1
|
Martinez-Navarro H, Zhou X, Rodriguez B. Mechanisms and Implications of Electrical Heterogeneity in Cardiac Function in Ischemic Heart Disease. Annu Rev Physiol 2025; 87:25-51. [PMID: 39541224 DOI: 10.1146/annurev-physiol-042022-020541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A healthy heart shows intrinsic electrical heterogeneities that play a significant role in cardiac activation and repolarization. However, cardiac diseases may perturb the baseline electrical properties of the healthy cardiac tissue, leading to increased arrhythmic risk and compromised cardiac functions. Moreover, biological variability among patients produces a wide range of clinical symptoms, which complicates the treatment and diagnosis of cardiac diseases. Ischemic heart disease is usually caused by a partial or complete blockage of a coronary artery. The onset of the disease begins with myocardial ischemia, which can develop into myocardial infarction if it persists for an extended period. The progressive regional tissue remodeling leads to increased electrical heterogeneities, with adverse consequences on arrhythmic risk, cardiac mechanics, and mortality. This review aims to summarize the key role of electrical heterogeneities in the heart on cardiac function and diseases. Ischemic heart disease has been chosen as an example to show how adverse electrical remodeling at different stages may lead to variable manifestations in patients. For this, we have reviewed the dynamic electrophysiological and structural remodeling from the onset of acute myocardial ischemia and reperfusion to acute and chronic stages post-myocardial infarction. The arrhythmic mechanisms, patient phenotypes, risk stratification at different stages, and patient management strategies are also discussed. Finally, we provide a brief review on how computational approaches incorporate human electrophysiological heterogeneity to facilitate basic and translational research.
Collapse
Affiliation(s)
- Hector Martinez-Navarro
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| | - Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom; , ,
| |
Collapse
|
2
|
Zhou X, Wang ZJ, Camps J, Tomek J, Santiago A, Quintanas A, Vazquez M, Vaseghi M, Rodriguez B. Clinical phenotypes in acute and chronic infarction explained through human ventricular electromechanical modelling and simulations. eLife 2024; 13:RP93002. [PMID: 39711335 DOI: 10.7554/elife.93002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024] Open
Abstract
Sudden death after myocardial infarction (MI) is associated with electrophysiological heterogeneities and ionic current remodelling. Low ejection fraction (EF) is used in risk stratification, but its mechanistic links with pro-arrhythmic heterogeneities are unknown. We aim to provide mechanistic explanations of clinical phenotypes in acute and chronic MI, from ionic current remodelling to ECG and EF, using human electromechanical modelling and simulation to augment experimental and clinical investigations. A human ventricular electromechanical modelling and simulation framework is constructed and validated with rich experimental and clinical datasets, incorporating varying degrees of ionic current remodelling as reported in literature. In acute MI, T-wave inversion and Brugada phenocopy were explained by conduction abnormality and local action potential prolongation in the border zone. In chronic MI, upright tall T-waves highlight large repolarisation dispersion between the border and remote zones, which promoted ectopic propagation at fast pacing. Post-MI EF at resting heart rate was not sensitive to the extent of repolarisation heterogeneity and the risk of repolarisation abnormalities at fast pacing. T-wave and QT abnormalities are better indicators of repolarisation heterogeneities than EF in post-MI.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Zhinuo Jenny Wang
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Julia Camps
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jakub Tomek
- Department of Physiology, Anatomy and Genetics, University of Oxford, Oxford, United Kingdom
| | - Alfonso Santiago
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Adria Quintanas
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
| | - Mariano Vazquez
- Department of Computer Applications in Science and Engineering, Barcelona Supercomputing Centre (BSC), Barcelona, Spain
- ELEM Biotech, Barcelona, Spain
| | - Marmar Vaseghi
- UCLA Cardiac Arrhythmia Center, University of California, Los Angeles, Los Angeles, United States
- Neurocardiology Research Center of Excellence, University of California, Los Angeles, Los Angeles, United States
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
3
|
Zhang X, Wu Y, Smith CER, Louch WE, Morotti S, Dobrev D, Grandi E, Ni H. Enhanced Ca 2+-Driven Arrhythmogenic Events in Female Patients With Atrial Fibrillation: Insights From Computational Modeling. JACC Clin Electrophysiol 2024; 10:2371-2391. [PMID: 39340505 PMCID: PMC11602355 DOI: 10.1016/j.jacep.2024.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/10/2024] [Accepted: 07/29/2024] [Indexed: 09/30/2024]
Abstract
BACKGROUND Substantial sex-based differences have been reported in atrial fibrillation (AF), but the underlying mechanisms are poorly understood. OBJECTIVES This study sought to gain a mechanistic understanding of Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in male vs female atrial cardiomyocytes and establish their responses to Ca2+-targeted interventions. METHODS We integrated reported sex differences and AF-associated changes (ie, expression and phosphorylation of Ca2+-handling proteins, cardiomyocyte ultrastructural characteristics, and dimensions) into our human atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Sex-specific responses of atrial cardiomyocytes to arrhythmia-provoking protocols and Ca2+-targeted interventions were evaluated. RESULTS Simulated quiescent cardiomyocytes showed increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Sensitivity analysis uncovered distinct arrhythmogenic contributions of each component involved in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation emerged as the major SCR contributor in female AF cardiomyocytes, whereas reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulated Ca2+-targeted interventions identified potential strategies (eg, t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2⁺-ATPase) to attenuate Ca2+-driven arrhythmogenic events in women, and revealed enhanced efficacy when applied in combination. CONCLUSIONS Sex-specific modeling uncovers increased Ca2+-driven arrhythmogenic events in female vs male atria in AF, and suggests combined Ca2+-targeted interventions are promising therapeutic approaches in women.
Collapse
Affiliation(s)
- Xianwei Zhang
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/xianweizhang1
| | - Yixuan Wu
- Department of Pharmacology, University of California-Davis, Davis, California, USA
| | - Charlotte E R Smith
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/Char_Smith3
| | - William E Louch
- Institute for Experimental Medical Research, Oslo University Hospital and University of Oslo, Oslo, Norway. https://twitter.com/IEMRLouch
| | - Stefano Morotti
- Department of Pharmacology, University of California-Davis, Davis, California, USA. https://twitter.com/MorottiLab
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany; Montréal Heart Institute, Université de Montréal, Montréal, Québec, Canada; Department of Integrative Physiology, Baylor College of Medicine, Houston, Texas, USA. https://twitter.com/dr_dobrev
| | - Eleonora Grandi
- Department of Pharmacology, University of California-Davis, Davis, California, USA.
| | - Haibo Ni
- Department of Pharmacology, University of California-Davis, Davis, California, USA.
| |
Collapse
|
4
|
Alvarez JAE, Jafri MS, Ullah A. Using a Failing Human Ventricular Cardiomyocyte Model to Re-Evaluate Ca 2+ Cycling, Voltage Dependence, and Spark Characteristics. Biomolecules 2024; 14:1371. [PMID: 39595549 PMCID: PMC11591732 DOI: 10.3390/biom14111371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/13/2024] [Accepted: 10/23/2024] [Indexed: 11/28/2024] Open
Abstract
Previous studies have observed alterations in excitation-contraction (EC) coupling during end-stage heart failure that include action potential and calcium (Ca2+) transient prolongation and a reduction of the Ca2+ transient amplitude. Underlying these phenomena are the downregulation of potassium (K+) currents, downregulation of the sarcoplasmic reticulum Ca2+ ATPase (SERCA), increase Ca2+ sensitivity of the ryanodine receptor, and the upregulation of the sodium-calcium (Na=-Ca2+) exchanger. However, in human heart failure (HF), debate continues about the relative contributions of the changes in calcium handling vs. the changes in the membrane currents. To understand the consequences of the above changes, they are incorporated into a computational human ventricular myocyte HF model that can explore the contributions of the spontaneous Ca2+ release from the sarcoplasmic reticulum (SR). The reduction of transient outward K+ current (Ito) is the main membrane current contributor to the decrease in RyR2 open probability and L-type calcium channel (LCC) density which emphasizes its importance to phase 1 of the action potential (AP) shape and duration (APD). During current-clamp conditions, RyR2 hyperphosphorylation exhibits the least amount of Ca2+ release from the SR into the cytosol and SR Ca2+ fractional release during a dynamic slow-rapid-slow (0.5-2.5-0.5 Hz) pacing, but it displays the most abundant and more lasting Ca2+ sparks two-fold longer than a normal cell. On the other hand, under voltage-clamp conditions, HF by decreased SERCA and upregulated INCX show the least SR Ca2+ uptake and EC coupling gain, as compared to HF by hyperphosphorylated RyR2s. Overall, this study demonstrates that the (a) combined effect of SERCA and NCX, and the (b) RyR2 dysfunction, along with the downregulation of the cardiomyocyte's potassium currents, could substantially contribute to Ca2+ mishandling at the spark level that leads to heart failure.
