1
|
Fatalska A, Hodgson G, Freund SMV, Maslen SL, Morgan T, Thorkelsson SR, van Slegtenhorst M, Lorenz S, Andreeva A, Kaat LD, Bertolotti A. Recruitment of trimeric eIF2 by phosphatase non-catalytic subunit PPP1R15B. Mol Cell 2024; 84:506-521.e11. [PMID: 38159565 PMCID: PMC7615683 DOI: 10.1016/j.molcel.2023.12.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 09/06/2023] [Accepted: 12/08/2023] [Indexed: 01/03/2024]
Abstract
Regulated protein phosphorylation controls most cellular processes. The protein phosphatase PP1 is the catalytic subunit of many holoenzymes that dephosphorylate serine/threonine residues. How these enzymes recruit their substrates is largely unknown. Here, we integrated diverse approaches to elucidate how the PP1 non-catalytic subunit PPP1R15B (R15B) captures its full trimeric eIF2 substrate. We found that the substrate-recruitment module of R15B is largely disordered with three short helical elements, H1, H2, and H3. H1 and H2 form a clamp that grasps the substrate in a region remote from the phosphorylated residue. A homozygous N423D variant, adjacent to H1, reducing substrate binding and dephosphorylation was discovered in a rare syndrome with microcephaly, developmental delay, and intellectual disability. These findings explain how R15B captures its 125 kDa substrate by binding the far end of the complex relative to the phosphosite to present it for dephosphorylation by PP1, a paradigm of broad relevance.
Collapse
Affiliation(s)
- Agnieszka Fatalska
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - George Hodgson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Stefan M V Freund
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sarah L Maslen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Tomos Morgan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Sigurdur R Thorkelsson
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Marjon van Slegtenhorst
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Sonja Lorenz
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - Antonina Andreeva
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Anne Bertolotti
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, United Kingdom.
| |
Collapse
|
2
|
Regulation and function of elF2B in neurological and metabolic disorders. Biosci Rep 2022; 42:231311. [PMID: 35579296 PMCID: PMC9208314 DOI: 10.1042/bsr20211699] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 04/28/2022] [Accepted: 05/12/2022] [Indexed: 11/27/2022] Open
Abstract
Eukaryotic initiation factor 2B, eIF2B is a guanine nucleotide exchange, factor with a central role in coordinating the initiation of translation. During stress and disease, the activity of eIF2B is inhibited via the phosphorylation of its substrate eIF2 (p-eIF2α). A number of different kinases respond to various stresses leading to the phosphorylation of the alpha subunit of eIF2, and collectively this regulation is known as the integrated stress response, ISR. This targeting of eIF2B allows the cell to regulate protein synthesis and reprogramme gene expression to restore homeostasis. Advances within structural biology have furthered our understanding of how eIF2B interacts with eIF2 in both the productive GEF active form and the non-productive eIF2α phosphorylated form. Here, current knowledge of the role of eIF2B in the ISR is discussed within the context of normal and disease states focusing particularly on diseases such as vanishing white matter disease (VWMD) and permanent neonatal diabetes mellitus (PNDM), which are directly linked to mutations in eIF2B. The role of eIF2B in synaptic plasticity and memory formation is also discussed. In addition, the cellular localisation of eIF2B is reviewed and considered along with the role of additional in vivo eIF2B binding factors and protein modifications that may play a role in modulating eIF2B activity during health and disease.
Collapse
|
3
|
Jennings MD, Pavitt GD. Quantifying the Binding of Fluorescently Labeled Guanine Nucleotides and Initiator tRNA to Eukaryotic Translation Initiation Factor 2. Methods Mol Biol 2022; 2428:89-99. [PMID: 35171475 DOI: 10.1007/978-1-0716-1975-9_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The translation initiation factor eIF2 is critical for protein synthesis initiation, and its regulation is central to the integrated stress response (ISR). eIF2 is a G protein, and the activity is regulated by its GDP or GTP-binding status, such that only GTP-bound eIF2 has high affinity for initiator methionyl tRNA. In the ISR, regulatory signaling reduces the availability of eIF2-GTP and so downregulates protein synthesis initiation in cells. Fluorescence spectroscopy can be used as an analytical tool to study protein-ligand interactions in vitro. Here we describe methods to purify eIF2 and assays of its activity, employing analogs of GDP, GTP, and methionyl initiator tRNA ligands to accurately measure their binding affinities.
