1
|
Stavrides P, Goulbourne CN, Peddy J, Huo C, Rao M, Khetarpal V, Marchionini DM, Nixon RA, Yang DS. mTOR inhibition in Q175 Huntington's disease model mice facilitates neuronal autophagy and mutant huntingtin clearance. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.29.596471. [PMID: 38854023 PMCID: PMC11160779 DOI: 10.1101/2024.05.29.596471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Huntington's disease (HD) is caused by expansion of the polyglutamine stretch in huntingtin protein (HTT) resulting in hallmark aggresomes/inclusion bodies (IBs) composed of mutant huntingtin protein (mHTT) and its fragments. Stimulating autophagy to enhance mHTT clearance is considered a potential therapeutic strategy for HD. Our recent evaluation of the autophagic-lysosomal pathway (ALP) in human HD brain reveals upregulated lysosomal biogenesis and relatively normal autophagy flux in early Vonsattel grade brains, but impaired autolysosome clearance in late grade brains, suggesting that autophagy stimulation could have therapeutic benefits as an earlier clinical intervention. Here, we tested this hypothesis by crossing the Q175 HD knock-in model with our autophagy reporter mouse TRGL ( T hy-1- R FP- G FP- L C3) to investigate in vivo neuronal ALP dynamics. In the Q175 and/or TRGL/Q175 mice, mHTT was detected in autophagic vacuoles and also exhibited high level colocalization with autophagy receptors p62/SQSTM1 and ubiquitin in the IBs. Compared to the robust lysosomal pathology in late-stage human HD striatum, ALP alterations in Q175 models are also late-onset but milder that included a lowered phospho-p70S6K level, lysosome depletion and autolysosome elevation including more poorly acidified autolysosomes and larger-sized lipofuscin granules, reflecting impaired autophagic flux. Administration of a mTOR inhibitor to 6-mo-old TRGL/Q175 normalized lysosome number, ameliorated aggresome pathology while reducing mHTT-, p62- and ubiquitin-immunoreactivities, suggesting beneficial potential of autophagy modulation at early stages of disease progression.
Collapse
|
2
|
Subramaniam S, Boregowda S. Curbing Rhes Actions: Mechanism-based Molecular Target for Huntington's Disease and Tauopathies. CNS & NEUROLOGICAL DISORDERS DRUG TARGETS 2024; 23:21-29. [PMID: 36959146 DOI: 10.2174/1871527322666230320103518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 03/25/2023]
Abstract
A highly interconnected network of diverse brain regions is necessary for the precise execution of human behaviors, including cognitive, psychiatric, and motor functions. Unfortunately, degeneration of specific brain regions causes several neurodegenerative disorders, but the mechanisms that elicit selective neuronal vulnerability remain unclear. This knowledge gap greatly hinders the development of effective mechanism-based therapies, despite the desperate need for new treatments. Here, we emphasize the importance of the Rhes (Ras homolog-enriched in the striatum) protein as an emerging therapeutic target. Rhes, an atypical small GTPase with a SUMO (small ubiquitin-like modifier) E3-ligase activity, modulates biological processes such as dopaminergic transmission, alters gene expression, and acts as an inhibitor of motor stimuli in the brain striatum. Mutations in the Rhes gene have also been identified in selected patients with autism and schizophrenia. Moreover, Rhes SUMOylates pathogenic form of mutant huntingtin (mHTT) and tau, enhancing their solubility and cell toxicity in Huntington's disease and tauopathy models. Notably, Rhes uses membrane projections resembling tunneling nanotubes to transport mHTT between cells and Rhes deletion diminishes mHTT spread in the brain. Thus, we predict that effective strategies aimed at diminishing brain Rhes levels will prevent or minimize the abnormalities that occur in HD and tauopathies and potentially in other brain disorders. We review the emerging technologies that enable specific targeting of Rhes in the brain to develop effective disease-modifying therapeutics.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Department of Neuroscience, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, C323, Florida, Jupiter, 33458, USA
| | - Siddaraju Boregowda
- Department of Molecular Therapeutics, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation & Technology, 130 Scripps Way, C323, Florida, Jupiter, 33458, USA
| |
Collapse
|
3
|
Pan Y, Tang B, Li XJ, Li S, Liu Q. Rhes depletion promotes striatal accumulation and aggregation of mutant huntingtin in a presymptomatic HD mouse model. Front Aging Neurosci 2023; 15:1237018. [PMID: 37637962 PMCID: PMC10449645 DOI: 10.3389/fnagi.2023.1237018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 07/31/2023] [Indexed: 08/29/2023] Open
Abstract
Introduction Huntington's disease (HD) is caused by CAG trinucleotide repeats in the HTT gene. Selective neurodegeneration in the striatum is prominent in HD, despite widespread expression of mutant HTT (mHTT). Ras homolog enriched in the striatum (Rhes) is a GTP-binding protein enriched in the striatum, involved in dopamine-related behaviors and autophagy regulation. Growing evidence suggests Rhes plays a critical role in the selective striatal degeneration in HD, but its specific function in this context remains complex and controversial. Methods In this study, we utilized CRISPR/Cas9 to knockdown Rhes at different disease stages through adeno-associated virus (AAV) transduction in HD knock-in (KI) mice. Immunoblotting and immunofluorescence were employed to assess the impact of Rhes depletion on mHTT levels, neuronal loss, astrogliosis and autophagy activity. Results Rhes depletion in 22-week-old HD KI mice (representing the presymptomatic stage) led to mHTT accumulation, reduced neuronal cell staining, and increased astrogliosis. However, no such effects were observed in 36-week-old HD KI mice (representing the symptomatic stage). Additionally, Rhes deletion in 22-week-old HD KI mice resulted in increased P62 levels, reduced LC3-II levels, and unchanged phosphorylation of mTOR and beclin-1, unchanged mTOR protein level, except for a decrease in beclin-1. Discussion Our findings suggest that knockdown Rhes promotes striatal aggregation of mutant huntingtin by reducing autophagy activity in a mTOR-independent manner. Rhes plays a protective role during the presymptomatic stage of HD KI mice.
Collapse
Affiliation(s)
- Yongcheng Pan
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Beisha Tang
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xiao-Jiang Li
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Shihua Li
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Guangdong Key Laboratory of Non-human Primate Research, Key Laboratory of CNS Regeneration (Ministry of Education), GHM Institute of CNS Regeneration, Jinan University, Guangzhou, China
| | - Qiong Liu
- Department of Neurology, Xiangya Hospital, Central South University, Changsha, Hunan, China
- Key Laboratory of Hunan Province in Neurodegenerative Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
4
|
Subramaniam S. Striatal Induction and Spread of the Huntington's Disease Protein: A Novel Rhes Route. J Huntingtons Dis 2022; 11:281-290. [PMID: 35871361 PMCID: PMC9484121 DOI: 10.3233/jhd-220548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The CAG/CAA expansion encoding polyQ huntingtin (mutant huntingtin [mHTT]) causes Huntington's disease (HD), which is characterized by atrophy and loss of striatal medium spiny neurons (MSNs), which are preceded by neuropathological alterations in the cortex. Previous studies have shown that mHTT can spread in the brain, but the mechanisms involved in the stereotyped degeneration and dysfunction of the neurons from the striatum to the cortex remain unclear. In this study, we found that the mHTT expression initially restricted in the striatum later spread to the cortical regions in mouse brains. Such transmission was diminished in mice that lacked the striatal-enriched protein Ras-homolog enriched in the striatum (Rhes). Rhes restricted to MSNs was also found in the cortical layers of the brain, indicating a new transmission route for the Rhes protein to the brain. Mechanistically, Rhes promotes such transmission via a direct cell-to-cell contact mediated by tunneling nanotubes (TNTs), the membranous protrusions that enable the transfer of mHTT, Rhes, and other vesicular cargoes. These transmission patterns suggest that Rhes and mHTT are likely co-transported in the brain using TNT-like cell-to-cell contacts. On the basis of these new results, a perspective is presented in this review: Rhes may ignite the mHTT transmission from the striatum that may coincide with HD onset and disease progression through an anatomically connected striato-cortical retrograde route.