Collapse
Affiliation(s)
- Jerome Anthony E. Alvarez
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- US Naval Research Laboratory, Center for Bio/Molecular Science and Engineering, Washington, DC 20375, USA
| | - Mohsin Saleet Jafri
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
- Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 20201, USA
| | - Aman Ullah
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA;
| |
Collapse
|
5
|
Zhou X, Levesque P, Chaudhary K, Davis M, Rodriguez B. Lower diastolic tension may be indicative of higher proarrhythmic propensity in failing human cardiomyocytes. Sci Rep 2024; 14:17351. [PMID: 39075069 PMCID: PMC11286957 DOI: 10.1038/s41598-024-65249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 06/18/2024] [Indexed: 07/31/2024] Open
Abstract
Chronic heart failure is one of the most common reasons for hospitalization. Current risk stratification is based on ejection fraction, whereas many arrhythmic events occur in patients with relatively preserved ejection fraction. We aim to investigate the mechanistic link between proarrhythmic abnormalities, reduced contractility and diastolic dysfunction in heart failure, using electromechanical modelling and simulations of human failing cardiomyocytes. We constructed, calibrated and validated populations of human electromechanical models of failing cardiomyocytes, that were able to reproduce the prolonged action potential, reduced contractility and diastolic dysfunction as observed in human data, as well as increased propensity to proarrhythmic incidents such as early afterdepolarization and beat-to-beat alternans. Our simulation data reveal that proarrhythmic incidents tend to occur in failing myocytes with lower diastolic tension, rather than with lower contractility, due to the relative preserved SERCA and sodium calcium exchanger current. These results support the inclusion of end-diastolic volume to be potentially beneficial in the risk stratifications of heart failure patients.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK.
| | - Paul Levesque
- Discovery Toxicology, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Khuram Chaudhary
- Discovery Toxicology, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Myrtle Davis
- Discovery Toxicology, Bristol Myers Squibb, Lawrenceville, NJ, USA
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Wolfson Building, Parks Road, Oxford, OX1 3QD, UK
| |
Collapse
|
6
|
Zhang X, Wu Y, Smith C, Louch WE, Morotti S, Dobrev D, Grandi E, Ni H. Enhanced Ca2+-Driven Arrhythmias in Female Patients with Atrial Fibrillation: Insights from Computational Modeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583217. [PMID: 38496584 PMCID: PMC10942295 DOI: 10.1101/2024.03.04.583217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
BACKGROUND AND AIMS Substantial sex-based differences have been reported in atrial fibrillation (AF), with female patients experiencing worse symptoms, increased complications from drug side effects or ablation, and elevated risk of AF-related stroke and mortality. Recent studies revealed sex-specific alterations in AF-associated Ca2+ dysregulation, whereby female cardiomyocytes more frequently exhibit potentially proarrhythmic Ca2+-driven instabilities compared to male cardiomyocytes. In this study, we aim to gain a mechanistic understanding of the Ca2+-handling disturbances and Ca2+-driven arrhythmogenic events in males vs females and establish their responses to Ca2+-targeted interventions. METHODS AND RESULTS We incorporated known sex differences and AF-associated changes in the expression and phosphorylation of key Ca2+-handling proteins and in ultrastructural properties and dimensions of atrial cardiomyocytes into our recently developed 3D atrial cardiomyocyte model that couples electrophysiology with spatially detailed Ca2+-handling processes. Our simulations of quiescent cardiomyocytes show increased incidence of Ca2+ sparks in female vs male myocytes in AF, in agreement with previous experimental reports. Additionally, our female model exhibited elevated propensity to develop pacing-induced spontaneous Ca2+ releases (SCRs) and augmented beat-to-beat variability in action potential (AP)-elicited Ca2+ transients compared with the male model. Parameter sensitivity analysis uncovered precise arrhythmogenic contributions of each component that was implicated in sex and/or AF alterations. Specifically, increased ryanodine receptor phosphorylation in female AF cardiomyocytes emerged as the major SCR contributor, while reduced L-type Ca2+ current was protective against SCRs for male AF cardiomyocytes. Furthermore, simulations of tentative Ca2+-targeted interventions identified potential strategies to attenuate Ca2+-driven arrhythmogenic events in female atria (e.g., t-tubule restoration, and inhibition of ryanodine receptor and sarcoplasmic/endoplasmic reticulum Ca2+-ATPase), and revealed enhanced efficacy when applied in combination. CONCLUSIONS Our sex-specific computational models of human atrial cardiomyocytes uncover increased propensity to Ca2+-driven arrhythmogenic events in female compared to male atrial cardiomyocytes in AF, and point to combined Ca2+-targeted interventions as promising approaches to treat AF in female patients. Our study establishes that AF treatment may benefit from sex-dependent strategies informed by sex-specific mechanisms.
Collapse
|
7
|
Differential Remodeling of Late I Na in Paroxysmal and Persistent AF: Another Piece in the Complex Picture of Electrical Remodelling in AF. Can J Cardiol 2023; 39:289-291. [PMID: 36586482 DOI: 10.1016/j.cjca.2022.12.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 12/25/2022] [Indexed: 12/29/2022] Open
|
8
|
Ling X, Wang J, Qin X, Lin C, Jie W, Chen Y, Fu D, Yang Y, Meng Q, Lin J, Liu H, Li T, Guo J. Predictive value of TRPV2 expression from peripheral blood mononuclear cells on the early recurrence of atrial fibrillation after radiofrequency catheter ablation. BMC Cardiovasc Disord 2022; 22:546. [PMID: 36513971 PMCID: PMC9746099 DOI: 10.1186/s12872-022-02992-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Recent study has shown that the transient receptor potential vanilloid 2 (TRPV2) channel was exclusively upregulated in patients with atrial fibrillation (AF), and that this overexpression might be detrimental for occurrence and maintenance of AF. We aimed to characterize the expression levels of TRPV2 mRNA in peripheral blood mononuclear cells (PBMCs) with/without early recurrence of atrial fibrillation (ERAF) after radiofrequency catheter ablation (RFCA), and to find a reliable predictor for ERAF. METHODS 65 patients of AF, who underwent RFCA successfully, then divided into two groups according to ERAF during following 3 months. PBMCs were isolated from whole blood by Ficoll gradient centrifugation before and after RFCA. Gene set enrichment analysis was performed to evaluate TRPV channels expression levels and Kyoto Encyclopedia of Genes and Genomes (KEGG) mapping was used for pathway enrichment analysis. RESULTS There was no significant difference in the TRPV2 mRNA expression level between the two groups before RFCA, while without ERAF group of TRPV2 expression was markedly reduced compared to ERAF group after RFCA. Moreover, the number of TRPV2 expression was confirmed as an independent predictor for the first time through receiver operating characteristic and Kaplan-Meier survival curve analysis. It should be pointed out that the above results were only used to predict ERAF, and have no predictive significance for late recurrence of atrial fibrillation according to the current data. Additionally, ERAF was inversely correlated with P wave dispersion. KEGG mapping further clustered 41 pathways, revealing that ''cyclic guanosine monophosphate-protein kinase G signaling pathway'' was significantly enriched. CONCLUSIONS We firstly assume that downregulated expression of peripheral TRPV2 appear in patients without ERAF after RFCA. TRPV2 may thus represent a novel predictor of early phase after successful radiofrequency ablation.
Collapse
Affiliation(s)
- Xuebin Ling
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Jun Wang
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Xue Qin
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Chufen Lin
- grid.216417.70000 0001 0379 7164Department of Health Medicine, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, 570208 Hainan China
| | - Wei Jie
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Yane Chen
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Dajia Fu
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Yang Yang
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Qingwen Meng
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Jing Lin
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Hui Liu
- grid.443397.e0000 0004 0368 7493Department of Anatomy, School of Basic Medicine and Life Science, Hainan Medical University, Haikou, 571199 Hainan China
| | - Tianfa Li
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| | - Junli Guo
- grid.443397.e0000 0004 0368 7493Key Laboratory of Tropical Cardiovascular Diseases Research of Hainan Province, Cardiovascular Diseases Institute of the First Affiliated Hospital, Department of Cardiovascular Surgery, the Second Affiliated Hospital of Hainan Medical University, Key Laboratory of Emergency and Trauma of Ministry of Education, Hainan Medical University, Haikou, 571199 China
| |
Collapse
|
9
|
Vichare R, Saleem F, Mansour H, Bojkovic K, Cheng F, Biswal M, Panguluri SK. Impact of age and sex on hyperoxia-induced cardiovascular pathophysiology. Mech Ageing Dev 2022; 208:111727. [PMID: 36075315 DOI: 10.1016/j.mad.2022.111727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/17/2022] [Accepted: 08/23/2022] [Indexed: 12/30/2022]
Abstract
Hyperoxia is characterized by pronounced inflammatory responses, pulmonary cell apoptosis, and adverse cardiac remodeling due to an excess supply of oxygen. Hyperoxic episodes are frequent in mechanically ventilated patients and are associated with in-hospital mortality. This study extends the analysis of prior published research by our group as it investigates the influence of age in male and female rodents exposed to hyperoxic conditions. Age is an independent cardiovascular risk factor, often compounded by variables like obesity, diabetes, and a decline in sex hormones and their receptors. This study simulates clinical hyperoxia by subjecting rodents to > 90 % of oxygen for 72 h and compares the changes in cardiac structural and functional parameters with those exposed to normal air. While in both sexes conduction abnormalities with ageing were discernible, aged females owing to their inherent higher baseline QTc, were at a higher risk of developing arrhythmias as compared to age-matched males. Quantitative real-time RT-PCR and western blot analysis reflected altered expression of cardiac potassium channels, resulting in conduction abnormalities in aged female rodents. Unaffected by age and sex, hyperoxia-treated mice had altered body composition, as evidenced by a considerable reduction in body weight. Interestingly, compensatory hypertrophy observed as a protective mechanism in young males was absent in aged males, whereas protection of hearts from hyperoxia-induced cardiac hypertrophy was absent in aged female mice, both of which may be at least in part due to a reduction in sex steroid receptors and the systemic steroid levels. Finally, statistical analysis revealed that hyperoxia had the greatest impact on most of the cardiac parameters, followed by age and then sex. This data established an imperative finding that can change the provision of care for aged individuals admitted to ICU by elucidating the impact of intrinsic aging on hyperoxia-induced cardiac remodeling.
