1
|
Gogeascoechea A, Ornelas-Kobayashi R, Yavuz US, Sartori M. Characterization of Motor Unit Firing and Twitch Properties for Decoding Musculoskeletal Force in the Human Ankle Joint In Vivo. IEEE Trans Neural Syst Rehabil Eng 2023; 31:4040-4050. [PMID: 37756177 DOI: 10.1109/tnsre.2023.3319959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023]
Abstract
Understanding how motor units (MUs) contribute to skeletal mechanical force is crucial for unraveling the underlying mechanism of human movement. Alterations in MU firing, contractile and force-generating properties emerge in response to physical training, aging or injury. However, how changes in MU firing and twitch properties dictate skeletal muscle force generation in healthy and impaired individuals remains an open question. In this work, we present a MU-specific approach to identify firing and twitch properties of MU samples and employ them to decode musculoskeletal function in vivo. First, MU firing events were decomposed offline from high-density electromyography (HD-EMG) of six lower leg muscles involved in ankle plantar-dorsi flexion. We characterized their twitch responses based on the statistical distributions of their firing properties and employed them to compute MU-specific activation dynamics. Subsequently, we decoded ankle joint moments by linking our framework to a subject-specific musculoskeletal model. We validated our approach at different ankle positions and levels of activation and compared it with traditional EMG-driven models. Our proposed MU-specific formulation achieves higher generalization across conditions than the EMG-driven models, with significantly lower coefficients of variation in torque predictions. Furthermore, our approach shows distinct neural strategies across a large repertoire of contractile conditions in different muscles. Our proposed approach may open new avenues for characterizing the relationship between MU firing and twitch properties and their influence on force capacity. This can facilitate the development of targeted rehabilitation strategies tailored to individuals with specific neuromuscular conditions.
Collapse
|
2
|
Orantes-Gonzalez E, Heredia-Jimenez J, Lindley SB, Richards JD, Chapman GJ. An exploration of the motor unit behaviour during the concentric and eccentric phases of a squat task performed at different speeds. Sports Biomech 2023:1-12. [PMID: 37339268 DOI: 10.1080/14763141.2023.2221682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 05/31/2023] [Indexed: 06/22/2023]
Abstract
Despite squatting being important in strength training and rehabilitation, few studies have investigated motor unit (MU) behaviour. This study explored the MU behaviour of vastus medialis (VM) and vastus lateralis (VL) during the concentric and eccentric phases of a squat exercise performed at two speeds. Twenty-two participants had surface dEMG sensors attached over VM and VL, and IMUs recorded thigh and shank angular velocities. Participants performed squats at 15 and 25 repetitions per minute in a randomised order, and EMG signals were decomposed into their MU action potential trains. A four factor (muscle × speed × contraction phase × sexes) mixed methods ANOVA revealed significant main effects for MU firing rates between speeds, between muscles and between sexes, but not contraction phases. Post hoc analysis showed significantly greater MU firing rates and amplitudes in VM. A significant interaction was seen between speed and the contraction phases. Further analysis revealed significantly greater firing rates during the concentric compared to the eccentric phases, and between speeds during the eccentric phase only. VM and VL respond differently during squatting depending on speed and contraction phase. These new insights in VM and VL MU behvaviour may be useful when designing training and rehabilitation protocols.
Collapse
Affiliation(s)
- Eva Orantes-Gonzalez
- Department of Sports and Computer Science, Faculty of Sports, University of Pablo de Olavide, Seville, Spain
| | - Jose Heredia-Jimenez
- Department of Physical Education and Sport, Faculty of Education, Economy and Technology, University of Granada, Ceuta, Spain
| | | | - Jim D Richards
- Allied Health Research Unit, University of Central Lancashire, Preston, UK
| | - Graham J Chapman
- Allied Health Research Unit, University of Central Lancashire, Preston, UK
| |
Collapse
|
3
|
Motor unit firing patterns of lower leg muscles during isometric plantar flexion with flexed knee joint position. J Electromyogr Kinesiol 2022; 67:102720. [PMID: 36368144 DOI: 10.1016/j.jelekin.2022.102720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/12/2022] [Accepted: 10/19/2022] [Indexed: 11/06/2022] Open
Abstract
The ankle flexor and extensor muscles are essential for pedal movements associated with car driving. Neuromuscular activation of lower leg muscles is influenced by the posture during a given task, such as the flexed knee joint angle during car driving. This study aimed to investigate the influence of flexion of the knee joint on recruitment threshold-dependent motor unit activity in lower leg muscles during isometric contraction. Twenty healthy participants performed plantar flexor and dorsiflexor isometric ramp contractions at 30 % of the maximal voluntary contraction (MVC) with extended (0°) and flexed (130°) knee joint angles. High-density surface electromyograms were recorded from medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles and decomposed to extract individual motor units. The torque-dependent change (Δpps /Δ%MVC) of the motor unit activity of MG (recruited at 15 %MVC) and SOL (recruited at 5 %MVC) muscles was higher with a flexed compared with an extended knee joint (p < 0.05). The torque-dependent change of TA MU did not different between the knee joint angles. The motor units within certain limited recruitment thresholds recruited to exert plantar flexion torque can be excited to compensate for the loss of MG muscle torque output with a flexed knee joint.
Collapse
|
4
|
Caillet AH, Phillips ATM, Farina D, Modenese L. Estimation of the firing behaviour of a complete motoneuron pool by combining electromyography signal decomposition and realistic motoneuron modelling. PLoS Comput Biol 2022; 18:e1010556. [PMID: 36174126 PMCID: PMC9553065 DOI: 10.1371/journal.pcbi.1010556] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 10/11/2022] [Accepted: 09/08/2022] [Indexed: 11/18/2022] Open
Abstract
Our understanding of the firing behaviour of motoneuron (MN) pools during human voluntary muscle contractions is currently limited to electrophysiological findings from animal experiments extrapolated to humans, mathematical models of MN pools not validated for human data, and experimental results obtained from decomposition of electromyographical (EMG) signals. These approaches are limited in accuracy or provide information on only small partitions of the MN population. Here, we propose a method based on the combination of high-density EMG (HDEMG) data and realistic modelling for predicting the behaviour of entire pools of motoneurons in humans. The method builds on a physiologically realistic model of a MN pool which predicts, from the experimental spike trains of a smaller number of individual MNs identified from decomposed HDEMG signals, the unknown recruitment and firing activity of the remaining unidentified MNs in the complete MN pool. The MN pool model is described as a cohort of single-compartment leaky fire-and-integrate (LIF) models of MNs scaled by a physiologically realistic distribution of MN electrophysiological properties and driven by a spinal synaptic input, both derived from decomposed HDEMG data. The MN spike trains and effective neural drive to muscle, predicted with this method, have been successfully validated experimentally. A representative application of the method in MN-driven neuromuscular modelling is also presented. The proposed approach provides a validated tool for neuroscientists, experimentalists, and modelers to infer the firing activity of MNs that cannot be observed experimentally, investigate the neuromechanics of human MN pools, support future experimental investigations, and advance neuromuscular modelling for investigating the neural strategies controlling human voluntary contractions.