Collapse
|
5
|
Nano-ivabradine averts behavioral anomalies in Huntington's disease rat model via modulating Rhes/m-tor pathway. Prog Neuropsychopharmacol Biol Psychiatry 2021; 111:110368. [PMID: 34087391 DOI: 10.1016/j.pnpbp.2021.110368] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 01/24/2023]
Abstract
Huntington's disease (HD) is characterized by abnormal involuntary movements together with cognitive impairment and disrupted mood changes. 3-nitropropionic acid (3-NP) is one of the chemo-toxic models used to address the striatal neurotoxicity pattern encountered in HD. This study aims to explain the neuroprotective effect of nano-formulated ivabradine (nano IVA) in enhancing behavioral changes related to 3-NP model and to identify the involvement of ras homolog enriched striatum (Rhes)/mammalian target of rapamycin (m-Tor) mediated autophagy pathway. Rats were divided into 6 groups, the first 3 groups received saline (control), ivabradine (IVA), nano IVA respectively, the fourth received a daily dose of 3-NP (20 mg/kg, s.c) for 2 weeks, the fifth received 3-NP + IVA (1 mg/kg, into the tail vein, every other day for 1 week) and the last group received 3-NP + nano IVA (1 mg/kg, i.v, every other day for 1 week). Interestingly, nano IVA reversed motor disabilities, improved memory function and overcame the psychiatric changes. It boosted expression of autophagy markers combined with down regulation of Rhes, m-Tor and b-cell lymphoma 2 protein levels. Also, it restored the normal level of neurotransmitters and myocardial function related-proteins. Histopathological examination revealed a preserved striatal structure with decreased number of darkly-degenerated neurons. In conclusion, the outcomes of this study provide a well-recognized clue for the promising neuroprotective effect of IVA and the implication of autophagy and Rhes/m-Tor pathways in the 3-NP induced HD and highlight the fact that nano formulations of IVA would be an auspicious approach in HD therapy.
Collapse
|
6
|
Heikkinen T, Bragge T, Kuosmanen J, Parkkari T, Gustafsson S, Kwan M, Beltran J, Ghavami A, Subramaniam S, Shahani N, Ramírez-Jarquín UN, Park L, Muñoz-Sanjuán I, Marchionini DM. Global Rhes knockout in the Q175 Huntington's disease mouse model. PLoS One 2021; 16:e0258486. [PMID: 34648564 PMCID: PMC8516231 DOI: 10.1371/journal.pone.0258486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 09/28/2021] [Indexed: 12/02/2022] Open
Abstract
Huntington's disease (HD) results from an expansion mutation in the polyglutamine tract in huntingtin. Although huntingtin is ubiquitously expressed in the body, the striatum suffers the most severe pathology. Rhes is a Ras-related small GTP-binding protein highly expressed in the striatum that has been reported to modulate mTOR and sumoylation of mutant huntingtin to alter HD mouse model pathogenesis. Reports have varied on whether Rhes reduction is desirable for HD. Here we characterize multiple behavioral and molecular endpoints in the Q175 HD mouse model with genetic Rhes knockout (KO). Genetic RhesKO in the Q175 female mouse resulted in both subtle attenuation of Q175 phenotypic features, and detrimental effects on other kinematic features. The Q175 females exhibited measurable pathogenic deficits, as measured by MRI, MRS and DARPP32, however, RhesKO had no effect on these readouts. Additionally, RhesKO in Q175 mixed gender mice deficits did not affect mTOR signaling, autophagy or mutant huntingtin levels. We conclude that global RhesKO does not substantially ameliorate or exacerbate HD mouse phenotypes in Q175 mice.
Collapse
Affiliation(s)
| | - Timo Bragge
- Charles River Discovery Services, Kuopio, Finland
| | | | | | | | - Mei Kwan
- Psychogenics, Paramus, New Jersey, United States of America
| | - Jose Beltran
- Psychogenics, Paramus, New Jersey, United States of America
| | - Afshin Ghavami
- Psychogenics, Paramus, New Jersey, United States of America
| | - Srinivasa Subramaniam
- The Scripps Research Institute, Department of Neuroscience, Jupiter, Florida, United States of America
| | - Neelam Shahani
- The Scripps Research Institute, Department of Neuroscience, Jupiter, Florida, United States of America
| | | | - Larry Park
- CHDI Management/CHDI Foundation, New York, New York, United States of America
| | | | | |
Collapse
|
7
|
Serra M, Pinna A, Costa G, Usiello A, Pasqualetti M, Avallone L, Morelli M, Napolitano F. Involvement of the Protein Ras Homolog Enriched in the Striatum, Rhes, in Dopaminergic Neurons' Degeneration: Link to Parkinson's Disease. Int J Mol Sci 2021; 22:ijms22105326. [PMID: 34070217 PMCID: PMC8158741 DOI: 10.3390/ijms22105326] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 12/17/2022] Open
Abstract
Rhes is one of the most interesting genes regulated by thyroid hormones that, through the inhibition of the striatal cAMP/PKA pathway, acts as a modulator of dopamine neurotransmission. Rhes mRNA is expressed at high levels in the dorsal striatum, with a medial-to-lateral expression gradient reflecting that of both dopamine D2 and adenosine A2A receptors. Rhes transcript is also present in the hippocampus, cerebral cortex, olfactory tubercle and bulb, substantia nigra pars compacta (SNc) and ventral tegmental area of the rodent brain. In line with Rhes-dependent regulation of dopaminergic transmission, data showed that lack of Rhes enhanced cocaine- and amphetamine-induced motor stimulation in mice. Previous studies showed that pharmacological depletion of dopamine significantly reduces Rhes mRNA levels in rodents, non-human primates and Parkinson's disease (PD) patients, suggesting a link between dopaminergic innervation and physiological Rhes mRNA expression. Rhes protein binds to and activates striatal mTORC1, and modulates L-DOPA-induced dyskinesia in PD rodent models. Finally, Rhes is involved in the survival of mouse midbrain dopaminergic neurons of SNc, thus pointing towards a Rhes-dependent modulation of autophagy and mitophagy processes, and encouraging further investigations about mechanisms underlying dysfunctions of the nigrostriatal system.
Collapse
Affiliation(s)
- Marcello Serra
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, 09042 Cagliari, Italy; (M.S.); (G.C.); (M.M.)
| | - Annalisa Pinna
- National Research Council of Italy (CNR), Neuroscience Institute—Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy;
| | - Giulia Costa
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, 09042 Cagliari, Italy; (M.S.); (G.C.); (M.M.)
| | - Alessandro Usiello
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania Luigi Vanvitelli, 81100 Caserta, Italy;
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
| | - Massimo Pasqualetti
- Unit of Cell and Developmental Biology, Department of Biology, University of Pisa, 56127 Pisa, Italy;
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy;
| | - Micaela Morelli
- Department of Biomedical Sciences, Section of Neuroscience, University of Cagliari, 09042 Cagliari, Italy; (M.S.); (G.C.); (M.M.)