Collapse
Affiliation(s)
- Riddhi Vichare
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Faizan Saleem
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Hussein Mansour
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Katarina Bojkovic
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Feng Cheng
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Manas Biswal
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; College of Medicine Internal Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA
| | - Siva Kumar Panguluri
- Department of Pharmaceutical Sciences, Taneja College of Pharmacy, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA; Cell Biology, Microbiology and Molecular Biology, College of Arts and Sciences, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL 33612, USA.
| |
Collapse
|
10
|
Bedford JP, Garside T, Darbyshire JL, Betts TR, Young JD, Watkinson PJ. Risk factors for new-onset atrial fibrillation during critical illness: A Delphi study. J Intensive Care Soc 2022; 23:414-424. [PMID: 36751347 PMCID: PMC9679893 DOI: 10.1177/17511437211022132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background New-onset atrial fibrillation (NOAF) is common during critical illness and is associated with poor outcomes. Many risk factors for NOAF during critical illness have been identified, overlapping with risk factors for atrial fibrillation in patients in community settings. To develop interventions to prevent NOAF during critical illness, modifiable risk factors must be identified. These have not been studied in detail and it is not clear which variables warrant further study. Methods We undertook an international three-round Delphi process using an expert panel to identify important predictors of NOAF risk during critical illness. Results Of 22 experts invited, 12 agreed to participate. Participants were located in Europe, North America and South America and shared 110 publications on the subject of atrial fibrillation. All 12 completed the three Delphi rounds. Potentially modifiable risk factors identified include 15 intervention-related variables. Conclusions We present the results of the first Delphi process to identify important predictors of NOAF risk during critical illness. These results support further research into modifiable risk factors including optimal plasma electrolyte concentrations, rates of change of these electrolytes, fluid balance, choice of vasoactive medications and the use of preventative medications in high-risk patients. We also hope our findings will aid the development of predictive models for NOAF.
Collapse
Affiliation(s)
- Jonathan P Bedford
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
| | - Tessa Garside
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
| | - Julie L Darbyshire
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
| | - Timothy R Betts
- Radcliffe Department of Medicine, University of Oxford, Oxford,
UK
| | - J Duncan Young
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
| | - Peter J Watkinson
- Nuffield Department of Clinical Neurosciences, University of
Oxford, Oxford, UK
- NIHR Oxford Biomedical Research Centre, Oxford, UK
| |
Collapse
|
11
|
Atrial Fibrillation in Women: from Epidemiology to Treatment. CURRENT CARDIOVASCULAR RISK REPORTS 2022. [DOI: 10.1007/s12170-022-00707-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Odening KE, Gomez AM, Dobrev D, Fabritz L, Heinzel FR, Mangoni ME, Molina CE, Sacconi L, Smith G, Stengl M, Thomas D, Zaza A, Remme CA, Heijman J. ESC working group on cardiac cellular electrophysiology position paper: relevance, opportunities, and limitations of experimental models for cardiac electrophysiology research. Europace 2021; 23:1795-1814. [PMID: 34313298 PMCID: PMC11636574 DOI: 10.1093/europace/euab142] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/19/2021] [Indexed: 12/19/2022] Open
Abstract
Cardiac arrhythmias are a major cause of death and disability. A large number of experimental cell and animal models have been developed to study arrhythmogenic diseases. These models have provided important insights into the underlying arrhythmia mechanisms and translational options for their therapeutic management. This position paper from the ESC Working Group on Cardiac Cellular Electrophysiology provides an overview of (i) currently available in vitro, ex vivo, and in vivo electrophysiological research methodologies, (ii) the most commonly used experimental (cellular and animal) models for cardiac arrhythmias including relevant species differences, (iii) the use of human cardiac tissue, induced pluripotent stem cell (hiPSC)-derived and in silico models to study cardiac arrhythmias, and (iv) the availability, relevance, limitations, and opportunities of these cellular and animal models to recapitulate specific acquired and inherited arrhythmogenic diseases, including atrial fibrillation, heart failure, cardiomyopathy, myocarditis, sinus node, and conduction disorders and channelopathies. By promoting a better understanding of these models and their limitations, this position paper aims to improve the quality of basic research in cardiac electrophysiology, with the ultimate goal to facilitate the clinical translation and application of basic electrophysiological research findings on arrhythmia mechanisms and therapies.
Collapse
Affiliation(s)
- Katja E Odening
- Translational Cardiology, Department of Cardiology, Inselspital, Bern University Hospital, Bern, Switzerland
- Institute of Physiology, University of Bern, Bern, Switzerland
| | - Ana-Maria Gomez
- Signaling and cardiovascular pathophysiology—UMR-S 1180, Inserm, Université Paris-Saclay, 92296 Châtenay-Malabry, France
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Larissa Fabritz
- Institute of Cardiovascular Sciences, University of Birmingham, Birmingham, UK
- Department of Cardiology, University Hospital Birmingham NHS Trust, Birmingham, UK
| | - Frank R Heinzel
- Department of Internal Medicine and Cardiology, Charité - Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Matteo E Mangoni
- Institut de Génomique Fonctionnelle, Université de Montpellier, CNRS, INSERM, Montpellier, France
| | - Cristina E Molina
- Institute of Experimental Cardiovascular Research, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Hamburg/Kiel/Lübeck, Germany
| | - Leonardo Sacconi
- National Institute of Optics and European Laboratory for Non Linear Spectroscopy, Italy
- Institute for Experimental Cardiovascular Medicine, University Freiburg, Germany
| | - Godfrey Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, UK
| | - Milan Stengl
- Department of Physiology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Dierk Thomas
- Department of Cardiology, University Hospital Heidelberg, Heidelberg, Germany; Heidelberg Center for Heart Rhythm Disorders (HCR), University Hospital Heidelberg, Heidelberg, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site, Heidelberg/Mannheim, Germany
| | - Antonio Zaza
- Department of Biotechnology and Bioscience, University of Milano-Bicocca, Milano, Italy
| | - Carol Ann Remme
- Department of Experimental Cardiology, Amsterdam UMC, location AMC, Amsterdam, The Netherlands
| | - Jordi Heijman
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
13
|
Revealing the Influences of Sex Hormones and Sex Differences in Atrial Fibrillation and Vascular Cognitive Impairment. Int J Mol Sci 2021; 22:ijms22168776. [PMID: 34445515 PMCID: PMC8396287 DOI: 10.3390/ijms22168776] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/10/2021] [Accepted: 08/11/2021] [Indexed: 12/25/2022] Open
Abstract
The impacts of sex differences on the biology of various organ systems and the influences of sex hormones on modulating health and disease have become increasingly relevant in clinical and biomedical research. A growing body of evidence has recently suggested fundamental sex differences in cardiovascular and cognitive function, including anatomy, pathophysiology, incidence and age of disease onset, symptoms affecting disease diagnosis, disease severity, progression, and treatment responses and outcomes. Atrial fibrillation (AF) is currently recognized as the most prevalent sustained arrhythmia and might contribute to the pathogenesis and progression of vascular cognitive impairment (VCI), including a range of cognitive deficits, from mild cognitive impairment to dementia. In this review, we describe sex-based differences and sex hormone functions in the physiology of the brain and vasculature and the pathophysiology of disorders therein, with special emphasis on AF and VCI. Deciphering how sex hormones and their receptor signaling (estrogen and androgen receptors) potentially impact on sex differences could help to reveal disease links between AF and VCI and identify therapeutic targets that may lead to potentially novel therapeutic interventions early in the disease course of AF and VCI.
Collapse
|
14
|
Zhu Y, Bai J, Lo A, Lu Y, Zhao J. Mechanisms underlying pro-arrhythmic abnormalities arising from Pitx2-induced electrical remodelling: an in silico intersubject variability study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:106. [PMID: 33569408 PMCID: PMC7867875 DOI: 10.21037/atm-20-5660] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Background Electrical remodelling as a result of the homeodomain transcription factor 2 (Pitx2)-dependent gene regulation induces atrial fibrillation (AF) with different mechanisms. The purpose of this study was to identify Pitx2-induced changes in ionic currents that cause action potential (AP) shortening and lead to triggered activity. Methods Populations of computational atrial AP models were developed based on AP recordings from sinus rhythm (SR) and AF patients. Models in the AF population were divided into triggered and untriggered AP groups to evaluate the relationship between each ion current regulated by Pitx2 and triggered APs. Untriggered AP models were then divided into shortened and unshortened AP groups to determine which Pitx2-dependent ion currents contribute to AP shortening. Results According to the physiological range of AP biomarkers measured experimentally, populations of 2,885 SR and 4,781 AF models out of the initial pool of 30,000 models were selected. Models in the AF population predicted AP shortening and triggered activity observed in experiments in Pitx2-induced remodelling conditions. The AF models included 925 triggered AP models, 1,412 shortened AP models and 2,444 unshortened AP models. Intersubject variability in IKs and ICaL primarily modulated variability in AP duration (APD) in all shortened and unshortened AP models, whereas intersubject variability in IK1 and SERCA mainly contributed to the variability in AP morphology in all triggered and untriggered AP models. The incidence of shortened AP was positively correlated with IKs and IK1 and was negatively correlated with INa , ICaL and SERCA, whereas the incidence of triggered AP was negatively correlated with IKs and IK1 and was positively correlated with INa , ICaL and SERCA. Conclusions Electrical remodelling due to Pitx2 upregulation may increase the incidence of shortened AP, whereas electrical remodelling arising from Pitx2 downregulation may favor to the genesis of triggered AP.
