1
|
Madrid-Espinoza J, Salinas-Cornejo J, Norambuena L, Ruiz-Lara S. Tissue-Specific Regulation of Vesicular Trafficking Mediated by Rab-GEF Complex MON1/CCZ1 From Solanum chilense Increases Salt Stress Tolerance in Arabidopsis thaliana. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39449264 DOI: 10.1111/pce.15229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/02/2024] [Accepted: 10/05/2024] [Indexed: 10/26/2024]
Abstract
Salt stress constrains the development and growth of plants. To tolerate it, mechanisms of endocytosis and vacuolar compartmentalization of Na+ are induced. In this work, the genes that encode a putative activator of vesicular trafficking called MON1/CCZ1 from Solanum chilense, SchMON1 and SchCCZ1, were co-expressed in roots of Arabidopsis thaliana to determine whether the increase in prevacuolar vesicular trafficking also increases the Na+ compartmentalization capacity and tolerance. Initially, we demonstrated that both SchMON1 and SchCCZ1 genes rescued the dwarf phenotype of both A. thaliana mon1-1 and ccz1a/b mutants associated with the loss of function, and both proteins colocalized with their functional targets, RabF and RabG, in endosomes. Transgenic A. thaliana plants co-expressing these genes improved salt stress tolerance compared to wild type plants, with SchMON1 contributing the most. At the sub-cellular level, co-expression of SchMON1/SchCCZ1 reduced ROS levels and increased endocytic activity, and number of acidic structures associated with autophagosomes. Notably, greater Na+ accumulation in vacuoles of cortex and endodermis was evidenced in the SchMON1 genotype. Molecular analysis of gene expression in each genotype supported these results. Altogether, our analysis shows that root activation of prevacuolar vesicular trafficking mediated by MON1/CCZ1 emerges as a promising physiological molecular mechanism to increase tolerance to salt stress in crops of economic interest.
Collapse
Affiliation(s)
- José Madrid-Espinoza
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Josselyn Salinas-Cornejo
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Center, Department of Biology, Faculty of Sciences, Universidad de Chile, Santiago, Chile
| | - Simón Ruiz-Lara
- Laboratorio de Genómica Funcional, Instituto de Ciencias Biológicas, Universidad de Talca, Talca, Chile
| |
Collapse
|
2
|
Lee J, Miyagishima SY, Bhattacharya D, Yoon HS. From dusk till dawn: cell cycle progression in the red seaweed Gracilariopsis chorda (Rhodophyta). iScience 2024; 27:110190. [PMID: 38984202 PMCID: PMC11231608 DOI: 10.1016/j.isci.2024.110190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/29/2024] [Accepted: 06/03/2024] [Indexed: 07/11/2024] Open
Abstract
The conserved eukaryotic functions of cell cycle genes have primarily been studied using animal/plant models and unicellular algae. Cell cycle progression and its regulatory components in red (Rhodophyta) seaweeds are poorly understood. We analyzed diurnal gene expression data to investigate the cell cycle in the red seaweed Gracilariopsis chorda. We identified cell cycle progression and transitions in G. chorda which are induced by interactions of key regulators such as E2F/DP, RBR, cyclin-dependent kinases, and cyclins from dusk to dawn. However, several typical CDK inhibitor proteins are absent in red seaweeds. Interestingly, the G1-S transition in G. chorda is controlled by delayed transcription of GINS subunit 3. We propose that the delayed S phase entry in this seaweed may have evolved to minimize DNA damage (e.g., due to UV radiation) during replication. Our results provide important insights into cell cycle-associated physiology and its molecular mechanisms in red seaweeds.