- National Research Council of Italy (CNR), Neuroscience Institute—Cagliari, Cittadella Universitaria, 09042 Cagliari, Italy;
| | - Francesco Napolitano
- Laboratory of Behavioral Neuroscience, Ceinge Biotecnologie Avanzate, 80145 Naples, Italy
- Department of Veterinary Medicine and Animal Productions, University of Naples “Federico II”, 80137 Naples, Italy;
- Correspondence:
| |
Collapse
|
8
|
Eshraghi M, Karunadharma PP, Blin J, Shahani N, Ricci EP, Michel A, Urban NT, Galli N, Sharma M, Ramírez-Jarquín UN, Florescu K, Hernandez J, Subramaniam S. Mutant Huntingtin stalls ribosomes and represses protein synthesis in a cellular model of Huntington disease. Nat Commun 2021; 12:1461. [PMID: 33674575 PMCID: PMC7935949 DOI: 10.1038/s41467-021-21637-y] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 01/29/2021] [Indexed: 02/08/2023] Open
Abstract
The polyglutamine expansion of huntingtin (mHTT) causes Huntington disease (HD) and neurodegeneration, but the mechanisms remain unclear. Here, we found that mHtt promotes ribosome stalling and suppresses protein synthesis in mouse HD striatal neuronal cells. Depletion of mHtt enhances protein synthesis and increases the speed of ribosomal translocation, while mHtt directly inhibits protein synthesis in vitro. Fmrp, a known regulator of ribosome stalling, is upregulated in HD, but its depletion has no discernible effect on protein synthesis or ribosome stalling in HD cells. We found interactions of ribosomal proteins and translating ribosomes with mHtt. High-resolution global ribosome footprint profiling (Ribo-Seq) and mRNA-Seq indicates a widespread shift in ribosome occupancy toward the 5' and 3' end and unique single-codon pauses on selected mRNA targets in HD cells, compared to controls. Thus, mHtt impedes ribosomal translocation during translation elongation, a mechanistic defect that can be exploited for HD therapeutics.
Collapse
Affiliation(s)
- Mehdi Eshraghi
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Pabalu P. Karunadharma
- grid.214007.00000000122199231The Scripps Research Institute, Genomic Core, Jupiter, FL USA
| | - Juliana Blin
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | - Neelam Shahani
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Emiliano P. Ricci
- grid.462957.b0000 0004 0598 0706Laboratory of Biology and Cellular Modelling at Ecole Normale Supérieure of Lyon, RNA Metabolism in Immunity and Infection Lab, LBMC, Lyon, France
| | | | | | - Nicole Galli
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Manish Sharma
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Uri Nimrod Ramírez-Jarquín
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Katie Florescu
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Jennifer Hernandez
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| | - Srinivasa Subramaniam
- grid.214007.00000000122199231The Scripps Research Institute, Department of Neuroscience, Jupiter, FL USA
| |
Collapse
|
9
|
Loss of Hap1 selectively promotes striatal degeneration in Huntington disease mice. Proc Natl Acad Sci U S A 2020; 117:20265-20273. [PMID: 32747555 DOI: 10.1073/pnas.2002283117] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Huntington disease (HD) is an ideal model for investigating selective neurodegeneration, as expanded polyQ repeats in the ubiquitously expressed huntingtin (HTT) cause the preferential neurodegeneration in the striatum of the HD patient brains. Here we report that adeno-associated virus (AAV) transduction-mediated depletion of Hap1, the first identified huntingtin-associated protein, in adult HD knock-in (KI) mouse brains leads to selective neuronal loss in the striatum. Further, Hap1 depletion-mediated neuronal loss via AAV transduction requires the presence of mutant HTT. Rhes, a GTPase that is enriched in the striatum and sumoylates mutant HTT to mediate neurotoxicity, binds more N-terminal HTT when Hap1 is deficient. Consistently, more soluble and sumoylated N-terminal HTT is presented in HD KI mouse striatum when HAP1 is absent. Our findings suggest that both Rhes and Hap1 as well as cellular stress contribute to the preferential neurodegeneration in HD, highlighting the involvement of multiple factors in selective neurodegeneration.
Collapse
|
10
|
Subramaniam S. Rhes Tunnels: A Radical New Way of Communication in the Brain's Striatum? Bioessays 2020; 42:e1900231. [PMID: 32236969 PMCID: PMC7310467 DOI: 10.1002/bies.201900231] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/13/2020] [Indexed: 12/11/2022]
Abstract
Ras homolog enriched in the striatum (Rhes) is a striatal enriched protein that promotes the formation of thin membranous tubes resembling tunneling nanotubes (TNT)-"Rhes tunnels"-that connect neighboring cell and transport cargoes: vesicles and proteins between the neuronal cells. Here the literature on TNT-like structures is reviewed, and the implications of Rhes-mediated TNT, the mechanisms of its formation, and its potential in novel cell-to-cell communication in regulating striatal biology and disease are emphasized. Thought-provoking ideas regarding how Rhes-mediated TNT, if it exists, in vivo, would radically change the way neurons communicate in the brain are discussed.
Collapse
|
11
|
Subramaniam S. Exaggerated mitophagy: a weapon of striatal destruction in the brain? Biochem Soc Trans 2020; 48:709-717. [PMID: 32129826 PMCID: PMC7200642 DOI: 10.1042/bst20191283] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/13/2020] [Accepted: 02/14/2020] [Indexed: 12/16/2022]
Abstract
Mechanisms responsible for neuronal vulnerability in the brain remain unclear. Striatal neurons are preferentially damaged by 3-nitropropionic acid (3-NP), a mitochondrial complex-II inhibitor, causing striatal damage reminiscent of Huntington's disease (HD), but the mechanisms of the selectivity are not as well understood. We have discovered that Rhes, a protein enriched in the striatum, removes mitochondria via the mitophagy process. The process becomes intensified in the presence of 3-NP, thereby eliminating most of the mitochondria from the striatum. We put forward the hypothesis that Rhes acts as a 'mitophagy ligand' in the brain and promotes mitophagy via NIX, a mitophagy receptor. Since Rhes interacts and promotes toxicity in association with mutant huntingtin (mHTT), the genetic cause of HD, it is tempting to speculate on whether the exaggerated mitophagy may be a contributing factor to the striatal lesion found in HD. Thus, Rhes-mediated exaggerated mitophagy may act as a weapon of striatal destruction in the brain.
Collapse
Affiliation(s)
- Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, U.S.A
| |
Collapse
|
12
|
Abstract
Elimination of dysfunctional mitochondria via mitophagy is essential for cell survival and neuronal functions. But, how impaired mitophagy participates in tissue-specific vulnerability in the brain remains unclear. Here, we find that striatal-enriched protein, Rhes, is a critical regulator of mitophagy and striatal vulnerability in brain. In vivo interactome and density fractionation reveal that Rhes coimmunoprecipitates and cosediments with mitochondrial and lysosomal proteins. Live-cell imaging of cultured striatal neuronal cell line shows Rhes surrounds globular mitochondria, recruits lysosomes, and ultimately degrades mitochondria. In the presence of 3-nitropropionic acid (3-NP), an inhibitor of succinate dehydrogenase, Rhes disrupts mitochondrial membrane potential (ΔΨ m ) and promotes excessive mitophagy and cell death. Ultrastructural analysis reveals that systemic injection of 3-NP in mice promotes globular mitochondria, accumulation of mitophagosomes, and striatal lesion only in the wild-type (WT), but not in the Rhes knockout (KO), striatum, suggesting that Rhes is critical for mitophagy and neuronal death in vivo. Mechanistically, Rhes requires Nix (BNIP3L), a known receptor of mitophagy, to disrupt ΔΨ m and promote mitophagy and cell death. Rhes interacts with Nix via SUMO E3-ligase domain, and Nix depletion totally abrogates Rhes-mediated mitophagy and cell death in the cultured striatal neuronal cell line. Finally, we find that Rhes, which travels from cell to cell via tunneling nanotube (TNT)-like cellular protrusions, interacts with dysfunctional mitochondria in the neighboring cell in a Nix-dependent manner. Collectively, Rhes is a major regulator of mitophagy via Nix, which may determine striatal vulnerability in the brain.
