1
|
Yoon H, Park C. Effectiveness of Proprioceptive Body Vibration Rehabilitation on Motor Function and Activities of Daily Living in Stroke Patients with Impaired Sensory Function. Healthcare (Basel) 2023; 12:35. [PMID: 38200941 PMCID: PMC10779045 DOI: 10.3390/healthcare12010035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/14/2023] [Accepted: 12/21/2023] [Indexed: 01/12/2024] Open
Abstract
Stroke patients experience impaired sensory and motor functions, which impact their activities of daily living (ADL). The current study was designed to determine the best neurorehabilitation method to improve clinical outcomes, including the trunk-impairment scale (TIS), Berg balance scale (BBS), Fugl-Meyer assessment (FMA), and modified Barthel index (MBI), in stroke patients with impaired sensory function. Forty-four stroke survivors consistently underwent proprioceptive body vibration rehabilitation training (PBVT) or conventional physical therapy (CPT) for 30 min/session, 5 days a week for 8 weeks. Four clinical outcome variables-the FMA, TIS, BBS, and MBI-were examined pre- and post-intervention. We observed significant differences in the FMA, BBS, and MBI scores between the PBVT and CPT groups. PBVT and CPT showed significant improvements in FMA, BBS, TIS, and MBI scores. However, PVBT elicited more favorable results than CPT in patients with stroke and impaired sensory function. Collectively, this study provides the first clinical evidence of optimal neurorehabilitation in stroke patients with impaired sensory function.
Collapse
Affiliation(s)
- Hyunsik Yoon
- Chungnam National University Hospital, Daejeon 35015, Republic of Korea;
- Department of Physical Therapy, Yonsei University, Wonju 26493, Republic of Korea
| | - Chanhee Park
- Department of Physical Therapy, Yonsei University, Wonju 26493, Republic of Korea
| |
Collapse
|
2
|
Sutter C, Fabre M, Massi F, Blouin J, Mouchnino L. When mechanical engineering inspired from physiology improves postural-related somatosensory processes. Sci Rep 2023; 13:19495. [PMID: 37945691 PMCID: PMC10636053 DOI: 10.1038/s41598-023-45381-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 10/18/2023] [Indexed: 11/12/2023] Open
Abstract
Despite numerous studies uncovering the neural signature of tactile processing, tactile afferent inputs relating to the contact surface has not been studied so far. Foot tactile receptors being the first stimulated by the relative movement of the foot skin and the underneath moving support play an important role in the sensorimotor transformation giving rise to a postural reaction. A biomimetic surface, i.e., complying with the skin dermatoglyphs and tactile receptors characteristics should facilitate the cortical processes. Participants (n = 15) stood either on a biomimetic surface or on two control surfaces, when a sudden acceleration of the supporting surface was triggered (experiment 1). A larger intensity and shorter somatosensory response (i.e., SEP) was evoked by the biomimetic surface motion. This result and the associated decrease of theta activity (5-7 Hz) over the posterior parietal cortex suggest that increasing the amount of sensory input processing could make the balance task less challenging when standing on a biomimetic surface. This key point was confirmed by a second experiment (n = 21) where a cognitive task was added, hence decreasing the attentional resources devoted to the balance motor task. Greater efficiency of the postural reaction was observed while standing on the biomimetic than on the control surfaces.
Collapse
Affiliation(s)
- Chloé Sutter
- Laboratoire de Neurosciences Cognitives, FR 3C, Aix-Marseille Université, CNRS, 3 Place Victor Hugo, 13331, Marseille, France.
| | - Marie Fabre
- Laboratoire de Neurosciences Cognitives, FR 3C, Aix-Marseille Université, CNRS, 3 Place Victor Hugo, 13331, Marseille, France
| | - Francesco Massi
- Dipartimento di Ingegneria Meccanica ed Aerospaziale, Università degli Studi di Roma «La Sapienza», Rome, Italy
- Laboratoire de Mécanique des Contacts et des Structures, Institut National des Sciences Appliquées de Lyon (INSA LYON), Lyon, France
| | - Jean Blouin
- Laboratoire de Neurosciences Cognitives, FR 3C, Aix-Marseille Université, CNRS, 3 Place Victor Hugo, 13331, Marseille, France
| | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives, FR 3C, Aix-Marseille Université, CNRS, 3 Place Victor Hugo, 13331, Marseille, France.
- Institut Universitaire de France, Paris, France.
| |
Collapse
|
3
|
Yang X, Xue X, Tu H, Li N. Effect of whole-body vibration training on the recovery of lower limb function in people with stroke: a systematic review and meta-analysis. Disabil Rehabil 2023; 45:3823-3832. [PMID: 36367314 DOI: 10.1080/09638288.2022.2138993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/13/2022]
Abstract
PURPOSE The purpose of this meta-analysis was to systematically evaluate the effects of whole-body vibration training (WBVT) on the recovery of lower limb function in people with stroke. METHODS The literature search was made in the electronic databases PubMed, Web of Science, Scopus and Embase electronic databases. Only randomized controlled trials were included. Data extraction, quality assessment and meta-analysis were performed. The search was conducted on September 01, 2022. The data analysis software was RevMan 5.3. RESULTS A total of 13 RCTs were included, including 687 patients. The results showed that compared with the control group, the overall difference in balance function was statistically significant [MD = 4.23, 95% CI 2.21 ∼ 6.26, p < 0.0001]. There was no significant difference in the evaluation indexes of lower limb motor function, including the TUG, 10MWT, 6MWT, and FMA - LE. The overall difference in lower limb muscle spasticity was statistically significant [MD = -0.53, 95% CI -0.81 ∼ 0.26, p = 0.0001]. CONCLUSIONS Compared with the control group, using WBVT treatment has a more obvious effect on the recovery of lower limb function and muscle spasticity, and there is no obvious advantage in motor function recovery.IMPLICATIONS FOR REHABILITATIONThis Systematic Review and meta-analysis of evidence suggest that whole-body vibration training is effective in the rehabilitation of lower limb function in patients with stroke.Whole body vibration training may be a better choice for improving balance and spasm in people with stroke.Currently it is not known which whole-body vibration training model with vibration intensity, stimulus type and duration is most effective and to design more targeted interventions.