Collapse
Affiliation(s)
- Yijie Zhu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jieyun Bai
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Andy Lo
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Yaosheng Lu
- Department of Electronic Engineering, College of Information Science and Technology, Jinan University, Guangzhou, China
| | - Jichao Zhao
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| |
Collapse
|
15
|
McTiernan CF, Lemster BH, Bedi KC, Margulies KB, Moravec CS, Hsieh PN, Shusterman V, Saba S. Circadian Pattern of Ion Channel Gene Expression in Failing Human Hearts. Circ Arrhythm Electrophysiol 2020; 14:e009254. [PMID: 33301345 DOI: 10.1161/circep.120.009254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ventricular tachyarrhythmias and sudden cardiac death show a circadian pattern of occurrence in patients with heart failure. In the rodent ventricle, a significant portion of genes, including some ion channels, shows a circadian pattern of expression. However, genes that define electrophysiological properties in failing human heart ventricles have not been examined for a circadian expression pattern. METHODS Ventricular tissue samples were collected from patients at the time of cardiac transplantation. Two sets of samples (n=37 and 46, one set with a greater arrhythmic history) were selected to generate pseudo-time series according to their collection time. A third set (n=27) of samples was acquired from the nonfailing ventricles of brain-dead donors. The expression of 5 known circadian clock genes and 19 additional ion channel genes plausibly important to electrophysiological properties were analyzed by real-time polymerase chain reaction and then analyzed for the percentage of expression variation attributed to a 24-hour circadian pattern. RESULTS The 5 known circadian clock gene transcripts showed a strong circadian expression pattern. Compared with rodent hearts, the human circadian clock gene transcripts showed a similar temporal order of acrophases but with a ≈7.6 hours phase shift. Five of the ion channel genes also showed strong circadian expression. Comparable studies of circadian clock gene expression in samples recovered from nonheart failure brain-dead donors showed acrophase shifts, or weak or complete loss of circadian rhythmicity, suggesting alterations in circadian gene expression. CONCLUSIONS Ventricular tissue from failing human hearts display a circadian pattern of circadian clock gene expression but phase-shifted relative to rodent hearts. At least 5 ion channels show a circadian expression pattern in the ventricles of failing human hearts, which may underlie a circadian pattern of ventricular tachyarrhythmia/sudden cardiac death. Nonfailing hearts from brain-dead donors show marked differences in circadian clock gene expression patterns, suggesting fundamental deviations from circadian expression.
Collapse
Affiliation(s)
- Charles F McTiernan
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.)
| | - Bonnie H Lemster
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.)
| | - Kenneth C Bedi
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.C.B)
| | - Kenneth B Margulies
- Penn Cardiovascular Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia (K.B.M.)
| | - Christine S Moravec
- Department of Cardiovascular Medicine, Cleveland Clinic Foundation, OH (C.S.M.)
| | | | | | - Samir Saba
- Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh, PA (C.F.M., B.H.L., S.S.)
| |
Collapse
|
16
|
Rahm AK, Müller ME, Gramlich D, Lugenbiel P, Uludag E, Rivinius R, Ullrich ND, Schmack B, Ruhparwar A, Heimberger T, Weis T, Karck M, Katus HA, Thomas D. Inhibition of cardiac K v4.3 (I to) channel isoforms by class I antiarrhythmic drugs lidocaine and mexiletine. Eur J Pharmacol 2020; 880:173159. [PMID: 32360350 DOI: 10.1016/j.ejphar.2020.173159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/23/2020] [Indexed: 12/29/2022]
Abstract
Transient outward K+ current, Ito, contributes to cardiac action potential generation and is primarily carried by Kv4.3 (KCND3) channels. Two Kv4.3 isoforms are expressed in human ventricle and show differential remodeling in heart failure (HF). Lidocaine and mexiletine may be applied in selected patients to suppress ventricular arrhythmias, without effects on sudden cardiac death or mortality. Isoform-dependent effects of antiarrhythmic drugs on Kv4.3 channels and potential implications for remodeling-based antiarrhythmic management have not been assessed to date. We sought to test the hypotheses that Kv4.3 channels are targeted by lidocaine and mexiletine, and that drug sensitivity is determined in isoform-specific manner. Expression of KCND3 isoforms was quantified using qRT-PCR in left ventricular samples of patients with HF due to either ischemic or dilated cardiomyopathies (ICM or DCM). Long (Kv4.3-L) and short (Kv4.3-S) isoforms were heterologously expressed in Xenopus laevis oocytes to study drug sensitivity and effects on biophysical characteristics activation, deactivation, inactivation, and recovery from inactivation. In the present HF patient cohort KCND3 isoform expression did not differ between ICM and DCM. In vitro, lidocaine (IC50-Kv4.3-L: 0.8 mM; IC50-Kv4.3-S: 1.2 mM) and mexiletine (IC50-Kv4.3-L: 146 μM; IC50-Kv4.3-S: 160 μM) inhibited Kv4.3 with different sensitivity. Biophysical analyses identified accelerated and enhanced inactivation combined with delayed recovery from inactivation as primary biophysical mechanisms underlying Kv4.3 current reduction. In conclusion, differential effects on Kv4.3 isoforms extend the electropharmacological profile of lidocaine and mexiletine. Patient-specific remodeling of Kv4.3 isoforms may determine individual drug responses and requires consideration during clinical application of compounds targeting Kv4.3.
Collapse
Affiliation(s)
- Ann-Kathrin Rahm
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Mara Elena Müller
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dominik Gramlich
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Patrick Lugenbiel
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Ecem Uludag
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Rasmus Rivinius
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Nina D Ullrich
- DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; Institute of Physiology and Pathophysiology, Division of Cardiovascular Physiology, University of Heidelberg, Im Neuenheimer Feld 307, 69120, Heidelberg, Germany
| | - Bastian Schmack
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Arjang Ruhparwar
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Tanja Heimberger
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Tanja Weis
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Matthias Karck
- Department of Cardiac Surgery, University Hospital Heidelberg, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
| | - Hugo A Katus
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dierk Thomas
- Department of Cardiology, Medical University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; HCR (Heidelberg Center for Heart Rhythm Disorders), University Hospital Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Heidelberg/Mannheim, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany.
| |
Collapse
|
17
|
Zhou X, Qu Y, Passini E, Bueno-Orovio A, Liu Y, Vargas HM, Rodriguez B. Blinded In Silico Drug Trial Reveals the Minimum Set of Ion Channels for Torsades de Pointes Risk Assessment. Front Pharmacol 2020; 10:1643. [PMID: 32082155 PMCID: PMC7003137 DOI: 10.3389/fphar.2019.01643] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 12/16/2019] [Indexed: 12/11/2022] Open
Abstract
Torsades de Pointes (TdP) is a type of ventricular arrhythmia which could be observed as an unwanted drug-induced cardiac side effect, and it is associated with repolarization abnormalities in single cells. The pharmacological evaluations of TdP risk in previous years mainly focused on the hERG channel due to its vital role in the repolarization of cardiomyocytes. However, only considering drug effects on hERG led to false positive predictions since the drug action on other ion channels can also have crucial regulatory effects on repolarization. To address the limitation of only evaluating hERG, the Comprehensive in Vitro Proarrhythmia Assay initiative has proposed to systematically integrate drug effects on multiple ion channels into in silico drug trial to improve TdP risk assessment. It is not clear how many ion channels are sufficient for reliable TdP risk predictions, and whether differences in IC50 and Hill coefficient values from independent sources can lead to divergent in silico prediction outcomes. The rationale of this work is to investigate the above two questions using a computationally efficient population of human ventricular cells optimized to favor repolarization abnormality. Our blinded results based on two independent data sources confirm that simulations with the optimized population of human ventricular cell models enable efficient in silico drug screening, and also provide direct observation and mechanistic analysis of repolarization abnormality. Our results show that 1) the minimum set of ion channels required for reliable TdP risk predictions are Nav1.5 (peak), Cav1.2, and hERG; 2) for drugs with multiple ion channel blockage effects, moderate IC50 variations combined with variable Hill coefficients can affect the accuracy of in silico predictions.
Collapse
Affiliation(s)
- Xin Zhou
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Yusheng Qu
- SPARC, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Elisa Passini
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Alfonso Bueno-Orovio
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| | - Yang Liu
- GAU, Amgen Research, Amgen Inc., South San Francisco, CA, United States
| | - Hugo M Vargas
- SPARC, Amgen Research, Amgen Inc., Thousand Oaks, CA, United States
| | - Blanca Rodriguez
- Department of Computer Science, British Heart Foundation Centre of Research Excellence, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
18
|
Synnergren J, Vukusic K, Dönnes P, Jonsson M, Lindahl A, Dellgren G, Jeppsson A, Asp J. Transcriptional sex and regional differences in paired human atrial and ventricular cardiac biopsies collected in vivo. Physiol Genomics 2019; 52:110-120. [PMID: 31869284 DOI: 10.1152/physiolgenomics.00036.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Transcriptional studies of the human heart provide insight into physiological and pathophysiological mechanisms, essential for understanding the fundamental mechanisms of normal cardiac function and how they are altered by disease. To improve the understanding of why men and women may respond differently to the same therapeutic treatment it is crucial to learn more about sex-specific transcriptional differences. In this study the transcriptome of right atrium and left ventricle was compared across sex and regional location. Paired biopsies from five male and five female patients undergoing aortic valve replacement or coronary artery bypass grafting were included. Gene expression analysis identified 620 differentially expressed transcripts in atrial and ventricular tissue in men and 471 differentially expressed transcripts in women. In total 339 of these transcripts overlapped across sex but notably, 281 were unique in the male tissue and 162 in the female tissue, displaying marked sex differences in the transcriptional machinery. The transcriptional activity was significantly higher in atrias than in ventricles as 70% of the differentially expressed genes were upregulated in the atrial tissue. Furthermore, pathway- and functional annotation analyses performed on the differentially expressed genes showed enrichment for a more heterogeneous composition of biological processes in atrial compared with the ventricular tissue, and a dominance of differentially expressed genes associated with infection disease was observed. The results reported here provide increased insights about transcriptional differences between the cardiac atrium and ventricle but also reveal transcriptional differences in the human heart that can be attributed to sex.