Collapse
|
13
|
Carbo M, Brandi V, Pascarella G, Staid DS, Colotti G, Polticelli F, Ilari A, Morea V. Bioinformatics analysis of Ras homologue enriched in the striatum, a potential target for Huntington's disease therapy. Int J Mol Med 2019; 44:2223-2233. [PMID: 31638189 PMCID: PMC6844632 DOI: 10.3892/ijmm.2019.4373] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2019] [Accepted: 08/19/2019] [Indexed: 11/15/2022] Open
Abstract
Huntington's disease (HD) is a lethal neurodegenerative disorder for which no cure is available yet. It is caused by abnormal expansion of a CAG triplet in the gene encoding the huntingtin protein (Htt), with consequent expansion of a polyglutamine repeat in mutated Htt (mHtt). This makes mHtt highly unstable and aggregation prone. Soluble mHtt is linked to cytotoxicity and neurotoxicity, whereas mHtt aggregates are thought to be neuroprotective. While Htt and mHtt are ubiquitously expressed throughout the brain and peripheral tissues, HD is characterized by selective degradation of the corpus striatum, without notable alterations in peripheral tissues. Screening for mRNAs preferentially expressed in rodent striatum led to the discovery of a GTP binding protein homologous to Ras family members. Due to these features, the newly discovered protein was termed Ras Homolog Enriched in Striatum (RHES). The aetiological role of RHES in HD has been ascribed to its small ubiquitin-like modifier (SUMO)-E3 ligase function. RHES sumoylates mHtt with higher efficiency than wild-type Htt, thereby protecting mHtt from degradation and increasing the amounts of the soluble form. Although RHES is an attractive target for HD treatment, essential information about protein structure and function are still missing. With the aim of investigating RHES 3D structure and function, bioinformatic analyses and molecular modelling have been performed in the present study, based on which, RHES regions predicted to be involved in the interaction with mHtt or the SUMO-E2 ligase Ubc9 have been identified. These regions have been used to design peptides aimed at inhibiting RHES interactions and, therefore, mHtt sumoylation; in turn, these peptides will be used to develop small molecule inhibitors by both rational design and virtual screening of large compound libraries. Once identified, RHES sumoylation inhibitors may open the road to the development of therapeutic agents against the severe, and currently untreatable, HD.
Collapse
Affiliation(s)
- Miriam Carbo
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University, I‑00185 Rome, Italy
| | - Valentina Brandi
- Department of Sciences, Roma Tre University, I‑00159 Rome, Italy
| | - Gianmarco Pascarella
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University, I‑00185 Rome, Italy
| | - David Sasah Staid
- Department of Biochemical Sciences 'A. Rossi Fanelli', Sapienza University, I‑00185 Rome, Italy
| | - Gianni Colotti
- Institute of Molecular Biology and Pathology of The National Research Council of Italy, I‑00185 Rome, Italy
| | - Fabio Polticelli
- Department of Sciences, Roma Tre University, I‑00159 Rome, Italy
| | - Andrea Ilari
- Institute of Molecular Biology and Pathology of The National Research Council of Italy, I‑00185 Rome, Italy
| | - Veronica Morea
- Institute of Molecular Biology and Pathology of The National Research Council of Italy, I‑00185 Rome, Italy
| |
Collapse
|
14
|
Sharma M, Subramaniam S. Rhes travels from cell to cell and transports Huntington disease protein via TNT-like protrusion. J Cell Biol 2019; 218:1972-1993. [PMID: 31076452 PMCID: PMC6548131 DOI: 10.1083/jcb.201807068] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 12/17/2018] [Accepted: 04/08/2019] [Indexed: 02/07/2023] Open
Abstract
Tunneling nanotubes (TNT) are membranous tubes that connect two cells, but their functional roles and mechanism of biogenesis remain obscure. Sharma and Subramaniam demonstrate that Rhes, a brain-enriched protein, increases biogenesis of TNT-like cellular protrusions or “Rhes tunnels” through which Rhes travels from cell to cell and transports Huntington disease (HD) protein. Tunneling nanotubes (TNT) are thin, membranous, tunnel-like cell-to-cell connections, but the mechanisms underlying their biogenesis or functional role remains obscure. Here, we report, Rhes, a brain-enriched GTPase/SUMO E3-like protein, induces the biogenesis of TNT-like cellular protrusions, “Rhes tunnels,” through which Rhes moves from cell to cell and transports Huntington disease (HD) protein, the poly-Q expanded mutant Huntingtin (mHTT). The formation of TNT-like Rhes tunnels requires the Rhes’s serine 33, C-terminal CAAX, and a SUMO E3-like domain. Electron microscopy analysis revealed that TNT-like Rhes tunnels appear continuous, cell–cell connections, and <200 nm in diameter. Live-cell imaging shows that Rhes tunnels establish contact with the neighboring cell and deliver Rhes-positive cargoes, which travel across the plasma membrane of the neighboring cell before entering it. The Rhes tunnels carry Rab5a/Lyso 20-positive vesicles and transport mHTT, but not normal HTT, mTOR, or wtTau proteins. SUMOylation-defective mHTT, Rhes C263S (cannot SUMOylate mHTT), or CRISPR/Cas9-mediated depletion of three isoforms of SUMO diminishes Rhes-mediated mHTT transport. Thus, Rhes promotes the biogenesis of TNT-like cellular protrusions and facilitates the cell–cell transport of mHTT involving SUMO-mediated mechanisms.
Collapse
Affiliation(s)
- Manish Sharma
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL
| | | |
Collapse
|
15
|
Soares TR, Reis SD, Pinho BR, Duchen MR, Oliveira JMA. Targeting the proteostasis network in Huntington's disease. Ageing Res Rev 2019; 49:92-103. [PMID: 30502498 PMCID: PMC6320389 DOI: 10.1016/j.arr.2018.11.006] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 11/19/2018] [Accepted: 11/26/2018] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion mutation in the huntingtin protein. Expansions above 40 polyglutamine repeats are invariably fatal, following a symptomatic period characterised by choreiform movements, behavioural abnormalities, and cognitive decline. While mutant huntingtin (mHtt) is widely expressed from early life, most patients with HD present in mid-adulthood, highlighting the role of ageing in disease pathogenesis. mHtt undergoes proteolytic cleavage, misfolding, accumulation, and aggregation into inclusion bodies. The emerging model of HD pathogenesis proposes that the chronic production of misfolded mHtt overwhelms the chaperone machinery, diverting other misfolded clients to the proteasome and the autophagy pathways, ultimately leading to a global collapse of the proteostasis network. Multiple converging hypotheses also implicate ageing and its impact in the dysfunction of organelles as additional contributing factors to the collapse of proteostasis in HD. In particular, mitochondrial function is required to sustain the activity of ATP-dependent chaperones and proteolytic machinery. Recent studies elucidating mitochondria-endoplasmic reticulum interactions and uncovering a dedicated proteostasis machinery in mitochondria, suggest that mitochondria play a more active role in the maintenance of cellular proteostasis than previously thought. The enhancement of cytosolic proteostasis pathways shows promise for HD treatment, protecting cells from the detrimental effects of mHtt accumulation. In this review, we consider how mHtt and its post translational modifications interfere with protein quality control pathways, and how the pharmacological and genetic modulation of components of the proteostasis network impact disease phenotypes in cellular and in vivo HD models.
Collapse
Affiliation(s)
- Tânia R Soares
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Sara D Reis
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Brígida R Pinho
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal
| | - Michael R Duchen
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK
| | - Jorge M A Oliveira
- REQUIMTE/LAQV, Department of Drug Sciences, Pharmacology Lab, Faculty of Pharmacy, University of Porto, 4050-313, Porto, Portugal; Consortium for Mitochondrial Research (CfMR), University College London, Gower Street, WC1E 6BT, London, UK.