Collapse
Affiliation(s)
- Xinwei Yang
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province, China
| | - Xiali Xue
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province, China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province, China
| | - Huan Tu
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province, China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province, China
| | - Ning Li
- School of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province, China
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, Sichuan Province, China
| |
Collapse
|
4
|
Sutter C, Moinon A, Felicetti L, Massi F, Blouin J, Mouchnino L. Cortical facilitation of tactile afferents during the preparation of a body weight transfer when standing on a biomimetic surface. Front Neurol 2023; 14:1175667. [PMID: 37404946 PMCID: PMC10315651 DOI: 10.3389/fneur.2023.1175667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/30/2023] [Indexed: 07/06/2023] Open
Abstract
Self-generated movement shapes tactile perception, but few studies have investigated the brain mechanisms involved in the processing of the mechanical signals related to the static and transient skin deformations generated by forces and pressures exerted between the foot skin and the standing surface. We recently found that standing on a biomimetic surface (i.e., inspired by the characteristics of mechanoreceptors and skin dermatoglyphics), that magnified skin-surface interaction, increased the sensory flow to the somatosensory cortex and improved balance control compared to standing on control (e.g., smooth) surfaces. In this study, we tested whether the well-known sensory suppression that occurs during movements is alleviated when the tactile afferent signal becomes relevant with the use of a biomimetic surface. Eyes-closed participants (n = 25) self-stimulated their foot cutaneous receptors by shifting their body weight toward one of their legs while standing on either a biomimetic or a control (smooth) surface. In a control task, similar forces were exerted on the surfaces (i.e., similar skin-surface interaction) by passive translations of the surfaces. Sensory gating was assessed by measuring the amplitude of the somatosensory-evoked potential over the vertex (SEP, recorded by EEG). Significantly larger and shorter SEPs were found when participants stood on the biomimetic surface. This was observed whether the forces exerted on the surface were self-generated or passively generated. Contrary to our prediction, we found that the sensory attenuation related to the self-generated movement did not significantly differ between the biomimetic and control surfaces. However, we observed an increase in gamma activity (30-50 Hz) over centroparietal regions during the preparation phase of the weight shift only when participants stood on the biomimetic surface. This result might suggest that gamma-band oscillations play an important functional role in processing behaviorally relevant stimuli during the early stages of body weight transfer.
Collapse
Affiliation(s)
- Chloé Sutter
- Laboratoire de Neurosciences Cognitives, FR 3C, CNRS, Aix Marseille Université, Marseille, France
| | - Alix Moinon
- Laboratoire de Neurosciences Cognitives, FR 3C, CNRS, Aix Marseille Université, Marseille, France
| | - Livia Felicetti
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
- LAMCOS, INSA Lyon, CNRS, UMR5259, Université Lyon, Villeurbanne, France
| | - Francesco Massi
- Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, Rome, Italy
| | - Jean Blouin
- Laboratoire de Neurosciences Cognitives, FR 3C, CNRS, Aix Marseille Université, Marseille, France
| | - Laurence Mouchnino
- Laboratoire de Neurosciences Cognitives, FR 3C, CNRS, Aix Marseille Université, Marseille, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
5
|
Rum L, Russo Y, Vannozzi G, Macaluso A. "Posture first": Interaction between posture and locomotion in people with low back pain during unexpectedly cued modification of gait initiation motor command. Hum Mov Sci 2023; 89:103094. [PMID: 37148816 DOI: 10.1016/j.humov.2023.103094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 04/14/2023] [Accepted: 04/21/2023] [Indexed: 05/08/2023]
Abstract
The ability to adapt anticipatory postural adjustments (APAs) in response to perturbations during single-joint movements is altered in people with chronic low back pain (LBP), but a comprehensive analysis during functional motor tasks is still missing. This study aimed to compare APAs and stepping characteristics during gait initiation between people with LBP and healthy controls, both in normal (without cue occurrence) condition and when an unexpected visual cue required to switch the stepping limb. Fourteen individuals with LPB and 10 healthy controls performed gait initiation in normal and switch conditions. The postural responses were evaluated through the analysis of center of pressure, propulsive ground reaction forces, trunk and whole-body kinematics, and activation onsets of leg and back muscles. During normal gait initiation, participants with LBP exhibited similar APAs and stepping characteristics to healthy controls. In the switch condition, individuals with LBP were characterized by greater mediolateral postural stability but decreased forward body motion and propulsion before stepping. The thorax motion was associated with forward propulsion parameters in both task conditions in people with LBP but not healthy controls. No between-group differences were found in muscle activation onsets. The results suggest that postural stability is prioritized over forward locomotion in individuals with LBP. Furthermore, the condition-invariant coupling between thorax and whole-body forward propulsion in LBP suggests an adaptation in the functional use of the thorax within the postural strategy, even in poor balance conditions.
Collapse
Affiliation(s)
- Lorenzo Rum
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135 Rome, Italy.
| | - Yuri Russo
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135 Rome, Italy; Department of Sport and Health Sciences, University of Exeter, St Luke's Campus, Magdalen Road, Exeter EX1 2LU, UK
| | - Giuseppe Vannozzi
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135 Rome, Italy
| | - Andrea Macaluso
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Piazza Lauro De Bosis 6, 00135 Rome, Italy
| |
Collapse
|
6
|
Yin Y, Wang J, Yu Z, Zhou L, Liu X, Cai H, Sun J. Does whole-body vibration training have a positive effect on balance and walking function in patients with stroke? A meta-analysis. Front Hum Neurosci 2023; 16:1076665. [PMID: 36684839 PMCID: PMC9846107 DOI: 10.3389/fnhum.2022.1076665] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Objective After a stroke, patients usually suffer from dysfunction, such as decreased balance ability, and abnormal walking function. Whole-body vibration training can promote muscle contraction, stimulate the proprioceptive system, enhance the muscle strength of low limbs and improve motor control ability. The study aims to evaluate the effectiveness of whole-body vibration training on the balance and walking function of patients with stroke. Methods PubMed, CNKI, VIP, CBM, EBSCO, Embase and Web of Science were searched. According to the inclusion and exclusion criteria, randomized controlled trials on the effectiveness of whole-body vibration training on the balance and walking function of patients with stroke were collected. The search time ranged from the date of database construction to November 2022. The included trials were evaluated by the Cochrane risk-of-bias tool. The meta-analysis was performed using two software packages, consisting of RevMan 5.4 and Stata 12.2. If the results included in the literature were continuous variables, use the mean difference (MD) and 95% confidence interval (CI) for statistics. Results (1) A total of 22 randomized controlled trials (RCTs) with a total of 1089 patients were included. (2) The results of meta-analysis showed that: compared with the controls, step length (MD = 6.12, 95%CI [5.63, 6.62], p < 0.001), step speed (MD = 0.14, 95%CI [0.09, 0.20], p < 0.001), cadence (MD = 9.03, 95%CI [2.23, 15.83], p = 0.009), stride length (MD = 6.74, 95%CI [-3.47, 10.01], p < 0.001), Berg Balance Scale (BBS) (MD = 4.08, 95%CI [2.39, 5.76], p < 0.001), Timed Up-and-Go test (TUGT) (MD = -2.88, 95%CI [-4.94, 0.81], p = 0.006), 10-meter Walk Test (10MWT) (MD = -2.69, 95%CI [-3.35, -2.03], p < 0.001), functional ambulation category scale (FAC) (MD = 0.78, 95%CI [0.65, 0.91], p < 0.001), Fugl-Meyer motor assessment of lower extremity (FMA-LE) (MD = 4.10, 95%CI [2.01, 6.20], p = 0.0001). (3) The results of subgroup analysis showed that, compared with other vibration frequencies, at 20-30 Hz frequency, WBV training had an obvious improvement effect only in TUGT. (4) The safety analysis showed that WBV training may be safe. Conclusion Whole-body vibration training has a positive effect on the balance and walking function of patients with stroke. Thus, whole-body vibration training is a safe treatment method to improve the motor dysfunction of patients with stroke. Systematic review registration [http://www.crd.york.ac.uk/PROSPERO], identifier [CRD4202348263].