Collapse
Affiliation(s)
- Arnault H. Caillet
- Department of Civil and Environmental Engineering, Imperial College London, United Kingdom
| | - Andrew T. M. Phillips
- Department of Civil and Environmental Engineering, Imperial College London, United Kingdom
| | - Dario Farina
- Department of Bioengineering, Imperial College London, United Kingdom
| | - Luca Modenese
- Department of Civil and Environmental Engineering, Imperial College London, United Kingdom
- Graduate School of Biomedical Engineering, University of New South Wales, Sydney, Australia
| |
Collapse
|
5
|
Silverman JD, Balbinot G, Masani K, Zariffa J, Eng P. Validity and Reliability of Surface Electromyography Features in Lower Extremity Muscle Contraction in Healthy and Spinal Cord-Injured Participants. Top Spinal Cord Inj Rehabil 2021; 27:14-27. [PMID: 34866885 DOI: 10.46292/sci20-00001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background: Spinal cord injury (SCI) has a significant impact on motor control and active force generation. Quantifying muscle activation following SCI may help indicate the degree of motor impairment and predict the efficacy of rehabilitative interventions. In healthy persons, muscle activation is typically quantified by electromyographic (EMG) signal amplitude measures. However, in SCI, these measures may not reflect voluntary effort, and therefore other nonamplitude-based features should be considered. Objectives: The purpose of this study was to assess the correlation of time-domain EMG features with the exerted joint torque (validity) and their test-retest repeatability (reliability), which may contribute to characterizing muscle activation following SCI. Methods: Surface EMG (SEMG) and torque were measured while nine uninjured participants and four participants with SCI performed isometric contractions of tibialis anterior (TA) and soleus (SOL). Data collection was repeated at a subsequent session for comparison across days. Validity and test-retest reliability of features were assessed by Spearman and intraclass correlation (ICC) of linear regression coefficients. Results: In healthy participants, SEMG features correlated well with torque (TA: ρ > 0.92; SOL: ρ > 0.94) and showed high reliability (ICCmean = 0.90; range, 0.72-0.99). In an SCI case series, SEMG features also correlated well with torque (TA: ρ > 0.86; SOL: ρ > 0.86), and time-domain features appeared no less repeatable than amplitude-based measures. Conclusion: Time-domain SEMG features are valid and reliable measures of lower extremity muscle activity in healthy participants and may be valid measures of sublesional muscle activity following SCI. These features could be used to gauge motor impairment and progression of rehabilitative interventions or in controlling assistive technologies.
Collapse
Affiliation(s)
- Jordan Daniel Silverman
- Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada.,KITE - Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
| | - Gustavo Balbinot
- KITE - Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada
| | - Kei Masani
- KITE - Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - José Zariffa
- Division of Physical Medicine and Rehabilitation, University of Toronto, Toronto, Ontario, Canada.,KITE - Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada.,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| | - P Eng
- KITE - Toronto Rehabilitation Institute - University Health Network, Toronto, Ontario, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada.,Rehabilitation Sciences Institute, University of Toronto, Toronto, Ontario, Canada.,Edward S. Rogers Sr. Department of Electrical and Computer Engineering, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
6
|
Kirk EA, Gilmore KJ, Rice CL. Anconeus motor unit firing rates during isometric and muscle-shortening contractions comparing young and very old adults. J Neurophysiol 2021; 126:1122-1136. [PMID: 34495770 DOI: 10.1152/jn.00219.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
With effects of aging, voluntary neural drive to the muscle, measured as motor unit (MU) firing rate, is lower in older adults during sustained isometric contractions compared with young adults, but differences remain unknown during limb movements. Therefore, our purpose was to compare MU firing rates during both isometric and shortening contractions between two adult age groups. We analyzed intramuscular electromyography of single-MU recordings in the anconeus muscle of young (n = 8, 19-33 yr) and very old (n = 13, 78-93 yr) male adults during maximal voluntary contractions (MVCs). In sustained isometric and muscle-shortening contractions during limb movement, MU trains were linked with elbow joint kinematic parameters throughout the contraction time course. The older group was 33% weaker and 10% slower during movements than the young group (P < 0.01). In isometric contractions, median firing rates were 42% lower (P < 0.01) in the older group (18 Hz) compared with the young group (31 Hz), but during shortening contractions firing rates were higher for both age groups and not statistically different between groups. As a function of contraction time, firing rates at MU recruitment threshold were 39% lower in the older group, but the firing rate decrease was attenuated threefold throughout shortening contraction compared with the young group. At the single-MU level, age-related differences during isometric contractions (i.e., pre-movement initiation) do not remain constant throughout movement that comprises greater effects of muscle shortening. Results indicate that neural drive is task dependent and during movement in older adults it is decreased minimally.NEW & NOTEWORTHY Changes of neural drive to the muscle with adult aging, measured as motor unit firing rates during limb movements, are unknown. Throughout maximal voluntary efforts we found that, in comparison with young adults, firing rates were lower during isometric contraction in older adults but not different during elbow extension movements. Despite the older group being ∼33% weaker across contractions, their muscles can receive neural drive during movements that are similar to that of younger adults.
Collapse
Affiliation(s)
- Eric A Kirk
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada
| | - Kevin J Gilmore
- Department of Surgery, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| | - Charles L Rice
- School of Kinesiology, Faculty of Health Sciences, The University of Western Ontario, London, Ontario, Canada.,Department of Anatomy and Cell Biology, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
7
|
The relationship of agonist muscle single motor unit firing rates and elbow extension limb movement kinematics. Exp Brain Res 2021; 239:2755-2766. [PMID: 34240233 DOI: 10.1007/s00221-021-06168-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 06/26/2021] [Indexed: 10/20/2022]
Abstract
This study explored the relationship between single motor unit (MU) firing rates (FRs) and limb movement velocity during voluntary shortening contractions when accounting for the effects of time course variability between different kinematic comparisons. Single MU trains recorded by intramuscular electromyography in agonist muscles of the anconeus (n = 15 participants) and lateral head of the triceps brachii (n = 6) were measured during each voluntary shortening contraction. Elbow extension movements consisted of a targeted velocity occurring along the sagittal plane at 25, 50, 75 and 100% of maximum velocity. To account for the effect of differences in contraction time course between parameters, each MU potential was time locked throughout the shortening muscle contraction and linked with separated kinematic parameters of the elbow joint. Across targeted movement velocities, instantaneous FRs were significantly correlated with elbow extension rate of torque development (r = 0.45) and torque (r = 0.40), but FRs were not correlated with velocity (r = 0.03, p = n.s.). Instead, FRs had a weak indirect relationship with limb movement velocity and position assessed through multiple correlation of the stepwise kinematic progression. Results show that voluntary descending synaptic inputs correspond to a more direct relationship between agonist muscle FRs and torque during shortening contractions, but not velocity. Instead, FRs were indirectly correlated to preparing the magnitude of imminent movement velocity of the lagging limb through torque.