| |
Collapse
|
16
|
Napolitano F, D'Angelo L, de Girolamo P, Avallone L, de Lange P, Usiello A. The Thyroid Hormone-target Gene Rhes a Novel Crossroad for Neurological and Psychiatric Disorders: New Insights from Animal Models. Neuroscience 2018; 384:419-428. [PMID: 29857029 DOI: 10.1016/j.neuroscience.2018.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 05/17/2018] [Accepted: 05/18/2018] [Indexed: 02/08/2023]
Abstract
Ras homolog enriched in striatum (Rhes) is predominantly expressed in the corpus striatum. Rhes mRNA is localized in virtually all dopamine D1 and D2 receptor-bearing medium-sized spiny neurons (MSNs), and cholinergic interneurons of striatum. Early studies in rodents showed that Rhes is developmentally regulated by thyroid hormone, as well as by dopamine innervation in adult rat, monkey and human brains. At cellular level, Rhes interferes with adenosine A2A- and dopamine D1 receptor-dependent cAMP/PKA pathway, upstream of the activation of the heterotrimeric G protein complex. Besides its involvement in GPCR-mediated signaling, Rhes modulates Akt pathway activation, acts as E3-ligase of mutant huntingtin, whose sumoylation accounts for neurotoxicity in Huntington's disease, and physically interacts with Beclin-1, suggesting its potential involvement in autophagy-related cellular events. In addition, this protein can also bind to and activate striatal mTORC1, one of the key players in l-DOPA-induced dyskinesia in rodent models of Parkinson's disease. Accordingly, lack of Rhes attenuated such motor disturbances in 6-OHDA-lesioned Rhes knockout mice. In support of its role in MSN-dependent functions, several studies documented that mutant animals displayed alterations in striatum-related phenotypes reminiscent of psychiatric illness in humans, including deficits in prepulse inhibition of startle reflex and, most interestingly, a striking enhancement of behavioral responses elicited by caffeine, phencyclidine or amphetamine. Overall, these data suggest that Rhes modulates molecular and biochemical events underlying striatal functioning, both in physiological and pathological conditions.
Collapse
Affiliation(s)
- Francesco Napolitano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy; Ceinge Biotecnologie Avanzate, Naples, Italy.
| | - Livia D'Angelo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy; Stazione Zoologica Anton Dohrn, Naples, Italy
| | - Paolo de Girolamo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Luigi Avallone
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Naples, Italy
| | - Pieter de Lange
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy
| | - Alessandro Usiello
- Ceinge Biotecnologie Avanzate, Naples, Italy; Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania "Luigi Vanvitelli", Caserta, Italy.
| |
Collapse
|
17
|
Morigaki R, Goto S. Striatal Vulnerability in Huntington's Disease: Neuroprotection Versus Neurotoxicity. Brain Sci 2017; 7:brainsci7060063. [PMID: 28590448 PMCID: PMC5483636 DOI: 10.3390/brainsci7060063] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 06/02/2017] [Accepted: 06/03/2017] [Indexed: 01/18/2023] Open
Abstract
Huntington’s disease (HD) is an autosomal dominant neurodegenerative disease caused by the expansion of a CAG trinucleotide repeat encoding an abnormally long polyglutamine tract (PolyQ) in the huntingtin (Htt) protein. In HD, striking neuropathological changes occur in the striatum, including loss of medium spiny neurons and parvalbumin-expressing interneurons accompanied by neurodegeneration of the striosome and matrix compartments, leading to progressive impairment of reasoning, walking and speaking abilities. The precise cause of striatal pathology in HD is still unknown; however, accumulating clinical and experimental evidence suggests multiple plausible pathophysiological mechanisms underlying striatal neurodegeneration in HD. Here, we review and discuss the characteristic neurodegenerative patterns observed in the striatum of HD patients and consider the role of various huntingtin-related and striatum-enriched proteins in neurotoxicity and neuroprotection.
Collapse
Affiliation(s)
- Ryoma Morigaki
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurosurgery, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| | - Satoshi Goto
- Parkinson's Disease and Dystonia Research Center, Tokushima University Hospital, Tokushima University, Tokushima 770-8503, Japan.
- Department of Neurodegenerative Disorders Research, Institute of Biomedical Sciences, Graduate School of Medical Sciences, Tokushima University, Tokushima 770-8503, Japan.
| |
Collapse
|
18
|
Shahani N, Swarnkar S, Giovinazzo V, Morgenweck J, Bohn LM, Scharager-Tapia C, Pascal B, Martinez-Acedo P, Khare K, Subramaniam S. RasGRP1 promotes amphetamine-induced motor behavior through a Rhes interaction network ("Rhesactome") in the striatum. Sci Signal 2016; 9:ra111. [PMID: 27902448 PMCID: PMC5142824 DOI: 10.1126/scisignal.aaf6670] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The striatum of the brain coordinates motor function. Dopamine-related drugs may be therapeutic to patients with striatal neurodegeneration, such as Huntington's disease (HD) and Parkinson's disease (PD), but these drugs have unwanted side effects. In addition to stimulating the release of norepinephrine, amphetamines, which are used for narcolepsy and attention-deficit/hyperactivity disorder (ADHD), trigger dopamine release in the striatum. The guanosine triphosphatase Ras homolog enriched in the striatum (Rhes) inhibits dopaminergic signaling in the striatum, is implicated in HD and L-dopa-induced dyskinesia, and has a role in striatal motor control. We found that the guanine nucleotide exchange factor RasGRP1 inhibited Rhes-mediated control of striatal motor activity in mice. RasGRP1 stabilized Rhes, increasing its synaptic accumulation in the striatum. Whereas partially Rhes-deficient (Rhes+/-) mice had an enhanced locomotor response to amphetamine, this phenotype was attenuated by coincident depletion of RasGRP1. By proteomic analysis of striatal lysates from Rhes-heterozygous mice with wild-type or partial or complete knockout of Rasgrp1, we identified a diverse set of Rhes-interacting proteins, the "Rhesactome," and determined that RasGRP1 affected the composition of the amphetamine-induced Rhesactome, which included PDE2A (phosphodiesterase 2A; a protein associated with major depressive disorder), LRRC7 (leucine-rich repeat-containing 7; a protein associated with bipolar disorder and ADHD), and DLG2 (discs large homolog 2; a protein associated with chronic pain). Thus, this Rhes network provides insight into striatal effects of amphetamine and may aid the development of strategies to treat various neurological and psychological disorders associated with the striatal dysfunction.
Collapse
Affiliation(s)
- Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Vincenzo Giovinazzo
- Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL 33458, USA
| | - Jenny Morgenweck
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | - Laura M Bohn
- Department of Molecular Therapeutics, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Bruce Pascal
- Informatics Core, The Scripps Research Institute, Jupiter, FL 33458, USA
| | | | - Kshitij Khare
- Department of Statistics, University of Florida, Gainesville, FL 32611, USA
| | | |
Collapse
|
19
|
Abstract
TOR (target of rapamycin) and its mammalian ortholog mTOR have been discovered in an effort to understand the mechanisms of action of the immunosuppressant drug rapamycin extracted from a bacterium of the Easter Island (Rapa Nui) soil. mTOR is a serine/threonine kinase found in two functionally distinct complexes, mTORC1 and mTORC2, which are differentially regulated by a great number of nutrients such as glucose and amino acids, energy (oxygen and ATP/AMP content), growth factors, hormones, and neurotransmitters. mTOR controls many basic cellular functions such as protein synthesis, energy metabolism, cell size, lipid metabolism, autophagy, mitochondria, and lysosome biogenesis. In addition, mTOR-controlled signaling pathways regulate many integrated physiological functions of the nervous system including neuronal development, synaptic plasticity, memory storage, and cognition. Thus it is not surprising that deregulation of mTOR signaling is associated with many neurological and psychiatric disorders. Preclinical and preliminary clinical studies indicate that inhibition of mTORC1 can be beneficial for some pathological conditions such as epilepsy, cognitive impairment, and brain tumors, whereas stimulation of mTORC1 (direct or indirect) can be beneficial for other pathologies such as depression or axonal growth and regeneration.