Collapse
Affiliation(s)
- Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK.
| |
Collapse
|
4
|
Kershaw CJ, Jennings MD, Cortopassi F, Guaita M, Al-Ghafli H, Pavitt GD. GTP binding to translation factor eIF2B stimulates its guanine nucleotide exchange activity. iScience 2021; 24:103454. [PMID: 34877508 PMCID: PMC8633983 DOI: 10.1016/j.isci.2021.103454] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/26/2021] [Accepted: 11/11/2021] [Indexed: 01/23/2023] Open
Abstract
eIF2B is the guanine nucleotide exchange factor (GEF) required for cytoplasmic protein synthesis initiation in eukaryotes and its regulation within the integrated stress response (ISR). It activates its partner factor eIF2, thereby promoting translation initiation. Here we provide evidence through biochemical and genetic approaches that eIF2B can bind directly to GTP and this can enhance its rate of GEF activity toward eIF2–GDP in vitro. GTP binds to a subcomplex of the eIF2Bγ and ε subunits. The eIF2Bγ amino-terminal domain shares structural homology with hexose sugar phosphate pyrophosphorylase enzymes that bind specific nucleotides. A K66R mutation in eIF2Bγ is especially sensitive to guanine or GTP in a range of functional assays. Taken together, our data suggest eIF2Bγ may act as a sensor of purine nucleotide availability and thus modulate eIF2B activity and protein synthesis in response to fluctuations in cellular nucleotide levels. eIF2B, the GDP exchange factor for eIF2 in translation and its control, binds GTP GTP binding enhances the rate of eIF2B GEF activity toward eIF2–GDP in vitro A K66R mutation in yeast eIF2Bγ is sensitive to guanine in vivo or GTP in vitro eIF2B may act as a sensor of purine nucleotide availability
Collapse
Affiliation(s)
- Christopher J Kershaw
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Martin D Jennings
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Francesco Cortopassi
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Margherita Guaita
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Hawra Al-Ghafli
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| | - Graham D Pavitt
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
5
|
Schoof M, Boone M, Wang L, Lawrence R, Frost A, Walter P. eIF2B conformation and assembly state regulate the integrated stress response. eLife 2021; 10:e65703. [PMID: 33688831 PMCID: PMC7990499 DOI: 10.7554/elife.65703] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 03/09/2021] [Indexed: 12/13/2022] Open
Abstract
The integrated stress response (ISR) is activated by phosphorylation of the translation initiation factor eIF2 in response to various stress conditions. Phosphorylated eIF2 (eIF2-P) inhibits eIF2's nucleotide exchange factor eIF2B, a twofold symmetric heterodecamer assembled from subcomplexes. Here, we monitor and manipulate eIF2B assembly in vitro and in vivo. In the absence of eIF2B's α-subunit, the ISR is induced because unassembled eIF2B tetramer subcomplexes accumulate in cells. Upon addition of the small-molecule ISR inhibitor ISRIB, eIF2B tetramers assemble into active octamers. Surprisingly, ISRIB inhibits the ISR even in the context of fully assembled eIF2B decamers, revealing allosteric communication between the physically distant eIF2, eIF2-P, and ISRIB binding sites. Cryo-electron microscopy structures suggest a rocking motion in eIF2B that couples these binding sites. eIF2-P binding converts eIF2B decamers into 'conjoined tetramers' with diminished substrate binding and enzymatic activity. Canonical eIF2-P-driven ISR activation thus arises due to this change in eIF2B's conformational state.
Collapse
Affiliation(s)
- Michael Schoof
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Morgane Boone
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Lan Wang
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Rosalie Lawrence
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
- Chan Zuckerberg BiohubSan FranciscoUnited States
| | - Peter Walter
- Howard Hughes Medical Institute, University of California at San FranciscoSan FranciscoUnited States
- Department of Biochemistry and Biophysics, University of California at San FranciscoSan FranciscoUnited States
| |
Collapse
|
6
|
Kenner LR, Anand AA, Nguyen HC, Myasnikov AG, Klose CJ, McGeever LA, Tsai JC, Miller-Vedam LE, Walter P, Frost A. eIF2B-catalyzed nucleotide exchange and phosphoregulation by the integrated stress response. Science 2019; 364:491-495. [PMID: 31048491 PMCID: PMC6601628 DOI: 10.1126/science.aaw2922] [Citation(s) in RCA: 78] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Accepted: 04/08/2019] [Indexed: 12/20/2022]
Abstract
The integrated stress response (ISR) tunes the rate of protein synthesis. Control is exerted by phosphorylation of the general translation initiation factor eIF2. eIF2 is a guanosine triphosphatase that becomes activated by eIF2B, a two-fold symmetric and heterodecameric complex that functions as eIF2's dedicated nucleotide exchange factor. Phosphorylation converts eIF2 from a substrate into an inhibitor of eIF2B. We report cryo-electron microscopy structures of eIF2 bound to eIF2B in the dephosphorylated state. The structures reveal that the eIF2B decamer is a static platform upon which one or two flexible eIF2 trimers bind and align with eIF2B's bipartite catalytic centers to catalyze nucleotide exchange. Phosphorylation refolds eIF2α, allowing it to contact eIF2B at a different interface and, we surmise, thereby sequestering it into a nonproductive complex.