Collapse
Affiliation(s)
- JunMo Lee
- Department of Oceanography, Kyungpook National University, Daegu 41566, Korea
- Kyungpook Institute of Oceanography, Kyungpook National University, Daegu 41566, Korea
| | - Shin-ya Miyagishima
- Department of Gene Function and Phenomics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Debashish Bhattacharya
- Department of Biochemistry and Microbiology, Rutgers University, New Brunswick, NJ 08901, USA
| | - Hwan Su Yoon
- Department of Biological Sciences, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
3
|
Kraus M, Pleskot R, Van Damme D. Structural and Evolutionary Aspects of Plant Endocytosis. ANNUAL REVIEW OF PLANT BIOLOGY 2024; 75:521-550. [PMID: 38237062 DOI: 10.1146/annurev-arplant-070122-023455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Endocytosis is an essential eukaryotic process that maintains the homeostasis of the plasma membrane proteome by vesicle-mediated internalization. Its predominant mode of operation utilizes the polymerization of the scaffold protein clathrin forming a coat around the vesicle; therefore, it is termed clathrin-mediated endocytosis (CME). Throughout evolution, the machinery that mediates CME is marked by losses, multiplications, and innovations. CME employs a limited number of conserved structural domains and folds, whose assembly and connections are species dependent. In plants, many of the domains are grouped into an ancient multimeric complex, the TPLATE complex, which occupies a central position as an interaction hub for the endocytic machinery. In this review, we provide an overview of the current knowledge regarding the structural aspects of plant CME, and we draw comparisons to other model systems. To do so, we have taken advantage of recent developments with respect to artificial intelligence-based protein structure prediction.
Collapse
Affiliation(s)
- Michael Kraus
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Roman Pleskot
- Institute of Experimental Botany, Czech Academy of Sciences, Prague, Czech Republic;
| | - Daniël Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium; ,
- VIB Center for Plant Systems Biology, Ghent, Belgium
| |
Collapse
|
4
|
Jiménez-Guerrero I, Sonawane M, Eckshtain-Levi N, Tuang ZK, da Silva GM, Pérez-Montaño F, Leibman-Markus M, Gupta R, Noda-Garcia L, Bar M, Burdman S. Natural variation in a short region of the Acidovorax citrulli type III-secreted effector AopW1 is associated with differences in cytotoxicity and host adaptation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:516-540. [PMID: 37864805 DOI: 10.1111/tpj.16507] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 10/03/2023] [Accepted: 10/04/2023] [Indexed: 10/23/2023]
Abstract
Bacterial fruit blotch, caused by Acidovorax citrulli, is a serious disease of melon and watermelon. The strains of the pathogen belong to two major genetic groups: group I strains are strongly associated with melon, while group II strains are more aggressive on watermelon. A. citrulli secretes many protein effectors to the host cell via the type III secretion system. Here we characterized AopW1, an effector that shares similarity to the actin cytoskeleton-disrupting effector HopW1 of Pseudomonas syringae and with effectors from other plant-pathogenic bacterial species. AopW1 has a highly variable region (HVR) within amino acid positions 147 to 192, showing 14 amino acid differences between group I and II variants. We show that group I AopW1 is more toxic to yeast and Nicotiana benthamiana cells than group II AopW1, having stronger actin filament disruption activity, and increased ability to induce cell death and reduce callose deposition. We further demonstrated the importance of some amino acid positions within the HVR for AopW1 cytotoxicity. Cellular analyses revealed that AopW1 also localizes to the endoplasmic reticulum, chloroplasts, and plant endosomes. We also show that overexpression of the endosome-associated protein EHD1 attenuates AopW1-induced cell death and increases defense responses. Finally, we show that sequence variation in AopW1 plays a significant role in the adaptation of group I and II strains to their preferred hosts, melon and watermelon, respectively. This study provides new insights into the HopW1 family of bacterial effectors and provides first evidence on the involvement of EHD1 in response to biotic stress.
