1
|
Gao YC, Jiang NN, Qin XJ, Jiang H, Wei LB, Gao JR. High-throughput data on circular RNA reveal novel insights into chronic glomerulonephritis. Genes Genomics 2023; 45:475-490. [PMID: 36264417 DOI: 10.1007/s13258-022-01320-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/27/2022] [Indexed: 11/04/2022]
Abstract
BACKGROUND Circular RNAs (circRNAs), a unique novel type of RNA, have been widely reported to be involved in physiologic and pathologic processes in humans. However, the exact molecular pathogenesis of circRNAs in chronic glomerulonephritis (CGN) is far from clear. OBJECTIVE This paper aims to evaluate the specific expression profile of circRNAs in renal cortex tissues from Adriamycin-induced CGN rats. METHODS CircRNAs were screened in renal cortex tissues from 3 CGN rats and 3 control rats by using high-throughput sequencing (HTS). Then, 4 circRNAs were selected randomly for verification by quantitative real-time polymerase chain reaction (qRT-PCR). In addition, the differentially expressed (DE) circRNAs were analyzed by bioinformatics methods. RESULTS In total, 31 significantly DE circRNAs were identified, which revealed their potential roles in CGN; in particular, we found that 4 confirmed altered circRNAs (rno-circ-RNAs 689, 3217, 1327, and 5001) might play important roles in the development of CGN. CONCLUSION This study reveals a cluster of circRNAs that are DE in Adriamycin-induced CGN rats, which brings us closer to understanding the pathogenic mechanisms and may provide new potential targets for clinical treatment.
Collapse
Affiliation(s)
- Ya-Chen Gao
- Department of Nephrology, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, China
| | - Nan-Nan Jiang
- College of Pharmacy, Anhui University of Chinese Medicine, 103 Meishan Road, Hefei, China
| | - Xiu-Juan Qin
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, 230031, China
| | - Hui Jiang
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, 230031, China
| | - Liang-Bing Wei
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, 230031, China
| | - Jia-Rong Gao
- Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, 117 Meishan Road, Hefei, 230031, China.
| |
Collapse
|
2
|
Abstract
Mitogen-activated protein kinase (MAPK)-activated protein kinases (MAPKAPKs) are defined by their exclusive activation by MAPKs. They can be activated by classical and atypical MAPKs that have been stimulated by mitogens and various stresses. Genetic deletions of MAPKAPKs and availability of highly specific small-molecule inhibitors have continuously increased our functional understanding of these kinases. MAPKAPKs cooperate in the regulation of gene expression at the level of transcription; RNA processing, export, and stability; and protein synthesis. The diversity of stimuli for MAPK activation, the cross talk between the different MAPKs and MAPKAPKs, and the specific substrate pattern of MAPKAPKs orchestrate immediate-early and inflammatory responses in space and time and ensure proper control of cell growth, differentiation, and cell behavior. Hence, MAPKAPKs are promising targets for cancer therapy and treatments for conditions of acute and chronic inflammation, such as cytokine storms and rheumatoid arthritis. Expected final online publication date for the Annual Review of Biochemistry, Volume 91 is June 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Natalia Ronkina
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany;
| |
Collapse
|
3
|
Ren J, Sun J, Li M, Zhang Z, Yang D, Cao H. MAPK Activated Protein Kinase 3 Is a Prognostic-Related Biomarker and Associated With Immune Infiltrates in Glioma. Front Oncol 2021; 11:793025. [PMID: 34938665 PMCID: PMC8685266 DOI: 10.3389/fonc.2021.793025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022] Open
Abstract
Glioma is the most common primary brain tumor that causes significant morbidity and mortality. MAPK activated protein kinase 3 (MAPKAPK3/MK3) is a serine/threonine protein kinase regulating various cellular responses and gene expression. However, the role of MK3 in tumor progress, prognosis, and immunity for glioma remains unclear. Here, we determined the expression and prognostic values of MK3. We further analyzed the correlation of MK3 expression with immune infiltrations by using the biochemical methods and bioinformatic approaches with available databases. We find that MK3 is aberrantly upregulated in glioma. In addition, the higher MK3 expression is closely linked to the poor clinicopathologic features of glioma patients. Importantly, MK3 expression is negatively correlated with the prognosis of patients with glioma. Mechanistically, we demonstrated that the correlated genes of MK3 were mainly enriched in pathways that regulate tumor immune responses. The MK3 level was significantly associated with tumor-infiltrating immune cells and positively correlated with the majority of tumor immunoinhibitors, chemokines, and chemokine receptors in glioma. Thus, these findings suggest the novel prognostic roles of MK3 and define MK3 as a promising target for glioma immunotherapy.