Collapse
Affiliation(s)
- Joël Bockaert
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| | - Philippe Marin
- Centre National de la Recherche Scientifique, UMR-5203, Institut de Génomique Fonctionnelle, Montpellier, France; Institut National de la Santé et de la Recherche Médicale U1191, Montpellier, France; and Université de Montpellier, UMR-5203, Montpellier, France
| |
Collapse
|
20
|
Ghiglieri V, Napolitano F, Pelosi B, Schepisi C, Migliarini S, Di Maio A, Pendolino V, Mancini M, Sciamanna G, Vitucci D, Maddaloni G, Giampà C, Errico F, Nisticò R, Pasqualetti M, Picconi B, Usiello A. Rhes influences striatal cAMP/PKA-dependent signaling and synaptic plasticity in a gender-sensitive fashion. Sci Rep 2015; 5:10933. [PMID: 26190541 PMCID: PMC4507147 DOI: 10.1038/srep10933] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Accepted: 05/07/2015] [Indexed: 11/09/2022] Open
Abstract
Mechanisms of gender-specific synaptic plasticity in the striatum, a brain region that controls motor, cognitive and psychiatric functions, remain unclear. Here we report that Rhes, a GTPase enriched in medium spiny neurons (MSNs) of striatum, alters the striatal cAMP/PKA signaling cascade in a gender-specific manner. While Rhes knockout (KO) male mice, compared to wild-type (WT) mice, had a significant basal increase of cAMP/PKA signaling pathway, the Rhes KO females exhibited a much stronger response of this pathway, selectively under the conditions of dopamine/adenosine-related drug challenge. Corticostriatal LTP defects are exclusively found in A2AR/D2R-expressing MSNs of KO females, compared to KO males, an effect that is abolished by PKA inhibitors but not by the removal of circulating estrogens. This suggests that the synaptic alterations found in KO females could be triggered by an aberrant A2AR/cAMP/PKA activity, but not due to estrogen-mediated effect. Consistent with increased cAMP signaling, D1R-mediated motor stimulation, haloperidol-induced catalepsy and caffeine-evoked hyper-activity are robustly enhanced in Rhes KO females compared to mutant males. Thus Rhes, a thyroid hormone-target gene, plays a relevant role in gender-specific synaptic and behavioral responses.
Collapse
Affiliation(s)
- Veronica Ghiglieri
- Department of Philosophy, Human, Social, and Educational Sciences, University of Perugia, Perugia, Italy.,Fondazione Santa Lucia IRCCS, Rome, Italy
| | - Francesco Napolitano
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | | | - Chiara Schepisi
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | | | | | | | | | - Giuseppe Sciamanna
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Systems Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Daniela Vitucci
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Dipartimento di Scienze Motorie e del Benessere DiSMeB, University of Naples "Parthenope", Naples, Italy
| | | | | | - Francesco Errico
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Molecular Medicine and Medical Biotechnology, University of Naples "Federico II", Naples, Italy
| | - Robert Nisticò
- Fondazione Santa Lucia IRCCS, Rome, Italy.,Department of Physiology and Pharmacology, University of Rome "La Sapienza", Rome, Italy
| | - Massimo Pasqualetti
- Department of Biology, University of Pisa, Pisa, Italy.,Istituto Italiano di Tecnologia, Center for Neuroscience and Cognitive Systems, Rovereto, Italy
| | | | - Alessandro Usiello
- CEINGE Biotecnologie Avanzate, Naples, Italy.,Department of Environmental Sciences, Second University of Naples, Naples, Italy
| |
Collapse
|
21
|
Swarnkar S, Chen Y, Pryor WM, Shahani N, Page DT, Subramaniam S. Ectopic expression of the striatal-enriched GTPase Rhes elicits cerebellar degeneration and an ataxia phenotype in Huntington's disease. Neurobiol Dis 2015; 82:66-77. [PMID: 26048156 DOI: 10.1016/j.nbd.2015.05.011] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2014] [Revised: 04/02/2015] [Accepted: 05/26/2015] [Indexed: 12/31/2022] Open
Abstract
Huntington's disease (HD) is caused by an expansion of glutamine repeats in the huntingtin protein (mHtt) that invokes early and prominent damage of the striatum, a region that controls motor behaviors. Despite its ubiquitous expression, why certain brain regions, such as the cerebellum, are relatively spared from neuronal loss by mHtt remains unclear. Previously, we implicated the striatal-enriched GTPase, Rhes (Ras homolog enriched in the striatum), which binds and SUMOylates mHtt and increases its solubility and cellular cytotoxicity, as the cause for striatal toxicity in HD. Here, we report that Rhes deletion in HD mice (N171-82Q), which express the N-terminal fragment of human Htt with 82 glutamines (Rhes(-/-)/N171-82Q), display markedly reduced HD-related behavioral deficits, and absence of lateral ventricle dilatation (secondary to striatal atrophy), compared to control HD mice (N171-82Q). To further validate the role of GTPase Rhes in HD, we tested whether ectopic Rhes expression would elicit a pathology in a brain region normally less affected in HD. Remarkably, ectopic expression of Rhes in the cerebellum of N171-82Q mice, during the asymptomatic period led to an exacerbation of motor deficits, including loss of balance and motor incoordination with ataxia-like features, not apparent in control-injected N171-82Q mice or Rhes injected wild-type mice. Pathological and biochemical analysis of Rhes-injected N171-82Q mice revealed a cerebellar lesion with marked loss of Purkinje neuron layer parvalbumin-immunoreactivity, induction of caspase 3 activation, and enhanced soluble forms of mHtt. Similarly reintroducing Rhes into the striatum of Rhes deleted Rhes(-/-)Hdh(150Q/150Q) knock-in mice, elicited a progressive HD-associated rotarod deficit. Overall, these studies establish that Rhes plays a pivotal role in vivo for the selective toxicity of mHtt in HD.
Collapse
Affiliation(s)
- Supriya Swarnkar
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Youjun Chen
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - William M Pryor
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Neelam Shahani
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Damon T Page
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA
| | - Srinivasa Subramaniam
- Department of Neuroscience, The Scripps Research Institute, Jupiter, Florida 33458, USA.
| |
Collapse
|
22
|
Rhes regulates dopamine D2 receptor transmission in striatal cholinergic interneurons. Neurobiol Dis 2015; 78:146-61. [PMID: 25818655 DOI: 10.1016/j.nbd.2015.03.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/12/2015] [Accepted: 03/17/2015] [Indexed: 11/22/2022] Open
Abstract
Ras homolog enriched in striatum (Rhes) is highly expressed in striatal medium spiny neurons (MSNs) of rodents. In the present study, we characterized the expression of Rhes mRNA across species, as well as its functional role in other striatal neuron subtypes. Double in situ hybridization analysis showed that Rhes transcript is selectively localized in striatal cholinergic interneurons (ChIs), but not in GABAergic parvalbumin- or in neuropeptide Y-positive cell populations. Rhes is closely linked to dopamine-dependent signaling. Therefore, we recorded ChIs activity in basal condition and following dopamine receptor activation. Surprisingly, instead of an expected dopamine D2 receptor (D2R)-mediated inhibition, we observed an aberrant excitatory response in ChIs from Rhes knockout mice. Conversely, the effect of D1R agonist on ChIs was less robust in Rhes mutants than in controls. Although Rhes deletion in mutants occurs throughout the striatum, we demonstrate that the D2R response is altered specifically in ChIs, since it was recorded in pharmacological isolation, and prevented either by intrapipette BAPTA or by GDP-β-S. Moreover, we show that blockade of Cav2.2 calcium channels prevented the abnormal D2R response. Finally, we found that the abnormal D2R activation in ChIs was rescued by selective PI3K inhibition thus suggesting that Rhes functionally modulates PI3K/Akt signaling pathway in these neurons. Our findings reveal that, besides its expression in MSNs, Rhes is localized also in striatal ChIs and, most importantly, lack of this G-protein, significantly alters D2R modulation of striatal cholinergic excitability.
Collapse
|
23
|
Reinstating aberrant mTORC1 activity in Huntington's disease mice improves disease phenotypes. Neuron 2014; 85:303-15. [PMID: 25556834 DOI: 10.1016/j.neuron.2014.12.019] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2014] [Indexed: 12/28/2022]
Abstract
Huntington's disease (HD) is caused by a polyglutamine tract expansion in huntingtin (HTT). Despite HTTs ubiquitous expression, there is early and robust vulnerability in striatum, the cause of which is poorly understood. Here, we provide evidence that impaired striatal mTORC1 activity underlies varied metabolic and degenerative phenotypes in HD brain and show that introducing the constitutively active form of the mTORC1 regulator, Rheb, into HD mouse brain, alleviates mitochondrial dysfunction, aberrant cholesterol homeostasis, striatal atrophy, impaired dopamine signaling, and increases autophagy. We also find that the expression of Rhes, a striatum-enriched mTOR activator, is reduced in HD patient and mouse brain and that exogenous addition of Rhes alleviates motor deficits and improves brain pathology in HD mice. Our combined work indicates that impaired Rhes/mTORC1 activity in HD brain may underlie the notable striatal susceptibility and thus presents a promising therapeutic target for HD therapy.