Collapse
Affiliation(s)
- Irene Jiménez-Guerrero
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Monica Sonawane
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Noam Eckshtain-Levi
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Za Khai Tuang
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Gustavo Mateus da Silva
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Francisco Pérez-Montaño
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
- Department of Microbiology, University of Seville, Seville, Spain
| | - Meirav Leibman-Markus
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Bet Dagan, Israel
| | - Rupali Gupta
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Bet Dagan, Israel
| | - Lianet Noda-Garcia
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Maya Bar
- Department of Plant Pathology and Weed Research, Agricultural Research Organization, The Volcani Institute, Bet Dagan, Israel
| | - Saul Burdman
- Department of Plant Pathology and Microbiology, The Robert H. Smith Faculty of Agriculture, Food and Environment, Institute of Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, Israel
| |
Collapse
|
5
|
Ortiz D, Salas-Fernandez MG. Dissecting the genetic control of natural variation in sorghum photosynthetic response to drought stress. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:3251-3267. [PMID: 34791180 PMCID: PMC9126735 DOI: 10.1093/jxb/erab502] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Drought stress causes crop yield losses worldwide. Sorghum is a C4 species tolerant to moderate drought stress, and its extensive natural variation for photosynthetic traits under water-limiting conditions can be exploited for developing cultivars with enhanced stress tolerance. The objective of this study was to discover genes/genomic regions that control the sorghum photosynthetic capacity under pre-anthesis water-limiting conditions. We performed a genome-wide association study for seven photosynthetic gas exchange and chlorophyll fluorescence traits during three periods of contrasting soil volumetric water content (VWC): control (30% VWC), drought (15% VWC), and recovery (30% VWC). Water stress was imposed with an automated irrigation system that generated a controlled dry-down period for all plants, to perform an unbiased genotypic comparison. A total of 60 genomic regions were associated with natural variation in one or more photosynthetic traits in a particular treatment or with derived variables. We identified 33 promising candidate genes with predicted functions related to stress signaling, oxidative stress protection, hormonal response to stress, and dehydration protection. Our results provide new knowledge about the natural variation and genetic control of sorghum photosynthetic response to drought with the ultimate goal of improving its adaptation and productivity under water stress scenarios.
Collapse
Affiliation(s)
- Diego Ortiz
- Department of Agronomy, Iowa State University, Ames, IA 50011, USA
- Instituto Nacional de Tecnologia Agropecuaria, Manfredi, Cordoba 5988, Argentina
| | | |
Collapse
|
6
|
Kurotani KI, Notaguchi M. Cell-to-Cell Connection in Plant Grafting-Molecular Insights into Symplasmic Reconstruction. PLANT & CELL PHYSIOLOGY 2021; 62:1362-1371. [PMID: 34252186 DOI: 10.1093/pcp/pcab109] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/17/2021] [Accepted: 07/12/2021] [Indexed: 05/06/2023]
Abstract
Grafting is a means to connect tissues from two individual plants and grow a single chimeric plant through the establishment of both apoplasmic and symplasmic connections. Recent molecular studies using RNA-sequencing data have provided genetic information on the processes involved in tissue reunion, including wound response, cell division, cell-cell adhesion, cell differentiation and vascular formation. Thus, studies on grafting increase our understanding of various aspects of plant biology. Grafting has also been used to study systemic signaling and transport of micromolecules and macromolecules in the plant body. Given that graft viability and molecular transport across graft junctions largely depend on vascular formation, a major focus in grafting biology has been the mechanism of vascular development. In addition, it has been thought that symplasmic connections via plasmodesmata are fundamentally important to share cellular information among newly proliferated cells at the graft interface and to accomplish tissue differentiation correctly. Therefore, this review focuses on plasmodesmata formation during grafting. We take advantage of interfamily grafts for unambiguous identification of the graft interface and summarize morphological aspects of de novo formation of plasmodesmata. Important molecular events are addressed by re-examining the time-course transcriptome of interfamily grafts, from which we recently identified the cell-cell adhesion mechanism. Plasmodesmata-associated genes upregulated during graft healing that may provide a link to symplasm establishment are described. We also discuss future research directions.