Collapse
Affiliation(s)
- Yikun Yin
- College of Physical and Health Education, Guangxi Normal University, Guilin, China,Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Jialin Wang
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Zhengze Yu
- College of Physical and Health Education, Guangxi Normal University, Guilin, China
| | - Lina Zhou
- College of Physical and Health Education, Guangxi Normal University, Guilin, China
| | - Xiaoman Liu
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China
| | - Hejia Cai
- College of Physical and Health Education, Guangxi Normal University, Guilin, China
| | - Junzhi Sun
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, China,*Correspondence: Junzhi Sun,
| |
Collapse
|
7
|
Fabre M, Sainton P, Sutter C, Mouchnino L, Chavet P. Partial Unweighting in Obese Persons Enhances Tactile Transmission From the Periphery to Cortical Areas: Impact on Postural Adjustments. Front Hum Neurosci 2022; 16:782028. [PMID: 35774481 PMCID: PMC9238273 DOI: 10.3389/fnhum.2022.782028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Tactile plantar information is known to play an important role in balance maintenance and to contribute to the setting of anticipatory postural adjustments (APAs) prior to stepping. Previous studies have suggested that somatosensory processes do not function optimally for obese individuals due to the increased pressure of the plantar sole resulting in balance issues. Here, we investigated whether decreasing the compression of the mechanoreceptors by unweighting the plantar sole would enhance tactile sensory processes leading to an increased stability and an accurate setting of the APAs in obese individuals. More specifically, we tested the hypothesis that the somatosensory cortex response to electric stimulation (SEP) of the plantar sole in standing obese persons will be greater with reduced body weight than with their effective weight. The level of unweighting was calculated for each participant to correspond to a healthy body mass index. We showed an increase SEP amplitude in the unweighted condition compared to the effective body weight for all participants. This increase can be explained by the reduction of weight itself but also by the modified distribution of the pressure exerted onto the foot sole. Indeed, in the unweighted condition, the vertical ground reaction forces are evenly distributed over the surface of the foot. This suggests that decreasing and equalizing the pressure applied on the plantar mechanoreceptors results in an increase in somatosensory transmission and sensory processes for obese persons when unweighted. These sensory processes are crucial prior to step initiation and for setting the anticipatory postural adjustments (i.e., thrust). These cortical changes could have contributed to the observed changes in the spatiotemporal characteristics of the thrust prior to step initiation.
Collapse
Affiliation(s)
- Marie Fabre
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
| | - Patrick Sainton
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement, Marseille, France
| | - Chloé Sutter
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
| | - Laurence Mouchnino
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
- Institut Universitaire de France, Paris, France
| | - Pascale Chavet
- Aix-Marseille Université, CNRS, Institut des Sciences du Mouvement, Marseille, France
- *Correspondence: Pascale Chavet
| |
Collapse
|
8
|
Characterization of Anticipatory Postural Adjustments in Lateral Stepping: Impact of Footwear and Lower Limb Preference. SENSORS 2021; 21:s21248244. [PMID: 34960335 PMCID: PMC8706929 DOI: 10.3390/s21248244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/26/2021] [Accepted: 12/07/2021] [Indexed: 11/17/2022]
Abstract
Lateral stepping is a motor task that is widely used in everyday life to modify the base of support, change direction, and avoid obstacles. Anticipatory Postural Adjustments (APAs) are often analyzed to describe postural preparation prior to forward stepping, however, little is known about lateral stepping. The aim of the study is to characterize APAs preceding lateral steps and to investigate how these are affected by footwear and lower limb preference. Twenty-two healthy young participants performed a lateral step using both their preferred and non-preferred leg in both barefoot and shod conditions. APA spatiotemporal parameters (size, duration, and speed) along both the anteroposterior and mediolateral axes were obtained through force plate data. APAs preceding lateral stepping showed typical patterns both along the anteroposterior and mediolateral axis. RM-ANOVA highlighted a significant effect of footwear only on medio-lateral APAs amplitude (p = 0.008) and velocity (p = 0.037). No differences were found for the limb preference. APAs in lateral stepping presented consistent features in the sagittal component, regardless of limb/shoe factors. Interestingly, the study observed that footwear induced an increase in the medio-lateral APAs size and velocity, highlighting the importance of including this factor when studying lateral stepping.
Collapse
|
9
|
Kimijanová J, Bzdúšková D, Hirjaková Z, Hlavačka F. Age-Related Changes of the Anticipatory Postural Adjustments During Gait Initiation Preceded by Vibration of Lower Leg Muscles. Front Hum Neurosci 2021; 15:771446. [PMID: 34744671 PMCID: PMC8566353 DOI: 10.3389/fnhum.2021.771446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Accepted: 09/27/2021] [Indexed: 11/13/2022] Open
Abstract
Gait initiation (GI) challenges the balance control system, especially in the elderly. To date, however, there is no consensus about the age effect on the anticipatory postural adjustments (APAs). There is also a lack of research on APAs in older adults after proprioceptive perturbation in the sagittal plane. This study aimed to compare the ability of young and older participants to generate APAs in response to the vibratory-induced perturbation delivered immediately before GI. Twenty-two young and 22 older adults performed a series of GI trials: (1) without previous vibration; (2) preceded by the vibration of triceps surae muscles; and (3) preceded by the vibration of tibialis anterior muscles. The APAs magnitude, velocity, time-to-peak, and duration were extracted from the center of pressure displacement in the sagittal plane. Young participants significantly modified their APAs during GI, whereas older adults did not markedly change their APAs when the body vertical was shifted neither backward nor forward. Significant age-related declines in APAs were observed also regardless of the altered proprioception.The results show that young adults actively responded to the altered proprioception from lower leg muscles and sensitively scaled APAs according to the actual position of the body verticality. Contrary, older adults were unable to adjust their postural responses indicating that the challenging transition from standing to walking probably requires higher reliance on the visual input. The understanding of age-related differences in APAs may help to design training programs for the elderly specifically targeted to improve balance control in different sensory conditions, particularly during gait initiation.
