1
|
Huang GX, Hallen NR, Lee M, Zheng K, Wang X, Mandanas MV, Djeddi S, Fernandez D, Hacker J, Ryan T, Bergmark RW, Bhattacharyya N, Lee S, Maxfield AZ, Roditi RE, Buchheit KM, Laidlaw TM, Gern JE, Hallstrand TS, Ray A, Wenzel SE, Boyce JA, Gutierrez-Arcelus M, Barrett NA. Increased epithelial mTORC1 activity in chronic rhinosinusitis with nasal polyps. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.13.562288. [PMID: 37904989 PMCID: PMC10614789 DOI: 10.1101/2023.10.13.562288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
Background The airway epithelium plays a central role in the pathogenesis of chronic respiratory diseases such as asthma and chronic rhinosinusitis with nasal polyps (CRSwNP), but the mechanisms by which airway epithelial cells (EpCs) maintain inflammation are poorly understood. Objective We hypothesized that transcriptomic assessment of sorted airway EpCs across the spectrum of differentiation would allow us to define mechanisms by which EpCs perpetuate airway inflammation. Methods Ethmoid sinus EpCs from adult patients with CRS were sorted into 3 subsets, bulk RNA sequenced, and analyzed for differentially expressed genes and pathways. Single cell RNA-seq (scRNA-seq) datasets from eosinophilic and non-eosinophilic CRSwNP and bulk RNA-seq of EpCs from mild/moderate and severe asthma were assessed. Immunofluorescent staining and ex vivo functional analysis of sinus EpCs were used to validate our findings. Results Analysis within and across purified EpC subsets revealed an enrichment in glycolytic programming in CRSwNP vs CRSsNP. Correlation analysis identified mammalian target of rapamycin complex 1 (mTORC1) as a potential regulator of the glycolytic program and identified EpC expression of cytokines and wound healing genes as potential sequelae. mTORC1 activity was upregulated in CRSwNP, and ex vivo inhibition demonstrated that mTOR is critical for EpC generation of CXCL8, IL-33, and CXCL2. Across patient samples, the degree of glycolytic activity was associated with T2 inflammation in CRSwNP, and with both T2 and non-T2 inflammation in severe asthma. Conclusions Together, these findings highlight a metabolic axis required to support epithelial generation of cytokines critical to both chronic T2 and non-T2 inflammation in CRSwNP and asthma.
Collapse
Affiliation(s)
- George X. Huang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Nils R. Hallen
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Minkyu Lee
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Kelly Zheng
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Xin Wang
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | | | - Sarah Djeddi
- Division of Immunology, Boston Children’s Hospital; Boston, MA
| | | | - Jonathan Hacker
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tessa Ryan
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Regan W. Bergmark
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Neil Bhattacharyya
- Department of Otolaryngology, Head and Neck Surgery, Massachusetts Eye and Ear Infirmary; Boston, MA
| | - Stella Lee
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Alice Z. Maxfield
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Rachel E. Roditi
- Department of Otolaryngology, Head and Neck Surgery, Brigham and Women’s Hospital; Boston, MA
| | - Kathleen M. Buchheit
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Tanya M. Laidlaw
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - James E. Gern
- Division of Allergy, Immunology, and Rheumatology, University of Wisconsin School of Medicine and Public Health; Madison, WI
| | - Teal S. Hallstrand
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Washington Medical Center; Seattle, WA
| | - Anuradha Ray
- Department of Immunology, University of Pittsburgh; Pittsburgh, PA
| | - Sally E. Wenzel
- Department of Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh Medical Center; Pittsburgh, PA
| | - Joshua A. Boyce
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| | - Maria Gutierrez-Arcelus
- Division of Immunology, Boston Children’s Hospital; Boston, MA
- Program in Medical and Population Genetics, Broad Institute of MIT and Harvard; Cambridge, MA
| | - Nora A. Barrett
- Jeff and Penny Vinik Center for Translational Immunology Research, Division of Allergy and Clinical Immunology, Brigham and Women’s Hospital; Boston, MA
- Department of Medicine, Harvard Medical School; Boston, MA
| |
Collapse
|
2
|
Chen YT, Li J, Chang JN, Luo YC, Yu W, Chen LC, Yang JM. Transcriptomic analysis of World Trade Center particulate Matter-induced pulmonary inflammation and drug treatments. ENVIRONMENT INTERNATIONAL 2023; 177:108027. [PMID: 37321070 DOI: 10.1016/j.envint.2023.108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/06/2023] [Accepted: 06/06/2023] [Indexed: 06/17/2023]
Abstract
Over 400,000 people are estimated to have been exposed to World Trade Center particulate matter (WTCPM) since the attack on the Twin Towers in Lower Manhattan on September 11, 2001. Epidemiological studies have found that exposure to dust may cause respiratory ailments and cardiovascular diseases. However, limited studies have performed a systematic analysis of transcriptomic data to elucidate the biological responses to WTCPM exposure and the therapeutic options. Here, we developed an in vivo mouse exposure model of WTCPM and administered two drugs (i.e., rosoxacin and dexamethasone) to generate transcriptomic data from lung samples. WTCPM exposure increased the inflammation index, and this index was significantly reduced by both drugs. We analyzed the transcriptomics derived omics data using a hierarchical systems biology model (HiSBiM) with four levels, including system, subsystem, pathway, and gene analyses. Based on the selected differentially expressed genes (DEGs) from each group, WTCPM and the two drugs commonly affected the inflammatory responses, consistent with the inflammation index. Among these DEGs, the expression of 31 genes was affected by WTCPM exposure and consistently reversed by the two drugs, and these genes included Psme2, Cldn18, and Prkcd, which are involved in immune- and endocrine-related subsystems and pathways such as thyroid hormone synthesis, antigen processing and presentation, and leukocyte transendothelial migration. Furthermore, the two drugs reduced the inflammatory effects of WTCPM through distinct pathways, e.g., vascular-associated signaling by rosoxacin, whereas mTOR-dependent inflammatory signaling was found to be regulated by dexamethasone. To the best of our knowledge, this study constitutes the first investigation of transcriptomics data of WTCPM and an exploration of potential therapies. We believe that these findings provide strategies for the development of promising optional interventions and therapies for airborne particle exposure.
Collapse
Affiliation(s)
- Yun-Ti Chen
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C; Department of Chemistry and Chemical Biology, Harvard University, Cambridge, MA 02138, USA
| | - Jinhui Li
- Department of Urology, Stanford University Medical Center, Stanford, CA 94304, USA; Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Jen-Ning Chang
- Degree Program of Applied Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| | - Yong-Chun Luo
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C
| | - Wuyue Yu
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Lung-Chi Chen
- Department of Environmental Medicine, New York University School of Medicine, New York, NY 10010, USA
| | - Jinn-Moon Yang
- Institute of Bioinformatics and Systems Biology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C; Department of Biological Science and Technology, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C; Center for Intelligent Drug Systems and Smart Bio-devices, National Yang Ming Chiao Tung University, Hsinchu 30010, Taiwan, R.O.C.
| |
Collapse
|
3
|
Nanotechnology for Nanophytopathogens: From Detection to the Management of Plant Viruses. BIOMED RESEARCH INTERNATIONAL 2022; 2022:8688584. [PMID: 36225980 PMCID: PMC9550482 DOI: 10.1155/2022/8688584] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/02/2022] [Accepted: 09/03/2022] [Indexed: 11/18/2022]
Abstract
Plant viruses are the most destructive pathogens which cause devastating losses to crops due to their diversity in the genome, rapid evolution, mutation or recombination in the genome, and lack of management options. It is important to develop a reliable remedy to improve the management of plant viral diseases in economically important crops. Some reports show the efficiency of metal nanoparticles and engineered nanomaterials and their wide range of applications in nanoagriculture. Currently, there are reports for the use of nanoparticles as an antibacterial and antifungal agent in plants and animals too, but few reports as plant antiviral. “Nanophytovirology” has been emerged as a new branch that covers nanobased management approaches to deal with devastating plant viruses. Varied nanoparticles have specific physicochemical properties that help them to interact in various unique and useful ways with viruses and their vectors along with the host plants. To explore the antiviral role of nanoparticles and for the effective management of plant viruses, it is imperative to understand all minute details such as the concentration/dosage of nanoparticles, time of application, application interval, and their mechanism of action. This review focused on different aspects of metal nanoparticles and metal oxides such as their interaction with plant viruses to explore the antiviral role and the multidimensional perspective of nanotechnology in plant viral disease detection, treatment, and management.