Collapse
Affiliation(s)
- Jane Synnergren
- Systems Biology Research Center, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Kristina Vukusic
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Marianne Jonsson
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Lindahl
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Göran Dellgren
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital Gothenburg, Sweden and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Jeppsson
- Department of Cardiothoracic Surgery, Sahlgrenska University Hospital Gothenburg, Sweden and Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Julia Asp
- Department of Laboratory Medicine, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Clinical Chemistry, Sahlgrenska University Hospital, Gothenburg, Sweden
| |
Collapse
|
19
|
Grandi E, Ripplinger CM. Antiarrhythmic mechanisms of beta blocker therapy. Pharmacol Res 2019; 146:104274. [PMID: 31100336 DOI: 10.1016/j.phrs.2019.104274] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 05/04/2019] [Accepted: 05/13/2019] [Indexed: 02/07/2023]
Abstract
Sympathetic activity plays an important role in modulation of cardiac rhythm. Indeed, while exerting positive tropic effects in response to physiologic and pathologic stressors, β-adrenergic stimulation influences cardiac electrophysiology and can lead to disturbances of the heart rhythm and potentially lethal arrhythmias, particularly in pathological settings. For this reason, β-blockers are widely utilized clinically as antiarrhythmics. In this review, the molecular mechanisms of β-adrenergic action in the heart, the cellular and tissue level cardiac responses to β-adrenergic stimulation, and the clinical use of β-blockers as antiarrhythmic agents are reviewed. We emphasize the complex interaction between cardiomyocyte signaling, contraction, and electrophysiology occurring over multiple time- and spatial-scales during pathophysiological responses to β-adrenergic stimulation. An integrated understanding of this complex system is essential for optimizing therapies aimed at preventing arrhythmias.
Collapse
Affiliation(s)
- Eleonora Grandi
- Department of Pharmacology, University of California Davis, United States.
| | | |
Collapse
|
20
|
Odening KE, Deiß S, Dilling-Boer D, Didenko M, Eriksson U, Nedios S, Ng FS, Roca Luque I, Sanchez Borque P, Vernooy K, Wijnmaalen AP, Yorgun H. Mechanisms of sex differences in atrial fibrillation: role of hormones and differences in electrophysiology, structure, function, and remodelling. Europace 2018; 21:366-376. [DOI: 10.1093/europace/euy215] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 09/03/2018] [Indexed: 12/28/2022] Open
Affiliation(s)
- Katja E Odening
- Department of Cardiology and Angiology I, Heart Center, University of Freiburg, Hugstetter Str. 55, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, HX Maastricht, The Netherlands
| | - Sebastian Deiß
- Asklepios Medical Center Altona, Department of Cardiology, Arrhythmia Unit, Hamburg, Germany
| | | | - Maxim Didenko
- Department of Surgical and Interventional Arrhythmology, Kuprianov's Cardiovascular Surgery Clinic, Military Medical Academy, St. Petersburg, Russia
| | - Urs Eriksson
- Rhythmology Division, Department of Medicine, GZO Regional Health Center, Wetzikon, Switzerland
- Cardioimmunology, Center for Molecular Cardiology, University of Zurich, Zurich-Schlieren, Switzerland
| | - Sotirios Nedios
- Heart Center, University of Leipzig, Leipzig, Germany
- Massachusetts General Hospital, Harvard University, Boston, MA, USA
| | - Fu Siong Ng
- National Heart & Lung Institute, Imperial College London, London, UK
| | - Ivo Roca Luque
- Arrhythmia Unit, Cardiology Department, Hospital Universitari Vall d'Hebron, Barcelona, Spain
| | | | - Kevin Vernooy
- Department of Cardiology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Center, HX Maastricht, The Netherlands
- Department of Cardiology, Radboud University Medical Center, GA Nijmegen, The Netherlands
| | - Adrianus P Wijnmaalen
- Department of Cardiology, Leiden University Medical Center, ZA Leiden, The Netherlands
| | - Hikmet Yorgun
- Department of Cardiology, Electrophysiology Unit, Hacettepe University, Ankara, Turkey
| |
Collapse
|
21
|
Sex Differences in Atrial Fibrillation—Update on Risk Assessment, Treatment, and Long-Term Risk. CURRENT TREATMENT OPTIONS IN CARDIOVASCULAR MEDICINE 2018; 20:79. [DOI: 10.1007/s11936-018-0682-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
22
|
Abstract
AF is the most common clinical arrhythmia encountered. A wealth of evidence has improved our ability to diagnose and effectively treat AF. An intriguing aspect of this common disease – gender-based differences – is well recognized, but poorly understood. In this brief review, we will explore the accumulating evidence suggesting a gender-based disparity in the prevalence, pathogenesis and management of AF.
Collapse
|
23
|
Murphy E, Amanakis G, Fillmore N, Parks RJ, Sun J. Sex Differences in Metabolic Cardiomyopathy. Cardiovasc Res 2017; 113:370-377. [PMID: 28158412 PMCID: PMC5852638 DOI: 10.1093/cvr/cvx008] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2016] [Revised: 12/19/2016] [Accepted: 01/16/2017] [Indexed: 12/23/2022] Open
Abstract
In contrast to ischemic cardiomyopathies which are more common in men, women are over-represented in diabetic cardiomyopathies. Diabetes is a risk factor for cardiovascular disease; however, there is a sexual dimorphism in this risk factor: heart disease is five times more common in diabetic women but only two-times more common in diabetic men. Heart failure with preserved ejection fraction, which is associated with metabolic syndrome, is also more prevalent in women. This review will examine potential mechanisms for the sex differences in metabolic cardiomyopathies. Sex differences in metabolism, calcium handling, nitric oxide, and structural proteins will be evaluated. Nitric oxide synthase and PPARα exhibit sex differences and have also been proposed to mediate the development of hypertrophy and heart failure. We focused on a role for these signalling pathways in regulating sex differences in metabolic cardiomyopathies.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Systems Biology Center, National Heart, Lung and Blood Institute, NIH, MSC 1770, 10 Center Dr, Bethesda, MD 20892, USA
| | | | | | | | | |
Collapse
|
24
|
Cardiac activation–repolarization patterns and ion channel expression mapping in intact isolated normal human hearts. Heart Rhythm 2017; 14:265-272. [DOI: 10.1016/j.hrthm.2016.10.010] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/23/2022]
|
25
|
Transmural electrophysiological heterogeneity, the T-wave and ventricular arrhythmias. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:202-214. [DOI: 10.1016/j.pbiomolbio.2016.05.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/21/2016] [Accepted: 05/03/2016] [Indexed: 01/05/2023]
|
26
|
McKinnon D, Rosati B. Transmural gradients in ion channel and auxiliary subunit expression. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2016; 122:165-186. [PMID: 27702655 DOI: 10.1016/j.pbiomolbio.2016.09.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/11/2022]
Abstract
Evolution has acted to shape the action potential in different regions of the heart in order to produce a maximally stable and efficient pump. This has been achieved by creating regional differences in ion channel expression levels within the heart as well as differences between equivalent cardiac tissues in different species. These region- and species-dependent differences in channel expression are established by regulatory evolution, evolution of the regulatory mechanisms that control channel expression levels. Ion channel auxiliary subunits are obvious targets for regulatory evolution, in order to change channel expression levels and/or modify channel function. This review focuses on the transmural gradients of ion channel expression in the heart and the role that regulation of auxiliary subunit expression plays in generating and shaping these gradients.
Collapse
Affiliation(s)
- David McKinnon
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Neurobiology and Behavior, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Barbara Rosati
- Department of Veterans Affairs Medical Center, Northport, NY, USA; Institute of Molecular Cardiology, Stony Brook University, Stony Brook, NY, USA; Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
27
|
Holzem KM, Gomez JF, Glukhov AV, Madden EJ, Koppel AC, Ewald GA, Trenor B, Efimov IR. Reduced response to IKr blockade and altered hERG1a/1b stoichiometry in human heart failure. J Mol Cell Cardiol 2016; 96:82-92. [PMID: 26093152 PMCID: PMC4683114 DOI: 10.1016/j.yjmcc.2015.06.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 05/27/2015] [Accepted: 06/01/2015] [Indexed: 01/27/2023]
Abstract
Heart failure (HF) claims 250,000 lives per year in the US, and nearly half of these deaths are sudden and presumably due to ventricular tachyarrhythmias. QT interval and action potential (AP) prolongation are hallmark proarrhythmic changes in the failing myocardium, which potentially result from alterations in repolarizing potassium currents. Thus, we aimed to examine whether decreased expression of the rapid delayed rectifier potassium current, IKr, contributes to repolarization abnormalities in human HF. To map functional IKr expression across the left ventricle (LV), we optically imaged coronary-perfused LV free wall from donor and end-stage failing human hearts. The LV wedge preparation was used to examine transmural AP durations at 80% repolarization (APD80), and treatment with the IKr-blocking drug, E-4031, was utilized to interrogate functional expression. We assessed the percent change in APD80 post-IKr blockade relative to baseline APD80 (∆APD80) and found that ∆APD80s are reduced in failing versus donor hearts in each transmural region, with 0.35-, 0.43-, and 0.41-fold reductions in endo-, mid-, and epicardium, respectively (p=0.008, 0.037, and 0.022). We then assessed hERG1 isoform gene and protein expression levels using qPCR and Western blot. While we did not observe differences in hERG1a or hERG1b gene expression between donor and failing hearts, we found a shift in the hERG1a:hERG1b isoform stoichiometry at the protein level. Computer simulations were then conducted to assess IKr block under E-4031 influence in failing and nonfailing conditions. Our results confirmed the experimental observations and E-4031-induced relative APD80 prolongation was greater in normal conditions than in failing conditions, provided that the cellular model of HF included a significant downregulation of IKr. In human HF, the response to IKr blockade is reduced, suggesting decreased functional IKr expression. This attenuated functional response is associated with altered hERG1a:hERG1b protein stoichiometry in the failing human LV, and failing cardiomyoctye simulations support the experimental findings. Thus, of IKr protein and functional expression may be important determinants of repolarization remodeling in the failing human LV.