Collapse
Affiliation(s)
- Ken-Ichi Kurotani
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| | - Michitaka Notaguchi
- Bioscience and Biotechnology Center, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
- Institute of Transformative Bio-Molecules (ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8601, Japan
| |
Collapse
|
7
|
Yperman K, Papageorgiou AC, Merceron R, De Munck S, Bloch Y, Eeckhout D, Jiang Q, Tack P, Grigoryan R, Evangelidis T, Van Leene J, Vincze L, Vandenabeele P, Vanhaecke F, Potocký M, De Jaeger G, Savvides SN, Tripsianes K, Pleskot R, Van Damme D. Distinct EH domains of the endocytic TPLATE complex confer lipid and protein binding. Nat Commun 2021; 12:3050. [PMID: 34031427 PMCID: PMC8144573 DOI: 10.1038/s41467-021-23314-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 04/22/2021] [Indexed: 01/07/2023] Open
Abstract
Clathrin-mediated endocytosis (CME) is the gatekeeper of the plasma membrane. In contrast to animals and yeasts, CME in plants depends on the TPLATE complex (TPC), an evolutionary ancient adaptor complex. However, the mechanistic contribution of the individual TPC subunits to plant CME remains elusive. In this study, we used a multidisciplinary approach to elucidate the structural and functional roles of the evolutionary conserved N-terminal Eps15 homology (EH) domains of the TPC subunit AtEH1/Pan1. By integrating high-resolution structural information obtained by X-ray crystallography and NMR spectroscopy with all-atom molecular dynamics simulations, we provide structural insight into the function of both EH domains. Both domains bind phosphatidic acid with a different strength, and only the second domain binds phosphatidylinositol 4,5-bisphosphate. Unbiased peptidome profiling by mass-spectrometry revealed that the first EH domain preferentially interacts with the double N-terminal NPF motif of a previously unidentified TPC interactor, the integral membrane protein Secretory Carrier Membrane Protein 5 (SCAMP5). Furthermore, we show that AtEH/Pan1 proteins control the internalization of SCAMP5 via this double NPF peptide interaction motif. Collectively, our structural and functional studies reveal distinct but complementary roles of the EH domains of AtEH/Pan1 in plant CME and connect the internalization of SCAMP5 to the TPLATE complex.
Collapse
Affiliation(s)
- Klaas Yperman
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Anna C Papageorgiou
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Romain Merceron
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Steven De Munck
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Yehudi Bloch
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Dominique Eeckhout
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Qihang Jiang
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Pieter Tack
- Department of Chemistry, X-ray Microspectroscopy and Imaging - XMI Research Unit, Ghent University, Ghent, Belgium
| | - Rosa Grigoryan
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Ghent, Belgium
| | - Thomas Evangelidis
- CEITEC-Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Jelle Van Leene
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Laszlo Vincze
- Department of Chemistry, X-ray Microspectroscopy and Imaging - XMI Research Unit, Ghent University, Ghent, Belgium
| | - Peter Vandenabeele
- Department of Chemistry, X-ray Microspectroscopy and Imaging - XMI Research Unit, Ghent University, Ghent, Belgium
- Archaeometry Research Group, Department of Archaeology, Ghent University, Ghent, Belgium
| | - Frank Vanhaecke
- Department of Chemistry, Atomic & Mass Spectrometry - A&MS Research Unit, Ghent University, Ghent, Belgium
| | - Martin Potocký
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic
| | - Geert De Jaeger
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium
- VIB Center for Plant Systems Biology, Ghent, Belgium
| | - Savvas N Savvides
- Department of Biochemistry and Microbiology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| | | | - Roman Pleskot
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, Prague 6, Czech Republic.
| | - Daniel Van Damme
- Department of Plant Biotechnology and Bioinformatics, Ghent University, Ghent, Belgium.