Collapse
|
24
|
Pryor WM, Biagioli M, Shahani N, Swarnkar S, Huang WC, Page DT, MacDonald ME, Subramaniam S. Huntingtin promotes mTORC1 signaling in the pathogenesis of Huntington's disease. Sci Signal 2014; 7:ra103. [DOI: 10.1126/scisignal.2005633] [Citation(s) in RCA: 84] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
25
|
Lee JH, Sowada MJ, Boudreau RL, Aerts AM, Thedens DR, Nopoulos P, Davidson BL. Rhes suppression enhances disease phenotypes in Huntington's disease mice. J Huntingtons Dis 2014; 3:65-71. [PMID: 25062765 DOI: 10.3233/jhd-140094] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
In Huntington's disease (HD) mutant HTT is ubiquitously expressed yet the striatum undergoes profound early degeneration. Cell culture studies suggest that a striatal-enriched protein, Rhes, may account for this vulnerability. We investigated the therapeutic potential of silencing Rhes in vivo using inhibitory RNAs (miRhes). While Rhes suppression was tolerated in wildtype mice, it failed to improve rotarod function in two distinct HD mouse models. Additionally, miRhes treated HD mice had increased anxiety-like behaviors and enhanced striatal atrophy as measured by longitudinal MRI when compared to control treated mice. These findings raise caution regarding the long-term implementation of inhibiting Rhes as a therapy for HD.
Collapse
Affiliation(s)
- John H Lee
- Medical Scientist Training Program, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA Department of Molecular Physiology & Biophysics, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Matthew J Sowada
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Ryan L Boudreau
- Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Andrea M Aerts
- Department of Psychiatry, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Daniel R Thedens
- Department of Radiology, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Peg Nopoulos
- Department of Psychiatry, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| | - Beverly L Davidson
- Department of Molecular Physiology & Biophysics, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA Department of Internal Medicine, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA Department of Neurology, Roy J and Lucille A Carver College of Medicine, Iowa City, IA, USA
| |
Collapse
|
26
|
Francelle L, Galvan L, Brouillet E. Possible involvement of self-defense mechanisms in the preferential vulnerability of the striatum in Huntington's disease. Front Cell Neurosci 2014; 8:295. [PMID: 25309327 PMCID: PMC4176035 DOI: 10.3389/fncel.2014.00295] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Accepted: 09/03/2014] [Indexed: 01/01/2023] Open
Abstract
HD is caused by a mutation in the huntingtin gene that consists in a CAG repeat expansion translated into an abnormal poly-glutamine (polyQ) tract in the huntingtin (Htt) protein. The most striking neuropathological finding in HD is the atrophy of the striatum. The regional expression of mutant Htt (mHtt) is ubiquitous in the brain and cannot explain by itself the preferential vulnerability of the striatum in HD. mHtt has been shown to produce an early defect in transcription, through direct alteration of the function of key regulators of transcription and in addition, more indirectly, as a result of compensatory responses to cellular stress. In this review, we focus on gene products that are preferentially expressed in the striatum and have down- or up-regulated expression in HD and, as such, may play a crucial role in the susceptibility of the striatum to mHtt. Many of these striatal gene products are for a vast majority down-regulated and more rarely increased in HD. Recent research shows that some of these striatal markers have a pro-survival/neuroprotective role in neurons (e.g., MSK1, A2A, and CB1 receptors) whereas others enhance the susceptibility of striatal neurons to mHtt (e.g., Rhes, RGS2, D2 receptors). The down-regulation of these latter proteins may be considered as a potential self-defense mechanism to slow degeneration. For a majority of the striatal gene products that have been identified so far, their function in the striatum is unknown and their modifying effects on mHtt toxicity remain to be experimentally addressed. Focusing on these striatal markers may contribute to a better understanding of HD pathogenesis, and possibly the identification of novel therapeutic targets.
Collapse
Affiliation(s)
- Laetitia Francelle
- Neurodegenerative Disease Laboratory, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction des Sciences du Vivant, Institut d'Imagerie BioMédicale, Molecular Imaging Research Center Fontenay-aux-Roses, France ; Centre National de la Recherche Scientifique - Commissariat à l'Énergie Atomique et aux Énergies Alternatives Unité de Recherche Associée 2210 Fontenay-aux-Roses, France
| | - Laurie Galvan
- Neurodegenerative Disease Laboratory, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction des Sciences du Vivant, Institut d'Imagerie BioMédicale, Molecular Imaging Research Center Fontenay-aux-Roses, France ; Centre National de la Recherche Scientifique - Commissariat à l'Énergie Atomique et aux Énergies Alternatives Unité de Recherche Associée 2210 Fontenay-aux-Roses, France ; Intellectual and Developmental Disabilities Research Center, Semel Institute for Neuroscience and Human Behavior, Brain Research Institute, David Geffen School of Medicine, University of California Los Angeles Los Angeles, CA, USA
| | - Emmanuel Brouillet
- Neurodegenerative Disease Laboratory, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, Direction des Sciences du Vivant, Institut d'Imagerie BioMédicale, Molecular Imaging Research Center Fontenay-aux-Roses, France ; Centre National de la Recherche Scientifique - Commissariat à l'Énergie Atomique et aux Énergies Alternatives Unité de Recherche Associée 2210 Fontenay-aux-Roses, France
| |
Collapse
|
27
|
Scheuing L, Chiu CT, Liao HM, Linares GR, Chuang DM. Preclinical and clinical investigations of mood stabilizers for Huntington's disease: what have we learned? Int J Biol Sci 2014; 10:1024-38. [PMID: 25285035 PMCID: PMC4183923 DOI: 10.7150/ijbs.9898] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Accepted: 07/08/2014] [Indexed: 12/20/2022] Open
Abstract
Huntington's disease (HD) is a lethal, autosomal dominant neurodegenerative disorder caused by CAG repeat expansions at exon 1 of the huntingtin (Htt) gene, which encodes for a mutant huntingtin protein (mHtt). Prominent symptoms of HD include motor dysfunction, characterized by chorea; psychiatric disturbances such as mood and personality changes; and cognitive decline that may lead to dementia. Pathologically multiple complex processes and pathways are involved in the development of HD, including selective loss of neurons in the striatum and cortex, dysregulation of cellular autophagy, mitochondrial dysfunction, decreased neurotrophic and growth factor levels, and aberrant regulation of gene expression and epigenetic patterns. No cure for HD presently exists, nor are there drugs that can halt the progression of this devastating disease. Therefore, the need to discover neuroprotective modalities to combat HD is critical. In basic and preclinical studies using cellular and animal HD models, the mood stabilizers lithium and valproic acid (VPA) have shown multiple beneficial effects, including behavioral and motor improvement, enhanced neuroprotection, and lifespan extension. Recent studies in transgenic HD mice support the notion that combined lithium/VPA treatment is more effective than treatment with either drug alone. In humans, several clinical studies of HD patients found that lithium treatment improved mood, and that VPA treatment both stabilized mood and moderately reduced chorea. In contrast, other studies observed that the hallmark features of HD were unaffected by treatment with either lithium or VPA. The current review discusses preclinical and clinical investigations of the beneficial effects of lithium and VPA on HD pathophysiology.