Collapse
Affiliation(s)
- Katherine M Holzem
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Juan F Gomez
- Polytechnic University of Valencia, Valencia, Spain
| | - Alexey V Glukhov
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Eli J Madden
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Aaron C Koppel
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | - Gregory A Ewald
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA
| | | | - Igor R Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, MO 63130, USA; Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, Russia.
| |
Collapse
|
28
|
Potassium Channel Interacting Protein 2 (KChIP2) is not a transcriptional regulator of cardiac electrical remodeling. Sci Rep 2016; 6:28760. [PMID: 27349185 PMCID: PMC4923891 DOI: 10.1038/srep28760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 06/08/2016] [Indexed: 12/20/2022] Open
Abstract
The heart-failure relevant Potassium Channel Interacting Protein 2 (KChIP2) augments CaV1.2 and KV4.3. KChIP3 represses CaV1.2 transcription in cardiomyocytes via interaction with regulatory DNA elements. Hence, we tested nuclear presence of KChIP2 and if KChIP2 translocates into the nucleus in a Ca2+ dependent manner. Cardiac biopsies from human heart-failure patients and healthy donor controls showed that nuclear KChIP2 abundance was significantly increased in heart failure; however, this was secondary to a large variation of total KChIP2 content. Administration of ouabain did not increase KChIP2 content in nuclear protein fractions in anesthetized mice. KChIP2 was expressed in cell lines, and Ca2+ ionophores were applied in a concentration- and time-dependent manner. The cell lines had KChIP2-immunoreactive protein in the nucleus in the absence of treatments to modulate intracellular Ca2+ concentration. Neither increasing nor decreasing intracellular Ca2+ concentrations caused translocation of KChIP2. Microarray analysis did not identify relief of transcriptional repression in murine KChIP2−/− heart samples. We conclude that although there is a baseline presence of KChIP2 in the nucleus both in vivo and in vitro, KChIP2 does not directly regulate transcriptional activity. Moreover, the nuclear transport of KChIP2 is not dependent on Ca2+. Thus, KChIP2 does not function as a conventional transcription factor in the heart.
Collapse
|
29
|
Gloschat CR, Koppel AC, Aras KK, Brennan JA, Holzem KM, Efimov IR. Arrhythmogenic and metabolic remodelling of failing human heart. J Physiol 2016; 594:3963-80. [PMID: 27019074 DOI: 10.1113/jp271992] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/21/2016] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) is a major cause of morbidity and mortality worldwide. The global burden of HF continues to rise, with prevalence rates estimated at 1-2% and incidence approaching 5-10 per 1000 persons annually. The complex pathophysiology of HF impacts virtually all aspects of normal cardiac function - from structure and mechanics to metabolism and electrophysiology - leading to impaired mechanical contraction and sudden cardiac death. Pharmacotherapy and device therapy are the primary methods of treating HF, but neither is able to stop or reverse disease progression. Thus, there is an acute need to translate basic research into improved HF therapy. Animal model investigations are a critical component of HF research. However, the translation from cellular and animal models to the bedside is hampered by significant differences between species and among physiological scales. Our studies over the last 8 years show that hypotheses generated in animal models need to be validated in human in vitro models. Importantly, however, human heart investigations can establish translational platforms for safety and efficacy studies before embarking on costly and risky clinical trials. This review summarizes recent developments in human HF investigations of electrophysiology remodelling, metabolic remodelling, and β-adrenergic remodelling and discusses promising new technologies for HF research.
Collapse
Affiliation(s)
- C R Gloschat
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - A C Koppel
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - K K Aras
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - J A Brennan
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - K M Holzem
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| | - I R Efimov
- Department of Biomedical Engineering, The George Washington University, Washington, DC, USA
| |
Collapse
|
30
|
Gomez JF, Cardona K, Trenor B. Lessons learned from multi-scale modeling of the failing heart. J Mol Cell Cardiol 2015; 89:146-59. [PMID: 26476237 DOI: 10.1016/j.yjmcc.2015.10.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Revised: 10/07/2015] [Accepted: 10/14/2015] [Indexed: 12/26/2022]
Abstract
Heart failure constitutes a major public health problem worldwide. Affected patients experience a number of changes in the electrical function of the heart that predispose to potentially lethal cardiac arrhythmias. Due to the multitude of electrophysiological changes that may occur during heart failure, the scientific literature is complex and sometimes ambiguous, perhaps because these findings are highly dependent on the etiology, the stage of heart failure, and the experimental model used to study these changes. Nevertheless, a number of common features of failing hearts have been documented. Prolongation of the action potential (AP) involving ion channel remodeling and alterations in calcium handling have been established as the hallmark characteristics of myocytes isolated from failing hearts. Intercellular uncoupling and fibrosis are identified as major arrhythmogenic factors. Multi-scale computational simulations are a powerful tool that complements experimental and clinical research. The development of biophysically detailed computer models of single myocytes and cardiac tissues has contributed greatly to our understanding of processes underlying excitation and repolarization in the heart. The electrical, structural, and metabolic remodeling that arises in cardiac tissues during heart failure has been addressed from different computational perspectives to further understand the arrhythmogenic substrate. This review summarizes the contributions from computational modeling and simulation to predict the underlying mechanisms of heart failure phenotypes and their implications for arrhythmogenesis, ranging from the cellular level to whole-heart simulations. The main aspects of heart failure are presented in several related sections. An overview of the main electrophysiological and structural changes that have been observed experimentally in failing hearts is followed by the description and discussion of the simulation work in this field at the cellular level, and then in 2D and 3D cardiac structures. The implications for arrhythmogenesis in heart failure are also discussed including therapeutic measures, such as drug effects and cardiac resynchronization therapy. Finally, the future challenges in heart failure modeling and simulation will be discussed.
Collapse
Affiliation(s)
- Juan F Gomez
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada, al Ser Humano (I3BH), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Karen Cardona
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada, al Ser Humano (I3BH), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| | - Beatriz Trenor
- Instituto de Investigación Interuniversitario en Bioingeniería y Tecnología Orientada, al Ser Humano (I3BH), Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain.
| |
Collapse
|
31
|
Holzem KM, Madden EJ, Efimov IR. Human cardiac systems electrophysiology and arrhythmogenesis: iteration of experiment and computation. Europace 2015; 16 Suppl 4:iv77-iv85. [PMID: 25362174 DOI: 10.1093/europace/euu264] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Human cardiac electrophysiology (EP) is a unique system for computational modelling at multiple scales. Due to the complexity of the cardiac excitation sequence, coordinated activity must occur from the single channel to the entire myocardial syncytium. Thus, sophisticated computational algorithms have been developed to investigate cardiac EP at the level of ion channels, cardiomyocytes, multicellular tissues, and the whole heart. Although understanding of each functional level will ultimately be important to thoroughly understand mechanisms of physiology and disease, cardiac arrhythmias are expressly the product of cardiac tissue-containing enough cardiomyocytes to sustain a reentrant loop of activation. In addition, several properties of cardiac cellular EP, that are critical for arrhythmogenesis, are significantly altered by cell-to-cell coupling. However, relevant human cardiac EP data, upon which to develop or validate models at all scales, has been lacking. Thus, over several years, we have developed a paradigm for multiscale human heart physiology investigation and have recovered and studied over 300 human hearts. We have generated a rich experimental dataset, from which we better understand mechanisms of arrhythmia in human and can improve models of human cardiac EP. In addition, in collaboration with computational physiologists, we are developing a database for the deposition of human heart experimental data, including thorough experimental documentation. We anticipate that accessibility to this human heart dataset will further human EP computational investigations, as well as encourage greater data transparency within the field of cardiac EP.
