic alterations of DNA methylation machinery in human diseases. Epigenomics 2015; 7:247-65. [PMID: 25942534 DOI: 10.2217/epi.14.80] [Citation(s) in RCA: 180] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
DNA methylation plays a critical role in the regulation of chromatin structure and gene expression and is involved in a variety of biological processes. The levels and patterns of DNA methylation are regulated by both DNA methyltransferases (DNMT1, DNMT3A and DNMT3B) and 'demethylating' proteins, including the ten-eleven translocation (TET) family of dioxygenases (TET1, TET2 and TET3). The effects of DNA methylation on chromatin and gene expression are largely mediated by methylated DNA 'reader' proteins, including MeCP2. Numerous mutations in DNMTs, TETs and MeCP2 have been identified in cancer and developmental disorders, highlighting the importance of the DNA methylation machinery in human development and physiology. In this review, we describe these mutations and discuss how they may lead to disease phenotypes.
Collapse
Affiliation(s)
- Tewfik Hamidi
- Department of Epigenetics & Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Science Park - Research Division, 1808 Park Road 1C, P. O. Box 389, Smithville, TX 78957, USA
| | | | | |
Collapse
|
47
|
Mastroeni D, Delvaux E, Nolz J, Tan Y, Grover A, Oddo S, Coleman PD. Aberrant intracellular localization of H3k4me3 demonstrates an early epigenetic phenomenon in Alzheimer's disease. Neurobiol Aging 2015; 36:3121-3129. [PMID: 26553823 DOI: 10.1016/j.neurobiolaging.2015.08.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 07/27/2015] [Accepted: 08/14/2015] [Indexed: 11/19/2022]
Abstract
We have previously reported in Alzheimer's disease (AD) the mislocalization of epigenetic molecules between the cell nucleus and the cytoplasm. We have extended our finding to include the aberrant localization of histone 3 trimethylation on lysine 4 (H3k4me3), an epigenetic mark associated with actively transcribing genes as well as those poised for transcription. These findings raise the question of where the ectopic localization of H3k4me3 fits within the cascade of cell biological events in the progression of AD. We, therefore, examined the expression and intracellular location of H3k4me3 as a function of Braak stage and also in relation to a series of tau markers that are indicative of disease state. Both lines of evidence showed that ectopic localization of H3k4me3 is early in the course of disease. Because of the known role of H3k4me3 in the expression of synaptic genes, our data suggest an epigenetic role in synaptic deficits early in the course of AD.
Collapse
Affiliation(s)
- Diego Mastroeni
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, Sun City, AZ, USA; Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience (MHeNS), Faculty of Health, Medicine and Life Sciences, European Graduate School of Neuroscience (EURON), Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Elaine Delvaux
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Jennifer Nolz
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Yuyan Tan
- Department of Neurology, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Andrew Grover
- L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Salvatore Oddo
- Oddo Laboratory-Neurobiology of Aging and Dementia, Banner Sun Health Research Institute, Sun City, AZ, USA; Department of Basic Medical Sciences, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Paul D Coleman
- ASU-Banner Neurodegenerative Disease Research Center, Biodesign Institute and School of Life Sciences, Arizona State University, Tempe, AZ, USA; L.J. Roberts Alzheimer's Disease Center, Banner Sun Health Research Institute, Sun City, AZ, USA.
| |
Collapse
|
48
|
Vicente-Rodríguez M, Herradón G, Ferrer-Alcón M, Uribarri M, Pérez-García C. Chronic Cocaine Use Causes Changes in the Striatal Proteome Depending on the Endogenous Expression of Pleiotrophin. Chem Res Toxicol 2015; 28:1443-54. [DOI: 10.1021/acs.chemrestox.5b00130] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Marta Vicente-Rodríguez
- Pharmacology Laboratory, Department of
Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | - Gonzalo Herradón
- Pharmacology Laboratory, Department of
Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| | | | - María Uribarri
- BRAINco Biopharma, S.L., Bizkaia Technology Park, Vizcaya, Spain
| | - Carmen Pérez-García
- Pharmacology Laboratory, Department of
Pharmaceutical and Health Sciences, Facultad de Farmacia, Universidad CEU San Pablo, Madrid, Spain
| |
Collapse
|
49
|
Dissociable deficits of executive function caused by gestational adversity are linked to specific transcriptional changes in the prefrontal cortex. Neuropsychopharmacology 2015; 40:1353-63. [PMID: 25418810 PMCID: PMC4397392 DOI: 10.1038/npp.2014.313] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/25/2014] [Accepted: 11/04/2014] [Indexed: 12/19/2022]
Abstract
Poor-quality maternal diet during pregnancy, and subsequent gestational growth disturbances in the offspring, have been implicated in the etiology of multiple neurodevelopmental disorders, including ADHD, schizophrenia, and autism. These disorders are characterized, in part, by abnormalities in responses to reward and errors of executive function. Here, we demonstrate dissociable deficits in reward processing and executive function in male and female mice, solely due to maternal malnutrition via high-fat or low-protein diets. Gestational exposure to a high-fat diet delayed acquisition of a fixed ratio response, and decreased motivation as assessed by progressive ratio. In contrast, offspring of a low-protein diet displayed no deficits in operant learning, but were more prone to assign salience to a cue that predicts reward (sign-tracking) in a Pavlovian-conditioned approach task. In the 5-choice serial reaction time task (5-CSRTT), gestational exposure to a high-fat diet promoted impulsivity, whereas exposure to a low-protein diet led to marked inattention. These dissociable executive function deficits are known to be mediated by the medial prefrontal cortex (PFC), which displays markers of epigenetic dysregulation in neurodevelopmental disorders. Following behavioral characterization, we assayed PFC gene expression using a targeted PCR array and found that both maternal diets increased overall transcription in PFC. Cluster analysis of the relationships between individual transcripts and behavioral outcomes revealed a cluster of primarily epigenetic modulators, whose overexpression was linked to executive function deficits. The overexpression of four genes, DNA methyltransferase 1 (DNMT1), δ-opioid receptor (OPRD1), cannabinoid receptor 1 (CNR1), and catechol-o-methyltransferase (COMT), was strongly associated with overall poor performance. All 5-CSRTT deficits were associated with DNMT1 upregulation, whereas impulsive behavior could be dissociated from inattention by overexpression of OPRD1 or COMT, respectively, as well as a distinct cluster of epigenetic regulators. These data provide molecular support for dissociable domains of executive function.