Collapse
|
4
|
Craparo EF, Drago SE, Quaglia F, Ungaro F, Cavallaro G. Development of a novel rapamycin loaded nano- into micro-formulation for treatment of lung inflammation. Drug Deliv Transl Res 2022; 12:1859-1872. [PMID: 35182368 PMCID: PMC8857397 DOI: 10.1007/s13346-021-01102-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/29/2021] [Indexed: 12/21/2022]
Abstract
It has recently emerged that drugs such as the mTOR inhibitor rapamycin (Rapa) may play a key role in the treatment of airway inflammation associated with lung diseases, such as chronic obstructive pulmonary disease, asthma, and cystic fibrosis. Nevertheless, Rapa clinical application is still prevented by its unfavorable chemical-physical properties, limited oral bioavailability, and adverse effects related to non-specific biodistribution. In this paper, the design and production of a novel formulation of Rapa based on nano into micro (NiM) particles are detailed. To achieve it, Rapa-loaded nanoparticles were produced by nanoprecipitation of an amphiphilic pegylated poly-ɛ-caprolactone/polyhydroxyethyl aspartamide graft copolymer. The obtained nanoparticles that showed a drug loading of 14.4 wt% (corresponding to an encapsulation efficiency of 82 wt%) did not interact with mucins and were able to release and protect Rapa from degradation in simulated lung and cell fluids. To allow their local administration to the lungs as a dry powder, particle engineering at micro-sized level was done by embedding nanoparticles into mannitol-based microparticles by spray drying. Obtained NiM particles had a mean diameter of about 2-µ, spherical shape and had good potential to be delivered to the lungs by a breath-activated dry powder inhalers. Rheological and turbidity experiments showed that these NiM particles can dissolve in lung simulated fluid and deliver the Rapa-loaded pegylated nanoparticles, which can diffuse through the mucus layer.
Collapse
Affiliation(s)
- Emanuela Fabiola Craparo
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Salvatore Emanuele Drago
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy
| | - Fabiana Quaglia
- Lab of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via D Montesano 49, 80131, Naples, Italy
| | - Francesca Ungaro
- Lab of Drug Delivery, Department of Pharmacy, University of Napoli Federico II, Via D Montesano 49, 80131, Naples, Italy
| | - Gennara Cavallaro
- Lab of Biocompatible Polymers, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, Via Archirafi 32, 90123, Palermo, Italy.
| |
Collapse
|
5
|
Mathur S, Wang JC, Seehus CR, Poirier F, Crosson T, Hsieh YC, Doyle B, Lee S, Woolf CJ, Foster SL, Talbot S. Nociceptor neurons promote IgE class switch in B cells. JCI Insight 2021; 6:148510. [PMID: 34727095 PMCID: PMC8783686 DOI: 10.1172/jci.insight.148510] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Nociceptors, the high-threshold primary sensory neurons that trigger pain, interact with immune cells in the periphery to modulate innate immune responses. Whether they also participate in adaptive and humoral immunity is, however, not known. In this study, we probed if nociceptors have a role in distinct airway and skin models of allergic inflammation. In both models, the genetic ablation and pharmacological silencing of nociceptors substantially reduced inflammatory cell infiltration to the affected tissue. Moreover, we also found a profound and specific deficit in IgE production in these models of allergic inflammation. Mechanistically, we discovered that the nociceptor-released neuropeptide Substance P help triggered the formation of antibody secreting cells and their release of IgE. Our findings suggest that nociceptors, in addition to their contributions to innate immunity, play a key role in modulating the adaptive immune response, particularly B cell antibody class switching to IgE.
Collapse
Affiliation(s)
- Shreya Mathur
- David Geffen School of Medicine, University of California Los Angeles, Los Angeles, United States of America
| | - Jo-Chiao Wang
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| | - Corey R Seehus
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States of America
| | - Florence Poirier
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| | - Theo Crosson
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| | - Yu-Chen Hsieh
- Department of Genetics, Harvard Medical School and Massachusetts General Hospital, Boston, United States of America
| | - Benjamin Doyle
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States of America
| | - Seungkyu Lee
- Department of Neurobiology, Harvard Medical School, Boston, United States of America
| | - Clifford J Woolf
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, United States of America
| | - Simmie L Foster
- Department of Psychiatry, Harvard Medical School and Massachusetts General Hospital, Boston, United States of America
| | - Sebastien Talbot
- Department of Pharmacology and Physiology, University of Montreal, Montreal, Canada
| |
Collapse
|
6
|
Zhao Z, Xu X, Jiang H, Foster KW, Jia Z, Wei X, Chen N, Goldring SR, Crow MK, Wang D. Preclinical Dose-Escalation Study of ZSJ-0228, a Polymeric Dexamethasone Prodrug, in the Treatment of Murine Lupus Nephritis. Mol Pharm 2021; 18:4188-4197. [PMID: 34569234 DOI: 10.1021/acs.molpharmaceut.1c00567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Glucocorticoids (GCs) are widely used in the clinical management of lupus nephritis (LN). Their long-term use, however, is associated with the risk of significant systemic side effects. We have developed a poly(ethylene glycol) (PEG)-based dexamethasone (Dex) prodrug (i.e., ZSJ-0228) and in a previous study, demonstrated its potential therapeutic efficacy in mice with established LN, while avoiding systemic GC-associated toxicity. In the present study, we have employed a dose-escalation design to establish the optimal dose-response relationships for ZSJ-0228 in treating LN and further investigated the safety of ZSJ-0228 in lupus-prone NZB/W F1 mice with established nephritis. ZSJ-0228 was intravenously (i.v.) administered monthly at four levels: 0.5 (L1), 1.0 (L2), 3.0 (L3), and 8.0 (L4) mg/kg/day Dex equivalent. For controls, mice were treated with i.v. saline every 4 weeks. In addition, a group of mice received intraperitoneal injections (i.p.) of Dex every day or i.v. injections of Dex every four weeks. Treatment of mice with LN with ZSJ-0228 dosed at L1 resulted in the resolution of proteinuria in 14% of the mice. Mice treated with ZSJ-0228 dosed at L2 and L3 levels resulted in the resolution of proteinuria in ∼60% of the mice in both groups. Treatment with ZSJ-0228 dosed at L4 resulted in the resolution of proteinuria in 30% of the mice. The reduction and/or resolution of the proteinuria, improvement in renal histological scores, and survival data indicate that the most effective dose range for ZSJ-0228 in treating LN in NZB/W F1 mice is between 1.0 and 3.0 mg/kg/day Dex equivalent. Typical GC-associated side effects (e.g., osteopenia, adrenal glands atrophy, etc.) were not observed in any of the ZSJ-0228 treatment groups, confirming its excellent safety profile.