Collapse
Affiliation(s)
- Katherine M Holzem
- Department of Biomedical Engineering, Washington University, 390E Whitaker Hall, One Brookings Drive, St. Louis, MO 63130-4899, USA
| | - Eli J Madden
- Department of Biomedical Engineering, Washington University, 390E Whitaker Hall, One Brookings Drive, St. Louis, MO 63130-4899, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Washington University, 390E Whitaker Hall, One Brookings Drive, St. Louis, MO 63130-4899, USA L'Institut de Rythmologie et Modélisation Cardiaque LIRYC, Université de Bordeaux, Bordeaux, France
| |
Collapse
|
32
|
Kerkhof PLM. Characterizing heart failure in the ventricular volume domain. CLINICAL MEDICINE INSIGHTS-CARDIOLOGY 2015; 9:11-31. [PMID: 25780344 PMCID: PMC4345934 DOI: 10.4137/cmc.s18744] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 01/11/2015] [Accepted: 01/17/2015] [Indexed: 12/13/2022]
Abstract
Heart failure (HF) may be accompanied by considerable alterations of left ventricular (LV) volume, depending on the particular phenotype. Two major types of HF have been identified, although heterogeneity within each category may be considerable. All variants of HF show substantially elevated LV filling pressures, which tend to induce changes in LV size and shape. Yet, one type of HF is characterized by near-normal values for LV end-diastolic volume (EDV) and even a smaller end-systolic volume (ESV) than in matched groups of persons without cardiac disease. Furthermore, accumulating evidence indicates that, both in terms of shape and size, in men and women, the heart reacts differently to adaptive stimuli as well as to certain pharmacological interventions. Adjustments of ESV and EDV such as in HF patients are associated with (reverse) remodeling mechanisms. Therefore, it is logical to analyze HF subtypes in a graphical representation that relates ESV to EDV. Following this route, one may expect that the two major phenotypes of HF are identified as distinct entities localized in different areas of the LV volume domain. The precise coordinates of this position imply unique characteristics in terms of the actual operating point for LV volume regulation. Evidently, ejection fraction (EF; equal to 1 minus the ratio of ESV and EDV) carries little information within the LV volume representation. Thus far, classification of HF is based on information regarding EF combined with EDV. Our analysis shows that ESV in the two HF groups follows different patterns in dependency of EDV. This observation suggests that a superior HF classification system should primarily be founded on information embodied by ESV.
Collapse
Affiliation(s)
- Peter LM Kerkhof
- Department of Physics and Medical Technology, VU University Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
33
|
Novotny T, Leinveber P, Hnatkova K, Reichlova T, Matejkova M, Sisakova M, Krejci J, Hude P, Bedanova H, Nemec P, Spinar J, Spinarova L, Malik M. Pilot study of sex differences in QTc intervals of heart transplant recipients. J Electrocardiol 2014; 47:863-8. [DOI: 10.1016/j.jelectrocard.2014.07.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Indexed: 11/30/2022]
|
34
|
Gomez JF, Cardona K, Romero L, Ferrero JM, Trenor B. Electrophysiological and structural remodeling in heart failure modulate arrhythmogenesis. 1D simulation study. PLoS One 2014; 9:e106602. [PMID: 25191998 PMCID: PMC4156355 DOI: 10.1371/journal.pone.0106602] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Accepted: 08/05/2014] [Indexed: 01/24/2023] Open
Abstract
Background Heart failure is a final common pathway or descriptor for various cardiac pathologies. It is associated with sudden cardiac death, which is frequently caused by ventricular arrhythmias. Electrophysiological remodeling, intercellular uncoupling, fibrosis and autonomic imbalance have been identified as major arrhythmogenic factors in heart failure etiology and progression. Objective In this study we investigate in silico the role of electrophysiological and structural heart failure remodeling on the modulation of key elements of the arrhythmogenic substrate, i.e., electrophysiological gradients and abnormal impulse propagation. Methods Two different mathematical models of the human ventricular action potential were used to formulate models of the failing ventricular myocyte. This provided the basis for simulations of the electrical activity within a transmural ventricular strand. Our main goal was to elucidate the roles of electrophysiological and structural remodeling in setting the stage for malignant life-threatening arrhythmias. Results Simulation results illustrate how the presence of M cells and heterogeneous electrophysiological remodeling in the human failing ventricle modulate the dispersion of action potential duration and repolarization time. Specifically, selective heterogeneous remodeling of expression levels for the Na+/Ca2+ exchanger and SERCA pump decrease these heterogeneities. In contrast, fibroblast proliferation and cellular uncoupling both strongly increase repolarization heterogeneities. Conduction velocity and the safety factor for conduction are also reduced by the progressive structural remodeling during heart failure. Conclusion An extensive literature now establishes that in human ventricle, as heart failure progresses, gradients for repolarization are changed significantly by protein specific electrophysiological remodeling (either homogeneous or heterogeneous). Our simulations illustrate and provide new insights into this. Furthermore, enhanced fibrosis in failing hearts, as well as reduced intercellular coupling, combine to increase electrophysiological gradients and reduce electrical propagation. In combination these changes set the stage for arrhythmias.
Collapse
Affiliation(s)
- Juan F. Gomez
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
| | - Karen Cardona
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
| | - Lucia Romero
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
| | - Jose M. Ferrero
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
| | - Beatriz Trenor
- Instituto de Investigación en Ingeniería Biomédica, Universitat Politècnica de València, Valencia, Spain
- * E-mail:
| |
Collapse
|
35
|
Sánchez C, Bueno-Orovio A, Wettwer E, Loose S, Simon J, Ravens U, Pueyo E, Rodriguez B. Inter-subject variability in human atrial action potential in sinus rhythm versus chronic atrial fibrillation. PLoS One 2014; 9:e105897. [PMID: 25157495 PMCID: PMC4144914 DOI: 10.1371/journal.pone.0105897] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Accepted: 07/26/2014] [Indexed: 02/07/2023] Open
Abstract
AIMS Human atrial electrophysiology exhibits high inter-subject variability in both sinus rhythm (SR) and chronic atrial fibrillation (cAF) patients. Variability is however rarely investigated in experimental and theoretical electrophysiological studies, thus hampering the understanding of its underlying causes but also its implications in explaining differences in the response to disease and treatment. In our study, we aim at investigating the ability of populations of human atrial cell models to capture the inter-subject variability in action potential (AP) recorded in 363 patients both under SR and cAF conditions. METHODS AND RESULTS Human AP recordings in atrial trabeculae (n = 469) from SR and cAF patients were used to calibrate populations of computational SR and cAF atrial AP models. Three populations of over 2000 sampled models were generated, based on three different human atrial AP models. Experimental calibration selected populations of AP models yielding AP with morphology and duration in range with experimental recordings. Populations using the three original models can mimic variability in experimental AP in both SR and cAF, with median conductance values in SR for most ionic currents deviating less than 30% from their original peak values. All cAF populations show similar variations in G(K1), G(Kur) and G(to), consistent with AF-related remodeling as reported in experiments. In all SR and cAF model populations, inter-subject variability in I(K1) and I(NaK) underlies variability in APD90, variability in I(Kur), I(CaL) and I(NaK) modulates variability in APD50 and combined variability in Ito and I(Kur) determines variability in APD20. The large variability in human atrial AP triangulation is mostly determined by I(K1) and either I(NaK) or I(NaCa) depending on the model. CONCLUSION Experimentally-calibrated human atrial AP models populations mimic AP variability in SR and cAF patient recordings, and identify potential ionic determinants of inter-subject variability in human atrial AP duration and morphology in SR versus cAF.
Collapse
Affiliation(s)
- Carlos Sánchez
- Biosignal Interpretation and Computational Simulation (BSICoS), Aragón Institute of Engineering Research (I3A) and Aragón Health Research Institute (IIS), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | | | - Erich Wettwer
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | - Simone Loose
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | - Jana Simon
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | - Ursula Ravens
- Department of Pharmacology and Toxicology, Dresden University of Technology, Dresden, Germany
| | - Esther Pueyo
- Biosignal Interpretation and Computational Simulation (BSICoS), Aragón Institute of Engineering Research (I3A) and Aragón Health Research Institute (IIS), University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Zaragoza, Spain
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|
36
|
Ng FS, Holzem KM, Koppel AC, Janks D, Gordon F, Wit AL, Peters NS, Efimov IR. Adverse remodeling of the electrophysiological response to ischemia-reperfusion in human heart failure is associated with remodeling of metabolic gene expression. Circ Arrhythm Electrophysiol 2014; 7:875-82. [PMID: 25114062 DOI: 10.1161/circep.113.001477] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ventricular arrhythmias occur more frequently in heart failure during episodes of ischemia-reperfusion although the mechanisms underlying this in humans are unclear. We assessed, in explanted human hearts, the remodeled electrophysiological response to acute ischemia-reperfusion in heart failure and its potential causes, including the remodeling of metabolic gene expression. METHODS AND RESULTS We optically mapped coronary-perfused left ventricular wedge preparations from 6 human end-stage failing hearts (F) and 6 donor hearts rejected for transplantation (D). Preparations were subjected to 30 minutes of global ischemia, followed by 30 minutes of reperfusion. Failing hearts had exaggerated electrophysiological responses to ischemia-reperfusion, with greater action potential duration shortening (P<0.001 at 8-minute ischemia; P=0.001 at 12-minute ischemia) and greater conduction slowing during ischemia, delayed recovery of electric excitability after reperfusion (F, 4.8±1.8 versus D, 1.0±0 minutes; P<0.05), and incomplete restoration of action potential duration and conduction velocity early after reperfusion. Expression of 46 metabolic genes was probed using custom-designed TaqMan arrays, using extracted RNA from 15 failing and 9 donor hearts. Ten genes important in cardiac metabolism were downregulated in heart failure, with SLC27A4 and KCNJ11 significantly downregulated at a false discovery rate of 0%. CONCLUSIONS We demonstrate, for the first time in human hearts, that the electrophysiological response to ischemia-reperfusion in heart failure is accelerated during ischemia with slower recovery after reperfusion. This can enhance spatial conduction and repolarization gradients across the ischemic border and increase arrhythmia susceptibility. This adverse response was associated with downregulation of expression of cardiac metabolic genes.