Collapse
|
8
|
Pelet DCS, Orsatti FL. Effects of resistance training at different intensities of load on cross-education of muscle strength. APPLIED PHYSIOLOGY, NUTRITION, AND METABOLISM = PHYSIOLOGIE APPLIQUEE, NUTRITION ET METABOLISME 2021; 46:1279-1289. [PMID: 33984253 DOI: 10.1139/apnm-2021-0088] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The objectives of this study were 1) to compare the extent of cross-transfer of high- versus low-load unilateral resistance training performed with external pacing of the movement (URTEP) and 2) to compare the time course of the two approaches. Fifty subjects were randomized to one of the following three groups: G80 [two sets at 80% and two sets at 40% of one maximum repetition (1RM), 1 concentric second and 3 eccentric seconds controlled by a metronome]; G40 (four sets at 40% of 1 RM, 1s and 3s controlled by a metronome); or CG (control group). At week 1, the G80 increased the elbow flexion 1RM (P<0.05) in contralateral arm. At week 4, both G80 and G40 increased the elbow flexion 1RM (P<0.05) in contralateral arm. However, a greater 1RM gain was observed in the G80 than in the G40 (P< .05). Thus, although higher-load URTEP seems to enhance the cross-education effect when compared to lower-load URTEP, the cross-education of dynamic strength can be achieved in the two approaches after four weeks. Many patients would benefit from cross-education of muscle strength through URPEP, even who are unable to exercise with high loads and in short periods of immobilization. Novelty bullets: (1) Unilateral resistance training promotes cross-education of dynamic muscle strength. (2) However, higher-load resistance training enhances the effects of cross-education of muscle strength.
Collapse
Affiliation(s)
| | - Fábio Lera Orsatti
- Federal University of Triangulo Mineiro , Department of Sport Sciences, Uberaba, Brazil;
| |
Collapse
|
9
|
Kumar RI, Forman GN, Forman DA, Mugnosso M, Zenzeri J, Button DC, Holmes MWR. Dynamic Wrist Flexion and Extension Fatigue Induced via Submaximal Contractions Similarly Impairs Hand Tracking Accuracy in Young Adult Males and Females. Front Sports Act Living 2020; 2:574650. [PMID: 33345137 PMCID: PMC7739657 DOI: 10.3389/fspor.2020.574650] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 09/01/2020] [Indexed: 11/22/2022] Open
Abstract
We evaluated the effects of muscle fatigue on hand-tracking performance in young adults. Differences were quantified between wrist flexion and extension fatigability, and between males and females. Participants were evaluated on their ability to trace a pattern using a 3-degrees-of-freedom robotic manipulandum before (baseline) and after (0, 1, 2, 4, 6, 8, and 10 mins) a submaximal-intensity fatigue protocol performed to exhaustion that isolated the wrist flexors or extensors on separate days. Tracking tasks were performed at all time points, while maximal voluntary contractions (MVCs) were performed at baseline, and 2, 6-, and 10-mins post-task termination. We evaluated movement smoothness (jerk ratio, JR), shape reproduction (figural error, FE), and target tracking accuracy (tracking error, TE). MVC force was significantly lower in females (p < 0.05), lower than baseline for all timepoints after task termination (p < 0.05), with no muscle group-dependent differences. JR did not return to baseline until 10-mins post-task termination (most affected), while FE returned at 4-mins post-task termination, and TE at 1-min post-task termination. Males tracked the target with significantly lower JR (p < 0.05), less TE (p < 0.05), and less FE (p < 0.05) than females. No muscle group-dependent changes in hand-tracking performance were observed. Based on this work, hand tracking accuracy is similarly impaired following repetitive submaximal dynamic wrist flexion or extension. The differences between male and female fatigability was independent of the changes in our tracking metrics.
Collapse
Affiliation(s)
- Robert I. Kumar
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Garrick N. Forman
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| | - Davis A. Forman
- Faculty of Science, University of Ontario Institute of Technology, Oshawa, ON, Canada
| | - Maddalena Mugnosso
- Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Jacopo Zenzeri
- Robotics, Brain and Cognitive Sciences, Istituto Italiano di Tecnologia, Genoa, Italy
| | - Duane C. Button
- School of Human Kinetics and Recreation, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Michael W. R. Holmes
- Faculty of Applied Health Sciences, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
10
|
Suttmiller AM, McCann RS. Neural excitability of lower extremity musculature in individuals with and without chronic ankle instability: A systematic review and meta-analysis. J Electromyogr Kinesiol 2020; 53:102436. [DOI: 10.1016/j.jelekin.2020.102436] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 11/24/2022] Open
|
11
|
Habenicht R, Ebenbichler G, Bonato P, Kollmitzer J, Ziegelbecker S, Unterlerchner L, Mair P, Kienbacher T. Age-specific differences in the time-frequency representation of surface electromyographic data recorded during a submaximal cyclic back extension exercise: a promising biomarker to detect early signs of sarcopenia. J Neuroeng Rehabil 2020; 17:8. [PMID: 31992323 PMCID: PMC6986160 DOI: 10.1186/s12984-020-0645-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Accepted: 01/20/2020] [Indexed: 11/10/2022] Open
Abstract
PURPOSE Motivated by the goal of developing new methods to detect early signs of sarcopenia, we investigated if surface electromyographic (SEMG) data recorded during the performance of cyclic, submaximal back extensions are marked by age-specific differences in their time and frequency characteristics. Furthermore, day-to-day retest reliability of the EMG measures was examined. METHODS A total of 86 healthy volunteers used a back dynamometer to perform a series of three maximal voluntary contractions (MVC) consisting of isometric back extensions, followed by an isometric back extension at 80% MVC, and finally 25 slow cyclic back extensions at 50% MVC. SEMG data was recorded bilaterally at L1, L2, and L5 from the iliocostalis lumborum, longissimus, and multifidus muscles, respectively. Tests were repeated two days and six weeks later. A linear mixed-effects model with fixed effects "age, sex, test number" and the random effect "person" was performed to investigate age-specific differences in both the initial value and the time-course (as defined by the slope of the regression line) of the root mean square (RMS-SEMG) values and instantaneous median frequency (IMDF-SEMG) values calculated separately for the shortening and lengthening phases of the exercise cycles. Generalizability Theory was used to examine reliability of the EMG measures. RESULTS Back extensor strength was comparable in younger and older adults. The initial value of RMS-SEMG and IMDF-SEMG as well as the RMS-SEMG time-course did not significantly differ between the two age groups. Conversely, the IMDF-SEMG time-course showed more rapid changes in younger than in older individuals. Absolute and relative reliability of the SEMG time-frequency representations were comparable in older and younger individuals with good to excellent relative reliability but variable absolute reliability levels. CONCLUSIONS The IMDF-SEMG time-course derived from submaximal, cyclic back extension exercises performed at moderate effort showed significant differences in younger vs. older adults even though back extension strength was found to be comparable in the two age groups. We conclude that the SEMG method proposed in this study has great potential to be used as a biomarker to detect early signs of sarcopenic back muscle function.
Collapse
Affiliation(s)
- R Habenicht
- Karl-Landsteiner-Institute of Outpatient Rehabilitation Research, Vienna, Austria
| | - G Ebenbichler
- Karl-Landsteiner-Institute of Outpatient Rehabilitation Research, Vienna, Austria.