Collapse
Affiliation(s)
- Jana Kimijanová
- Department of Behavioral Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Diana Bzdúšková
- Department of Behavioral Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Zuzana Hirjaková
- Department of Behavioral Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| | - František Hlavačka
- Department of Behavioral Neuroscience, Institute of Normal and Pathological Physiology, Centre of Experimental Medicine, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
10
|
Russo Y, Vannozzi G. Anticipatory postural adjustments in forward and backward single stepping: Task variability and effects of footwear. J Biomech 2021; 122:110442. [PMID: 33901937 DOI: 10.1016/j.jbiomech.2021.110442] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/25/2022]
Abstract
A single step is usually preceded by the so-named anticipatory postural adjustments (APAs). These are normally described through the observation of the trajectory of the center of pressure (CoP). Even though, external factors such as stepping direction and footwear are known to modify APAs, quantitative investigations regarding their relevant effects are understudied in the literature. Therefore, this study aims at characterizing APAs patterns prior to forward and backward stepping when performed either in barefoot or shod condition and explores their variability. Twenty-eight young healthy volunteers participated in the study. CoP trajectories were recorded using a force plate and relevant spatio-temporal parameters extracted (i.e. duration, amplitude, and mean speed). Results showed distinct effects of both direction of the step and footwear on APAs: the first mainly induces variations of APAs along the anteroposterior direction, whereas the latter in the mediolateral direction. In addition, variability indices exhibited lower values for the APAs along the mediolateral axis which was affected by neither footwear nor direction of the step. This study extends previous literature by revealing significant direction X footwear interactions on APAs. Furthermore, regardless of these factors, the medio-lateral strategy is still well preserved, highlighting the prioritization of balance control over motor performance. In conclusion, both direction and footwear have a major effect on postural preparation therefore both factors should be included when evaluating APAs in real-life condition.
Collapse
Affiliation(s)
- Yuri Russo
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy
| | - Giuseppe Vannozzi
- Interuniversity Centre of Bioengineering of the Human Neuromusculoskeletal System (BOHNES), Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Rome, Italy.
| |
Collapse
|
11
|
Caderby T, Caron N, Verkindt C, Bonazzi B, Dalleau G, Peyrot N. Obesity-related alterations in anticipatory postural mechanisms associated with gait initiation. Exp Brain Res 2020; 238:2557-2567. [DOI: 10.1007/s00221-020-05914-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 08/26/2020] [Indexed: 02/08/2023]
|
12
|
da Silva Soares F, Moreira VMPS, Alves LV, Dionisio VC. What is the influence of severity levels of knee osteoarthritis on gait initiation? Clin Biomech (Bristol, Avon) 2020; 74:51-57. [PMID: 32145669 DOI: 10.1016/j.clinbiomech.2020.02.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND The anticipatory postural adjustments required for gait initiation have not yet been investigated in older adults with different levels of severity of knee osteoarthritis. This study aimed to evaluate the anticipatory postural adjustments adopted by older adults with different severity levels of knee osteoarthritis during gait initiation. METHODS Sixty-seven older adults with knee osteoarthritis (mild, moderate, and severe levels) and 11 healthy older adults control were evaluated bilaterally with a force plate to analyze gait initiation. The center of pressure trajectory during gait initiation was divided into four phases: three anticipatory postural adjustments, and a locomotor phase. The length, duration, and velocity of each phase were calculated. FINDINGS The results showed that during the right and left limbs swing forward, the severe and moderate knee osteoarthritis groups presented a significant reduction in the length of anticipatory postural adjustment phases, locomotion, duration, and velocity (P < 0.05). The severe knee osteoarthritis group presented a significantly higher body mass index (P < 0.003) than the other groups. However, just the healthy group presented a correlation between body mass index and anticipatory postural adjustments. INTERPRETATION Our results demonstrated that older adults with severe and moderate levels of knee osteoarthritis adopt longer lasting and slower anticipatory postural adjustment phases, lower locomotion, and lower center of pressure displacement during gait initiation, suggesting that this population has adaptive strategy in performing gait initiation, which is significantly changed by the knee osteoarthritis severity level.
Collapse
Affiliation(s)
- Fabiana da Silva Soares
- Doctor Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, Brazil.
| | | | - Luiza Vinhal Alves
- Physical Therapy Course, Federal University of Uberlandia, Uberlândia, Brazil
| | - Valdeci Carlos Dionisio
- Physical Therapy Course, Federal University of Uberlandia, Uberlândia, Brazil; Doctor Program in Health Sciences, Faculty of Medicine, Federal University of Uberlândia, Uberlândia, Brazil.
| |
Collapse
|
13
|
Delafontaine A, Vialleron T, Fischer M, Laffaye G, Chèze L, Artico R, Genêt F, Fourcade PC, Yiou E. Acute Effects of Whole-Body Vibration on the Postural Organization of Gait Initiation in Young Adults and Elderly: A Randomized Sham Intervention Study. Front Neurol 2019; 10:1023. [PMID: 31616369 PMCID: PMC6768974 DOI: 10.3389/fneur.2019.01023] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 09/09/2019] [Indexed: 11/13/2022] Open
Abstract
Whole-body vibration (WBV) is a training method that exposes the entire body to mechanical oscillations while standing erect or seated on a vibrating platform. This method is nowadays commonly used by clinicians to improve specific motor outcomes in various sub-populations such as elderly and young healthy adults, either sedentary or well-trained. The present study investigated the effects of acute WBV application on the balance control mechanisms during gait initiation (GI) in young healthy adults and elderly. It was hypothesized that the balance control mechanisms at play during gait initiation may compensate each other in case one or several components are perturbed following acute WBV application, so that postural stability and/or motor performance can be maintained or even improved. It is further hypothesized that this capacity of adaptation is altered with aging. Main results showed that the effects of acute WBV application on the GI postural organization depended on the age of participants. Specifically, a positive effect was observed on dynamic stability in the young adults, while no effect was observed in the elderly. An increased stance leg stiffness was also observed in the young adults only. The positive effect of WBV on dynamic stability was ascribed to an increase in the mediolateral amplitude of "anticipatory postural adjustments" following WBV application, which did overcompensate the potentially destabilizing effect of the increased stance leg stiffness. In elderly, no such anticipatory (nor corrective) postural adaptation was required since acute WBV application did not elicit any change in the stance leg stiffness. These results suggest that WBV application may be effective in improving dynamic stability but at the condition that participants are able to develop adaptive changes in balance control mechanisms, as did the young adults. Globally, these findings are thus in agreement with the hypothesis that balance control mechanisms are interdependent within the postural system, i.e., they may compensate each other in case one component (here the leg stiffness) is perturbed.
Collapse
Affiliation(s)
- Arnaud Delafontaine
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France.,ENKRE, Saint-Maurice, France
| | - Thomas Vialleron
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Matthieu Fischer
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Guillaume Laffaye
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | | | - Romain Artico
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France.,ENKRE, Saint-Maurice, France
| | - François Genêt
- UMR End:icap équipe 3, UFR des Sciences de la Santé Simone Veil, UVSQ, Montigny le Bretonneux, France
| | - Paul Christian Fourcade
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| | - Eric Yiou
- CIAMS, Univ. Paris-Sud., Université Paris-Saclay, Orsay, France.,CIAMS, Université d'Orléans, Orléans, France
| |
Collapse
|
14
|
Saradjian AH, Teasdale N, Blouin J, Mouchnino L. Independent Early and Late Sensory Processes for Proprioceptive Integration When Planning a Step. Cereb Cortex 2019; 29:2353-2365. [PMID: 29750263 DOI: 10.1093/cercor/bhy104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Revised: 03/21/2018] [Accepted: 04/18/2018] [Indexed: 11/15/2022] Open
Abstract
Somatosensory inputs to the cortex undergo an early and a later stage of processing which are characterized by an early and a late somatosensory evoked potentials (SEP). The early response is highly representative of the stimulus characteristics whereas the late response reflects a more integrative, task specific, stage of sensory processing. We hypothesized that the later processing stage is independent of the early processing stage. We tested the prediction that a reduction of the first volley of input to the cortex should not prevent the increase of the late SEP. Using the sensory interference phenomenon, we halved the amplitude of the early response to somatosensory input of the ankle joints (evoked by vibration) when participants either planned a step forward or remained still. Despite the initial cortical response to the vibration being massively decreased in both tasks, the late response was still enhanced during step planning. Source localization indicated the posterior parietal cortex (PPC) as the likely origin of the late response modulation. Overall these results support the dissociation between the processes underlying the early and late SEP. The later processing stage could involve both direct and indirect thalamic connections to PPC which bypass the postcentral somatosensory cortex.