Collapse
Affiliation(s)
- Lillian R Kenner
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Aditya A Anand
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Henry C Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Alexander G Myasnikov
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Centre for Integrative Biology, Department of Integrated Structural Biology, IGBMC, CNRS, Inserm, Université de Strasbourg, 67404 Illkirch, France
| | - Carolin J Klose
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Lea A McGeever
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Jordan C Tsai
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Lakshmi E Miller-Vedam
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Peter Walter
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| |
Collapse
|
7
|
Pavitt GD. Regulation of translation initiation factor eIF2B at the hub of the integrated stress response. WILEY INTERDISCIPLINARY REVIEWS-RNA 2018; 9:e1491. [PMID: 29989343 DOI: 10.1002/wrna.1491] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 05/08/2018] [Accepted: 05/22/2018] [Indexed: 12/29/2022]
Abstract
Phosphorylation of the translation initiation factor eIF2 is one of the most widely used and well-studied mechanisms cells use to respond to diverse cellular stresses. Known as the integrated stress response (ISR), the control pathway uses modulation of protein synthesis to reprogram gene expression and restore homeostasis. Here the current knowledge of the molecular mechanisms of eIF2 activation and its control by phosphorylation at a single-conserved phosphorylation site, serine 51 are discussed with a major focus on the regulatory roles of eIF2B and eIF5 where a current molecular view of ISR control of eIF2B activity is presented. How genetic disorders affect eIF2 or eIF2B is discussed, as are syndromes where excess signaling through the ISR is a component. Finally, studies into the action of recently identified compounds that modulate the ISR in experimental systems are discussed; these suggest that eIF2B is a potential therapeutic target for a wide range of conditions. This article is categorized under: Translation > Translation Regulation.
Collapse
Affiliation(s)
- Graham D Pavitt
- Division Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| |
Collapse
|
8
|
Tsai JC, Miller-Vedam LE, Anand AA, Jaishankar P, Nguyen HC, Renslo AR, Frost A, Walter P. Structure of the nucleotide exchange factor eIF2B reveals mechanism of memory-enhancing molecule. Science 2018; 359:359/6383/eaaq0939. [PMID: 29599213 DOI: 10.1126/science.aaq0939] [Citation(s) in RCA: 123] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 02/09/2018] [Indexed: 12/13/2022]
Abstract
Regulation by the integrated stress response (ISR) converges on the phosphorylation of translation initiation factor eIF2 in response to a variety of stresses. Phosphorylation converts eIF2 from a substrate to a competitive inhibitor of its dedicated guanine nucleotide exchange factor, eIF2B, thereby inhibiting translation. ISRIB, a drug-like eIF2B activator, reverses the effects of eIF2 phosphorylation, and in rodents it enhances cognition and corrects cognitive deficits after brain injury. To determine its mechanism of action, we solved an atomic-resolution structure of ISRIB bound in a deep cleft within decameric human eIF2B by cryo-electron microscopy. Formation of fully active, decameric eIF2B holoenzyme depended on the assembly of two identical tetrameric subcomplexes, and ISRIB promoted this step by cross-bridging a central symmetry interface. Thus, regulation of eIF2B assembly emerges as a rheostat for eIF2B activity that tunes translation during the ISR and that can be further modulated by ISRIB.