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of Vienna, General Hospital of Vienna, Währinger Gürtel 18-20, 1090, Vienna, Austria.
| | - P Bonato
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation Hospital, Boston, MA, USA
| | - J Kollmitzer
- Technical School of Engineering, Vienna, Austria
| | - S Ziegelbecker
- Karl-Landsteiner-Institute of Outpatient Rehabilitation Research, Vienna, Austria
| | - L Unterlerchner
- Karl-Landsteiner-Institute of Outpatient Rehabilitation Research, Vienna, Austria
| | - P Mair
- Department of Psychology, Harvard University, Cambridge, MA, USA
| | - T Kienbacher
- Karl-Landsteiner-Institute of Outpatient Rehabilitation Research, Vienna, Austria
| |
Collapse
|
12
|
Abe D, Fukuoka Y, Horiuchi M. Why do we transition from walking to running? Energy cost and lower leg muscle activity before and after gait transition under body weight support. PeerJ 2019; 7:e8290. [PMID: 31871846 PMCID: PMC6924320 DOI: 10.7717/peerj.8290] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 11/24/2019] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Minimization of the energetic cost of transport (CoT) has been suggested for the walk-run transition in human locomotion. More recent literature argues that lower leg muscle activities are the potential triggers of the walk-run transition. We examined both metabolic and muscular aspects for explaining walk-run transition under body weight support (BWS; supported 30% of body weight) and normal walking (NW), because the BWS can reduce both leg muscle activity and metabolic rate. METHODS Thirteen healthy young males participated in this study. The energetically optimal transition speed (EOTS) was determined as the intersection between linear CoT and speed relationship in running and quadratic CoT-speed relationship in walking under BWS and NW conditions. Preferred transition speed (PTS) was determined during constant acceleration protocol (velocity ramp protocol at 0.00463 m·s-2 = 1 km·h-1 per min) starting from 1.11 m·s-1. Muscle activities and mean power frequency (MPF) were measured using electromyography of the primary ankle dorsiflexor (tibialis anterior; TA) and synergetic plantar flexors (calf muscles including soleus) before and after the walk-run transition. RESULTS The EOTS was significantly faster than the PTS under both conditions, and both were faster under BWS than in NW. In both conditions, MPF decreased after the walk-run transition in the dorsiflexor and the combined plantar flexor activities, especially the soleus. DISCUSSION The walk-run transition is not triggered solely by the minimization of whole-body energy expenditure. Walk-run transition is associated with reduced TA and soleus activities with evidence of greater slow twitch fiber recruitment, perhaps to avoid early onset of localized muscle fatigue.
Collapse
Affiliation(s)
- Daijiro Abe
- Center for Health and Sports Science, Kyushu Sangyo University, Fukuoka, Japan
| | - Yoshiyuki Fukuoka
- Faculty of Health and Sports Science, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Masahiro Horiuchi
- Division of Human Environmental Science, Mt. Fuji Research Institute, Fujiyoshida, Yamanashi, Japan
| |
Collapse
|
13
|
Activity of Motor Units in Human Elbow Flexor and Extensor Muscles during Task-Dependent Unloading. NEUROPHYSIOLOGY+ 2019. [DOI: 10.1007/s11062-019-09813-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
14
|
Liu J, Sheng Y, Zeng J, Liu H. Corticomuscular Coherence for Upper Arm Flexor and Extensor Muscles During Isometric Exercise and Cyclically Isokinetic Movement. Front Neurosci 2019; 13:522. [PMID: 31178688 PMCID: PMC6538811 DOI: 10.3389/fnins.2019.00522] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/06/2019] [Indexed: 01/27/2023] Open
Abstract
Cortical-muscular functional coupling reflects the interaction between the cerebral cortex and the muscle activities. Corticomuscular coherence (CMC) has been extensively revealed in sustained contractions of various upper- and lower-limb muscles during static and dynamic force outputs. However, it is not well-understood that the CMC modulation mechanisms, i.e., the relation between a cerebral hemisphere and dynamic motor controlling limbs at constant speeds, such as isokinetic movement. In this paper, we explore the CMC between upper arm flexors/extensors movement and motor cortex during isometric exercise and cyclically isokinetic movement. We also provide further insights of frequency-shift and the neural pathway mechanisms in isokinetic movement by evaluating the coherence between motor cortex and agonistic or antagonistic muscles. This study is the first to investigate the relationship between cortical-muscular functional connections in elbow flexion-extension movement with constant speeds. The result shows that gamma-range coherence for isokinetic movement is greatly increased compared with isometric exercise, and significant CMC is observed in the entire flexion-extension stage regardless the nature of muscles contraction, although dominant synchronization of cortical oscillation and muscular activity resonated in sustained contraction stage principally. Besides, the CMC for extensors and flexors are explicitly consistent in contraction stage during cyclically isokinetic elbow movement. It is concluded that cortical-muscular coherence can be dynamically modulated as well as selective by cognitive demands of the body, and the time-varying mechanisms of the synchronous motor oscillation exist in healthy individuals during dynamic movement.
Collapse
Affiliation(s)
- Jinbiao Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yixuan Sheng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jia Zeng
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Honghai Liu
- State Key Laboratory of Mechanical System and Vibration, School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
15
|
Differences in Maximum Voluntary Excitation Between Isometric and Dynamic Contractions are Age-Dependent. J Appl Biomech 2019; 35:196-201. [PMID: 30860419 DOI: 10.1123/jab.2018-0215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Obtaining true maximum voluntary excitation appears to be more difficult in older populations than in young populations. The aims of this study were (1) to determine whether differences in maximum voluntary excitation obtained from maximum voluntary isometric contraction (MVIC) and (sub-)maximum voluntary dynamic contraction [(s-)MVDC] are age dependent, and (2) to determine how normalizing electromyographic signals to corresponding maximum voluntary excitations affects variance between participants and the likelihood of normalized signals exceeding 100%. MVIC, s-MVDC, and MVDC were recorded in 10 young women, and MVIC and s-MVDC were recorded in 19 older women. A significant age × contraction mode interaction effect was found for vastus lateralis (P = .04). In young women, MVDC elicited the highest maximum voluntary excitation for vastus lateralis and rectus femoris (P < .05). In older women, no differences in maximum voluntary excitation were found (P > .05). Normalization to dynamic contractions resulted in lower between-participant variance of electromyography amplitudes, though not for all muscles, and decreased the number of normalized signals exceeding 100% in young women. These findings indicate that differences in maximum voluntary excitation across contraction modes are age dependent. Therefore, one should be cautious when comparing normalized signals between age groups; however, overall dynamic contractions may be preferable over isometric contractions for normalization purposes.
Collapse
|
16
|
Barrué-Belou S, Marque P, Duclay J. Recurrent inhibition is higher in eccentric compared to isometric and concentric maximal voluntary contractions. Acta Physiol (Oxf) 2018; 223:e13064. [PMID: 29575639 DOI: 10.1111/apha.13064] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 03/07/2018] [Accepted: 03/08/2018] [Indexed: 11/30/2022]
Abstract
AIM This study was designed to investigate the influence of muscle contraction type on spinal recurrent inhibition during maximal voluntary contractions (MVC) of the plantar flexor muscles. METHODS To that purpose, the paired Hoffmann-reflex (H-reflex) technique permitted to assess changes in recurrent pathway by comparing the modulations of test, reference and conditioning H-reflexes (H', Href and H1 respectively) in the soleus muscle during isometric, concentric and eccentric MVC. Twenty-five subjects participated in an experimental session designed to assess the activity of the recurrent inhibition pathway. RESULTS The results indicate that both the electromyographic activity and the amplitude of H1 normalized to the maximal M-wave (Mmax ) were similar regardless of the muscle contraction type while the ratio between H' and H1 amplitudes was significantly smaller during eccentric compared with isometric and concentric MVC. Furthermore, Href and H' amplitudes did not differ significantly during both isometric and concentric MVCs while H' amplitude was significantly lower than Href amplitude during eccentric MVC. In addition, the V/Mmax ratio was similar for all muscle contraction type and greater H' amplitude was significantly correlated with greater V-wave amplitude regardless of the muscle contraction type. CONCLUSION Together, the current results indicate that recurrent inhibition is elevated for the soleus muscle during eccentric compared to isometric and concentric MVC. Data further suggest that the Renshaw cell activity is specifically controlled by the descending neural drive and/or peripheral neural mechanisms during eccentric MVC.