Collapse
Affiliation(s)
| | - Normand Teasdale
- Faculté de médecine, Département de kinésiologie, Université Laval, Québec, QC, Canada.,CHU de Québec - Hôpital du Saint-Sacrement, Centre d'excellence sur le vieillissement de Québec, Québec, QC, Canada
| | - Jean Blouin
- Aix-Marseille Univ, CNRS, LNC FR 3C 3512, Marseille, France
| | | |
Collapse
|
15
|
Lhomond O, Teasdale N, Simoneau M, Mouchnino L. Supplementary Motor Area and Superior Parietal Lobule Restore Sensory Facilitation Prior to Stepping When a Decrease of Afferent Inputs Occurs. Front Neurol 2019; 9:1132. [PMID: 30662426 PMCID: PMC6328453 DOI: 10.3389/fneur.2018.01132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 12/10/2018] [Indexed: 12/22/2022] Open
Abstract
The weighting of the sensory inputs is not uniform during movement preparation and execution. For instance, a transient increase in the transmission to the cortical level of cutaneous input ~700 ms was observed before participants initiated a step forward. The sensory facilitation occurred at a time when feet cutaneous information is critical for setting the forces to be exerted onto the ground to shift the center of mass toward the supporting side prior to foot-off. Despite clear evidence of task-dependent modulation of the early somatosensory signal transmission, the neural mechanisms are mainly unknown. One hypothesis suggests that during movement preparation the premotor cortex and specifically the supplementary motor area (SMA) can be the source of an efferent signal that facilitates the somatosensory processes irrespectively of the amount of sensory inputs arriving at the somatosensory areas. Here, we depressed mechanically the plantar sole cutaneous transmission by increasing pressure under the feet by adding an extra body weight to test whether the task-dependent modulation is present during step preparation. Results showed upregulation of the neural response to tactile stimulation in the extra-weight condition during the stepping preparation whereas depressed neural response was still observed in standing condition. Source localization indicated the SMA and to a lesser extent the superior parietal lobule (SPL) areas as the likely origin of the response modulation. Upregulating cutaneous inputs (when mechanically depressed) at an early stage by efferent signals from the motor system could be an attempt to restore the level of sensory afferents to make it suitable for setting the anticipatory adjustments prior to step initiation.
Collapse
Affiliation(s)
- Olivia Lhomond
- Aix Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| | - Normand Teasdale
- Faculté de médecine, Département de kinésiologie, Université Laval, Québec, QC, Canada
| | - Martin Simoneau
- Faculté de médecine, Département de kinésiologie, Université Laval, Québec, QC, Canada.,Centre Interdisciplinaire de Recherche en Réadaptation et Intégration Sociale, Québec, QC, Canada
| | - Laurence Mouchnino
- Aix Marseille Univ, CNRS, Laboratoire de Neurosciences Cognitives, Marseille, France
| |
Collapse
|
16
|
An Overview of the Physiology and Pathophysiology of Postural Control. BIOSYSTEMS & BIOROBOTICS 2018. [DOI: 10.1007/978-3-319-72736-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
17
|
Yiou E, Caderby T, Delafontaine A, Fourcade P, Honeine JL. Balance control during gait initiation: State-of-the-art and research perspectives. World J Orthop 2017; 8:815-828. [PMID: 29184756 PMCID: PMC5696609 DOI: 10.5312/wjo.v8.i11.815] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 08/30/2017] [Accepted: 09/13/2017] [Indexed: 02/06/2023] Open
Abstract
It is well known that balance control is affected by aging, neurological and orthopedic conditions. Poor balance control during gait and postural maintenance are associated with disability, falls and increased mortality. Gait initiation - the transient period between the quiet standing posture and steady state walking - is a functional task that is classically used in the literature to investigate how the central nervous system (CNS) controls balance during a whole-body movement involving change in the base of support dimensions and center of mass progression. Understanding how the CNS in able-bodied subjects exerts this control during such a challenging task is a pre-requisite to identifying motor disorders in populations with specific impairments of the postural system. It may also provide clinicians with objective measures to assess the efficiency of rehabilitation programs and better target interventions according to individual impairments. The present review thus proposes a state-of-the-art analysis on: (1) the balance control mechanisms in play during gait initiation in able bodied subjects and in the case of some frail populations; and (2) the biomechanical parameters used in the literature to quantify dynamic stability during gait initiation. Balance control mechanisms reviewed in this article included anticipatory postural adjustments, stance leg stiffness, foot placement, lateral ankle strategy, swing foot strike pattern and vertical center of mass braking. Based on this review, the following viewpoints were put forward: (1) dynamic stability during gait initiation may share a principle of homeostatic regulation similar to most physiological variables, where separate mechanisms need to be coordinated to ensure stabilization of vital variables, and consequently; and (2) rehabilitation interventions which focus on separate or isolated components of posture, balance, or gait may limit the effectiveness of current clinical practices.