Collapse
Affiliation(s)
- Jordan C Tsai
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Lakshmi E Miller-Vedam
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Aditya A Anand
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA.,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | - Priyadarshini Jaishankar
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Henry C Nguyen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Adam R Renslo
- Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California, San Francisco, CA, USA
| | - Adam Frost
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA. .,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Peter Walter
- Howard Hughes Medical Institute, University of California, San Francisco, CA, USA. .,Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| |
Collapse
|
9
|
Parker S, Fraczek MG, Wu J, Shamsah S, Manousaki A, Dungrattanalert K, de Almeida RA, Invernizzi E, Burgis T, Omara W, Griffiths-Jones S, Delneri D, O’Keefe RT. Large-scale profiling of noncoding RNA function in yeast. PLoS Genet 2018; 14:e1007253. [PMID: 29529031 PMCID: PMC5864082 DOI: 10.1371/journal.pgen.1007253] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 03/22/2018] [Accepted: 02/13/2018] [Indexed: 11/19/2022] Open
Abstract
Noncoding RNAs (ncRNAs) are emerging as key regulators of cellular function. We have exploited the recently developed barcoded ncRNA gene deletion strain collections in the yeast Saccharomyces cerevisiae to investigate the numerous ncRNAs in yeast with no known function. The ncRNA deletion collection contains deletions of tRNAs, snoRNAs, snRNAs, stable unannotated transcripts (SUTs), cryptic unstable transcripts (CUTs) and other annotated ncRNAs encompassing 532 different individual ncRNA deletions. We have profiled the fitness of the diploid heterozygous ncRNA deletion strain collection in six conditions using batch and continuous liquid culture, as well as the haploid ncRNA deletion strain collections arrayed individually onto solid rich media. These analyses revealed many novel environmental-specific haplo-insufficient and haplo-proficient phenotypes providing key information on the importance of each specific ncRNA in every condition. Co-fitness analysis using fitness data from the heterozygous ncRNA deletion strain collection identified two ncRNA groups required for growth during heat stress and nutrient deprivation. The extensive fitness data for each ncRNA deletion strain has been compiled into an easy to navigate database called Yeast ncRNA Analysis (YNCA). By expanding the original ncRNA deletion strain collection we identified four novel essential ncRNAs; SUT527, SUT075, SUT367 and SUT259/691. We defined the effects of each new essential ncRNA on adjacent gene expression in the heterozygote background identifying both repression and induction of nearby genes. Additionally, we discovered a function for SUT527 in the expression, 3' end formation and localization of SEC4, an essential protein coding mRNA. Finally, using plasmid complementation we rescued the SUT075 lethal phenotype revealing that this ncRNA acts in trans. Overall, our findings provide important new insights into the function of ncRNAs.
Collapse
Affiliation(s)
- Steven Parker
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Marcin G. Fraczek
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Jian Wu
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sara Shamsah
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Alkisti Manousaki
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Kobchai Dungrattanalert
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Rogerio Alves de Almeida
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Edith Invernizzi
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Tim Burgis
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Walid Omara
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Sam Griffiths-Jones
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Daniela Delneri
- Manchester Institute of Biotechnology, The University of Manchester, Manchester, United Kingdom
| | - Raymond T. O’Keefe
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
10
|
Wong YL, LeBon L, Edalji R, Lim HB, Sun C, Sidrauski C. The small molecule ISRIB rescues the stability and activity of Vanishing White Matter Disease eIF2B mutant complexes. eLife 2018; 7:32733. [PMID: 29489452 PMCID: PMC5829914 DOI: 10.7554/elife.32733] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 02/12/2018] [Indexed: 12/14/2022] Open
Abstract
eIF2B is a dedicated guanine nucleotide exchange factor for eIF2, the GTPase that is essential to initiate mRNA translation. The integrated stress response (ISR) signaling pathway inhibits eIF2B activity, attenuates global protein synthesis and upregulates a set of stress-response proteins. Partial loss-of-function mutations in eIF2B cause a neurodegenerative disorder called Vanishing White Matter Disease (VWMD). Previously, we showed that the small molecule ISRIB is a specific activator of eIF2B (Sidrauski et al., 2015). Here, we report that various VWMD mutations destabilize the decameric eIF2B holoenzyme and impair its enzymatic activity. ISRIB stabilizes VWMD mutant eIF2B in the decameric form and restores the residual catalytic activity to wild-type levels. Moreover, ISRIB blocks activation of the ISR in cells carrying these mutations. As such, ISRIB promises to be an invaluable tool in proof-of-concept studies aiming to ameliorate defects resulting from inappropriate or pathological activation of the ISR.