Collapse
Affiliation(s)
- S. Barrué-Belou
- Toulouse NeuroImaging Center; Université de Toulouse, Inserm, UPS; Toulouse France
| | - P. Marque
- Toulouse NeuroImaging Center; Université de Toulouse, Inserm, UPS; Toulouse France
- Service de Médecine Physique et Réadaptation; CHU Toulouse Rangueil; Toulouse France
| | - J. Duclay
- Toulouse NeuroImaging Center; Université de Toulouse, Inserm, UPS; Toulouse France
| |
Collapse
|
17
|
Yoshida T, Masani K, Zabjek K, Popovic MR, Chen R. Dynamic cortical participation during bilateral, cyclical ankle movements: Effects of Parkinson's disease. PLoS One 2018; 13:e0196177. [PMID: 29698430 PMCID: PMC5919457 DOI: 10.1371/journal.pone.0196177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 04/06/2018] [Indexed: 11/19/2022] Open
Abstract
Parkinson’s disease (PD) is known to increase asymmetry and variability of bilateral movements. However, the mechanisms of such abnormalities are not fully understood. Here, we aimed to investigate whether kinematic abnormalities are related to cortical participation during bilateral, cyclical ankle movements, which required i) maintenance of a specific frequency and ii) bilateral coordination of the lower limbs in an anti-phasic manner. We analyzed electroencephalographic and electromyographic signals from nine men with PD and nine aged-matched healthy men while they sat and cyclically dorsi- and plantarflexed their feet. This movement was performed at a similar cadence to normal walking under two conditions: i) self-paced and ii) externally paced by a metronome. Participants with PD exhibited reduced range of motion and more variable bilateral coordination. However, participants with and without PD did not differ in the magnitude of corticomuscular coherence between the midline cortical areas and tibialis anterior and medial gastrocnemius muscles. This finding suggests that either the kinematic abnormalities were related to processes outside linear corticomuscular communication or PD-related changes in neural correlates maintained corticomuscular communication but not motor performance.
Collapse
Affiliation(s)
- Takashi Yoshida
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- Applied Surgical and Rehabilitation Technology Lab, Department of Trauma Surgery, Orthopaedics and Plastic Surgery, University Medical Center Göttingen, Göttingen, Lower Saxony, Germany
| | - Kei Masani
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
- * E-mail:
| | - Karl Zabjek
- Department of Physical Therapy, University of Toronto, Toronto, Ontario, Canada
| | - Milos R. Popovic
- Rehabilitation Engineering Laboratory, Toronto Rehabilitation Institute, University Health Network, Toronto, Ontario, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Ontario, Canada
| | - Robert Chen
- Division of Neurology, Department of Medicine, University of Toronto, Toronto, Ontario, Canada
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
- Edmond J. Safra Program in Parkinson’s Disease, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
18
|
Ebenbichler GR, Unterlerchner L, Habenicht R, Bonato P, Kollmitzer J, Mair P, Riegler S, Kienbacher T. Estimating Neural Control from Concentric vs. Eccentric Surface Electromyographic Representations during Fatiguing, Cyclic Submaximal Back Extension Exercises. Front Physiol 2017; 8:299. [PMID: 28559851 PMCID: PMC5432577 DOI: 10.3389/fphys.2017.00299] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2017] [Accepted: 04/25/2017] [Indexed: 12/27/2022] Open
Abstract
Purpose: To investigate the differences in neural control of back muscles activated during the eccentric vs. the concentric portions of a cyclic, submaximal, fatiguing trunk extension exercise via the analysis of amplitude and time-frequency parameters derived from surface electromyographic (SEMG) data. Methods: Using back dynamometers, 87 healthy volunteers performed three maximum voluntary isometric trunk extensions (MVC's), an isometric trunk extension at 80% MVC, and 25 cyclic, dynamic trunk extensions at 50% MVC. Dynamic testing was performed with the trunk angular displacement ranging from 0° to 40° and the trunk angular velocity set at 20°/s. SEMG data was recorded bilaterally from the iliocostalis lumborum at L1, the longissimus dorsi at L2, and the multifidus muscles at L5. The initial value and slope of the root mean square (RMS-SEMG) and the instantaneous median frequency (IMDF-SEMG) estimates derived from the SEMG recorded during each exercise cycle were used to investigate the differences in MU control marking the eccentric vs. the concentric portions of the exercise. Results: During the concentric portions of the exercise, the initial RMS-SEMG values were almost twice those observed during the eccentric portions of the exercise. The RMS-SEMG values generally increased during the concentric portions of the exercise while they mostly remained unchanged during the eccentric portions of the exercise with significant differences between contraction types. Neither the initial IMDF-SEMG values nor the time-course of the IMDF-SEMG values significantly differed between the eccentric and the concentric portions of the exercise. Conclusions: The comparison of the investigated SEMG parameters revealed distinct neural control strategies during the eccentric vs. the concentric portions of the cyclic exercise. We explain these differences by relying upon the principles of orderly recruitment and common drive governing motor unit behavior.
Collapse
Affiliation(s)
- Gerold R Ebenbichler
- Department of Physical Medicine, Rehabilitation and Occupational Medicine, Medical University of ViennaVienna, Austria.,Karl-Landsteiner-Institute of Outpatient Rehabilitation ResearchVienna, Austria
| | - Lena Unterlerchner
- Karl-Landsteiner-Institute of Outpatient Rehabilitation ResearchVienna, Austria
| | - Richard Habenicht
- Karl-Landsteiner-Institute of Outpatient Rehabilitation ResearchVienna, Austria.,University of Applied Sciences, Business InformaticsVienna, Austria
| | - Paolo Bonato
- Department of Physical Medicine and Rehabilitation, Harvard Medical School, Spaulding Rehabilitation HospitalBoston, MA, USA
| | | | - Patrick Mair
- Department of Psychology, Harvard UniversityCambridge, MA, USA
| | - Sara Riegler
- Karl-Landsteiner-Institute of Outpatient Rehabilitation ResearchVienna, Austria
| | - Thomas Kienbacher
- Karl-Landsteiner-Institute of Outpatient Rehabilitation ResearchVienna, Austria
| |
Collapse
|
19
|
Mildren RL, Peters RM, Hill AJ, Blouin JS, Carpenter MG, Inglis JT. Frequency characteristics of human muscle and cortical responses evoked by noisy Achilles tendon vibration. J Appl Physiol (1985) 2017; 122:1134-1144. [PMID: 28209741 DOI: 10.1152/japplphysiol.00908.2016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 01/17/2017] [Accepted: 02/11/2017] [Indexed: 11/22/2022] Open
Abstract
Noisy stimuli, along with linear systems analysis, have proven to be effective for mapping functional neural connections. We explored the use of noisy (10-115 Hz) Achilles tendon vibration to examine somatosensory reflexes in the triceps surae muscles in standing healthy young adults (n = 8). We also examined the association between noisy vibration and electrical activity recorded over the sensorimotor cortex using electroencephalography. We applied 2 min of vibration and recorded ongoing muscle activity of the soleus and gastrocnemii using surface electromyography (EMG). Vibration amplitude was varied to characterize reflex scaling and to examine how different stimulus levels affected postural sway. Muscle activity from the soleus and gastrocnemii was significantly correlated with the tendon vibration across a broad frequency range (~10-80 Hz), with a peak located at ~40 Hz. Vibration-EMG coherence positively scaled with stimulus amplitude in all three muscles, with soleus displaying the strongest coupling and steepest scaling. EMG responses lagged the vibration by ~38 ms, a delay that paralleled observed response latencies to tendon taps. Vibration-evoked cortical oscillations were observed at frequencies ~40-70 Hz (peak ~54 Hz) in most subjects, a finding in line with previous reports of sensory-evoked γ-band oscillations. Further examination of the method revealed 1) accurate reflex estimates could be obtained with <60 s of low-level (root mean square = 10 m/s2) vibration; 2) responses did not habituate over 2 min of exposure; and importantly, 3) noisy vibration had a minimal influence on standing balance. Our findings suggest noisy tendon vibration is an effective novel approach to characterize somatosensory reflexes during standing.NEW & NOTEWORTHY We applied noisy (10-115 Hz) vibration to the Achilles tendon to examine the frequency characteristics of lower limb somatosensory reflexes during standing. Ongoing muscle activity was coherent with the noisy vibration (peak coherence ~40 Hz), and coherence positively scaled with increases in stimulus amplitude. Our findings suggest that noisy tendon vibration, along with linear systems analysis, is an effective novel approach to study somatosensory reflex actions in active muscles.