Collapse
Affiliation(s)
- Eric Yiou
- Laboratoire CIAMS, Université Paris-Sud, Université Paris-Saclay, Orsay 91405, France
- Laboratoire CIAMS, Université d’Orléans, Orléans 45067, France
| | - Teddy Caderby
- Laboratoire IRISSE, UFR des Sciences de l’Homme et de l’Environnement, Université de la Réunion, Ile de la Réunion 97430, France
| | - Arnaud Delafontaine
- Laboratoire CIAMS, Université Paris-Sud, Université Paris-Saclay, Orsay 91405, France
- Laboratoire CIAMS, Université d’Orléans, Orléans 45067, France
- Ecole Nationale de Kinésithérapie et Rééducation, Saint Maurice 75012, France
| | - Paul Fourcade
- Laboratoire CIAMS, Université Paris-Sud, Université Paris-Saclay, Orsay 91405, France
- Laboratoire CIAMS, Université d’Orléans, Orléans 45067, France
| | - Jean-Louis Honeine
- Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia 27100, Italy
| |
Collapse
|
18
|
Mouchnino L, Lhomond O, Morant C, Chavet P. Plantar Sole Unweighting Alters the Sensory Transmission to the Cortical Areas. Front Hum Neurosci 2017; 11:220. [PMID: 28539876 PMCID: PMC5423901 DOI: 10.3389/fnhum.2017.00220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 04/18/2017] [Indexed: 11/23/2022] Open
Abstract
It is well established that somatosensory inputs to the cortex undergo an early and a later stage of processing. The later has been shown to be enhanced when the earlier transmission decreased. In this framework, mechanical factors such as the mechanical stress to which sensors are subjected when wearing a loaded vest are associated with a decrease in sensory transmission. This decrease is in turn associated with an increase in the late sensory processes originating from cortical areas. We hypothesized that unweighting the plantar sole should lead to a facilitation of the sensory transmission. To test this hypothesis, we recorded cortical somatosensory evoked potentials (SEPs) of individuals following cutaneous stimulation (by mean of an electrical stimulation of the foot sole) in different conditions of unweighting when standing still with eyes closed. To this end, the effective bodyweight (BW) was reduced from 100% BW to 40% BW. Contrary to what was expected, we found an attenuation of sensory information when the BW was unweighted to 41% which was not compensated by an increase of the late SEP component. Overall these results suggested that the attenuation of sensory transmission observed in 40 BW condition was not solely due to the absence of forces acting on the sole of the feet but rather to the current relevance of the afferent signals related to the balance constraints of the task.
Collapse
Affiliation(s)
- Laurence Mouchnino
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3CMarseille, France
| | - Olivia Lhomond
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3CMarseille, France
| | - Clément Morant
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3CMarseille, France.,Aix-Marseille Université, CNRS, Institut des Sciences du MouvementMarseille, France
| | - Pascale Chavet
- Aix-Marseille Université, CNRS, Institut des Sciences du MouvementMarseille, France
| |
Collapse
|
19
|
Delafontaine A, Gagey O, Colnaghi S, Do MC, Honeine JL. Rigid Ankle Foot Orthosis Deteriorates Mediolateral Balance Control and Vertical Braking during Gait Initiation. Front Hum Neurosci 2017; 11:214. [PMID: 28503144 PMCID: PMC5408009 DOI: 10.3389/fnhum.2017.00214] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 04/11/2017] [Indexed: 12/16/2022] Open
Abstract
Rigid ankle-foot orthoses (AFO) are commonly used for impeding foot drop during the swing phase of gait. They also reduce pain and improve gait kinematics in patients with weakness or loss of integrity of ankle-foot complex structures due to various pathological conditions. However, this comes at the price of constraining ankle joint mobility, which might affect propulsive force generation and balance control. The present study examined the effects of wearing an AFO on biomechanical variables and electromyographic activity of tibialis anterior (TA) and soleus muscles during gait initiation (GI). Nineteen healthy adults participated in the study. They initiated gait at a self-paced speed with no ankle constraint as well as wearing an AFO on the stance leg, or bilaterally. Constraining the stance leg ankle decreased TA activity ipsilaterally during the anticipatory postural adjustment (APA) of GI, and ipsilateral soleus activity during step execution. In the sagittal plane, the decrease in the stance leg TA activity reduced the backward displacement of the center of pressure (CoP) resulting in a reduction of the forward velocity of the center of mass (CoM) measured at foot contact (FC). In the frontal plane, wearing the AFO reduced the displacement of the CoP in the direction of the swing leg during the APA phase. The mediolateral velocity of the CoM increased during single-stance prompting a larger step width to recover balance. During step execution, the CoM vertical downward velocity is normally reduced in order to lessen the impact of the swing leg with the floor and facilitates the rise of the CoM that occurs during the subsequent double-support phase. The reduction in stance leg soleus activity caused by constraining the ankle weakened the vertical braking of the CoM during step execution. This caused the absolute instantaneous vertical velocity of the CoM at FC to be greater in the constrained conditions with respect to the control condition. From a rehabilitation perspective, passively- or actively-powered assistive AFOs could correct for the reduction in muscle activity and enhance balance control during GI of patients.
Collapse
Affiliation(s)
- Arnaud Delafontaine
- CIAMS, Université Paris-Sud Université Paris-Saclay, Orsay, France; CIAMS, Université d'OrléansOrléans, France
| | - Olivier Gagey
- CIAMS, Université Paris-Sud Université Paris-Saclay, Orsay, France; CIAMS, Université d'OrléansOrléans, France.,Service de Chirurgie Orthopédique, C.H.U Kremlin BicêtreKremlin Bicêtre, France
| | - Silvia Colnaghi
- CSAM Laboratory, Department of Public Health, University of PaviaPavia, Italy
| | - Manh-Cuong Do
- CIAMS, Université Paris-Sud Université Paris-Saclay, Orsay, France; CIAMS, Université d'OrléansOrléans, France
| | - Jean-Louis Honeine
- CSAM Laboratory, Department of Public Health, University of PaviaPavia, Italy
| |
Collapse
|
20
|
Caderby T, Yiou E, Peyrot N, de Viviés X, Bonazzi B, Dalleau G. Effects of Changing Body Weight Distribution on Mediolateral Stability Control during Gait Initiation. Front Hum Neurosci 2017; 11:127. [PMID: 28396629 PMCID: PMC5366317 DOI: 10.3389/fnhum.2017.00127] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 03/06/2017] [Indexed: 12/16/2022] Open
Abstract
During gait initiation, anticipatory postural adjustments (APA) precede the execution of the first step. It is generally acknowledged that these APA contribute to forward progression but also serve to stabilize the whole body in the mediolateral direction during step execution. Although previous studies have shown that changes in the distribution of body weight between both legs influence motor performance during gait initiation, it is not known whether and how such changes affect a person's postural stability during this task. The aim of this study was to investigate the effects of changing initial body weight distribution between legs on mediolateral postural stability during gait initiation. Changes in body weight distribution were induced under experimental conditions by modifying the frontal plane distribution of an external load located at the participants' waists. Fifteen healthy adults performed a gait initiation series at a similar speed under three conditions: with the overload evenly distributed over both legs; with the overload strictly distributed over the swing-limb side; and with the overload strictly distributed over the stance-leg side. Our results showed that the mediolateral location of center-of-mass (CoM) during the initial upright posture differed between the experimental conditions, indicating modifications in the initial distribution of body weight between the legs according to the load distribution. While the parameters related to the forward progression remained unchanged, the alterations in body weight distribution elicited adaptive changes in the amplitude of APA in the mediolateral direction (i.e., maximal mediolateral shift of the center of pressure (CoP)), without variation in their duration. Specifically, it was observed that the amplitude of APA was modulated in such a way that mediolateral dynamic stability at swing foot-contact, quantified by the margin of stability (i.e., the distance between the base of support boundary and the extrapolated CoM position), did not vary between the conditions. These findings suggest that APA seem to be scaled as a function of the initial body weight distribution between both legs so as to maintain optimal conditions of stability during gait initiation.