Collapse
Affiliation(s)
- Jing Ren
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Jinmin Sun
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Mengwei Li
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Zifan Zhang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Dejun Yang
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| | - Haowei Cao
- Jiangsu Key Laboratory of Brain Disease and Bioinformation, Research Center for Biochemistry and Molecular Biology, Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
4
|
CRISPR, Prime Editing, Optogenetics, and DREADDs: New Therapeutic Approaches Provided by Emerging Technologies in the Treatment of Spinal Cord Injury. Mol Neurobiol 2020; 57:2085-2100. [DOI: 10.1007/s12035-019-01861-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 12/15/2019] [Indexed: 02/07/2023]
|
5
|
Hedström U, Norberg M, Evertsson E, Lever SR, Munck Af Rosenschöld M, Lönn H, Bold P, Käck H, Berntsson P, Vinblad J, Liu J, Welinder A, Karlsson J, Snijder A, Pardali K, Andersson U, Davis AM, Mogemark M. An Angle on MK2 Inhibition-Optimization and Evaluation of Prevention of Activation Inhibitors. ChemMedChem 2019; 14:1701-1709. [PMID: 31325352 DOI: 10.1002/cmdc.201900303] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/18/2019] [Indexed: 12/15/2022]
Abstract
The mitogen-activated protein kinase p38α pathway has been an attractive target for the treatment of inflammatory conditions such as rheumatoid arthritis. While a number of p38α inhibitors have been taken to the clinic, they have been limited by their efficacy and toxicological profile. A lead identification program was initiated to selectively target prevention of activation (PoA) of mitogen-activated protein kinase-activated protein kinase 2 (MK2) rather than mitogen- and stress-activated protein kinase 1 (MSK1), both immediate downstream substrates of p38α, to improve the efficacy/safety profile over direct p38α inhibition. Starting with a series of pyrazole amide PoA MK2 inhibitor leads, and guided by structural chemistry and rational design, a highly selective imidazole 9 (2-(3'-(2-amino-2-oxoethyl)-[1,1'-biphenyl]-3-yl)-N-(5-(N,N-dimethylsulfamoyl)-2-methylphenyl)-1-propyl-1H-imidazole-5-carboxamide) and the orally bioavailable imidazole 18 (3-methyl-N-(2-methyl-5-sulfamoylphenyl)-2-(o-tolyl)imidazole-4-carboxamide) were discovered. The PoA concept was further evaluated by protein immunoblotting, which showed that the optimized PoA MK2 compounds, despite their biochemical selectivity against MSK1 phosphorylation, behaved similarly to p38 inhibitors in cellular signaling. This study highlights the importance of selective tool compounds in untangling complex signaling pathways, and although 9 and 18 were not differentiated from p38α inhibitors in a cellular context, they are still useful tools for further research directed to understand the role of MK2 in the p38α signaling pathway.
Collapse
Affiliation(s)
- Ulf Hedström
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Monica Norberg
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Emma Evertsson
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Sarah R Lever
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Magnus Munck Af Rosenschöld
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Hans Lönn
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Peter Bold
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Helena Käck
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Pia Berntsson
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Johanna Vinblad
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Jianming Liu
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Anette Welinder
- Pharmaceutical Technology and Development, Operations, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Johan Karlsson
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Arjan Snijder
- Discovery Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Katerina Pardali
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Ulf Andersson
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Andrew M Davis
- Early Respiratory, Inflammation and Autoimmunity, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| | - Mickael Mogemark
- Clinical Pharmacology and Safety Sciences, R&D Biopharmaceuticals, AstraZeneca, Gothenburg, Pepparedsleden 1, 431 83, Mölndal, Sweden
| |
Collapse
|
6
|
Ehlting C, Rex J, Albrecht U, Deenen R, Tiedje C, Köhrer K, Sawodny O, Gaestel M, Häussinger D, Bode JG. Cooperative and distinct functions of MK2 and MK3 in the regulation of the macrophage transcriptional response to lipopolysaccharide. Sci Rep 2019; 9:11021. [PMID: 31363109 PMCID: PMC6667695 DOI: 10.1038/s41598-019-46791-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 12/04/2022] Open
Abstract
The p38MAPK downstream targets MAPKAP kinases (MK) 2 and 3 are critical for the regulation of the macrophage response to LPS. The extents to which these two kinases act cooperatively and distinctly in regulating LPS-induced inflammatory cytokine expression are still unclear. To address this uncertainty, whole transcriptome analyses were performed using bone marrow-derived macrophages (BMDM) generated from MK2−/− or MK2/3−/− animals and their wild-type littermates. The results suggest that in BMDM, MK2 and MK3 not only cooperatively regulate the transcript expression of signaling intermediates, including IL-10, IL-19, CXCL2 and the IL-4 receptor (IL-4R)α subunit, they also exert distinct regulatory effects on the expression of specific transcripts. Based on the differential regulation of gene expression by MK2 and MK3, at least six regulatory patterns were identified. Importantly, we confirmed our previous finding, which showed that in the absence of MK2, MK3 negatively regulates IFN-β. Moreover, this genome-wide analysis identified the regulation of Cr1A, NOD1 and Serpina3f as similar to that of IFN-β. In the absence of MK2, MK3 also delayed the nuclear translocation of NFκB by delaying the ubiquitination and subsequent degradation of IκBβ, reflecting the substantial plasticity of the response of BMDM to LPS.