- VIB Center for Plant Systems Biology, Ghent, Belgium.
| |
Collapse
|
8
|
Zhu D, Zhang M, Gao C, Shen J. Protein trafficking in plant cells: Tools and markers. SCIENCE CHINA-LIFE SCIENCES 2019; 63:343-363. [DOI: 10.1007/s11427-019-9598-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2019] [Accepted: 07/22/2019] [Indexed: 12/26/2022]
|
9
|
The RabGAP Gene Family in Tomato ( Solanum lycopersicum) and Wild Relatives: Identification, Interaction Networks, and Transcriptional Analysis during Plant Development and in Response to Salt Stress. Genes (Basel) 2019; 10:genes10090638. [PMID: 31450820 PMCID: PMC6770026 DOI: 10.3390/genes10090638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 12/24/2022] Open
Abstract
RabGTPase activating proteins (RabGAP) are responsible for directing the deactivation of vesicular trafficking master regulators associated to plant development, the RabGTPase proteins. Recently, RabGAPs were identified in Arabidopsis and rice, but studies were not yet reported in tomato. Herein, we identified 24 RabGAP-encoding genes in cultivated tomato (Solanum lycopersicum) and its wild relative genomes (Solanum pimpinellifolium and Solanum pennellii). We analyzed them based on their exon-intron structures, conserved protein motifs, putative subcellular localizations, phylogenetic and gene duplications analyses, interaction networks, and gene expression patterns in tomato. Phylogenetic relationship analysis also indicated that RabGAP family is classified into seven subclasses, of which subclasses I and II are plant-exclusive. Furthermore, segmental duplication events and positive evolutionary forces are associated with the maintenance of the number and function of their members. On the other hand, the protein–protein interaction networks on tomato suggested that members of subclasses I, II, and III could be associated to endocytic traffic routes. In addition, the qRT-PCR experiments in S. lycopersicum and Solanum chilense exposed to a salt stress treatment validated the differential expression patterns of 20 RabGAP genes in different tissues, development stages, and stress conditions obtained through extensive microarray-based analyses. This work suggests the critical role of RabGAP family in the context of intracellular vesicular trafficking in tomato, particularly under conditions of abiotic stress. It also contributes to the breeding programs associated with the development of crops tolerant to salt stress.
Collapse
|
10
|
Rosquete MR, Worden N, Ren G, Sinclair RM, Pfleger S, Salemi M, Phinney BS, Domozych D, Wilkop T, Drakakaki G. AtTRAPPC11/ROG2: A Role for TRAPPs in Maintenance of the Plant Trans-Golgi Network/Early Endosome Organization and Function. THE PLANT CELL 2019; 31:1879-1898. [PMID: 31175171 PMCID: PMC6713296 DOI: 10.1105/tpc.19.00110] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 05/06/2019] [Accepted: 06/02/2019] [Indexed: 05/14/2023]
Abstract
The dynamic trans-Golgi network/early endosome (TGN/EE) facilitates cargo sorting and trafficking and plays a vital role in plant development and environmental response. Transport protein particles (TRAPPs) are multi-protein complexes acting as guanine nucleotide exchange factors and possibly as tethers, regulating intracellular trafficking. TRAPPs are essential in all eukaryotic cells and are implicated in a number of human diseases. It has been proposed that they also play crucial roles in plants; however, our current knowledge about the structure and function of plant TRAPPs is very limited. Here, we identified and characterized AtTRAPPC11/RESPONSE TO OLIGOGALACTURONIDE2 (AtTRAPPC11/ROG2), a TGN/EE-associated, evolutionarily conserved TRAPP protein in Arabidopsis (Arabidopsis thaliana). AtTRAPPC11/ROG2 regulates TGN integrity, as evidenced by altered TGN/EE association of several residents, including SYNTAXIN OF PLANTS61, and altered vesicle morphology in attrappc11/rog2 mutants. Furthermore, endocytic traffic and brefeldin A body formation are perturbed in attrappc11/rog2, suggesting a role for AtTRAPPC11/ROG2 in regulation of endosomal function. Proteomic analysis showed that AtTRAPPC11/ROG2 defines a hitherto uncharacterized TRAPPIII complex in plants. In addition, attrappc11/rog2 mutants are hypersensitive to salinity, indicating an undescribed role of TRAPPs in stress responses. Overall, our study illustrates the plasticity of the endomembrane system through TRAPP protein functions and opens new avenues to explore this dynamic network.