Collapse
Affiliation(s)
- Teddy Caderby
- Laboratoire IRISSE, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion Ile de la Réunion, France
| | - Eric Yiou
- Laboratoire CIAMS, Université Paris Sud, Université Paris-SaclayOrsay, France; Laboratoire CIAMS, Université d'OrléansOrléans, France
| | - Nicolas Peyrot
- Laboratoire IRISSE, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion Ile de la Réunion, France
| | - Xavier de Viviés
- Laboratoire IRISSE, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion Ile de la Réunion, France
| | - Bruno Bonazzi
- Laboratoire IRISSE, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion Ile de la Réunion, France
| | - Georges Dalleau
- Laboratoire IRISSE, UFR des Sciences de l'Homme et de l'Environnement, Université de la Réunion Ile de la Réunion, France
| |
Collapse
|
21
|
Lunghi C, Tozzi P, Fusco G. The biomechanical model in manual therapy: Is there an ongoing crisis or just the need to revise the underlying concept and application? J Bodyw Mov Ther 2016; 20:784-799. [PMID: 27814859 DOI: 10.1016/j.jbmt.2016.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 01/04/2016] [Accepted: 01/15/2016] [Indexed: 01/14/2023]
Abstract
Different approaches to body biomechanics are based on the classical concept of "ideal posture" which is regarded as the state where body mass is distributed in such a way that ligamentous tensions neutralize the force of gravity and muscles retain their normal tone, as result of the integration of somatic components related to posture and balance mechanisms. When compromised, optimal posture can be restored through the balanced and effective use of musculoskeletal components; however, various research findings and the opinion of experts in this field suggest a move away from the dogmas that have characterized the idea of health dependent on ideal posture, to promote instead dynamic approaches based on the interdependency of the body systems as well as on the full participation of the person in the healing process. Following these concepts, this article proposes a revised biomechanical model that sees posture as the temporary result of the individual's current ability to adapt to the existing allostatic load through the dynamic interaction of extero-proprio-interoceptive information integrated at a neuromyofascial level. Treatments using this revised model aim to restore the optimal posture available to the person in that particular given moment, through the efficient and balanced use of neuro-myofascia-skeletal components in order to normalize aberrant postural responses, to promote interoceptive and proprioceptive integration and to optimize individual responses to the existing allostatic load. The latter is achieved via multimodal programs of intervention, in a salutogenic approach that, from a traditional perspective, evolves on an anthropological basis, to the point of centering its work on the person.
Collapse
Affiliation(s)
- Christian Lunghi
- School of Osteopathy C.R.O.M.O.N, Rome, Italy; C.O.ME. Collaboration, Pescara, Italy
| | - Paolo Tozzi
- School of Osteopathy C.R.O.M.O.N, Rome, Italy; C.O.ME. Collaboration, Pescara, Italy.
| | - Giampiero Fusco
- School of Osteopathy C.R.O.M.O.N, Rome, Italy; C.O.ME. Collaboration, Pescara, Italy
| |
Collapse
|
22
|
Sensory modulation of movement, posture and locomotion. Neurophysiol Clin 2015; 45:255-67. [DOI: 10.1016/j.neucli.2015.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 11/20/2022] Open
|
23
|
Delafontaine A, Honeine JL, Do MC, Gagey O, Chong RK. Comparative gait initiation kinematics between simulated unilateral and bilateral ankle hypomobility: Does bilateral constraint improve speed performance? Neurosci Lett 2015. [PMID: 26197055 DOI: 10.1016/j.neulet.2015.07.016] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Improvement of motor performance in unilateral upper limb motor disability has been shown when utilizing inter-limb coupling strategies during physical rehabilitation. This suggests that 'default' bilateral central motor commands are facilitated. Here, we tested whether this bilateral motor control principle may be generalized to the lower limbs during gait initiation, which involves alternate bilateral actions. Disability was simulated by strapping to produce ankle hypomobility. Healthy adult subjects initiated gait at a self-paced speed with no ankle constraint (control), or with the stance, swing or bilateral ankles strapped. The duration of the anticipatory postural adjustments lengthened and the center of mass instantaneous progression velocity at foot-off decreased when the ankle was strapped. During the step execution phase, progression velocity at foot-contact was higher when both ankles were strapped compared to unilateral strapping of the stance ankle. These findings suggest that bilateral central motor commands are favored during walking tasks. Indeed, unilateral constraint of the stance ankle should compel the central nervous system to adapt specific commands to the constraint and normal sides whereas the 'default' bilateral motor commands would be utilized when both ankles are strapped leading to better kinematics performance. Bilateral in-phase upper limb coordination and bilateral alternating lower limb locomotor movements may share similar control mechanisms.
Collapse
Affiliation(s)
- A Delafontaine
- CIAMS Laboratory, UFR-STAPS, University Paris-Sud, Orsay, France.
| | - J-L Honeine
- CIAMS Laboratory, UFR-STAPS, University Paris-Sud, Orsay, France
| | - M-C Do
- CIAMS Laboratory, UFR-STAPS, University Paris-Sud, Orsay, France
| | - O Gagey
- CIAMS Laboratory, UFR-STAPS, University Paris-Sud, Orsay, France; Service de chirurgie orthopédique, C.H.U Kremlin Bicêtre, Kremlin Bicêtre, France
| | - R K Chong
- Department of Physical Therapy, Georgia Regents University, Augusta, GA, USA
| |
Collapse
|
24
|
Pereira MP, Pelicioni PHS, Lahr J, Gobbi LTB. Does proprioceptive system stimulation improve sit-to-walk performance in healthy young adults? J Phys Ther Sci 2015; 27:1113-6. [PMID: 25995568 PMCID: PMC4433989 DOI: 10.1589/jpts.27.1113] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 12/11/2014] [Indexed: 12/02/2022] Open
Abstract
[Purpose] Sit-to-walk performance is linked to proper proprioceptive information
processing. Therefore, it is believed that an increase of proprioceptive inflow (using
muscle vibration) might improve sit-to-walk performance. However, before testing muscle
vibration effects on a frail population, assessment of its effects on healthy young people
is necessary. Thus, the aim of this study was to investigate the effects of muscle
vibration on sit-to-walk performance in healthy young adults. [Subjects and Methods]
Fifteen young adults performed the sit-to-walk task under three conditions: without
vibration, with vibration applied before movement onset, and with vibration applied during
the movement. Vibration was applied bilaterally for 30 s to the tibialis anterior, rectus
femoris, and upper trapezius muscles bellies. The vibration parameters were as follows:
120 Hz and 1.2 mm. Kinematics and kinetic data were assessed using a 3D motion capture
system and two force plates. The coordinates of reflective markers were used to define the
center-of-mass velocities and displacements. In addition, the first step spatiotemporal
variables were assessed. [Results] No vibration effect was observed on any dependent
variables. [Conclusion] The results show that stimulation of the proprioceptive system
with local muscle vibration does not improve sit-to-walk performance in healthy young
adults.