Collapse
Affiliation(s)
- Robyn L Mildren
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada;
| | - Ryan M Peters
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Aimee J Hill
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jean-Sébastien Blouin
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,Institute for Computing, Information and Cognitive Systems, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mark G Carpenter
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada; and
| | - J Timothy Inglis
- School of Kinesiology, University of British Columbia, Vancouver, British Columbia, Canada.,Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, British Columbia, Canada.,International Collaboration on Repair Discoveries, Vancouver, British Columbia, Canada; and
| |
Collapse
|
20
|
Łochyński D, Kaczmarek D, Mrówczyński W, Warchoł W, Majerczak J, Karasiński J, Korostyński M, Zoladz JA, Celichowski J. Contractile properties of motor units and expression of myosin heavy chain isoforms in rat fast-type muscle after volitional weight-lifting training. J Appl Physiol (1985) 2016; 121:858-869. [PMID: 27539495 DOI: 10.1152/japplphysiol.00330.2016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 08/17/2016] [Indexed: 11/22/2022] Open
Abstract
Dynamic resistance training increases the force and speed of muscle contraction, but little is known about modifications to the contractile properties of the main physiological types of motor units (MUs) that contribute to these muscle adaptations. Although the contractile profile of MU muscle fibers is tightly coupled to myosin heavy chain (MyHC) protein expression, it is not well understood if MyHC transition is a prerequisite for modifications to the contractile characteristics of MUs. In this study, we examined MU contractile properties, the mRNA expression of MyHC, parvalbumin, and sarcoendoplasmic reticulum Ca2+ pump isoforms, as well as the MyHC protein content after 5 wk of volitional progressive weight-lifting training in the medial gastrocnemius muscle in rats. The training had no effect on MyHC profiling or Ca2+-handling protein gene expression. Maximum force increased in slow (by 49%) and fast (by 21%) MUs. Within fast MUs, the maximum force increased in most fatigue-resistant and intermediate but not most fatigable MUs. Twitch contraction time was shortened in slow and fast fatigue-resistant MUs. Twitch half-relaxation was shortened in fast most fatigue-resistant and intermediate MUs. The force-frequency curve shifted rightward in fast fatigue-resistant MUs. Fast fatigable MUs fatigued less within the initial 15 s while fast fatigue-resistant units increased the ability to potentiate the force within the first minute of the standard fatigue test. In conclusion, at the early stage of resistance training, modifications to the contractile characteristics of MUs appear in the absence of MyHC transition and the upregulation of Ca2+-handling genes.
Collapse
Affiliation(s)
- Dawid Łochyński
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland; Department of Motor Rehabilitation, Poznan University of Physical Education, Poznań, Poland;
| | - Dominik Kaczmarek
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland; Department of Physiology, Biochemistry, and Hygiene, Poznan University of Physical Education, Poznań, Poland
| | | | - Wojciech Warchoł
- Chair of Biophysics, Poznan University of Medical Sciences, Poznań, Poland
| | - Joanna Majerczak
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Janusz Karasiński
- Department of Cell Biology and Imaging, Institute of Zoology, Jagiellonian University, Krakow, Poland; and
| | - Michał Korostyński
- Department of Molecular Neuropharmacology, Institute of Pharmacology, Polish Academy of Sciences, Krakow, Poland
| | - Jerzy A Zoladz
- Department of Muscle Physiology, Faculty of Rehabilitation, University School of Physical Education, Krakow, Poland
| | - Jan Celichowski
- Department of Neurobiology, Poznan University of Physical Education, Poznań, Poland
| |
Collapse
|
21
|
Cowling BL, Harwood B, Copithorne DB, Rice CL. Rate modulation of human anconeus motor units during high-intensity dynamic elbow extensions. J Appl Physiol (1985) 2016; 121:475-82. [PMID: 27283910 DOI: 10.1152/japplphysiol.00131.2016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 06/06/2016] [Indexed: 11/22/2022] Open
Abstract
Investigations of high-intensity isometric fatiguing protocols report decreases in motor unit firing rates (MUFRs), but little is known regarding changes in MUFRs following fatigue induced by high-intensity dynamic contractions. Our purpose was to evaluate MUFRs of the anconeus (an accessory elbow extensor) and elbow extension power production as a function of time to task failure (TTF) during high-velocity fatiguing concentric contractions against a moderately heavy resistance. Fine-wire intramuscular electrode pairs were inserted into the anconeus to record MUs in 12 male participants (25 ± 3 yr), over repeated sessions on separate days. MUs were tracked throughout a three-stage, varying load dynamic elbow extension protocol designed to extend the task duration for >1 min thereby inducing substantial fatigue. Mean MUFRs and peak power were calculated for three relative time ranges: 0-15% TTF (beginning), 45-60% TTF (middle) and 85-100% TTF (end). Mean duration of the overall fatigue protocol was ∼80 s. Following the protocol, isometric maximum voluntary contraction (MVC), highest velocity at 35% MVC load, and peak power decreased 37, 60, and 64% compared with baseline, respectively. Data from 20 anconeus MUs tracked successfully throughout the protocol indicated a reduction in MUFRs in relation to power loss from 36 Hz/160 W (0-15% TTF) to 28 Hz/97 W (45-60% TTF) to 23 Hz/43 W (85-100% TTF). During these high-intensity maximal effort concentric contractions, anconeus MUFRs decreased substantially (>35%). Although the absolute MUFRs were higher in the present study than those reported previously for other muscles during sustained high-intensity isometric tasks, the relative decrease in MUFRs was similar between the two tasks.