Collapse
Affiliation(s)
- Christian Ehlting
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Julia Rex
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Ute Albrecht
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - René Deenen
- Biological and Medical Research Center (BMFZ), Genomics & Transcriptomics Laboratory, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Christopher Tiedje
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany.,Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Karl Köhrer
- Biological and Medical Research Center (BMFZ), Genomics & Transcriptomics Laboratory, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthias Gaestel
- Institute of Cell Biochemistry, Hannover Medical School, Hannover, Germany
| | - Dieter Häussinger
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany
| | - Johannes Georg Bode
- Clinic for Gastroenterology, Hepatology and Infectiology, University Hospital, Medical Faculty, Heinrich Heine University of Düsseldorf, Düsseldorf, Germany.
| |
Collapse
|
7
|
Ba M, Rawat S, Lao R, Grous M, Salmon M, Halayko AJ, Gerthoffer WT, Singer CA. Differential regulation of cytokine and chemokine expression by MK2 and MK3 in airway smooth muscle cells. Pulm Pharmacol Ther 2018; 53:12-19. [PMID: 30205157 DOI: 10.1016/j.pupt.2018.09.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/29/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
Abstract
BACKGROUND Airway smooth muscle (ASM) contributes to local inflammation and plays an immunomodulatory role in airway diseases. This is partially regulated by p38 mitogen-activated protein kinase (MAPK), which further activates two closely related isoforms of the MAPK-activated protein kinases (MKs), MK2 and MK3. The MKs have similar substrate specificities but less is known about differences in their functional responses. This study was undertaken to identify differential downstream inflammatory targets of MK2 and MK3 signaling and assess cross-talk between the MAPK pathway and NF-κB signaling relevant to ASM function. METHODS Wild-type and kinase-deficient MK2 (MK2WT, MK2KR) and MK3 (MK3WT, MK33A) were expressed in human ASM cells stimulated for 20 h with 10 ng/ml each interleukin (IL)-1β, tumor necrosis factor (TNF)-α and interferon (IFN)-γ. Inflammatory mediator secretion was assessed by Luminex assays and ELISA. Signaling pathway activation was monitored by Western blotting. RESULTS Expression of these MKs and stimulation with 10 ng/ml IL-1β, TNFα and IFNγ for 20 h did not affect secretion of multiple cytokines including IL-4, IL-5, IL-13 and monocyte chemotactic protein (MCP)-1/CCL2 but did differentially affect the secretion of regulated upon activation, normal T cell expressed and secreted (RANTES)/CCL5, IL-6 and granulocyte macrophage-colony stimulating factor (GM-CSF). RANTES/CCL5 secretion was decreased by MK2WT or MK3WT and stimulated by inhibition of MK2 or MK3 activity with expression of the kinase-deficient enzymes MK2KR or MK33A. IL-6 and GM-CSF secretion was decreased by inhibition of MK2 activity with MK2KR and while MK3WT had no effect, the kinase-deficient MK33A further decreased secretion of these mediators. Cross-talk of the MKs with other signaling pathways was investigated by examining NF-κB activation, which was inhibited by expression of MK3 but not affected by MK2. CONCLUSIONS These results suggest an inhibitory role for MK2 and MK3 activity in RANTES/CCL5 secretion and cross-talk of MK3 with NF-κB to regulate IL-6 and GM-CSF. These findings differentiate MK2 and MK3 function in ASM cells and provide insight that may enable selective targeting of MKs in ASM to modulate local inflammation in airway disease.
Collapse
Affiliation(s)
- Mariam Ba
- University of Nevada School of Medicine, Department of Pharmacology, Reno, NV, 89557, USA
| | - Shanti Rawat
- University of Nevada School of Medicine, Department of Pharmacology, Reno, NV, 89557, USA
| | - Ronna Lao
- University of Nevada School of Medicine, Department of Pharmacology, Reno, NV, 89557, USA
| | - Marilyn Grous
- GlaxoSmithKline, Respiratory, Inflammation & Respiratory Pathogens, King of Prussia, PA, USA
| | - Michael Salmon
- GlaxoSmithKline, Respiratory, Inflammation & Respiratory Pathogens, King of Prussia, PA, USA
| | - Andrew J Halayko
- University of Manitoba, Department of Physiology and Section of Respiratory Diseases, Winnipeg, MB, R3A 1R8, Canada
| | - William T Gerthoffer
- University of Nevada School of Medicine, Department of Pharmacology, Reno, NV, 89557, USA
| | - Cherie A Singer
- University of Nevada School of Medicine, Department of Pharmacology, Reno, NV, 89557, USA.