Collapse
Affiliation(s)
| | - Natasha Worden
- Department of Plant Sciences University of California, Davis, California 95616
| | - Guangxi Ren
- Department of Plant Sciences University of California, Davis, California 95616
| | - Rosalie M Sinclair
- Department of Plant Sciences University of California, Davis, California 95616
| | - Sina Pfleger
- Department of Plant Sciences University of California, Davis, California 95616
| | - Michelle Salemi
- Genome Center, University of California, Davis, California 95616
| | - Brett S Phinney
- Genome Center, University of California, Davis, California 95616
| | - David Domozych
- Department of Biology and Skidmore Microscopy Imaging Center, Skidmore College, Saratoga Springs, New York 12866
| | - Thomas Wilkop
- Department of Plant Sciences University of California, Davis, California 95616
- Light Microscopy Core, University of Kentucky, Lexington, Kentucky 40536
| | - Georgia Drakakaki
- Department of Plant Sciences University of California, Davis, California 95616
| |
Collapse
|
11
|
Günther T, Lampei C, Barilar I, Schmid KJ. Genomic and phenotypic differentiation of Arabidopsis thaliana along altitudinal gradients in the North Italian Alps. Mol Ecol 2016; 25:3574-92. [PMID: 27220345 DOI: 10.1111/mec.13705] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Revised: 04/19/2016] [Accepted: 05/02/2016] [Indexed: 12/25/2022]
Abstract
Altitudinal gradients in mountain regions are short-range clines of different environmental parameters such as temperature or radiation. We investigated genomic and phenotypic signatures of adaptation to such gradients in five Arabidopsis thaliana populations from the North Italian Alps that originated from 580 to 2350 m altitude by resequencing pools of 19-29 individuals from each population. The sample includes two pairs of low- and high-altitude populations from two different valleys. High-altitude populations showed a lower nucleotide diversity and negative Tajima's D values and were more closely related to each other than to low-altitude populations from the same valley. Despite their close geographic proximity, demographic analysis revealed that low- and high-altitude populations split between 260 000 and 15 000 years before present. Single nucleotide polymorphisms whose allele frequencies were highly differentiated between low- and high-altitude populations identified genomic regions of up to 50 kb length where patterns of genetic diversity are consistent with signatures of local selective sweeps. These regions harbour multiple genes involved in stress response. Variation among populations in two putative adaptive phenotypic traits, frost tolerance and response to light/UV stress was not correlated with altitude. Taken together, the spatial distribution of genetic diversity reflects a potentially adaptive differentiation between low- and high-altitude populations, whereas the phenotypic differentiation in the two traits investigated does not. It may resemble an interaction between adaptation to the local microhabitat and demographic history influenced by historical glaciation cycles, recent seed dispersal and genetic drift in local populations.
Collapse
Affiliation(s)
- Torsten Günther
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany.,Department of Evolutionary Biology, EBC, Uppsala University, Uppsala, Sweden
| | - Christian Lampei
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Ivan Barilar
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| | - Karl J Schmid
- Institute of Plant Breeding, Seed Science and Population Genetics, University of Hohenheim, Stuttgart, Germany
| |
Collapse
|
12
|
Tian M, Lou L, Liu L, Yu F, Zhao Q, Zhang H, Wu Y, Tang S, Xia R, Zhu B, Serino G, Xie Q. The RING finger E3 ligase STRF1 is involved in membrane trafficking and modulates salt-stress response in Arabidopsis thaliana. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2015; 82:81-92. [PMID: 25704231 DOI: 10.1111/tpj.12797] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/28/2015] [Accepted: 02/03/2015] [Indexed: 05/06/2023]
Abstract
Salt stress is a detrimental factor for plant growth and development. The response to salt stress has been shown to involve components in the intracellular trafficking system, as well as components of the ubiquitin-proteasome system (UPS). In this article, we have identified in Arabidopsis thaliana a little reported ubiquitin ligase involved in salt-stress response, which we named STRF1 (Salt Tolerance RING Finger 1). STRF1 is a member of RING-H2 finger proteins and we demonstrate that it has ubiquitin ligase activity in vitro. We also show that STRF1 localizes mainly at the plasma membrane and at the intracellular endosomes. strf1-1 loss-of-function mutant seedlings exhibit accelerated endocytosis in roots, and have altered expression of several genes involved in the membrane trafficking system. Moreover, protein trafficking inhibitor, brefeldin A (BFA), treatment has increased BFA bodies in strf1-1 mutant. This mutant also showed increased tolerance to salt, ionic and osmotic stresses, reduced accumulation of reactive oxygen species during salt stress, and increased expression of AtRbohD, which encodes a nicotinamide adenine dinucleotide phosphate (NADPH) oxidase involved in H2 O2 production. We conclude that STRF1 is a membrane trafficking-related ubiquitin ligase, which helps the plant to respond to salt stress by monitoring intracellular membrane trafficking and reactive oxygen species (ROS) production.