Collapse
Affiliation(s)
- Brianna L Cowling
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and
| | - Brad Harwood
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and
| | - David B Copithorne
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and
| | - Charles L Rice
- School of Kinesiology, The University of Western Ontario, London, Ontario, Canada; and Department of Anatomy and Cell Biology, The University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
22
|
History dependence of the electromyogram: Implications for isometric steady-state EMG parameters following a lengthening or shortening contraction. J Electromyogr Kinesiol 2016; 27:30-8. [DOI: 10.1016/j.jelekin.2016.01.008] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/01/2015] [Accepted: 01/27/2016] [Indexed: 11/17/2022] Open
|
23
|
Motor unit firing rates of the gastrocnemii during maximal brief steady-state contractions in humans. J Electromyogr Kinesiol 2016; 26:82-7. [DOI: 10.1016/j.jelekin.2015.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 11/08/2015] [Accepted: 11/23/2015] [Indexed: 11/20/2022] Open
|
24
|
Abstract
ABSTRACT
A number of studies over the last few decades have established that the control strategy employed by the nervous system during lengthening (eccentric) differs from those used during shortening (concentric) and isometric contractions. The purpose of this review is to summarize current knowledge on the neural control of lengthening contractions. After a brief discussion of methodological issues that can confound the comparison between lengthening and shortening actions, the review provides evidence that untrained individuals are usually unable to fully activate their muscles during a maximal lengthening contraction and that motor unit activity during submaximal lengthening actions differs from that during shortening actions. Contrary to common knowledge, however, more recent studies have found that the recruitment order of motor units is similar during submaximal shortening and lengthening contractions, but that discharge rate is systematically lower during lengthening actions. Subsequently, the review examines the mechanisms responsible for the specific control of maximal and submaximal lengthening contractions as reported by recent studies on the modulation of cortical and spinal excitability. As similar modulation has been observed regardless of contraction intensity, it appears that spinal and corticospinal excitability are reduced during lengthening compared with shortening and isometric contractions. Nonetheless, the modulation observed during lengthening contractions is mainly attributable to inhibition at the spinal level.
Collapse
Affiliation(s)
- Jacques Duchateau
- Laboratory of Applied Biology, ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels 1070, Belgium
| | - Roger M. Enoka
- Department of Integrative Physiology, University of Colorado, Boulder, CO 80309-0354USA
| |
Collapse
|
25
|
Thompson BJ, Conchola EC, Stock MS. Effects of age and muscle action type on acute strength and power recovery following fatigue of the leg flexors. AGE (DORDRECHT, NETHERLANDS) 2015; 37:111. [PMID: 26534723 PMCID: PMC5005847 DOI: 10.1007/s11357-015-9845-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/14/2015] [Indexed: 05/31/2023]
Abstract
Short-term strength and power recovery patterns following fatigue have received little research attention, particularly as they pertain to age-specific responses, and the leg flexors (i.e., hamstrings) muscle group. Thus, research is warranted addressing these issues because both age-related alterations in the neuromuscular system and mode of muscle action (e.g., eccentric, concentric, isometric) may differentially influence recovery responses from fatigue. The aim of this study was to investigate the strength and power recovery responses for eccentric, concentric, and isometric muscle actions of the leg flexors in young and older men following an isometric, intermittent fatigue-inducing protocol. Nineteen young (age = 25 ± 3 years) and nineteen older (71 ± 4) men performed maximal voluntary contractions (MVCs) for eccentric, concentric, and isometric muscle actions followed by a fatigue protocol of intermittent (0.6 duty cycle) isometric contractions of the leg flexors at 60% of isometric MVC. MVCs of each muscle action were performed at 0, 7, 15, and 30 min following fatigue. Peak torque (PT) and mean power values were calculated from the MVCs and the eccentric/concentric ratio (ECR) was derived. For PT and mean power, young men showed incomplete recovery at all time phases, whereas the older men had recovered by 7 min. Eccentric and isometric muscle actions showed incomplete recovery at all time phases, but concentric recovered by 7 min, independent of age. The ECR was depressed for up to 30 min following fatigue. More rapid and pronounced recovery in older men and concentric contractions may be related to physiological differences specific to aging and muscle action motor unit patterns. Individuals and clinicians may use these time course responses as a guide for recovery following activity-induced fatigue.
Collapse
Affiliation(s)
- Brennan J Thompson
- Neuromuscular Research Laboratory, Department of Kinesiology and Health Sciences, Utah State University, Logan, UT, USA.
| | - Eric C Conchola
- Applied Musculoskeletal and Human Physiology Research Laboratory, Oklahoma State University, Stillwater, OK, USA
| | - Matt S Stock
- Human Performance Laboratory, Texas Tech University, Lubbock, TX, USA
| |
Collapse
|
26
|
Meigal A, Fomina E. Electromyographic evaluation of countermeasures during the terrestrial simulation of interplanetary spaceflight in Mars500 project. ACTA ACUST UNITED AC 2015; 23:11-8. [PMID: 26857518 DOI: 10.1016/j.pathophys.2015.10.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Revised: 10/16/2015] [Accepted: 10/18/2015] [Indexed: 10/22/2022]
Abstract
The efficiency of six countermeasures (CM) for muscle atrophy was compared over 520 days of confinement during the terrestrial simulation of round space flight to Mars using surface electromyography (sEMG). Three of CM were cyclic exercises (a motor-driven and leg-driven treadmill, cycle ergometer), resistive exercises (the multifunctional dynamometer for space-MDS, and expanders), and vibration platform. Each of CM was applied for each crew member (n=6) once over the experiment, for 70 days in a row, in prescribed order. sEMG was collected during the "force step test" in which the subject voluntarily produced pressure by lower limb, with minimal force increment. The mean frequency (MNF) and average amplitude of sEMG were analyzed. The MNF of sEMG decreased from 104.3±4.2 to 95.3±2.9Hz (P<0.05) in the soleus muscle after 70 days of exercising on the leg-driven treadmill and after 35 days-on vibration platform. It can be caused by earlier (10-250ms) recruitment of the soleus in respect with the medial gastronemius on the leg-driven treadmill, while on the motor-driven treadmill synergists activated synchronously. In other lower leg muscles, MNF decreased from 180 to 200 to 165-180Hz after 70 days of resistive exercises on the MDS device. CM caused no effect on sEMG amplitude. In conclusion, (1) the leg-driven treadmill, the MDS and vibration platform significantly depressed MNF of sEMG of lower extremity muscles; (2) the leg-driven treadmill and vibration platform specifically affected the soleus muscle. Therefore, these CM can be recommended for a more extensive use on ISS board.
Collapse
Affiliation(s)
- A Meigal
- Institute of Advanced Biomedical Technologies, Petrozavodsk State University, Petrozavodsk, Russian Federation.
| | - E Fomina
- State Scientific Center of Russian Federation Institute of Biomedical Problems of the Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
27
|
Pazzinatto MF, Silva DDO, Briani RV, Ferrari D, Aragão FA, Albuquerque CED, Azevedo FMD. Reliability of electromyography parameters during stair deambulation in patellofemoral pain syndrome. MOTRIZ: REVISTA DE EDUCACAO FISICA 2015. [DOI: 10.1590/s1980-65742015000200012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reliability is essential to all aspects of the measure, as it shows the quality of the information and allows rational conclusions with regard to the data. There has been controversial results regarding the reliability of electromyographic parameters assessed during stair ascent and descent in individuals with patellofemoral pain syndrome (PFPS). Therefore, this study aims to determine the reliability of time and frequency domain electromyographic parameters on both gestures in women with PFPS. Thirty-one women with PFPS were selected to participate in this study. Data from vastus lateralis and medialis were collected during stair deambulation. The selected parameters were: automatic onset, median frequency bands of low, medium and high frequency. Reliability was determined by intraclass correlation coefficient and the standard error of measurement. The frequency domain variables have shown good reliability, with the stair ascent presenting the best rates. On the other hand, onset has proved to be inconsistent in all measures. Our findings suggest that stair ascent is more reliable than stair descent to evaluate subjects with PFPS in the most cases.