Collapse
Affiliation(s)
- Yao Liang Wong
- Calico Life Sciences LLC, South San Francisco, United States
| | - Lauren LeBon
- Calico Life Sciences LLC, South San Francisco, United States
| | - Rohinton Edalji
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, United States
| | - Hock Ben Lim
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, United States
| | - Chaohong Sun
- Discovery, Global Pharmaceutical Research and Development, AbbVie, North Chicago, United States
| | | |
Collapse
|
11
|
Jennings MD, Kershaw CJ, White C, Hoyle D, Richardson JP, Costello JL, Donaldson IJ, Zhou Y, Pavitt GD. eIF2β is critical for eIF5-mediated GDP-dissociation inhibitor activity and translational control. Nucleic Acids Res 2016; 44:9698-9709. [PMID: 27458202 PMCID: PMC5175340 DOI: 10.1093/nar/gkw657] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 07/08/2016] [Accepted: 07/12/2016] [Indexed: 01/10/2023] Open
Abstract
In protein synthesis translation factor eIF2 binds initiator tRNA to ribosomes and facilitates start codon selection. eIF2 GDP/GTP status is regulated by eIF5 (GAP and GDI functions) and eIF2B (GEF and GDF activities), while eIF2α phosphorylation in response to diverse signals is a major point of translational control. Here we characterize a growth suppressor mutation in eIF2β that prevents eIF5 GDI and alters cellular responses to reduced eIF2B activity, including control of GCN4 translation. By monitoring the binding of fluorescent nucleotides and initiator tRNA to purified eIF2 we show that the eIF2β mutation does not affect intrinsic eIF2 affinities for these ligands, neither does it interfere with eIF2 binding to 43S pre-initiation complex components. Instead we show that the eIF2β mutation prevents eIF5 GDI stabilizing nucleotide binding to eIF2, thereby altering the off-rate of GDP from eIF2•GDP/eIF5 complexes. This enables cells to grow with reduced eIF2B GEF activity but impairs activation of GCN4 targets in response to amino acid starvation. These findings provide support for the importance of eIF5 GDI activity in vivo and demonstrate that eIF2β acts in concert with eIF5 to prevent premature release of GDP from eIF2γ and thereby ensure tight control of protein synthesis initiation.
Collapse
Affiliation(s)
- Martin D Jennings
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher J Kershaw
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Christopher White
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Danielle Hoyle
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Jonathan P Richardson
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Joseph L Costello
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Ian J Donaldson
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Yu Zhou
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| | - Graham D Pavitt
- Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M13 9PT, UK
| |
Collapse
|
12
|
Jennings MD, Pavitt GD. A new function and complexity for protein translation initiation factor eIF2B. Cell Cycle 2015; 13:2660-5. [PMID: 25486352 DOI: 10.4161/15384101.2014.948797] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
eIF2B is a multisubunit protein that is critical for protein synthesis initiation and its control. It is a guanine nucleotide exchange factor (GEF) for its GTP-binding protein partner eIF2. eIF2 binds initiator tRNA to ribosomes and promotes mRNA AUG codon recognition. eIF2B is critical for regulation of protein synthesis via a conserved mechanism of phosphorylation of eIF2, which converts eIF2 from a substrate to an inhibitor of eIF2B GEF. In addition, inherited mutations affecting eIF2B subunits cause the fatal disorder leukoencephalopathy with Vanishing White Matter (VWM), also called Childhood Ataxia with Central nervous system Hypomyelination (CACH). Here we review findings which reveal that eIF2B is a decameric protein and also define a new function for the eIF2B. Our results demonstrate that the eIF2Bγ subunit is required for eIF2B to gain access to eIF2•GDP. Specifically it displaces a third translation factor eIF5 (a dual function GAP and GDI) from eIF2•GDP/eIF5 complexes. Thus eIF2B is a GDI displacement factor (or GDF) in addition to its role as a GEF, prompting the redrawing of the eIF2 cycling pathway to incorporate the new steps. In structural studies using mass spectrometry and cross-linking it is shown that eIF2B is a dimer of pentamers and so is twice as large as previously thought. A binding site for GTP on eIF2B was also found, raising further questions concerning the mechanism of nucleotide exchange. The implications of these findings for eIF2B function and for VWM/CACH disease are discussed.
Collapse
Affiliation(s)
- Martin D Jennings
- a Faculty of Life Sciences ; The University of Manchester ; Manchester , UK
| | | |
Collapse
|