1
|
Henke L, Ghorbani A, Mole SE. The use of nanocarriers in treating Batten disease: A systematic review. Int J Pharm 2024:125094. [PMID: 39694161 DOI: 10.1016/j.ijpharm.2024.125094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 12/09/2024] [Accepted: 12/14/2024] [Indexed: 12/20/2024]
Abstract
The neuronal ceroid lipofuscinoses, commonly known as Batten disease, are a group of lysosomal storage disorders affecting children. There is extensive central nervous system and retinal degeneration, resulting in seizures, vision loss and a progressive cognitive and motor decline. Enzyme replacement and gene therapies are being developed, and mRNA and oligonucleotide therapies are more recently being considered. Overcoming the challenges of the blood-brain barrier and blood-ocular barrier is crucial for effectively targeting the brain and eye, whatever the therapeutic approach. Nanoparticles and extracellular vesicles are small carriers that can encapsulate a cargo and pass through these cell barriers. They have been investigated as drug carriers for other pathologies and could be a promising treatment strategy for Batten disease. Their use in gene, enzyme, or mRNA replacement therapy of all lysosomal storage disorders, including Mucopolysaccharidoses, Niemann-Pick diseases, and Fabry disease, is investigated in this systematic review. Different nanocarriers can efficiently target the lysosome and cross the barriers into the brain and eyes. This supports continued exploration of nanocarriers as potential future treatment options for Batten disease.
Collapse
Affiliation(s)
- Larissa Henke
- Division of Biosciences, University College London, London WC1E BT, UK
| | - Ali Ghorbani
- Protein Research Center, Shahid Beheshti University, Tehran, Iran
| | - Sara E Mole
- Great Ormond Street Institute of Child Health, University College London, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Wang X, Huang X, Zhang Y, Huo H, Zhou G, Shen L, Li L, He B. Hydrogen sulfide attenuates disturbed flow-induced vascular remodeling by inhibiting LDHB-mediated autophagic flux. Redox Biol 2024; 79:103456. [PMID: 39647238 DOI: 10.1016/j.redox.2024.103456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024] Open
Abstract
Disturbed flow (DF) plays a critical role in the development and progression of cardiovascular disease (CVD). Hydrogen sulfide (H2S) is involved in physiological processes within the cardiovascular system. However, its specific contribution to DF-induced vascular remodeling remains unclear. Here, we showed that the H2S donor, NaHS suppressed DF-induced vascular remodeling in mice. Further experiments demonstrated that NaHS inhibited the proliferation and migration of vascular smooth muscle cells (VSMCs) induced by platelet-derived growth factor-BB (PDGF), as well as the autophagy triggered by DF and PDGF. Mechanistically, RNA-Seq results revealed that NaHS counteracted the PDGF-induced upregulation of lactate dehydrogenase B (LDHB). Overexpression of LDHB abolished the protective effect of NaHS on DF-induced vascular remodeling. Furthermore, LDHB interacted with vacuolar-type proton ATPase catalytic subunit A (ATP6V1A), leading to lysosomal acidification, a process that was attenuated by NaHS treatment. The residues of leucine (Leu) 57 in ATP6V1A and serine (Ser) 269 in LDHB are critical for their interaction. Notably, the expression of LDHB was found to be elevated in vascular tissues from patients with abdominal aortic aneurysms (AAA) and thoracic aortic aneurysms (TAA). These data identify a molecular mechanism by which H2S attenuates DF-induced vascular remodeling by inhibiting LDHB and disrupting the interaction between LDHB and ATP6V1A, thereby impeding the autophagy process. Our findings provide insight that H2S or targeting LDHB has therapeutic potential for preventing and treating vascular remodeling.
Collapse
Affiliation(s)
- Xia Wang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Xiying Huang
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Yongya Zhang
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Huanhuan Huo
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Guo Zhou
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Linghong Shen
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China
| | - Long Li
- Department of Urology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, China.
| | - Ben He
- Department of Cardiology, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, China.