Collapse
Affiliation(s)
- Zhifeng Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xiaoke Xu
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Haochen Jiang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Kirk W Foster
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, Omaha, Nebraska 68198-5900, United States
| | - Zhenshan Jia
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Xin Wei
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Ningrong Chen
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| | - Steven R Goldring
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Mary K Crow
- Hospital for Special Surgery, New York, New York 10021, United States
| | - Dong Wang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, Nebraska 68198-6125, United States
| |
Collapse
|
7
|
Nailwal NP, Doshi GM. Role of intracellular signaling pathways and their inhibitors in the treatment of inflammation. Inflammopharmacology 2021; 29:617-640. [PMID: 34002330 DOI: 10.1007/s10787-021-00813-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/24/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is not only a defense mechanism of the innate immune system against invaders, but it is also involved in the pathogenesis of many diseases such as atherosclerosis, thrombosis, diabetes, epilepsy, and many neurodegenerative disorders. The World Health Organization (WHO) reports worldwide estimates of people (9.6% in males and 18.0% in females) aged over 60 years, suffering from symptomatic osteoarthritis, and around 339 million suffering from asthma. Other chronic inflammatory diseases, such as ulcerative colitis and Crohn's disease are also highly prevalent. The existing anti-inflammatory agents, both non-steroidal and steroidal, are highly effective; however, their prolonged use is marred by the severity of associated side effects. A holistic approach to ensure patient compliance requires understanding the pathophysiology of inflammation and exploring new targets for drug development. In this regard, various intracellular cell signaling pathways and their signaling molecules have been identified to be associated with inflammation. Therefore, chemical inhibitors of these pathways may be potential candidates for novel anti-inflammatory drug approaches. This review focuses on the anti-inflammatory effect of these inhibitors (for JAK/STAT, MAPK, and mTOR pathways) describing their mechanism of action through literature search, current patents, and molecules under clinical trials.
Collapse
Affiliation(s)
- Namrata P Nailwal
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India
| | - Gaurav M Doshi
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mithibai Campus, Vile Parle (W), V. M. Road, 400056, Mumbai, India.
| |
Collapse
|
8
|
Wang S, Wuniqiemu T, Tang W, Teng F, Bian Q, Yi L, Qin J, Zhu X, Wei Y, Dong J. Luteolin inhibits autophagy in allergic asthma by activating PI3K/Akt/mTOR signaling and inhibiting Beclin-1-PI3KC3 complex. Int Immunopharmacol 2021; 94:107460. [PMID: 33621850 DOI: 10.1016/j.intimp.2021.107460] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/26/2021] [Accepted: 01/31/2021] [Indexed: 12/11/2022]
Abstract
Allergic asthma is a common chronic inflammatory disease characterized by airway inflammation, mucus hypersecretion and airway remodeling. Autophagy is a highly conserved intracellular degradation pathway in eukaryotic cells. There is growing evidence suggesting that dysregulation of autophagy is involved in the pathological process of asthma. Luteolin is a typical flavonoid compound with anti-inflammatory, anti-allergic and immune-enhancing functions. Previous studies have shown that luteolin can attenuate airway inflammation and hypersensitivity in asthma. However, whether luteolin can play a role in treating asthma by regulating autophagy remains unclear. The aim of the present study was to evaluate the therapeutic effect of luteolin on ovalbumin (OVA)-induced asthmatic mice, observe its effect on the level of autophagy in lung tissues, and further elucidate its underlying mechanism. The results showed that OVA-induced mice developed airway hyperresponsiveness, mucus over-production and collagen deposition. The number of inflammatory cells, levels of interleukin (IL)-4, IL-5 and IL-13 in bronchoalveolar lavage fluid (BALF) and OVA-specific IgE in serum were significantly increased. Furthermore, the infiltration of inflammatory cells was observed along with the activation of autophagy in lung tissues. Luteolin treatment significantly inhibited the OVA-induced inflammatory responses and the level of autophagy in lung tissues as well. Moreover, luteolin activated the PI3K/Akt/mTOR pathway and inhibited the Beclin-1-PI3KC3 protein complex in lung tissues of asthmatic mice. In conclusion, this study explored the regulatory mechanism of luteolin on autophagy in allergic asthma, providing biologic evidence for its clinical application.
Collapse
Affiliation(s)
- Shiyuan Wang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Tulake Wuniqiemu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Weifeng Tang
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Fangzhou Teng
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Qin Bian
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - La Yi
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Jingjing Qin
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Xueyi Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China
| | - Ying Wei
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China.
| | - Jingcheng Dong
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai 200040, China; Institutes of Integrative Medicine, Fudan University, Shanghai 200433, China.
| |
Collapse
|
9
|
Malaviya R, Zhou Z, Raymond H, Wertheimer J, Jones B, Bunting R, Wilkinson P, Madireddy L, Hall L, Ryan M, Rao TS. Repeated exposure of house dust mite induces progressive airway inflammation in mice: Differential roles of CCL17 and IL-13. Pharmacol Res Perspect 2021; 9:e00770. [PMID: 33929099 PMCID: PMC8085917 DOI: 10.1002/prp2.770] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 03/10/2021] [Indexed: 12/12/2022] Open
Abstract
We conducted a systematic evaluation of lung inflammation indued by repeated intranasal exposure (for 10 consecutive days) to a human aeroallergen, house dust mite (HDM) in BALB/c mice. Peak influx of neutrophils, monocytes/lymphocytes, and eosinophils was observed in bronchoalveolar lavage (BAL) on days 1, 7 and 11, respectively, and normalized to baseline by day 21. Peak elevations of Th2, myeloid-derived cytokines/chemokines and serum IgE were seen both in BAL and lung tissue homogenates between days 7 and 11, and declined thereafter; however, IL-33 levels remained elevated from day 7 to day 21. Airway hyperreactivity to inhaled methacholine was significantly increased by day 11 and decreased to baseline by day 21. The lung tissue showed perivascular and peribronchial cuffing, epithelial hypertrophy and hyperplasia and goblet cell formation in airways by day 11, and resolution by day 21. Levels of soluble collagen and tissue inhibitors of metalloproteinases (TIMP) also increased reflecting tissue remodeling in the lung. Microarray analysis demonstrated a significant time-dependent up-regulation of several genes including IL-33, CLCA3, CCL17, CD4, CD10, CD27, IL-13, Foxa3, IL-4, IL-10, and CD19, in BAL cells as well as the lung. Pre-treatment of HDM challenged mice with CCL17 and IL-13 antibodies reduced BAL cellularity, airway hyper-responsiveness (AHR), and histopathological changes. Notably, anti-IL-13, but not anti-CCL17 monoclonal antibodies (mAbs) reduced BAL neutrophilia while both mAbs attenuated eosinophilia. These results suggest that CCL17 has an overlapping, yet distinct profile versus IL-13 in the HDM model of pulmonary inflammation and potential for CCL17-based therapeutics in treating Th2 inflammation.