Collapse
Affiliation(s)
- Fu Siong Ng
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Katherine M Holzem
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Aaron C Koppel
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Deborah Janks
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Fabiana Gordon
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Andrew L Wit
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Nicholas S Peters
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.)
| | - Igor R Efimov
- From the Department of Biomedical Engineering, Washington University in Saint Louis, MO (F.S.N., K.M.H., A.C.K., D.J., I.R.E.); National Heart & Lung Institute (F.S.N., N.S.P.) and Statistical Advisory Service (F.G.), Imperial College London, London, United Kingdom; and Department of Pharmacology, Columbia University, New York, NY (A.L.W.).
| |
Collapse
|
37
|
Sex Differences in Cardiac Electrophysiology and Clinical Arrhythmias: Epidemiology, Therapeutics, and Mechanisms. Can J Cardiol 2014; 30:783-92. [DOI: 10.1016/j.cjca.2014.03.032] [Citation(s) in RCA: 82] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2014] [Accepted: 03/23/2014] [Indexed: 11/30/2022] Open
|
38
|
Abstract
Sexual dimorphism is a well-established phenomenon, but its degree varies tremendously among species. Since the early days of Einthoven's development of the three-lead galvanometer ECG, we have known there are marked differences in QT intervals of men and women. It required over a century to appreciate the profound implications of sex-based electrophysiological differences in QT interval on the panoply of sex differences with respect to arrhythmia risk, drug sensitivity, and treatment modalities. Little is known about the fundamental mechanism responsible for sex differences in electrical substrate of the human heart, in large part due to the lack of tissue availability. Animal models are an important research tool, but species differences in the sexual dimorphism of the QT interval, the ionic currents underlying the cardiac repolarization, and effects of sex steroids make it difficult to interpolate animal to human sex differences. In addition, in some species, different strains of the same animal model yield conflicting data. Each model has its strengths, such as ease of genetic manipulation in mice or size in dogs. However, many animals do not reproduce the sexual dimorphism of QT seen in humans. To match sex linked prolongation of QT interval and arrhythmogenic phenotype, the current data suggest that the rabbit may be best suited to provide insight into sex differences in humans. In the future, emerging technologies such as induced pluripotent stem cell derived cardiac myocyte systems may offer the opportunity to study sex differences in a controlled hormonal situation in the context of a sex specific human model system.
Collapse
Affiliation(s)
- Guy Salama
- Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania; Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania; University of Pittsburgh Medical Center Heart and Vascular Institute, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Glenna C L Bett
- Center for Cellular and Systems Electrophysiology, University at Buffalo, State University of New York, Buffalo, New York; Department of Obstetrics and Gynecology, University at Buffalo, State University of New York, Buffalo, New York; and Department of Physiology and Biophysics, University at Buffalo, State University of New York, Buffalo, New York
| |
Collapse
|
39
|
Murphy E, Steenbergen C. Estrogen regulation of protein expression and signaling pathways in the heart. Biol Sex Differ 2014; 5:6. [PMID: 24612699 PMCID: PMC3975301 DOI: 10.1186/2042-6410-5-6] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Accepted: 01/21/2014] [Indexed: 01/20/2023] Open
Abstract
Sex differences in cardiovascular disease and cardiac physiology have been reported in humans as well as in animal models. Premenopausal women have reduced cardiovascular disease compared to men, but the incidence of cardiovascular disease in women increases following menopause. Sex differences in cardiomyocytes likely contribute to the differences in male-female physiology and response to disease. Sex differences in the heart have been noted in electrophysiology, contractility, signaling, metabolism, and cardioprotection. These differences appear to be due, at least in part, to differences in gene and protein expression as well as in posttranslational protein modifications. This review will focus primarily on estrogen-mediated male-female differences in protein expression and signaling pathways in the heart and cardiac cells. It should be emphasized that these basic differences are not intrinsically beneficial or detrimental per se; the difference can be good or bad depending on the context and circumstances.
Collapse
Affiliation(s)
- Elizabeth Murphy
- Laboratory of Cardiac Physiology, Systems Biology Center, NHLBI, NIH, Bethesda, MD 20824-0105, USA
| | | |
Collapse
|
40
|
Differential gene expression of cardiac ion channels in human dilated cardiomyopathy. PLoS One 2013; 8:e79792. [PMID: 24339868 PMCID: PMC3855055 DOI: 10.1371/journal.pone.0079792] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 09/25/2013] [Indexed: 11/23/2022] Open
Abstract
Background Dilated cardiomyopathy (DCM) is characterized by idiopathic dilation and systolic contractile dysfunction of the cardiac chambers. The present work aimed to study the alterations in gene expression of ion channels involved in cardiomyocyte function. Methods and Results Microarray profiling using the Affymetrix Human Gene® 1.0 ST array was performed using 17 RNA samples, 12 from DCM patients undergoing cardiac transplantation and 5 control donors (CNT). The analysis focused on 7 cardiac ion channel genes, since this category has not been previously studied in human DCM. SCN2B was upregulated, while KCNJ5, KCNJ8, CLIC2, CLCN3, CACNB2, and CACNA1C were downregulated. The RT-qPCR (21 DCM and 8 CNT samples) validated the gene expression of SCN2B (p < 0.0001), KCNJ5 (p < 0.05), KCNJ8 (p < 0.05), CLIC2 (p < 0.05), and CACNB2 (p < 0.05). Furthermore, we performed an IPA analysis and we found a functional relationship between the different ion channels studied in this work. Conclusion This study shows a differential expression of ion channel genes involved in cardiac contraction in DCM that might partly underlie the changes in left ventricular function observed in these patients. These results could be the basis for new genetic therapeutic approaches.
Collapse
|
41
|
Polak S, Wiśniowska B, Fijorek K, Glinka A, Mendyk A. In vitro-in vivo extrapolation of drug-induced proarrhythmia predictions at the population level. Drug Discov Today 2013; 19:275-81. [PMID: 24140591 DOI: 10.1016/j.drudis.2013.10.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2013] [Revised: 09/16/2013] [Accepted: 10/09/2013] [Indexed: 01/25/2023]
Abstract
Drug cardiotoxicity is a serious issue for patients, regulators, pharmaceutical companies and health service payers because they are all affected by its consequences. Despite the wide range of data they generate, existing approaches for cardiac safety testing might not be adequate and sufficiently cost-effective, probably as a result of the complexity of the problem. For this reason, translational tools (based on biophysically detailed, mathematical models) allowing for in vitro-in vivo extrapolation are gaining increasing interest. This current review describes approaches that can be used for cardiac safety assessment at the population level, by accounting for various sources of variability including kinetics of the compound of interest.
Collapse
Affiliation(s)
- Sebastian Polak
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland; Simcyp Limited, Blades Enterprise Centre, John Street, Sheffield, UK.
| | - Barbara Wiśniowska
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Kamil Fijorek
- Department of Statistics, Faculty of Management, Cracow University of Economics, Rakowicka 27 Street, 31-510 Kraków, Poland
| | - Anna Glinka
- Unit of Pharmacoepidemiology and Pharmacoeconomics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
| | - Aleksander Mendyk
- Department of Pharmaceutical Technology and Biopharmaceutics, Faculty of Pharmacy, Jagiellonian University Medical College, Medyczna 9 Street, 30-688 Kraków, Poland
| |
Collapse
|
42
|
Walmsley J, Rodriguez JF, Mirams GR, Burrage K, Efimov IR, Rodriguez B. mRNA expression levels in failing human hearts predict cellular electrophysiological remodeling: a population-based simulation study. PLoS One 2013; 8:e56359. [PMID: 23437117 PMCID: PMC3577832 DOI: 10.1371/journal.pone.0056359] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2012] [Accepted: 01/08/2013] [Indexed: 01/06/2023] Open
Abstract
Differences in mRNA expression levels have been observed in failing versus non-failing human hearts for several membrane channel proteins and accessory subunits. These differences may play a causal role in electrophysiological changes observed in human heart failure and atrial fibrillation, such as action potential (AP) prolongation, increased AP triangulation, decreased intracellular calcium transient (CaT) magnitude and decreased CaT triangulation. Our goal is to investigate whether the information contained in mRNA measurements can be used to predict cardiac electrophysiological remodeling in heart failure using computational modeling. Using mRNA data recently obtained from failing and non-failing human hearts, we construct failing and non-failing cell populations incorporating natural variability and up/down regulation of channel conductivities. Six biomarkers are calculated for each cell in each population, at cycle lengths between 1500 ms and 300 ms. Regression analysis is performed to determine which ion channels drive biomarker variability in failing versus non-failing cardiomyocytes. Our models suggest that reported mRNA expression changes are consistent with AP prolongation, increased AP triangulation, increased CaT duration, decreased CaT triangulation and amplitude, and increased delay between AP and CaT upstrokes in the failing population. Regression analysis reveals that changes in AP biomarkers are driven primarily by reduction in I, and changes in CaT biomarkers are driven predominantly by reduction in I and SERCA. In particular, the role of I is pacing rate dependent. Additionally, alternans developed at fast pacing rates for both failing and non-failing cardiomyocytes, but the underlying mechanisms are different in control and heart failure.
Collapse
Affiliation(s)
- John Walmsley
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Jose F. Rodriguez
- Aragón Institute of Engineering Research, University of Zaragoza, Zaragoza, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine, Zaragoza, Spain
| | - Gary R. Mirams
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
| | - Kevin Burrage
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- School of Mathematical Sciences, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Igor R. Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, United States of America
| | - Blanca Rodriguez
- Department of Computer Science, University of Oxford, Oxford, United Kingdom
- * E-mail:
| |
Collapse
|