| |
Collapse
|
3
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and Cellular Basis of Impaired Phagocytosis and Photoreceptor Degeneration in CLN3 Disease. Invest Ophthalmol Vis Sci 2024; 65:23. [PMID: 39535788 PMCID: PMC11563035 DOI: 10.1167/iovs.65.13.23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/09/2024] [Indexed: 11/16/2024] Open
Abstract
Purpose CLN3 Batten disease (also known as juvenile neuronal ceroid lipofuscinosis) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease induced pluripotent stem cell-RPE cells show defective phagocytosis of photoreceptor outer segment (POS). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3Δ7-8/Δ7-8 (CLN3) Yucatan miniswine was also used to study the impact of CLN3Δ7-8/Δ7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3Δ7-8/Δ7-8 and wild-type miniswine eyes were carried out at 6, 36, or 48 months of age. Results CLN3Δ7-8/Δ7-8 RPE (CLN3 RPE) displayed decreased POS binding and consequently decreased uptake of POS compared with isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3Δ7-8/Δ7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months of age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3Δ7-8/Δ7-8 mutation (which affects ≤85% of patients) affects both RPE and POS and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
Affiliation(s)
- Jimin Han
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sueanne Chear
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Jana Talbot
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Vicki Swier
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Clarissa Booth
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
| | - Cheyenne Reuben-Thomas
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Sonal Dalvi
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| | - Jill M. Weimer
- Pediatrics & Rare Diseases Group; Sanford Research, Sioux Falls, South Dakota, United States
- Department of Pediatrics; Sanford School of Medicine, University of South Dakota, Sioux Falls, South Dakota, United States
| | - Alex W. Hewitt
- Menzies Institute for Medical Research, University of Tasmania, Tasmania, Australia
| | - Anthony L. Cook
- Wicking Dementia Research and Education Centre, University of Tasmania, Tasmania, Australia
| | - Ruchira Singh
- Department of Ophthalmology, University of Rochester, Rochester, New York, United States
- Department of Biomedical Genetics, University of Rochester, Rochester, New York, United States
- Center for Visual Science, University of Rochester, Rochester, New York, United States
| |
Collapse
|
4
|
Yasa S, Butz ES, Colombo A, Chandrachud U, Montore L, Tschirner S, Prestel M, Sheridan SD, Müller SA, Groh J, Lichtenthaler SF, Tahirovic S, Cotman SL. Loss of CLN3 in microglia leads to impaired lipid metabolism and myelin turnover. Commun Biol 2024; 7:1373. [PMID: 39438652 PMCID: PMC11496662 DOI: 10.1038/s42003-024-07057-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 10/11/2024] [Indexed: 10/25/2024] Open
Abstract
Loss-of-function mutations in CLN3 cause juvenile Batten disease, featuring neurodegeneration and early-stage neuroinflammation. How loss of CLN3 function leads to early neuroinflammation is not yet understood. Here, we have comprehensively studied microglia from Cln3∆ex7/8 mice, a genetically accurate disease model. Loss of CLN3 function in microglia leads to lysosomal storage material accumulation and abnormal morphology of subcellular organelles. Moreover, pathological proteomic signatures are indicative of defects in lysosomal function and abnormal lipid metabolism. Consistent with these findings, CLN3-deficient microglia are unable to efficiently turnover myelin and metabolize the associated lipids, showing defects in lipid droplet formation and cholesterol accumulation. Accordingly, we also observe impaired myelin integrity in aged Cln3∆ex7/8 mouse brain. Autophagy inducers and cholesterol-lowering drugs correct the observed microglial phenotypes. Taken together, these data implicate a cell-autonomous defect in CLN3-deficient microglia that impacts their ability to support neuronal cell health, suggesting microglial targeted therapies should be considered for CLN3 disease.
Collapse
Affiliation(s)
- Seda Yasa
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Harvard Medical School, Boston, MA, USA
- Medical and Population Genetics Program, the Broad Institute of M.I.T. and Harvard, Cambridge, MA, USA
| | - Elisabeth S Butz
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Alessio Colombo
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Luca Montore
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
| | - Sarah Tschirner
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Matthias Prestel
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Steven D Sheridan
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Stephan A Müller
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Janos Groh
- Institute of Neuronal Cell Biology, Technical University Munich, Munich, Germany
| | - Stefan F Lichtenthaler
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
- Neuroproteomics, School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
| | - Sabina Tahirovic
- German Center for Neurodegenerative Diseases (DZNE) Munich, Munich, Germany
| | - Susan L Cotman
- Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Neurology, Massachusetts General Hospital Research Institute, Boston, MA, USA.