Collapse
Affiliation(s)
- Lisa Scheuing
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | - Chi-Tso Chiu
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | - Hsiao-Mei Liao
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | - Gabriel R Linares
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| | - De-Maw Chuang
- Molecular Neurobiology Section, National Institute of Mental Health, National Institutes of Health, 10 Center Drive MSC 1363, Bethesda, MD 20892-1363, USA
| |
Collapse
|
28
|
Muller M, Leavitt BR. Iron dysregulation in Huntington's disease. J Neurochem 2014; 130:328-50. [PMID: 24717009 DOI: 10.1111/jnc.12739] [Citation(s) in RCA: 83] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2014] [Revised: 03/19/2014] [Accepted: 04/07/2014] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is one of many neurodegenerative diseases with reported alterations in brain iron homeostasis that may contribute to neuropathogenesis. Iron accumulation in the specific brain areas of neurodegeneration in HD has been proposed based on observations in post-mortem tissue and magnetic resonance imaging studies. Altered magnetic resonance imaging signal within specific brain regions undergoing neurodegeneration has been consistently reported and interpreted as altered levels of brain iron. Biochemical studies using various techniques to measure iron species in human samples, mouse tissue, or in vitro has generated equivocal data to support such an association. Whether elevated brain iron occurs in HD, plays a significant contributing role in HD pathogenesis, or is a secondary effect remains currently unclear.
Collapse
Affiliation(s)
- Michelle Muller
- Department of Medical Genetics, Centre for Molecular Medicine & Therapeutics, University of British Columbia and Children's and Women's Hospital, Vancouver, British Columbia, Canada
| | | |
Collapse
|
29
|
Mealer RG, Murray AJ, Shahani N, Subramaniam S, Snyder SH. Rhes, a striatal-selective protein implicated in Huntington disease, binds beclin-1 and activates autophagy. J Biol Chem 2013; 289:3547-54. [PMID: 24324270 DOI: 10.1074/jbc.m113.536912] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
The protein mutated in Huntington disease (HD), mutant huntingtin (mHtt), is expressed throughout the brain and body. However, the pathology of HD is characterized by early and dramatic destruction selectively of the striatum. We previously reported that the striatal-specific protein Rhes binds mHtt and enhances its cytotoxicity. Moreover, Rhes-deleted mice are dramatically protected from neurodegeneration and motor dysfunction in mouse models of HD. We now report a function of Rhes in autophagy, a lysosomal degradation pathway implicated in aging and HD neurodegeneration. In PC12 cells, deletion of endogenous Rhes decreases autophagy, whereas Rhes overexpression activates autophagy. These effects are independent of mTOR and opposite in the direction predicted by the known activation of mTOR by Rhes. Rhes robustly binds the autophagy regulator Beclin-1, decreasing its inhibitory interaction with Bcl-2 independent of JNK-1 signaling. Finally, co-expression of mHtt blocks Rhes-induced autophagy activation. Thus, the isolated pathology and delayed onset of HD may reflect the striatal-selective expression and changes in autophagic activity of Rhes.
Collapse
|
30
|
Blumer JB, Lanier SM. Activators of G protein signaling exhibit broad functionality and define a distinct core signaling triad. Mol Pharmacol 2013; 85:388-96. [PMID: 24302560 DOI: 10.1124/mol.113.090068] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Activators of G protein signaling (AGS), initially discovered in the search for receptor-independent activators of G protein signaling, define a broad panel of biologic regulators that influence signal transfer from receptor to G-protein, guanine nucleotide binding and hydrolysis, G protein subunit interactions, and/or serve as alternative binding partners for Gα and Gβγ independently of the classic heterotrimeric Gαβγ. AGS proteins generally fall into three groups based upon their interaction with and regulation of G protein subunits: group I, guanine nucleotide exchange factors (GEF); group II, guanine nucleotide dissociation inhibitors; and group III, entities that bind to Gβγ. Group I AGS proteins can engage all subclasses of G proteins, whereas group II AGS proteins primarily engage the Gi/Go/transducin family of G proteins. A fourth group of AGS proteins with selectivity for Gα16 may be defined by the Mitf-Tfe family of transcription factors. Groups I-III may act in concert, generating a core signaling triad analogous to the core triad for heterotrimeric G proteins (GEF + G proteins + effector). These two core triads may function independently of each other or actually cross-integrate for additional signal processing. AGS proteins have broad functional roles, and their discovery has advanced new concepts in signal processing, cell and tissue biology, receptor pharmacology, and system adaptation, providing unexpected platforms for therapeutic and diagnostic development.
Collapse
Affiliation(s)
- Joe B Blumer
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, South Carolina
| | | |
Collapse
|
31
|
Sbodio JI, Paul BD, Machamer CE, Snyder SH. Golgi protein ACBD3 mediates neurotoxicity associated with Huntington's disease. Cell Rep 2013; 4:890-7. [PMID: 24012756 PMCID: PMC3801179 DOI: 10.1016/j.celrep.2013.08.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/02/2013] [Accepted: 08/01/2013] [Indexed: 01/10/2023] Open
Abstract
Huntington's disease (HD) is an autosomal-dominant neurodegenerative disease caused by the expansion of polyglutamine repeats in the gene for huntingtin (Htt). In HD, the corpus striatum selectively degenerates despite the uniform expression of mutant huntingtin (mHtt) throughout the brain and body. Striatal selectivity reflects the binding of the striatal-selective protein Rhes to mHtt to augment cytotoxicity, but molecular mechanisms underlying the toxicity have been elusive. Here, we report that the Golgi protein acyl-CoA binding domain containing 3 (ACBD3) mediates mHtt cytotoxicity via a Rhes/mHtt/ACBD3 complex. ACBD3 levels are markedly elevated in the striatum of HD patients, in a striatal cell line harboring polyglutamine repeats, and in the brains of HD mice. Moreover, ACBD3 deletion abolishes HD neurotoxicity, which is increased by ACBD3 overexpression. Enhanced levels of ACBD3 elicited by endoplasmic reticulum, mitochondrial, and Golgi stresses may account for HD-associated augmentation of ACBD3 and neurodegeneration.
Collapse
Affiliation(s)
- Juan I. Sbodio
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD. 21205, USA
| | - Bindu D. Paul
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD. 21205, USA
| | - Carolyn E. Machamer
- Department of Cell Biology, Johns Hopkins University, Baltimore, MD. 21205, USA
| | - Solomon H. Snyder
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD. 21205, USA
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University, Baltimore, MD. 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University, Baltimore, MD. 21205, USA
| |
Collapse
|
32
|
Harrison LM, Lahoste GJ. The role of Rhes, Ras homolog enriched in striatum, in neurodegenerative processes. Exp Cell Res 2013; 319:2310-5. [PMID: 23583659 DOI: 10.1016/j.yexcr.2013.03.033] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2013] [Revised: 03/15/2013] [Accepted: 03/22/2013] [Indexed: 10/26/2022]
Abstract
Rhes is a small GTPase whose expression is highly enriched in striatum. It shares homology with Ras proteins, but also contains a C-terminal extension, thus suggesting additional functions. Signaling by 7 transmembrane receptors through heterotrimeric G proteins is inhibited by Rhes. However, perhaps the most remarkable feature of this small GTPase described thus far is that it can account for the selective vulnerability of the striatum in Huntington's Disease (HD). HD is an autosomal dominant neurodegenerative disease caused by a poly-glutamine expansion in the protein huntingtin. Despite the presence of huntingtin throughout the brain and the rest of the body, the striatum is selectively degenerated. Recent work shows that Rhes acts as an E3 ligase for attachment of SUMO (small ubiquitin-like modifier). As this post-translational modification decreases the formation of huntingtin aggregates and promotes cell death, this property of Rhes offers an explanation for selective striatal vulnerability in HD. In addition, the sequestering of Rhes through its binding to mutant huntingtin may decrease the ability of Rhes to perform vital physiological functions in the neuron. Thus, as Rhes is an attractive candidate for HD therapy, a thorough understanding of its physiological functions will allow for specific targeting of its pathological functions.
Collapse
Affiliation(s)
- Laura M Harrison
- Neuroscience Center of Excellence, Louisiana State University Health Sciences Center, 2020 Gravier Street, New Orleans, LA 70112, USA.
| | | |
Collapse
|