Collapse
Affiliation(s)
- Marcelo P Pereira
- Posture and Locomotion Studies Laboratory, Department of Physical Education, Bioscience Institute, Universidade Estadual Paulista, Brasil
| | - Paulo H S Pelicioni
- Posture and Locomotion Studies Laboratory, Department of Physical Education, Bioscience Institute, Universidade Estadual Paulista, Brasil
| | - Juliana Lahr
- Posture and Locomotion Studies Laboratory, Department of Physical Education, Bioscience Institute, Universidade Estadual Paulista, Brasil
| | - Lilian T B Gobbi
- Posture and Locomotion Studies Laboratory, Department of Physical Education, Bioscience Institute, Universidade Estadual Paulista, Brasil
| |
Collapse
|
25
|
Mouchnino L, Fontan A, Tandonnet C, Perrier J, Saradjian AH, Saradjian A, Blouin J, Simoneau M. Facilitation of cutaneous inputs during the planning phase of gait initiation. J Neurophysiol 2015; 114:301-8. [PMID: 25925329 DOI: 10.1152/jn.00668.2014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Accepted: 04/29/2015] [Indexed: 11/22/2022] Open
Abstract
It has been shown that during the planning of a voluntary movement the transmission of cutaneous afferent inputs to the somatosensory cortex is attenuated shortly before the motor output as well as during movement execution. However, it is not known whether the sensory suppression observed during the planning phase (i.e., before any movement execution) is a systemic phenomenon or whether it is dependent on movement context. For example, movements such as step initiation are controlled based on information received from cutaneous receptors in the feet. Because afferent information emerging from these receptors is critical for movement initiation, we hypothesized that suppression of these inputs may not occur during the planning phase prior to gait initiation. To examine this hypothesis we measured the cortical response to somatosensory stimulation during the planning phase of step initiation and during movement execution. Sensitivity to cutaneous stimulation was assessed by measuring the amplitude of the cortical somatosensory-evoked potential (SEP, over the Cz electrode) following electrical stimulations of the plantar sole of one foot. Two stimulations were provided during the planning phase of a step movement and two stimulations during movement execution. It was found that the P50-N80 SEP was facilitated in the early planning phase (-700 ms before motor execution) compared with when participants remained still (control standing task). This mechanism might contribute to an enhanced perception of cutaneous input leading to a more accurate setting of the forces to be exerted onto the ground to shift the body's weight toward the supporting side prior to foot-off.
Collapse
Affiliation(s)
- Laurence Mouchnino
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France;
| | - Aurélie Fontan
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
| | - Christophe Tandonnet
- Aix-Marseille Université, CNRS, Laboratoire de Psychologie Cognitive, Marseille, France
| | - Joy Perrier
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
| | | | - Anahid Saradjian
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
| | - Jean Blouin
- Aix-Marseille Université, CNRS, Laboratoire de Neurosciences Cognitives, FR 3C, Marseille, France
| | - Martin Simoneau
- Faculté de médecine, Département de kinésiologie, Université Laval, Quebec City, Quebec, Canada; and Centre de recherche du Centre Hospitalier Universitaire de Québec, Quebec City, Quebec, Canada
| |
Collapse
|
26
|
Pereira MP, Pelicioni PHS, Gobbi LT. The Role of Proprioception in the Sagittal Setting of Anticipatory Postural Adjustments During Gait Initiation. HUMAN MOVEMENT 2015. [DOI: 10.1515/humo-2015-0049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
AbstractPurpose. Previous studies have studied the role of proprioception on the setting of anticipatory postural adjustments (APA) during gait initiation. However, these studies did not investigate the role of proprioception in the sagittal APA setting. We aimed to investigate the role of proprioception manipulation to induce APA sagittal adaptations on gait initiation. Methods. Fourteen healthy adults performed gait initiation without, and with, vibration applied before movement onset, and during movement. In addition, the effects of two different vibration frequencies (80 and 120Hz) were tested. Vibration was applied bilaterally on the tibialis anterior, rectus femoris and trapezius superior. The first step characteristics, ground reaction forces and CoP behaviour were assessed. Results. Vibration improved gait initiation performance regardless of the moment it was applied. CoP velocity during the initial phase of APA was increased by vibration only when it was applied before movement. When vibration was applied to disturb the movement, no effects on the CoP behaviour were observed. Manipulation of vibration frequency had no effects. Conclusions. Rather than proprioception manipulation, the results suggest that post-vibratory effects and attentional mechanisms were responsible for our results. Taken together, the results show that sagittal APA setting is robust to proprioception manipulation.
Collapse
|
27
|
The importance of stimulus noise analysis for self-motion studies. PLoS One 2014; 9:e94570. [PMID: 24755871 PMCID: PMC3995671 DOI: 10.1371/journal.pone.0094570] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Accepted: 03/17/2014] [Indexed: 11/25/2022] Open
Abstract
Motion simulators are widely employed in basic and applied research to study the neural mechanisms of perception and action during inertial stimulation. In these studies, uncontrolled simulator-introduced noise inevitably leads to a disparity between the reproduced motion and the trajectories meticulously designed by the experimenter, possibly resulting in undesired motion cues to the investigated system. Understanding actual simulator responses to different motion commands is therefore a crucial yet often underestimated step towards the interpretation of experimental results. In this work, we developed analysis methods based on signal processing techniques to quantify the noise in the actual motion, and its deterministic and stochastic components. Our methods allow comparisons between commanded and actual motion as well as between different actual motion profiles. A specific practical example from one of our studies is used to illustrate the methodologies and their relevance, but this does not detract from its general applicability. Analyses of the simulator’s inertial recordings show direction-dependent noise and nonlinearity related to the command amplitude. The Signal-to-Noise Ratio is one order of magnitude higher for the larger motion amplitudes we tested, compared to the smaller motion amplitudes. Simulator-introduced noise is found to be primarily of deterministic nature, particularly for the stronger motion intensities. The effect of simulator noise on quantification of animal/human motion sensitivity is discussed. We conclude that accurate recording and characterization of executed simulator motion are a crucial prerequisite for the investigation of uncertainty in self-motion perception.
Collapse
|
28
|
Abstract
Every element or cell in the human body produces substances that communicate and respond in an autocrine or paracrine mode, consequently affecting organs and structures that are seemingly far from each other. The same also applies to the skin. In fact, when the integrity of the skin has been altered, or when its healing process is disturbed, it becomes a source of symptoms that are not merely cutaneous. The skin is an organ, and similar to any other structure, it has different functions in addition to connections with the central and peripheral nervous system. This article examines pathological responses produced by scars, analyzing definitions and differences. At the same time, it considers the subcutaneous fascias, as this connective structure is altered when there is a discontinuous cutaneous surface. The consequence is an ample symptomatology, which is not limited to the body area where the scar is located, such as a postural or trigeminal disorder.
Collapse
Affiliation(s)
- Bruno Bordoni
- Rehabilitation Cardiology Institute of Hospitalization and Care with Scientific Address, S Maria Nascente Don Carlo Gnocchi Foundation. CRESO Osteopathic Centre for Research and Studies
| | - Emiliano Zanier
- EdiAcademy, Milano, Italy. CRESO Osteopathic Centre for Research and Studies
| |
Collapse
|