- Department of Neurology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
5
|
Wünkhaus D, Tang R, Nyame K, Laqtom NN, Schweizer M, Scotto Rosato A, Krogsæter EK, Wollnik C, Abu-Remaileh M, Grimm C, Hermey G, Kuhn R, Gruber-Schoffnegger D, Markmann S. TRPML1 activation ameliorates lysosomal phenotypes in CLN3 deficient retinal pigment epithelial cells. Sci Rep 2024; 14:17469. [PMID: 39080379 PMCID: PMC11289453 DOI: 10.1038/s41598-024-67479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 07/11/2024] [Indexed: 08/02/2024] Open
Abstract
Mutations in the lysosomal membrane protein CLN3 cause Juvenile Neuronal Ceroid Lipofuscinosis (JNCL). Activation of the lysosomal ion channel TRPML1 has previously been shown to be beneficial in several neurodegenerative disease models. Here, we tested whether TRPML1 activation rescues disease-associated phenotypes in CLN3-deficient retinal pigment epithelial (ARPE-19 CLN3-KO) cells. ARPE-19 CLN3-KO cells accumulate LAMP1 positive organelles and show lysosomal storage of mitochondrial ATPase subunit C (SubC), globotriaosylceramide (Gb3), and glycerophosphodiesters (GPDs), whereas lysosomal bis(monoacylglycero)phosphate (BMP/LBPA) lipid levels were significantly decreased. Activation of TRPML1 reduced lysosomal storage of Gb3 and SubC but failed to restore BMP levels in CLN3-KO cells. TRPML1-mediated decrease of storage was TFEB-independent, and we identified TRPML1-mediated enhanced lysosomal exocytosis as a likely mechanism for clearing storage including GPDs. Therefore, ARPE-19 CLN3-KO cells represent a human cell model for CLN3 disease showing many of the described core lysosomal deficits, some of which can be improved using TRPML1 agonists.
Collapse
Affiliation(s)
| | - R Tang
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Charles River Laboratory, Chesterford Research Park, Saffron Walden, UK
| | - K Nyame
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - N N Laqtom
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
- Biological and Environmental Science & Engineering Division, King Abdullah University Of Science And Technology, Thuwal, Saudi Arabia
| | - M Schweizer
- Core Facility Morphology and Electronmicroscopy, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - A Scotto Rosato
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
| | - E K Krogsæter
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Gladstone Institutes, San Francisco, CA, USA
| | | | - M Abu-Remaileh
- Department of Chemical Engineering and of Genetics and Sarafan ChEM-H, Stanford University, Stanford, CA, USA
| | - C Grimm
- Faculty of Medicine, Walther Straub Institute of Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Munich, Germany
- Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Immunology, Infection and Pandemic Research IIP, Munich/Frankfurt, Germany
| | - G Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - R Kuhn
- Evotec SE, Hamburg, Germany
| | | | | |
Collapse
|
6
|
Han J, Chear S, Talbot J, Swier V, Booth C, Reuben-Thomas C, Dalvi S, Weimer JM, Hewitt AW, Cook AL, Singh R. Genetic and cellular basis of impaired phagocytosis and photoreceptor degeneration in CLN3 disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.09.597388. [PMID: 38895469 PMCID: PMC11185776 DOI: 10.1101/2024.06.09.597388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Purpose CLN3 Batten disease (also known as Juvenile Neuronal Ceroid Lipofuscinosis; JNCL) is a lysosomal storage disorder that typically initiates with retinal degeneration but is followed by seizure onset, motor decline and premature death. Patient-derived CLN3 disease iPSC-RPE cells show defective phagocytosis of photoreceptor outer segments (POSs). Because modifier genes are implicated in CLN3 disease, our goal here was to investigate a direct link between CLN3 mutation and POS phagocytosis defect. Methods Isogenic control and CLN3 mutant stem cell lines were generated by CRISPR-Cas9-mediated biallelic deletion of exons 7 and 8. A transgenic CLN3 Δ 7-8/ Δ 7-8 ( CLN3 ) Yucatan miniswine was also used to study the impact of CLN3 Δ 7-8/ Δ 7-8 mutation on POS phagocytosis. POS phagocytosis by cultured RPE cells was analyzed by Western blotting and immunohistochemistry. Electroretinogram, optical coherence tomography and histological analysis of CLN3 Δ 7/8 and wild-type miniswine eyes were carried out at 6-, 36-, or 48-month age. Results CLN3 Δ 7-8/ Δ 7-8 RPE ( CLN3 RPE) displayed reduced POS binding and consequently decreased uptake of POS compared to isogenic control RPE cells. Furthermore, wild-type miniswine RPE cells phagocytosed CLN3 Δ 7-8/ Δ 7-8 POS less efficiently than wild-type POS. Consistent with decreased POS phagocytosis, lipofuscin/autofluorescence was decreased in CLN3 miniswine RPE at 36 months-of-age and was followed by almost complete loss of photoreceptors at 48 months of age. Conclusions CLN3 Δ 7-8/ Δ 7-8 mutation (that affects up to 85% patients) affects both RPE and POSs and leads to photoreceptor cell loss in CLN3 disease. Furthermore, both primary RPE dysfunction and mutant POS independently contribute to impaired POS phagocytosis in CLN3 disease.