| |
Collapse
|
8
|
Benndorf R, Gilmont RR, Hirano S, Ransom RF, Jungblut PR, Bommer M, Goldman JE, Welsh MJ. Small heat shock protein speciation: novel non-canonical 44 kDa HspB5-related protein species in rat and human tissues. Cell Stress Chaperones 2018; 23:813-826. [PMID: 29542021 PMCID: PMC6111085 DOI: 10.1007/s12192-018-0890-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 10/17/2022] Open
Abstract
When analyzing small stress proteins of rat and human tissues by electrophoretic methods followed by western blotting, and using the anti-HspB1/anti-HspB5 antibody clone 8A7, we unexpectedly found a protein with a molecular mass of ~44 kDa. On two-dimensional gels, this protein resolved into four distinct species. Electrophoretic and immunological evidence suggests that this 44 kDa protein is a derivative of HspB5, most likely a covalently linked HspB5 dimer. This HspB5-like 44 kDa protein (HspB5L-P44) is particularly abundant in rat heart, brain, and renal cortex and glomeruli. HspB5L-P44 was also found in human brains, including those from patients with Alexander disease, a condition distinguished by cerebral accumulation of HspB5. Gray matter of such a patient contained an elevated amount of HspB5L-P44. A spatial model of structurally ordered dimeric HspB5 α-crystallin domains reveals the exposed and adjacent position of the two peptide segments homologous to the HspB1-derived 8A7 antigen determinant peptide (epitope). This explains the observed extraordinary high avidity of the 8A7 antibody towards HspB5L-P44, as opposed to commonly used HspB5-specific antibodies which recognize other epitopes. This scenario also explains the remarkable fact that no previous study reported the existence of HspB5L-P44 species. Exposure of rat endothelial cells to UV light, an oxidative stress condition, temporarily increased HspB5L-P44, suggesting physiological regulation of the dimerization. The existence of HspB5L-P44 supports the protein speciation discourse and fits to the concept of the protein code, according to which the expression of a given gene is reflected only by the complete set of the derived protein species.
Collapse
Affiliation(s)
- Rainer Benndorf
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Robert R Gilmont
- Department of Plastic and Reconstructive Surgery, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Sahoko Hirano
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Richard F Ransom
- Department of Pharmacology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Peter R Jungblut
- Core Facility Protein Analysis, Max-Planck-Institute for Infection Biology, Berlin, Germany
| | - Martin Bommer
- Max-Delbrück-Centrum für Molekulare Medizin, Berlin, Germany
| | - James E Goldman
- Department of Pathology and Cell Biology, Columbia University, New York, NY, USA
| | - Michael J Welsh
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
9
|
Nie X, Chanley MA, Pengal R, Thomas DB, Agrawal S, Smoyer WE. Pharmacological and genetic inhibition of downstream targets of p38 MAPK in experimental nephrotic syndrome. Am J Physiol Renal Physiol 2017; 314:F602-F613. [PMID: 29187369 DOI: 10.1152/ajprenal.00207.2017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Nie X, Chanley MA, Pengal R, Thomas DB, Agrawal S, Smoyer WE. Pharmacological and genetic inhibition of downstream targets of p38 MAPK in experimental nephrotic syndrome. Am J Physiol Renal Physiol 314: F602-F613, 2018. First published November 29, 2017; doi: 10.1152/ajprenal.00207.2017 .-The p38 MAPK pathway plays a crucial role in various glomerulopathies, with activation being associated with disease and inhibition being associated with disease amelioration. We hypothesized that the downstream targets of p38 MAPK, MAPK-activated protein kinase 2 and/or 3 (MK2 and/or MK3), play an important role in mediating injury in experimental nephrotic syndrome via their actions on their downstream substrates heat shock protein B1 (HSPB1) and cyclooxygenase-2 (COX-2). To test this hypothesis, the effects of both pharmacological and genetic inhibition of MK2 and MK3 were examined in mouse adriamycin (ADR) and rat puromycin aminonucleoside (PAN) nephropathy models. MK2-/-, MK3-/-, and MK2-/-MK3-/- mice were generated in the Sv129 background and subjected to ADR-induced nephropathy. MK2 and MK3 protein expression was completely abrogated in the respective knockout genotypes, and massive proteinuria and renal histopathological changes developed after ADR treatment. Furthermore, renal cortical HSPB1 was induced in all four genotypes by day 21, but HSPB1 was activated only in the wild-type and MK3-/- mice. Expression of the stress proteins HSPB8 and glucose-regulated protein 78 (GRP78) remained unaltered across all genotypes. Finally, while MK2 and/or MK3-knockout downregulated the proinflammatory enzyme COX-2, ADR significantly induced renal cortical COX-2 only in MK2-/- mice. Additionally, pharmacological MK2 inhibition with PF-318 during PAN-induced nephropathy did not result in significant proteinuria reduction in rats. Together, these data suggest that while the inhibition of MK2 and/or MK3 regulates the renal stress response, our currently available approaches are not yet able to safely and effectively reduce proteinuria in experimental nephrotic syndrome and that other p38MAPK downstream targets should also be considered to improve the future treatment of glomerular disease.