Collapse
|
28
|
De Ridder E, Danneels L, Vleeming A, Vanderstraeten G, Van Ranst M, Van Oosterwijck J. Trunk extension exercises: How is trunk extensor muscle recruitment related to the exercise dosage? J Electromyogr Kinesiol 2015; 25:681-8. [PMID: 26003038 DOI: 10.1016/j.jelekin.2015.01.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 12/18/2014] [Accepted: 01/04/2015] [Indexed: 11/30/2022] Open
Abstract
Trunk extension exercises are used to train endurance and strength of the trunk extensor muscles. Appropriate exercise dosage is crucial to achieve specific training effects, however literature describing the relation between the predetermined exercise intensity and the actual trunk extensors activity is scarce and inconclusive. To examine whether the actual activity of the thoracic and lumbar extensors during extensions exercises correspond with the predetermined intensity, electromyographic evaluation of the trunk extensors was performed during trunk extension exercises at various intensities expressed as percentages of 1-RM. The 1-RM was predetermined using 2 different methods: (1) through direct estimation by determining the maximum isometric force produced during semi-seated trunk extension on a Tergumed rehabilitation device, (2) through indirect estimation calculated based on the relation between the maximum number of repetitions of trunk extension from prone lying on a variable angle chair and the submaximal resistance at which the repetitions were performed as presented on the Holten-diagram. The total trunk muscle activity during extension exercises performed semi-seated on a rehabilitation device or from prone lying corresponds with the predetermined dosage using both estimation methods. The indirect estimation method more accurately predicts the actual trunk extensor activity for low load training than for high load training. However, the direct estimation method is suitable to closely predetermine the load and actual trunk extensors activity during high load exercises. A shift from a differential recruitment between the thoracic and lumbar extensors at low intensities to a more homogenous recruitment at high intensities is observed during semi-seated trunk extension exercises. During prone extension exercises both muscle groups equally contribute to the total muscle work regardless of the exercise intensity. Based on these findings suggestions regarding the appropriate choice of estimation and performance method are made.
Collapse
Affiliation(s)
- Eline De Ridder
- Department of Rehabilitation Sciences and Physical Therapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Lieven Danneels
- Department of Rehabilitation Sciences and Physical Therapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium.
| | - Andry Vleeming
- Department of Rehabilitation Sciences and Physical Therapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium; Department of Anatomy, University of New England, College of Osteopathic Medicine, Biddeford, ME, USA
| | - Guy Vanderstraeten
- Department of Rehabilitation Sciences and Physical Therapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Maarten Van Ranst
- Department of Rehabilitation Sciences and Physical Therapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Jessica Van Oosterwijck
- Department of Rehabilitation Sciences and Physical Therapy, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
29
|
Hysteresis Properties of EMG Activity of the Shoulder Belt and Shoulder Muscles at the Development of Isometric Efforts by the Human Arm. NEUROPHYSIOLOGY+ 2015. [DOI: 10.1007/s11062-015-9498-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
30
|
Kallio J, Søgaard K, Avela J, Komi PV, Selänne H, Linnamo V. Motor unit discharge rate in dynamic movements of the aging soleus. Front Hum Neurosci 2014; 8:773. [PMID: 25324763 PMCID: PMC4179534 DOI: 10.3389/fnhum.2014.00773] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/11/2014] [Indexed: 11/13/2022] Open
Abstract
Aging is related to a variety of changes at the muscular level. It seems that the age-related changes in motor unit activation are muscle- and intensity dependent. The purpose of this study was to examine the motor unit discharge rate (MUDR) in both isometric and dynamic contractions of the aging soleus muscle. Eight elderly males participated in the study. The subjects performed isometric and dynamic plantar flexions while seated in an ankle dynamometer. The force levels studied were 10, 20, 40, 60, 80 and 100% of the isometric (ISO) maximal voluntary contractions (MVC) in ISO and 10, 20 and 40% in concentric (CON) and eccentric (ECC) contractions. Soleus intramuscular EMG was recorded with bipolar fine-wire electrodes and decomposed to individual trains of motor unit discharges. In ISO the MUDR increased with each force level from 40 to 100% MVC. In dynamic contractions the descriptive analysis showed a higher MUDR in CON compared to ISO or ECC. The difficulties of recording single motor units in dynamic contractions, especially in the elderly is discussed.
Collapse
Affiliation(s)
- Jouni Kallio
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Karen Søgaard
- Institute of Sports Science and Clinical Biomechanics, University of Southern Denmark Odense, Denmark
| | - Janne Avela
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Paavo V Komi
- Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| | - Harri Selänne
- LIKES, Foundation for Sport and Health Sciences Jyväskylä, Finland
| | - Vesa Linnamo
- Vuokatti Snowpolis, Department of Biology of Physical Activity, Neuromuscular Research Center, University of Jyväskylä Jyväskylä, Finland
| |
Collapse
|
31
|
Beaudette SM, Unni R, Brown SH. Electromyographic assessment of isometric and dynamic activation characteristics of the latissimus dorsi muscle. J Electromyogr Kinesiol 2014; 24:430-6. [DOI: 10.1016/j.jelekin.2014.03.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 02/28/2014] [Accepted: 03/17/2014] [Indexed: 11/29/2022] Open
|
32
|
Abstract
The purpose of this brief review is to examine our current knowledge of the neural control of eccentric contractions. The review focuses on three main issues. The first issue considers the ability of individuals to activate muscles maximally during eccentric contractions. Most studies indicate that, regardless of the experimental approach (surface EMG amplitude, twitch superimposition, and motor unit recordings), it is usually more difficult to achieve full activation of a muscle by voluntary command during eccentric contractions than during concentric and isometric contractions. The second issue is related to the specificity of the control strategy used by the central nervous system during submaximal eccentric contractions. This part underscores that although the central nervous system appears to employ a single size-related strategy to activate motoneurons during the different types of contractions, the discharge rate of motor units is less during eccentric contractions across different loading conditions. The last issue addresses the mechanisms that produce this specific neural activation. This section indicates that neural adjustments at both supraspinal and spinal levels contribute to the specific modulation of voluntary activation during eccentric contractions. Although the available information on the control of eccentric contractions has increased during the last two decades, this review indicates that the exact mechanisms underlying the unique neural modulation observed in this type of contraction at spinal and supraspinal levels remains unknown and their understanding represents, therefore, a major challenge for future research on this topic.
Collapse
Affiliation(s)
- Jacques Duchateau
- Laboratory of Applied Biology, ULB Neurosciences Institute, Université Libre de Bruxelles, Brussels, Belgium
| | - Stéphane Baudry
- Laboratory of Applied Biology, ULB Neurosciences Institute, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|