Collapse
|
50
|
Haines JD, Herbin O, de la Hera B, Vidaurre OG, Moy GA, Sun Q, Fung HYJ, Albrecht S, Alexandropoulos K, McCauley D, Chook YM, Kuhlmann T, Kidd GJ, Shacham S, Casaccia P. Nuclear export inhibitors avert progression in preclinical models of inflammatory demyelination. Nat Neurosci 2015; 18:511-20. [PMID: 25706475 PMCID: PMC4522902 DOI: 10.1038/nn.3953] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 01/22/2015] [Indexed: 12/13/2022]
Abstract
Axonal damage has been associated with aberrant protein trafficking. We examined a newly characterized class of compounds that target nucleo-cytoplasmic shuttling by binding to the catalytic groove of the nuclear export protein XPO1 (also known as CRM1, chromosome region maintenance protein 1). Oral administration of reversible CRM1 inhibitors in preclinical murine models of demyelination significantly attenuated disease progression, even when started after the onset of paralysis. Clinical efficacy was associated with decreased proliferation of immune cells, characterized by nuclear accumulation of cell cycle inhibitors, and preservation of cytoskeletal integrity even in demyelinated axons. Neuroprotection was not limited to models of demyelination, but was also observed in another mouse model of axonal damage (that is, kainic acid injection) and detected in cultured neurons after knockdown of Xpo1, the gene encoding CRM1. A proteomic screen for target molecules revealed that CRM1 inhibitors in neurons prevented nuclear export of molecules associated with axonal damage while retaining transcription factors modulating neuroprotection.
Collapse
MESH Headings
- Acrylamides/administration & dosage
- Acrylamides/pharmacokinetics
- Acrylamides/pharmacology
- Active Transport, Cell Nucleus/drug effects
- Animals
- Axons/drug effects
- Axons/metabolism
- Axons/pathology
- Cell Nucleus/metabolism
- Cells, Cultured
- Disease Models, Animal
- Disease Progression
- Drug Evaluation, Preclinical
- Encephalomyelitis, Autoimmune, Experimental/drug therapy
- Female
- Karyopherins/antagonists & inhibitors
- Karyopherins/genetics
- Karyopherins/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/pharmacokinetics
- Neuroprotective Agents/pharmacology
- Proteomics
- Rats
- Rats, Sprague-Dawley
- Receptors, Cytoplasmic and Nuclear/antagonists & inhibitors
- Receptors, Cytoplasmic and Nuclear/genetics
- Receptors, Cytoplasmic and Nuclear/metabolism
- Thiazoles/administration & dosage
- Thiazoles/pharmacokinetics
- Thiazoles/pharmacology
- Treatment Outcome
- Exportin 1 Protein
Collapse
Affiliation(s)
- Jeffery D. Haines
- Department of Neuroscience and Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Olivier Herbin
- Department of Medicine, Division of Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Belén de la Hera
- Department of Neuroscience and Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Oscar G. Vidaurre
- Department of Neuroscience and Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory A. Moy
- Department of Neuroscience and Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Qingxiang Sun
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041
| | - Ho Yee Joyce Fung
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041
| | - Stephanie Albrecht
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Konstantina Alexandropoulos
- Department of Medicine, Division of Clinical Immunology, The Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Dilara McCauley
- Karyopharm Therapeutics, 2 Mercer Road, Natick, MA 01760, USA
| | - Yuh Min Chook
- Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041
| | - Tanja Kuhlmann
- Institute of Neuropathology, University Hospital Münster, Pottkamp 2, 48149 Münster, Germany
| | - Grahame J. Kidd
- Department of Neurosciences, Cleveland Clinic, 4500 Euclid Ave, Cleveland, OH, 44195, USA
| | - Sharon Shacham
- Karyopharm Therapeutics, 2 Mercer Road, Natick, MA 01760, USA
| | - Patrizia Casaccia
- Department of Neuroscience and Genetics and Genomics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|