Collapse
Affiliation(s)
- Xiaojing Nie
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, Fuzhou Dongfang Hospital, Xiamen University , Fuzhou , China
| | - Melinda A Chanley
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - Ruma Pengal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio
| | - David B Thomas
- University of Miami Miller School of Medicine , Miami, Florida
| | - Shipra Agrawal
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, College of Medicine, The Ohio State University , Columbus, Ohio
| | - William E Smoyer
- Center for Clinical and Translational Research, The Research Institute at Nationwide Children's Hospital , Columbus, Ohio.,Department of Pediatrics, College of Medicine, The Ohio State University , Columbus, Ohio
| |
Collapse
|
10
|
Sreedharan R, Van Why SK. Heat shock proteins in the kidney. Pediatr Nephrol 2016; 31:1561-70. [PMID: 26913726 DOI: 10.1007/s00467-015-3297-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 12/01/2015] [Accepted: 12/07/2015] [Indexed: 12/15/2022]
Abstract
Heat shock proteins (Hsps) are essential to cell survival through their function as protein chaperones. The role they play in kidney health and disease is varied. Hsp induction may be either beneficial or detrimental to the kidney, depending on the specific Hsp, type of cell, and context. This review addresses the role of Hsps in the kidney, including during development, as osmoprotectants, and in various kidney disease models. Heat shock transcription factor, activated by a stress on renal cells, induces Hsp elaboration and separately regulates immune responses that can contribute to renal injury. Induced Hsps in the intracellular compartment are mostly beneficial in the kidney by stabilizing and restoring cell architecture and function through acting as protein chaperones. Intracellular Hsps also inhibit apoptosis and facilitate cell proliferation, preserving renal tubule viability after acute injury, but enhancing progression of cystic kidney disease and malignancy. Induced Hsps in the extracellular compartment, either circulating or located on outer cell membranes, are mainly detrimental through enhancing inflammation pathways to injury. Correctly harnessing these stress proteins promises the opportunity to alter the course of acute and chronic kidney disease.
Collapse
Affiliation(s)
- Rajasree Sreedharan
- Pediatrics, Nephrology, Medical College of Wisconsin, 999 N. 92nd St., Suite C510, Milwaukee, WI, 53226, USA
| | - Scott K Van Why
- Pediatrics, Nephrology, Medical College of Wisconsin, 999 N. 92nd St., Suite C510, Milwaukee, WI, 53226, USA.
| |
Collapse
|
11
|
Jean-Charles A, Merle H, Audo I, Desoudin C, Bocquet B, Baudoin C, Sidibe M, Mauget-Faÿsse M, Wolff B, Fichard A, Lenaers G, Sahel JA, Gaudric A, Cohen SY, Hamel CP, Meunier I. Martinique Crinkled Retinal Pigment Epitheliopathy: Clinical Stages and Pathophysiologic Insights. Ophthalmology 2016; 123:2196-204. [PMID: 27474146 DOI: 10.1016/j.ophtha.2016.06.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/30/2016] [Accepted: 06/06/2016] [Indexed: 12/23/2022] Open
Abstract
PURPOSE To reappraise the autosomal dominant Martinique crinkled retinal pigment epitheliopathy (MCRPE) in light of the knowledge of its associated mutated gene mitogen-activated protein kinase-activated protein kinase 3 (MAPKAPK3), an actor in the p38 mitogen-activated protein kinase pathway. DESIGN Clinical and molecular study. PARTICIPANTS A total of 45 patients from 3 generations belonging to a family originating from Martinique with an autosomal dominant MCRPE were examined. METHODS Best-corrected visual acuity, fundus photographs, and spectral-domain optical coherence tomography (SD OCT) of all clinically affected patients and carriers for the causal mutation were reviewed at the initial visit and 4 years later for 10 of them. Histologic retinal lesions of Mapkapk3(-/-) mice were compared with those of the human disease. MAIN OUTCOME MEASURES The MCRPE natural history in view of MAPKAPK3 function and Mapkapk3(-/-) mouse retinal lesions. RESULTS Eighteen patients had the c.518T>C mutation. One heterozygous woman aged 20 years was asymptomatic with normal fundus and SD OCT (stage 0). All c.518T>C heterozygous patients older than 30 years of age had the characteristic dried-out soil fundus pattern (stages 1 and 2). Complications (stage 3) were observed in 7 cases, including polypoidal choroidal vasculopathy (PCV) and macular fibrosis or atrophy. One patient was homozygous and had a form with severe Bruch's membrane (BM) thickening and macular exudation with a dried-out soil pattern in the peripheral retina. The oldest heterozygous patient, who was legally blind, had peripheral nummular pigmentary changes (stage 4). After 4 years, visual acuity was unchanged in 6 of 10 patients. The dried-out soil elementary lesions radically enlarged in patients with a preferential macular extension and confluence. These findings are in line with the progressive thickening of BM noted with age in the mouse model. During follow-up, there was no occurrence of PCV. CONCLUSIONS MCRPE is an autosomal dominant, fully penetrant retinal dystrophy with a preclinical stage, an onset after the age of 30 years, and a preserved visual acuity until occurrence of macular complications. The natural history of MCRPE is in relation to the role of MAPKAPK3 in BM modeling, vascular endothelial growth factor activity, retinal pigment epithelial responses to aging, and oxidative stress.