Collapse
Affiliation(s)
- Ravi Malaviya
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| | - Zhao Zhou
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| | - Holly Raymond
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| | - Josh Wertheimer
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| | - Brian Jones
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| | - Rachel Bunting
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| | - Patrick Wilkinson
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| | - Lohith Madireddy
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| | - LeRoy Hall
- Drug Safety Sciences (L.R.) Janssen Research & Development, LLCSpring HousePAUSA
| | - Mary Ryan
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| | - Tadimeti S. Rao
- Discovery ImmunologyJanssen Research & Development, LLCSpring HousePAUSA
| |
Collapse
|
10
|
Bush A. Azithromycin is the answer in paediatric respiratory medicine, but what was the question? Paediatr Respir Rev 2020; 34:67-74. [PMID: 31629643 DOI: 10.1016/j.prrv.2019.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Accepted: 07/30/2019] [Indexed: 02/07/2023]
Abstract
The first clinical indication of non-antibiotic benefits of macrolides was in the Far East, in adults with diffuse panbronchiolitis. This condition is characterised by chronic airway infection, often with Pseudomonas aeruginosa, airway inflammation, bronchiectasis and a high mortality. Low dose erythromycin, and subsequently other macrolides, led in many cases to complete remission of the condition, and abrogated the neutrophilic airway inflammation characteristic of the disease. This dramatic finding sparked a flurry of interest in the many hundreds of macrolides in nature, especially their anti-inflammatory and immunomodulatory effects. The biggest subsequent trials of azithromycin were in cystic fibrosis, which has obvious similarities to diffuse panbronchiolitis. There were unquestionable improvements in lung function and pulmonary exacerbations, but compared to diffuse panbronchiolitis, the results were disappointing. Case reports, case series and some randomised controlled trials followed in other conditions. Three trials of azithromycin in preschool wheeze gave contradictory results; a trial in pauci-inflammatory adult asthma, and a trial in non-cystic fibrosis bronchiectasis both showed a significant reduction in exacerbations, but none matched the dramatic results in diffuse panbronchiolitis. There is clearly a huge risk of antibacterial resistance if macrolides are used widely and uncritically in the community. In summary, Azithromycin is not the answer to anything in paediatric respiratory medicine; the paediatric respiratory community needs to refocus on the dramatic benefits of macrolides in diffuse panbronchiolitis, use modern - omics technologies to determine the endotypes of inflammatory diseases and discover in nature or synthesise designer macrolides to replicate the diffuse panbronchiolitis results. We must now find out how to do better!
Collapse
Affiliation(s)
- Andrew Bush
- Professor of Paediatrics and Paediatric Respirology, Imperial College Consultant Paediatric Chest Physician, Royal Brompton & Harefield NHS Foundation Trust, National Heart and Lung Institute, UK; Paediatric Chest Physician, Royal Brompton Harefield NHS Foundation Trust, UK.
| |
Collapse
|
11
|
Yang JQ, Kalim KW, Li Y, Duan X, Nguyen P, Khurana Hershey GK, Kroner J, Ruff B, Zhang L, Salomonis N, Rochman M, Wen T, Zheng Y, Guo F. Rational targeting Cdc42 restrains Th2 cell differentiation and prevents allergic airway inflammation. Clin Exp Allergy 2018; 49:92-107. [PMID: 30307073 DOI: 10.1111/cea.13293] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/26/2018] [Accepted: 07/25/2018] [Indexed: 12/24/2022]
Abstract
BACKGROUND Asthma is an allergic airway inflammation-driven disease that affects more than 300 million people world-wide. Targeted therapies for asthma are largely lacking. Although asthma symptoms can be prevented from worsening, asthma development cannot be prevented. Cdc42 GTPase has been shown to regulate actin cytoskeleton, cell proliferation and survival. OBJECTIVES To investigate the role and targeting of Cdc42 in Th2 cell differentiation and Th2-mediated allergic airway inflammation. METHODS Post-thymic Cdc42-deficient mice were generated by crossing Cdc42flox/flox mice with dLckicre transgenic mice in which Cre expression is driven by distal Lck promoter. Effects of post-thymic Cdc42 deletion and pharmacological targeting Cdc42 on Th2 cell differentiation were evaluated in vitro under Th2-polarized culture conditions. Effects of post-thymic Cdc42 deletion and pharmacological targeting Cdc42 on allergic airway inflammation were evaluated in ovalbumin- and/or house dust mite-induced mouse models of asthma. RESULTS Post-thymic deletion of Cdc42 led to reduced peripheral CD8+ T cells and attenuated Th2 cell differentiation, with no effect on closely related Th1, Th17 and induced regulatory T (iTreg) cells. Post-thymic Cdc42 deficiency ameliorated allergic airway inflammation. The selective inhibition of Th2 cell differentiation by post-thymic deletion of Cdc42 was recapitulated by pharmacological targeting of Cdc42 with CASIN, a Cdc42 activity-specific chemical inhibitor. CASIN also alleviated allergic airway inflammation. CASIN-treated Cdc42-deficient mice showed comparable allergic airway inflammation to vehicle-treated Cdc42-deficient mice, indicative of negligible off-target effect of CASIN. CASIN had no effect on established allergic airway inflammation. CONCLUSION AND CLINICAL RELEVANCE Cdc42 is required for Th2 cell differentiation and allergic airway inflammation, and rational targeting Cdc42 may serve as a preventive but not therapeutic approach for asthma control.
Collapse
Affiliation(s)
- Jun-Qi Yang
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, Ohio.,Key Laboratory of National Health Commission on Parasitic Disease Control and Prevention, Jiangsu Provincial Key Laboratory on Parasitic and Vector Control, Jiangsu Institute of Parasitic Diseases and Public Health Research Center, Jiangnan University, Wuxi, Jiangsu, China
| | - Khalid W Kalim
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yuan Li
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Xin Duan
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Phuong Nguyen
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, Ohio
| | | | - John Kroner
- Division of Asthma Research, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Brandy Ruff
- Division of Asthma Research, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Li Zhang
- Department of Environmental Health, University of Cincinnati, Cincinnati, Ohio
| | - Nathan Salomonis
- Division of Biomedical Informatics, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Mark Rochman
- Division of Allergy and Immunology, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Ting Wen
- Division of Allergy and Immunology, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Yi Zheng
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, Ohio
| | - Fukun Guo
- Division of Experimental Hematology and Cancer Biology, Children's Hospital Medical Center, Cincinnati, Ohio
| |
Collapse
|
12
|
Kruse RL, Vanijcharoenkarn K. Drug repurposing to treat asthma and allergic disorders: Progress and prospects. Allergy 2018; 73:313-322. [PMID: 28880396 DOI: 10.1111/all.13305] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2017] [Indexed: 12/18/2022]
Abstract
Allergy and atopic asthma have continued to become more prevalent in modern society despite the advent of new treatments, representing a major global health problem. Common medications such as antihistamines and steroids can have undesirable long-term side-effects and lack efficacy in some resistant patients. Biologic medications are increasingly given to treatment-resistant patients, but they can represent high costs, complex dosing and management, and are not widely available around the world. The field needs new, cheap, and convenient treatment options in order to bring better symptom relief to patients. Beyond continued research and development of new drugs, a focus on drug repurposing could alleviate this problem by repositioning effective and safe small-molecule drugs from other fields of medicine and applying them toward the treatment for asthma and allergy. Herein, preclinical models, case reports, and clinical trials of drug repurposing efficacy in allergic disease are reviewed. Novel drugs are also proposed for repositioning based on their mechanism of action to treat asthma and allergy. Overall, drug repurposing could become increasingly important as a way of advancing allergy and atopic asthma therapy, filling a need in treatment of patients today.
Collapse
Affiliation(s)
- R. L. Kruse
- Medical Scientist Training Program; Baylor College of Medicine; Houston TX USA
| | - K. Vanijcharoenkarn
- Division of Allergy & Immunology; Department of Pediatrics; Emory University School of Medicine; Atlanta GA USA
| |
Collapse
|
13
|
Reid AT, Veerati PC, Gosens R, Bartlett NW, Wark PA, Grainge CL, Stick SM, Kicic A, Moheimani F, Hansbro PM, Knight DA. Persistent induction of goblet cell differentiation in the airways: Therapeutic approaches. Pharmacol Ther 2017; 185:155-169. [PMID: 29287707 DOI: 10.1016/j.pharmthera.2017.12.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Dysregulated induction of goblet cell differentiation results in excessive production and retention of mucus and is a common feature of several chronic airways diseases. To date, therapeutic strategies to reduce mucus accumulation have focused primarily on altering the properties of the mucus itself, or have aimed to limit the production of mucus-stimulating cytokines. Here we review the current knowledge of key molecular pathways that are dysregulated during persistent goblet cell differentiation and highlights both pre-existing and novel therapeutic strategies to combat this pathology.