Collapse
Affiliation(s)
- Miaomiao Tian
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, No.1 West Beichen Road, Chaoyang District, Beijing, 100101, China; State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Engineering Research Center for Protein Drugs, National Center for Protein Sciences, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Pizarro L, Norambuena L. Regulation of protein trafficking: posttranslational mechanisms and the unexplored transcriptional control. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 225:24-33. [PMID: 25017156 DOI: 10.1016/j.plantsci.2014.05.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Revised: 04/30/2014] [Accepted: 05/02/2014] [Indexed: 05/29/2023]
Abstract
Endomembrane protein trafficking assures protein location through the endocytic and secretory routes. Trafficking pathways are diverse, depending on the proteins being trafficked, the final destination as well as their itinerary. Trafficking pathways are operated by machineries composed of a set of coordinately acting factors that transport proteins between compartments. Different machineries participate in each protein trafficking pathway, providing specificity and accuracy. Changes in the activity and abundance of trafficking proteins regulate protein flux. The preponderance of one pathway over another regulates protein location and relocation. Cellular requirements change during different processes and in response to stimuli; modulation of trafficking mechanisms must relocate proteins or alternatively increase/decrease the targeting rate of certain proteins. Conventionally, protein trafficking modulation has been explained as posttranslational modification of components of the relevant trafficking machinery. However, trafficking components are also transcriptionally regulated and several reports support that this regulation can modulate protein trafficking as well. This transcriptional modulation has an impact on plant physiology, and is a critical and fundamental mechanism. This scenario suggests a determinant mechanism that must be considered in the endomembrane protein trafficking research field.
Collapse
Affiliation(s)
- Lorena Pizarro
- Plant Molecular Biology Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile
| | - Lorena Norambuena
- Plant Molecular Biology Laboratory, Department of Biology, Faculty of Sciences, University of Chile, Santiago, Chile.
| |
Collapse
|
14
|
Effectors of animal and plant pathogens use a common domain to bind host phosphoinositides. Nat Commun 2014; 4:2973. [PMID: 24346350 DOI: 10.1038/ncomms3973] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 11/18/2013] [Indexed: 12/30/2022] Open
Abstract
Bacterial Type III Secretion Systems deliver effectors into host cells to manipulate cellular processes to the advantage of the pathogen. Many host targets of these effectors are found on membranes. Therefore, to identify their targets, effectors often use specialized membrane-localization domains to localize to appropriate host membranes. However, the molecular mechanisms used by many domains are unknown. Here we identify a conserved bacterial phosphoinositide-binding domain (BPD) that is found in functionally diverse Type III effectors of both plant and animal pathogens. We show that members of the BPD family functionally bind phosphoinositides and mediate localization to host membranes. Moreover, NMR studies reveal that the BPD of the newly identified Vibrio parahaemolyticus Type III effector VopR is unfolded in solution, but folds into a specific structure upon binding its ligand phosphatidylinositol-(4,5)-bisphosphate. Thus, our findings suggest a possible mechanism for promoting refolding of Type III effectors after delivery into host cells.
Collapse
|