Collapse
Affiliation(s)
- Albert Jean-Charles
- Department of Ophthalmology, University Hospital of Fort de France, Martinique (FWI), France
| | - Harold Merle
- Department of Ophthalmology, University Hospital of Fort de France, Martinique (FWI), France
| | - Isabelle Audo
- Fondation Adolphe de Rothschild, Paris, France; CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris - Sorborne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris - Institute of Ophthalmology, University College of London, London, United Kingdom
| | | | - Béatrice Bocquet
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - Corinne Baudoin
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - Moro Sidibe
- Fondation Adolphe de Rothschild, Paris, France
| | | | - Benjamin Wolff
- Fondation Adolphe de Rothschild, Paris, France; Eye Clinic, Maison Rouge, Strasbourg, France
| | - Agnès Fichard
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - Guy Lenaers
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - José-Alain Sahel
- Fondation Adolphe de Rothschild, Paris, France; CHNO des Quinze-Vingts, DHU Sight Restore, INSERM-DHOS CIC1423, Paris - Sorborne Universités, UPMC Univ Paris 06, INSERM, CNRS, Institut de la Vision, Paris - Institute of Ophthalmology, University College of London, London, United Kingdom; Académie des Sciences, Institut de France, Paris, France
| | - Alain Gaudric
- Department of Ophthalmology, Lariboisière Hospital, Paris, France
| | - Salomon Yves Cohen
- Ophthalmic Center for Imaging and Laser, Paris, France; Department of Ophthalmology, Intercity Hospital and University Paris Est, Créteil, France
| | - Christian P Hamel
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France
| | - Isabelle Meunier
- Institute for Neurosciences of Montpellier U1051, University of Montpellier - University Hospital, Genetics of Sensory Diseases, Montpellier, France.
| |
Collapse
|
12
|
Khamis I, Chan DW, Shirriff CS, Campbell JH, Heikkila JJ. Expression and localization of the Xenopus laevis small heat shock protein, HSPB6 (HSP20), in A6 kidney epithelial cells. Comp Biochem Physiol A Mol Integr Physiol 2016; 201:12-21. [PMID: 27354198 DOI: 10.1016/j.cbpa.2016.06.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/17/2016] [Accepted: 06/17/2016] [Indexed: 01/05/2023]
Abstract
Small heat shock proteins (sHSPs) are molecular chaperones that bind to unfolded protein, inhibit the formation of toxic aggregates and facilitate their refolding and/or degradation. Previously, the only sHSPs that have been studied in detail in the model frog system, Xenopus laevis, were members of the HSP30 family and HSPB1 (HSP27). We now report the analysis of X. laevis HSPB6, an ortholog of mammalian HSPB6. X. laevis HSPB6 cDNA encodes a 168 aa protein that contains an α-crystallin domain, a polar C-terminal extension and some possible phosphorylation sites. X. laevis HSPB6 shares 94% identity with a X. tropicalis HSPB6, 65% with turtle, 59% with humans, 49% with zebrafish and only 50% and 43% with X. laevis HSPB1 and HSP30C, respectively. Phylogenetic analysis revealed that X. laevis HSPB6 grouped more closely with mammalian and reptilian HSPB6s than with fish HSPB6. X. laevis recombinant HSPB6 displayed molecular chaperone properties since it had the ability to inhibit heat-induced aggregation of citrate synthase. Immunoblot analysis determined that HSPB6 was present constitutively in kidney epithelial cells and that heat shock treatment did not upregulate HSPB6 levels. While treatment with the proteasomal inhibitor, MG132, resulted in a 2-fold increase in HSPB6 levels, exposure to cadmium chloride produced a slight increase in HSPB6. These findings were in contrast to HSP70, which was enhanced in response to all three stressors. Finally, immunocytochemical analysis revealed that HSPB6 was present in the cytoplasm in the perinuclear region with some in the nucleus.