Collapse
Affiliation(s)
- Andrew T Reid
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia.
| | - Punnam Chander Veerati
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Reinoud Gosens
- Department of Molecular Pharmacology, University of Groningen, Groningen, The Netherlands; Groningen Research Institute for Asthma and COPD (GRIAC), University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nathan W Bartlett
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Peter A Wark
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Chris L Grainge
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Respiratory and Sleep Medicine, John Hunter Hospital, Newcastle, New South Wales, Australia
| | - Stephen M Stick
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia
| | - Anthony Kicic
- School of Paediatrics and Child Health, University of Western Australia, Nedlands 6009, Western Australia, Australia; Telethon Kids Institute, University of Western Australia, Nedlands 6009, Western Australia, Australia; Department of Respiratory Medicine, Princess Margaret Hospital for Children, Perth 6001, Western Australia, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Medicine and Pharmacology, University of Western Australia, Nedlands 6009, Western Australia, Australia; Occupation and Environment, School of Public Health, Curtin University, Bentley 6102, Western Australia, Australia
| | - Fatemeh Moheimani
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Philip M Hansbro
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia
| | - Darryl A Knight
- School of Biomedical Sciences and Pharmacy, University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Healthy Lungs, Hunter Medical Research Institute, The University of Newcastle, New South Wales, Australia; Department of Anesthesiology, Pharmacology and Therapeutics, University of British Columbia, Vancouver, Canada
| |
Collapse
|
14
|
Joean O, Hueber A, Feller F, Jirmo AC, Lochner M, Dittrich AM, Albrecht M. Suppression of Th17-polarized airway inflammation by rapamycin. Sci Rep 2017; 7:15336. [PMID: 29127369 PMCID: PMC5681547 DOI: 10.1038/s41598-017-15750-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 10/31/2017] [Indexed: 12/18/2022] Open
Abstract
Because Th17-polarized airway inflammation correlates with poor control in bronchial asthma and is a feature of numerous other difficult-to-treat inflammatory lung diseases, new therapeutic approaches for this type of airway inflammation are necessary. We assessed different licensed anti-inflammatory agents with known or expected efficacy against Th17-polarization in mouse models of Th17-dependent airway inflammation. Upon intravenous transfer of in vitro derived Th17 cells and intranasal challenge with the corresponding antigen, we established acute and chronic murine models of Th17-polarised airway inflammation. Consecutively, we assessed the efficacy of methylprednisolone, roflumilast, azithromycin, AM80 and rapamycin against acute or chronic Th17-dependent airway inflammation. Quantifiers for Th17-associated inflammation comprised: bronchoalveolar lavage (BAL) differential cell counts, allergen-specific cytokine and immunoglobulin secretion, as well as flow cytometric phenotyping of pulmonary inflammatory cells. Only rapamycin proved effective against acute Th17-dependent airway inflammation, accompanied by increased plasmacytoid dendritic cells (pDCs) and reduced neutrophils as well as reduced CXCL-1 levels in BAL. Chronic Th17-dependent airway inflammation was unaltered by rapamycin treatment. None of the other agents showed efficacy in our models. Our results demonstrate that Th17-dependent airway inflammation is difficult to treat with known agents. However, we identify rapamycin as an agent with inhibitory potential against acute Th17-polarized airway inflammation.
Collapse
Affiliation(s)
- Oana Joean
- Department for Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, Germany.,Department of Internal Medicine B, University Medicine Greifswald, Ferdinand-Sauerbruch-Str., Greifswald, Germany
| | - Anja Hueber
- Department for Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Felix Feller
- Department for Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, Germany
| | - Adan Chari Jirmo
- Department for Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, Germany.,German Center for Lunge Research, BREATH Carl-Neuberg-Str. 1, Hannover, Germany
| | - Matthias Lochner
- Institute of Infection Immunology, TWINCORE, Centre for Experimental and Clinical Infection Research, Hannover, Germany
| | - Anna-Maria Dittrich
- Department for Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, Germany.,German Center for Lunge Research, BREATH Carl-Neuberg-Str. 1, Hannover, Germany
| | - Melanie Albrecht
- Department for Pediatric Pneumology, Allergology and Neonatology, Medical School Hannover, Carl-Neuberg-Str. 1, Hannover, Germany. .,German Center for Lunge Research, BREATH Carl-Neuberg-Str. 1, Hannover, Germany.
| |
Collapse
|
15
|
Esnault S, Shen ZJ, Malter JS. Protein Translation and Signaling in Human Eosinophils. Front Med (Lausanne) 2017; 4:150. [PMID: 28971096 PMCID: PMC5609579 DOI: 10.3389/fmed.2017.00150] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2017] [Accepted: 09/01/2017] [Indexed: 01/01/2023] Open
Abstract
We have recently reported that, unlike IL-5 and GM-CSF, IL-3 induces increased translation of a subset of mRNAs. In addition, we have demonstrated that Pin1 controls the activity of mRNA binding proteins, leading to enhanced mRNA stability, GM-CSF protein production and prolonged eosinophil (EOS) survival. In this review, discussion will include an overview of cap-dependent protein translation and its regulation by intracellular signaling pathways. We will address the more general process of mRNA post-transcriptional regulation, especially regarding mRNA binding proteins, which are critical effectors of protein translation. Furthermore, we will focus on (1) the roles of IL-3-driven sustained signaling on enhanced protein translation in EOS, (2) the mechanisms regulating mRNA binding proteins activity in EOS, and (3) the potential targeting of IL-3 signaling and the signaling leading to mRNA binding activity changes to identify therapeutic targets to treat EOS-associated diseases.
Collapse
Affiliation(s)
- Stephane Esnault
- Department of Medicine, Allergy, Pulmonary, and Critical Care Medicine Division, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, United States
| | - Zhong-Jian Shen
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| | - James S Malter
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, United States
| |
Collapse
|
16
|
Charlermroj R, Makornwattana M, Himananto O, Seepiban C, Phuengwas S, Warin N, Gajanandana O, Karoonuthaisiri N. An accurate, specific, sensitive, high-throughput method based on a microsphere immunoassay for multiplex detection of three viruses and bacterial fruit blotch bacterium in cucurbits. J Virol Methods 2017; 247:6-14. [DOI: 10.1016/j.jviromet.2017.05.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 01/30/2017] [Accepted: 05/09/2017] [Indexed: 11/29/2022]
|
17
|
Yoo EJ, Ojiaku CA, Sunder K, Panettieri RA. Phosphoinositide 3-Kinase in Asthma: Novel Roles and Therapeutic Approaches. Am J Respir Cell Mol Biol 2017; 56:700-707. [PMID: 27977296 DOI: 10.1165/rcmb.2016-0308tr] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Asthma manifests as airway hyperresponsiveness and inflammation, including coughing, wheezing, and shortness of breath. Immune cells and airway structural cells orchestrate asthma pathophysiology, leading to mucus secretion, airway narrowing, and obstruction. Phosphoinositide 3-kinase, a lipid kinase, plays a crucial role in many of the cellular and molecular mechanisms driving asthma pathophysiology and represents an attractive therapeutic target. Here, we summarize the diverse roles of phosphoinositide 3-kinase in the pathogenesis of asthma and discuss novel therapeutic approaches to treatment.