Collapse
Affiliation(s)
- Imran Khamis
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Daniel W Chan
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Cody S Shirriff
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - James H Campbell
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - John J Heikkila
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
| |
Collapse
|
13
|
Olabisi OA, Zhang JY, VerPlank L, Zahler N, DiBartolo S, Heneghan JF, Schlöndorff JS, Suh JH, Yan P, Alper SL, Friedman DJ, Pollak MR. APOL1 kidney disease risk variants cause cytotoxicity by depleting cellular potassium and inducing stress-activated protein kinases. Proc Natl Acad Sci U S A 2016; 113:830-7. [PMID: 26699492 PMCID: PMC4743809 DOI: 10.1073/pnas.1522913113] [Citation(s) in RCA: 155] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Two specific genetic variants of the apolipoprotein L1 (APOL1) gene are responsible for the high rate of kidney disease in people of recent African ancestry. Expression in cultured cells of these APOL1 risk variants, commonly referred to as G1 and G2, results in significant cytotoxicity. The underlying mechanism of this cytotoxicity is poorly understood. We hypothesized that this cytotoxicity is mediated by APOL1 risk variant-induced dysregulation of intracellular signaling relevant for cell survival. To test this hypothesis, we conditionally expressed WT human APOL1 (G0), the APOL1 G1 variant, or the APOL1 G2 variant in human embryonic kidney cells (T-REx-293) using a tetracycline-mediated (Tet-On) system. We found that expression of either G1 or G2 APOL1 variants increased apparent cell swelling and cell death compared with G0-expressing cells. These manifestations of cytotoxicity were preceded by G1 or G2 APOL1-induced net efflux of intracellular potassium as measured by X-ray fluorescence, resulting in the activation of stress-activated protein kinases (SAPKs), p38 MAPK, and JNK. Prevention of net K(+) efflux inhibited activation of these SAPKs by APOL1 G1 or G2. Furthermore, inhibition of SAPK signaling and inhibition of net K(+) efflux abrogated cytotoxicity associated with expression of APOL1 risk variants. These findings in cell culture raise the possibility that nephrotoxicity of APOL1 risk variants may be mediated by APOL1 risk variant-induced net loss of intracellular K(+) and subsequent induction of stress-activated protein kinase pathways.
Collapse
Affiliation(s)
- Opeyemi A Olabisi
- Division of Nephrology, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114; Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; Harvard Medical School, Boston, MA 02215
| | - Jia-Yue Zhang
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; Harvard Medical School, Boston, MA 02215
| | | | | | - Salvatore DiBartolo
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - John F Heneghan
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; Harvard Medical School, Boston, MA 02215; Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Johannes S Schlöndorff
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; Harvard Medical School, Boston, MA 02215
| | - Jung Hee Suh
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; Harvard Medical School, Boston, MA 02215
| | - Paul Yan
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; Harvard Medical School, Boston, MA 02215
| | - Seth L Alper
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; Harvard Medical School, Boston, MA 02215; Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - David J Friedman
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; Harvard Medical School, Boston, MA 02215; Vascular Biology Research Center, Beth Israel Deaconess Medical Center, Boston, MA 02215
| | - Martin R Pollak
- Division of Nephrology, Department of Medicine, Beth Israel Deaconess Medical Center, Boston, MA 02215; Harvard Medical School, Boston, MA 02215;
| |
Collapse
|
14
|
Meunier I, Lenaers G, Bocquet B, Baudoin C, Piro-Megy C, Cubizolle A, Quilès M, Jean-Charles A, Cohen SY, Merle H, Gaudric A, Labesse G, Manes G, Péquignot M, Cazevieille C, Dhaenens CM, Fichard A, Ronkina N, Arthur SJ, Gaestel M, Hamel CP. A dominant mutation in MAPKAPK3, an actor of p38 signaling pathway, causes a new retinal dystrophy involving Bruch's membrane and retinal pigment epithelium. Hum Mol Genet 2016; 25:916-26. [PMID: 26744326 DOI: 10.1093/hmg/ddv624] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 12/21/2015] [Indexed: 01/09/2023] Open
Abstract
Inherited retinal dystrophies are clinically and genetically heterogeneous with significant number of cases remaining genetically unresolved. We studied a large family from the West Indies islands with a peculiar retinal disease, the Martinique crinkled retinal pigment epitheliopathy that begins around the age of 30 with retinal pigment epithelium (RPE) and Bruch's membrane changes resembling a dry desert land and ends with a retinitis pigmentosa. Whole-exome sequencing identified a heterozygous c.518T>C (p.Leu173Pro) mutation in MAPKAPK3 that segregates with the disease in 14 affected and 28 unaffected siblings from three generations. This unknown variant is predicted to be damaging by bioinformatic predictive tools and the mutated protein to be non-functional by crystal structure analysis. MAPKAPK3 is a serine/threonine protein kinase of the p38 signaling pathway that is activated by a variety of stress stimuli and is implicated in cellular responses and gene regulation. In contrast to other tissues, MAPKAPK3 is highly expressed in the RPE, suggesting a crucial role for retinal physiology. Expression of the mutated allele in HEK cells revealed a mislocalization of the protein in the cytoplasm, leading to cytoskeleton alteration and cytodieresis inhibition. In Mapkapk3-/- mice, Bruch's membrane is irregular with both abnormal thickened and thinned portions. In conclusion, we identified the first pathogenic mutation in MAPKAPK3 associated with a retinal disease. These findings shed new lights on Bruch's membrane/RPE pathophysiology and will open studies of this signaling pathway in diseases with RPE and Bruch's membrane alterations, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Isabelle Meunier