Collapse
Affiliation(s)
- Edwin J Yoo
- 1 Rutgers Institute for Translational Medicine and Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; and.,2 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Christie A Ojiaku
- 1 Rutgers Institute for Translational Medicine and Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; and.,2 Department of Systems Pharmacology and Translational Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Krishna Sunder
- 1 Rutgers Institute for Translational Medicine and Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; and
| | - Reynold A Panettieri
- 1 Rutgers Institute for Translational Medicine and Science, Rutgers, the State University of New Jersey, New Brunswick, New Jersey; and
| |
Collapse
|
18
|
Barnes PJ. Kinases as Novel Therapeutic Targets in Asthma and Chronic Obstructive Pulmonary Disease. Pharmacol Rev 2017; 68:788-815. [PMID: 27363440 DOI: 10.1124/pr.116.012518] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Multiple kinases play a critical role in orchestrating the chronic inflammation and structural changes in the respiratory tract of patients with asthma and chronic obstructive pulmonary disease (COPD). Kinases activate signaling pathways that lead to contraction of airway smooth muscle and release of inflammatory mediators (such as cytokines, chemokines, growth factors) as well as cell migration, activation, and proliferation. For this reason there has been great interest in the development of kinase inhibitors as anti-inflammatory therapies, particular where corticosteroids are less effective, as in severe asthma and COPD. However, it has proven difficult to develop selective kinase inhibitors that are both effective and safe after oral administration and this has led to a search for inhaled kinase inhibitors, which would reduce systemic exposure. Although many kinases have been implicated in inflammation and remodeling of airway disease, very few classes of drug have reached the stage of clinical studies in these diseases. The most promising drugs are p38 MAP kinases, isoenzyme-selective PI3-kinases, Janus-activated kinases, and Syk-kinases, and inhaled formulations of these drugs are now in development. There has also been interest in developing inhibitors that block more than one kinase, because these drugs may be more effective and with less risk of losing efficacy with time. No kinase inhibitors are yet on the market for the treatment of airway diseases, but as kinase inhibitors are improved from other therapeutic areas there is hope that these drugs may eventually prove useful in treating refractory asthma and COPD.
Collapse
Affiliation(s)
- Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, United Kingdom
| |
Collapse
|
19
|
Gendron DR, Lecours PB, Lemay AM, Beaulieu MJ, Huppé CA, Lee-Gosselin A, Flamand N, Don AS, Bissonnette É, Blanchet MR, Laplante M, Bourgoin SG, Bossé Y, Marsolais D. A Phosphorylatable Sphingosine Analog Induces Airway Smooth Muscle Cytostasis and Reverses Airway Hyperresponsiveness in Experimental Asthma. Front Pharmacol 2017; 8:78. [PMID: 28270767 PMCID: PMC5318459 DOI: 10.3389/fphar.2017.00078] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 02/07/2017] [Indexed: 11/13/2022] Open
Abstract
In asthma, excessive bronchial narrowing associated with thickening of the airway smooth muscle (ASM) causes respiratory distress. Numerous pharmacological agents prevent experimental airway hyperresponsiveness (AHR) when delivered prophylactically. However, most fail to resolve this feature after disease is instated. Although sphingosine analogs are primarily perceived as immune modulators with the ability to prevent experimental asthma, they also influence processes associated with tissue atrophy, supporting the hypothesis that they could interfere with mechanisms sustaining pre-established AHR. We thus assessed the ability of a sphingosine analog (AAL-R) to reverse AHR in a chronic model of asthma. We dissected the pharmacological mechanism of this class of agents using the non-phosphorylatable chiral isomer AAL-S and the pre-phosphorylated form of AAL-R (AFD-R) in vivo and in human ASM cells. We found that a therapeutic course of AAL-R reversed experimental AHR in the methacholine challenge test, which was not replicated by dexamethasone or the non-phosphorylatable isomer AAL-S. AAL-R efficiently interfered with ASM cell proliferation in vitro, supporting the concept that immunomodulation is not necessary to interfere with cellular mechanisms sustaining AHR. Moreover, the sphingosine-1-phosphate lyase inhibitor SM4 and the sphingosine-1-phosphate receptor antagonist VPC23019 failed to inhibit proliferation, indicating that intracellular accumulation of sphingosine-1-phosphate or interference with cell surface S1P1/S1P3 activation, are not sufficient to induce cytostasis. Potent AAL-R-induced cytostasis specifically related to its ability to induce intracellular AFD-R accumulation. Thus, a sphingosine analog that possesses the ability to be phosphorylated in situ interferes with cellular mechanisms that beget AHR.
Collapse
Affiliation(s)
- David R Gendron
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Pascale B Lecours
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Anne-Marie Lemay
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Marie-Josée Beaulieu
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Carole-Ann Huppé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Audrey Lee-Gosselin
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec QC, Canada
| | - Nicolas Flamand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Anthony S Don
- Centenary Institute and NHMRC Clinical Trials Centre, University of Sydney, Camperdown NSW, Australia
| | - Élyse Bissonnette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Marie-Renée Blanchet
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Mathieu Laplante
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - Sylvain G Bourgoin
- Faculty of Medicine, Université Laval, QuébecQC, Canada; Division of Infectious Diseases and Immunology, CHU de Québec Research Center, QuébecQC, Canada
| | - Ynuk Bossé
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| | - David Marsolais
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, QuébecQC, Canada; Faculty of Medicine, Université Laval, QuébecQC, Canada
| |
Collapse
|
20
|
Hu D, Zhang Z, Ke X, Kang H, Hong S. A functional variant of miRNA-149 confers risk for allergic rhinitis and comorbid asthma in Chinese children. Int J Immunogenet 2017; 44:62-70. [PMID: 28181414 DOI: 10.1111/iji.12307] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 12/15/2016] [Accepted: 01/14/2017] [Indexed: 12/18/2022]
Abstract
The prevalence of allergic rhinitis (AR) and asthma has been increasing, and the comorbidity rates of these diseases are very high. Here, 176 AR patients, 124 patients with comorbid AR and asthma (AR-A) and 206 healthy Chinese children as controls were included in a case-control study. Six single-nucleotide polymorphisms (SNPs), miR-146a (rs2910164, rs57095329 and rs6864584), miR-196a2 (rs11614913), miR-499 (rs3746444) and miR-149 (rs2292832), were genotyped. The prevalence of homozygous miR-149 (rs2292832) CC genotype and C allele were considerably increased in AR and AR-A patients, compared with the controls. AR-A group showed higher frequencies of CC genotype and C allele of rs2292832 than AR group. No significant difference in the genotypic and allelic frequencies of other miRNA SNPs was found between the groups. MiR-149 levels in peripheral blood mononuclear cells (PBMCs) were significantly lower in CC (variant type) cases compared with TT (wild-type) cases. In further experiments, PBMCs obtained from the healthy controls with CC, CT and TT genotypes were stimulated by house dust mite extracts, which led to a significant decrease in the levels of miR-149 in PBMCs obtained from CC and TT individuals. This decrease was more pronounced in CC compared with TT cases. Our results demonstrate that miR-149 rs2292832 variant is not only strongly associated with AR and AR-A, but it may lead to an increase in the susceptibility to allergies following the stimulation with an allergen, through the changes in miR149 expression. Additionally, AR patients with CC genotypes were shown to be more susceptible to asthma.
Collapse
Affiliation(s)
- D Hu
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Z Zhang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - X Ke
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - H Kang
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - S Hong
- Department of Otorhinolaryngology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
21
|
Khater M, de la Escosura-Muñiz A, Merkoçi A. Biosensors for plant pathogen detection. Biosens Bioelectron 2016; 93:72-86. [PMID: 27818053 DOI: 10.1016/j.bios.2016.09.091] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Revised: 09/15/2016] [Accepted: 09/26/2016] [Indexed: 10/20/2022]
Abstract
Infectious plant diseases are caused by pathogenic microorganisms such as fungi, bacteria, viruses, viroids, phytoplasma and nematodes. Worldwide, plant pathogen infections are among main factors limiting crop productivity and increasing economic losses. Plant pathogen detection is important as first step to manage a plant disease in greenhouses, field conditions and at the country boarders. Current immunological techniques used to detect pathogens in plant include enzyme-linked immunosorbent assays (ELISA) and direct tissue blot immunoassays (DTBIA). DNA-based techniques such as polymerase chain reaction (PCR), real time PCR (RT-PCR) and dot blot hybridization have also been proposed for pathogen identification and detection. However these methodologies are time-consuming and require complex instruments, being not suitable for in-situ analysis. Consequently, there is strong interest for developing new biosensing systems for early detection of plant diseases with high sensitivity and specificity at the point-of-care. In this context, we revise here the recent advancement in the development of advantageous biosensing systems for plant pathogen detection based on both antibody and DNA receptors. The use of different nanomaterials such as nanochannels and metallic nanoparticles for the development of innovative and sensitive biosensing systems for the detection of pathogens (i.e. bacteria and viruses) at the point-of-care is also shown. Plastic and paper-based platforms have been used for this purpose, offering cheap and easy-to-use really integrated sensing systems for rapid on-site detection. Beside devices developed at research and development level a brief revision of commercially available kits is also included in this review.
Collapse
Affiliation(s)
- Mohga Khater
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; On leave from Agricultural Research Center (ARC), Ministry of Agriculture and Land Reclamation, Giza, Egypt
| | - Alfredo de la Escosura-Muñiz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain
| | - Arben Merkoçi
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and Barcelona Institute of Science and Technology, Campus UAB, 08193 Barcelona, Spain; ICREA, Pg. Lluís Companys 23, 08010 Barcelona, Spain.
| |
Collapse
|
22
|
Wong H, Zou S, Li J, Ma C, Chen J, Leong P, Leung H, Chan W, Ko K. <i>Lily bulb</i> Nectar Produces Expectorant and Anti-Tussive Activities, and Suppresses Cigarette Smoke-Induced Inflammatory Response in the Respiratory Tract in Mice. Chin Med 2015. [DOI: 10.4236/cm.2015.62015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
23
|
Koizumi R, Sasaki N, Nakamura Y, Suzuki N, Sawai T, Yamauchi K. Rapamycin attenuates pulmonary allergic vasculitis in murine model by reducing TGF-β production in the lung. Allergol Int 2014; 63:457-66. [PMID: 24851949 DOI: 10.2332/allergolint.13-oa-0679] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 02/04/2014] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Rapamycin has been reported to inhibit mesenchymal cell proliferation in a murine model of pulmonary fibrosis. In the present study, we examined the effects of rapamycin on vascular remodeling including intraluminal myofibroblast proliferation in a murine model of allergic vasculitis with eosinophil infiltration. METHODS C57BL/6 mice were sensitized with ovalbumin (OVA) and alum. The positive controls were exposed to aerosolized OVA daily for 7 days. The other group of mice was administered with rapamycin (1mg/kg) intraperitoneally, in parallel with daily exposure to aerosolized OVA for 7 days. On the 3rd and 7th day, bronchoalveolar lavage (BAL) was performed and the lungs were excised for pathological analysis. Cell differentials were determined and concentrations of IL-4, IL-5, IL-13 and TGF-β in the BAL fluid (BALF) were measured. Semi-quantitative analysis of pathological changes in the pulmonary arteries was evaluated according to the severity of vasculitis. RESULTS The number of eosinophils in BALF was reduced significantly in the mice treated with rapamycin compared to the positive control. There was a significant decrease in the TGF-β concentration of the BALF in the rapamycin-treated group compared to that of the positive control. The pathological scores were reduced significantly in the rapamycin-treated group compared to the positive control group. Intraluminal myofibroblasts in pulmonary arteries were reduced dramatically in the rapamycin-treated group compared to the positive control group. CONCLUSIONS Rapamycin suppressed pulmonary vascular remodeling in a murine model of allergic vasculitis with eosinophil infiltration through reducing eosinophil infiltration and TGF-β production in the lung and inhibition against biological action of TGF-β.
Collapse
Affiliation(s)
- Rumi Koizumi
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Nobuhito Sasaki
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Yutaka Nakamura
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Naomi Suzuki
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| | - Takashi Sawai
- Department of Pathology, Iwate Medical University School of Medicine, Iwate, Japan
| | - Kohei Yamauchi
- Division of Pulmonary Medicine, Allergy and Rheumatology, Department of Internal Medicine, Iwate Medical University School of Medicine, Iwate, Japan
| |
Collapse
|
24
|
Martin RA, Hodgkins SR, Dixon AE, Poynter ME. Aligning mouse models of asthma to human endotypes of disease. Respirology 2014; 19:823-33. [PMID: 24811131 PMCID: PMC4107015 DOI: 10.1111/resp.12315] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2013] [Revised: 03/01/2014] [Accepted: 03/28/2014] [Indexed: 12/20/2022]
Abstract
Substantial gains in understanding the pathophysiologic mechanisms underlying asthma have been made using preclinical mouse models. However, because asthma is a complex, heterogeneous syndrome that is rarely due to a single allergen and that often presents in the absence of atopy, few of the promising therapeutics that demonstrated effectiveness in mouse models have translated into new treatments for patients. This has resulted in an urgent need to characterize T helper (Th) 2-low, non-eosinophilic subsets of asthma, to study models that are resistant to conventional treatments such as corticosteroids and to develop therapies targeting patients with severe disease. Classifying asthma based on underlying pathophysiologic mechanisms, known as endotyping, offers a stratified approach for the development of new therapies for asthma. In preclinical research, new models of asthma are being utilized that more closely resemble the clinical features of different asthma endotypes, including the presence of interleukin-17 and a Th17 response, a biomarker of severe disease. These models utilize more physiologically relevant sensitizing agents, exacerbating factors and allergens, as well as incorporate time points that better reflect the natural history and chronicity of clinical asthma. Importantly, some models better represent non-classical asthma endotypes that facilitate the study of non-Th2-driven pathology and resemble the complex nature of clinical asthma, including corticosteroid resistance. Placing mouse asthma models into the context of human asthma endotypes will afford a more relevant approach to the understanding of pathophysiological mechanisms of disease that will afford the development of new therapies for those asthmatics that remain difficult to treat.