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France,
| | - Guy Lenaers
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France, Mitochondrial Medicine Research Center, University of Angers, CNRS 6214, INSERM U1083, Angers, France
| | - Béatrice Bocquet
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France
| | - Corinne Baudoin
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France
| | - Camille Piro-Megy
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France
| | - Aurélie Cubizolle
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France
| | - Mélanie Quilès
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France
| | - Albert Jean-Charles
- Department of Ophthalmology, University Hospital of Fort de France, Martinique (FWI), France
| | - Salomon Yves Cohen
- Imaging and Laser Center of Paris, Department of Ophthalmology, Intercity Hospital and University Paris, Creteil, France
| | - Harold Merle
- Department of Ophthalmology, University Hospital of Fort de France, Martinique (FWI), France
| | - Alain Gaudric
- Department of Ophthalmology, Lariboisiere Hospital, AP-HP and University Paris 7-Sorbonne Paris, Paris, France
| | - Gilles Labesse
- Center for Structural Biochemistry Montpellier, INSERM U1054-CNRS UMR5048, Montpellier, France
| | - Gaël Manes
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France
| | - Marie Péquignot
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France
| | - Chantal Cazevieille
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France, Institute for Neurosciences, CRIC/IURC, Montpellier, France
| | - Claire-Marie Dhaenens
- CHRU Lille, Biochemistry and Molecular Biology Department, University Lille North, Lille, France
| | - Agnès Fichard
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France
| | - Natalia Ronkina
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany and
| | | | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany and
| | - Christian P Hamel
- National Center in Genetic of Sensory Diseases, Institute for Neurosciences of Montpellier, INSERM U1051, University of Montpellier, Montpellier Hospital, Montpellier, France
| |
Collapse
|
15
|
Köther K, Nordhoff C, Masemann D, Varga G, Bream JH, Gaestel M, Wixler V, Ludwig S. MAPKAP kinase 3 suppresses Ifng gene expression and attenuates NK cell cytotoxicity and Th1 CD4 T-cell development upon influenza A virus infection. FASEB J 2014; 28:4235-46. [PMID: 24935968 DOI: 10.1096/fj.14-249599] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
MK2 and MK3 are downstream targets of p38 and ERK1/2. They control the mRNA stability of several inflammatory cytokines, including TNF-α and IL-10. Whereas MK2 is expressed ubiquitously, the expression of MK3 is restricted to muscle, liver, and heart tissues and T and NK cells. Using Mk-deficient and wild-type (WT) mice, we demonstrated an inhibitory effect of MK3, but not of MK2, on interferon (IFN)-γ expression in T and NK lymphocytes. The results provided evidence that the inhibitory effect of MK3 is based on negative feedback phosphorylation of p38 and ERK1/2, which causes decreased binding of Stat4 to the IFN-γ promoter and reduced expression of IFN-γ mRNA and protein. Consequently, all Mk3(-/-) mice challenged with the Th1-inducing influenza A virus (IAV) survived the WT LD50 virus dose. The reduced disease severity in the Mk3(-/-) mice was accompanied by a >10-fold reduction in viral lung titer and an increase in the number of activated NK cells and enhanced Th1 activation of CD4 T cells. Thus, our data describe the protein kinase MK3 as a novel regulator of the innate and adaptive immune responses.-Köther, K., Nordhoff, C., Masemann, D., Varga, G., Bream, J. H., Gaestel, M., Wixler, V., Ludwig, S. MAPKAP kinase 3 suppresses Ifng gene expression and attenuates NK cell cytotoxicity and Th1 CD4 T-cell development upon influenza A virus infection.
Collapse
Affiliation(s)
- Katharina Köther
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and
| | - Carolin Nordhoff
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and
| | - Dörthe Masemann
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and
| | - Georg Varga
- Department of Pediatric Rheumatology and Immunology, Westfälische Wilhelms University, Münster, Germany
| | - Jay H Bream
- Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Matthias Gaestel
- Institute of Biochemistry, Hannover Medical School, Hannover, Germany; and
| | - Viktor Wixler
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| | - Stephan Ludwig
- Institute of Molecular Virology (IMV), Centre for Molecular Biology of Inflammation (ZMBE), and Interdisciplinary Center of Clinical Research (IZKF), University of Münster, Münster, Germany
| |
Collapse
|