Collapse
Affiliation(s)
- Rebecca A Martin
- Vermont Lung Center, Department of Medicine, Division of Pulmonary Disease and Critical Care, University of Vermont, Burlington, Vermont, USA
| | | | | | | |
Collapse
|
25
|
Melnik BC. The potential mechanistic link between allergy and obesity development and infant formula feeding. Allergy Asthma Clin Immunol 2014; 10:37. [PMID: 25071855 PMCID: PMC4112849 DOI: 10.1186/1710-1492-10-37] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Accepted: 07/15/2014] [Indexed: 12/14/2022] Open
Abstract
This article provides a new view of the cellular mechanisms that have been proposed to explain the links between infant formula feeding and the development of atopy and obesity. Epidemiological evidence points to an allergy- and obesity-preventive effect of breastfeeding. Both allergy and obesity development have been traced back to accelerated growth early in life. The nutrient-sensitive kinase mTORC1 is the master regulator of cell growth, which is predominantly activated by amino acids. In contrast to breastfeeding, artificial infant formula feeding bears the risk of uncontrolled excessive protein intake overactivating the infant's mTORC1 signalling pathways. Overactivated mTORC1 enhances S6K1-mediated adipocyte differentiation, but negatively regulates growth and differentiation of FoxP3(+) regulatory T-cells (Tregs), which are deficient in atopic individuals. Thus, the "early protein hypothesis" not only explains increased mTORC1-mediated infant growth but also the development of mTORC1-driven diseases such as allergy and obesity due to a postnatal deviation from the appropriate axis of mTORC1-driven metabolic and immunologic programming. Remarkably, intake of fresh unpasteurized cow's milk exhibits an allergy-preventive effect in farm children associated with increased FoxP3(+) Treg numbers. In contrast to unprocessed cow's milk, formula lacks bioactive immune-regulatory microRNAs, such as microRNA-155, which plays a major role in FoxP3 expression. Uncontrolled excessive protein supply by formula feeding associated with the absence of bioactive microRNAs and bifidobacteria in formula apparently in a synergistic way result in insufficient Treg maturation. Treg deficiency allows Th2-cell differentiation promoting the development of allergic diseases. Formula-induced mTORC1 overactivation is thus the critical mechanism that explains accelerated postnatal growth, allergy and obesity development on one aberrant pathway.
Collapse
Affiliation(s)
- Bodo C Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, Sedanstrasse 115, DE-49090 Osnabrück, Germany
| |
Collapse
|
26
|
Aryan Z, Holgate ST, Radzioch D, Rezaei N. A new era of targeting the ancient gatekeepers of the immune system: toll-like agonists in the treatment of allergic rhinitis and asthma. Int Arch Allergy Immunol 2014; 164:46-63. [PMID: 24853609 DOI: 10.1159/000362553] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Toll-like receptors (TLR) belong to a large family of pattern recognition receptors known as the ancient 'gatekeepers' of the immune system. TLRs are located at the first line of defense against invading pathogens as well as aeroallergens, making them interesting targets to modulate the natural history of respiratory allergy. Agonists of TLRs have been widely employed in therapeutic or prophylactic preparations useful for asthma/allergic rhinitis (AR) patients. MPL® (a TLR4 agonist) and the CpG oligodeoxynucleotide of 1018 ISS, a TLR9 agonist, show strong immunogenicity effects that make them appropriate adjuvants for allergy vaccines. Targeting the TLRs can enhance the efficacy of specific allergen immunotherapy, currently the only available 'curative' treatment for respiratory allergies. In addition, intranasal administration of AZD8848 (a TLR7 agonist) and VTX-1463 (a TLR8 agonist) as stand-alone therapeutics have revealed efficacy in the relief of the symptoms of AR patients. No anaphylaxis has been so far reported with such compounds targeting TLRs, with the most common adverse effects being transient and local irritation (e.g. redness, swelling and pruritus). Many other compounds that target TLRs have been found to suppress airway inflammation, eosinophilia and airway hyper-responsiveness in various animal models of allergic inflammation. Indeed, in the future a wide variability of TLR agonists and even antagonists that exhibit anti-asthma/AR effects are likely to emerge.
Collapse
Affiliation(s)
- Zahra Aryan
- Molecular Immunology Research Center and Department of Immunology, School of Medicine, Tehran, Iran
| | | | | | | |
Collapse
|
27
|
Song L, Liu D, Wu C, Wu S, Yang J, Ren F, Li Y. Antibody to mCLCA3 suppresses symptoms in a mouse model of asthma. PLoS One 2013; 8:e82367. [PMID: 24349268 PMCID: PMC3857274 DOI: 10.1371/journal.pone.0082367] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Accepted: 10/23/2013] [Indexed: 11/18/2022] Open
Abstract
Background Asthma is a complex and heterogeneous chronic inflammatory disorder that is associated with mucous cell metaplasia and mucus hypersecretion. Functional genomic analysis indicates that mucous cell metaplasia and mucus hypersecretion depend on members of the calcium-activated chloride channel (CLCA) gene family. It has been reported that the inhibition of CLCAs could relieve the symptoms of asthma. Thus, the mCLCA3 antibody may be a promising strategy to treat allergic diseases such as asthma. Methods We constructed asthmatic mouse models of OVA-induced chronic airway inflammatory disorder to study the function of the mCLCA3 antibody. Airway inflammation was measured by HE staining; goblet cell hyperplasia and mucus hypersecretion were detected by PAS staining; muc5ac, IL-13, IFN-γ levels in bronchoalveolar lavage fluid (BALF) were examined by ELISA; Goblet cell apoptosis was measured by TUNEL assay and alcian blue staining; mCLCA3, Bcl-2 and Bax expression were detected by RT-PCR, Western blotting and immunohistochemical analysis. Results In our study, mice treated with mCLCA3 antibody developed fewer pathological changes compared with control mice and asthmatic mice, including a remarkable reduction in airway inflammation, the number of goblet cells and mCLCA3 expression in lung tissue. The levels of muc5ac and IL-13 were significantly reduced in BALF. We also found that the rate of goblet cell apoptosis was increased after treatment with mCLCA3 antibody, which was accompanied by an increase in Bax levels and a decrease in Bcl-2 expression in goblet cells. Conclusions Taken together, our results indicate that mCLCA3 antibody may have the potential as an effective pharmacotherapy for asthma.
Collapse
Affiliation(s)
- Liqiang Song
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Dapeng Liu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Changgui Wu
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Shouzhen Wu
- Department of Pharmacy, The Fourth Military Medical University, Xi'an, China
| | - Junlan Yang
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Fangping Ren
- Department of Pulmonary and Critical Care Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Yan Li
- Department of Cardiovascular Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| |
Collapse
|
28
|
Charlermroj R, Himananto O, Seepiban C, Kumpoosiri M, Warin N, Oplatowska M, Gajanandana O, Grant IR, Karoonuthaisiri N, Elliott CT. Multiplex detection of plant pathogens using a microsphere immunoassay technology. PLoS One 2013; 8:e62344. [PMID: 23638044 PMCID: PMC3637204 DOI: 10.1371/journal.pone.0062344] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 03/20/2013] [Indexed: 11/19/2022] Open
Abstract
Plant pathogens are a serious problem for seed export, plant disease control and plant quarantine. Rapid and accurate screening tests are urgently required to protect and prevent plant diseases spreading worldwide. A novel multiplex detection method was developed based on microsphere immunoassays to simultaneously detect four important plant pathogens: a fruit blotch bacterium Acidovorax avenae subsp. citrulli (Aac), chilli vein-banding mottle virus (CVbMV, potyvirus), watermelon silver mottle virus (WSMoV, tospovirus serogroup IV) and melon yellow spot virus (MYSV, tospovirus). An antibody for each plant pathogen was linked on a fluorescence-coded magnetic microsphere set which was used to capture corresponding pathogen. The presence of pathogens was detected by R-phycoerythrin (RPE)-labeled antibodies specific to the pathogens. The assay conditions were optimized by identifying appropriate antibody pairs, blocking buffer, concentration of RPE-labeled antibodies and assay time. Once conditions were optimized, the assay was able to detect all four plant pathogens precisely and accurately with substantially higher sensitivity than enzyme-linked immunosorbent assay (ELISA) when spiked in buffer and in healthy watermelon leaf extract. The assay time of the microsphere immunoassay (1 hour) was much shorter than that of ELISA (4 hours). This system was also shown to be capable of detecting the pathogens in naturally infected plant samples and is a major advancement in plant pathogen detection.
Collapse
Affiliation(s)
- Ratthaphol Charlermroj
- Institute for Global Food Security, School of Biological Sciences, Queen's University Belfast, Belfast, Northern Ireland, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|