Collapse
|
7
|
Różanowska MB. Lipofuscin, Its Origin, Properties, and Contribution to Retinal Fluorescence as a Potential Biomarker of Oxidative Damage to the Retina. Antioxidants (Basel) 2023; 12:2111. [PMID: 38136230 PMCID: PMC10740933 DOI: 10.3390/antiox12122111] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/05/2023] [Accepted: 12/09/2023] [Indexed: 12/24/2023] Open
Abstract
Lipofuscin accumulates with age as intracellular fluorescent granules originating from incomplete lysosomal digestion of phagocytosed and autophagocytosed material. The purpose of this review is to provide an update on the current understanding of the role of oxidative stress and/or lysosomal dysfunction in lipofuscin accumulation and its consequences, particularly for retinal pigment epithelium (RPE). Next, the fluorescence of lipofuscin, spectral changes induced by oxidation, and its contribution to retinal fluorescence are discussed. This is followed by reviewing recent developments in fluorescence imaging of the retina and the current evidence on the prognostic value of retinal fluorescence for the progression of age-related macular degeneration (AMD), the major blinding disease affecting elderly people in developed countries. The evidence of lipofuscin oxidation in vivo and the evidence of increased oxidative damage in AMD retina ex vivo lead to the conclusion that imaging of spectral characteristics of lipofuscin fluorescence may serve as a useful biomarker of oxidative damage, which can be helpful in assessing the efficacy of potential antioxidant therapies in retinal degenerations associated with accumulation of lipofuscin and increased oxidative stress. Finally, amendments to currently used fluorescence imaging instruments are suggested to be more sensitive and specific for imaging spectral characteristics of lipofuscin fluorescence.
Collapse
Affiliation(s)
- Małgorzata B. Różanowska
- School of Optometry and Vision Sciences, College of Biomedical and Life Sciences, Cardiff University, Maindy Road, Cardiff CF24 4HQ, Wales, UK;
- Cardiff Institute for Tissue Engineering and Repair (CITER), Redwood Building, King Edward VII Avenue, Cardiff CF10 3NB, Wales, UK
| |
Collapse
|
8
|
Singh S, Thangaraj A, Chivero ET, Guo ML, Periyasamy P, Buch S. Role of Dysregulated Autophagy in HIV Tat, Cocaine, and cART Mediated NLRP3 Activation in Microglia. J Neuroimmune Pharmacol 2023; 18:327-347. [PMID: 37148425 PMCID: PMC10729649 DOI: 10.1007/s11481-023-10063-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Accepted: 04/05/2023] [Indexed: 05/08/2023]
Abstract
Despite the ability of combination antiretroviral therapy (cART) to suppress viremia, there is persistence low levels of HIV proteins such as Transactivator of transcription (Tat) in the central nervous system (CNS), contributing to glial activation and neuroinflammation. Accumulating evidence also implicates the role of drugs of abuse in exacerbating neurological complications associated with HIV-1. The combined effects of HIV Tat, drugs of abuse, and cART can thus create a toxic milieu in the CNS. The present study investigated the combinatorial effects of HIV-Tat, cocaine, and cART on autophagy and NLRP3 inflammasome activation. We selected a combination of three commonly used cART regimens: tenofovir, emtricitabine, and dolutegravir. Our results demonstrated that exposure of mouse primary microglia (MPMs) to these agents-HIV Tat (25 ng/ml), cocaine (1 μM), and cART (1 μM each) resulted in upregulation of autophagy markers: Beclin1, LC3B-II, and SQSTM1 with impaired lysosomal functioning involving increased lysosomal pH, decreased LAMP2 and cathepsin D, ultimately leading to dysregulated autophagy. Our findings also demonstrated activation of the NLRP3 signaling in microglia exposed to these agents. We further demonstrated that gene silencing of key autophagy protein BECN1 significantly blocked NLRP3-mediated activation of microglia. Silencing of NLRP3, however, failed to block HIV Tat, cocaine, and cART-mediated dysregulation of the autophagy-lysosomal axis; these in vitro phenomena were also validated in vivo using iTat mice administered cocaine and cART. This study thus underscores the cooperative effects of HIV Tat, cocaine, and cART in exacerbating microglial activation involving dysregulated autophagy and activation of the NLRP3 inflammasome signaling.
Collapse
Affiliation(s)
- Seema Singh
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
| | - Annadurai Thangaraj
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Centre for Excellence in Nanobio Translational Research, Department of Pharmaceutical Technology, Anna University, BIT Campus, Tiruchirappalli, Tamil Nadu, India
| | - Ernest T Chivero
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA
- Department of Psychology, University of Nebraska Omaha, Omaha, NE, 68182-0001, USA
| | - Ming-Lei Guo
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
- Department of Pathology and Anatomy, Eastern Virginia Medical School, Norfolk, VA, 23507, USA.
| | - Palsamy Periyasamy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| | - Shilpa Buch
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE, 68198-5880, USA.
| |
Collapse
|
9
|
Takahashi K, Eultgen EM, Wang SH, Rensing NR, Nelvagal HR, Dearborn JT, Danos O, Buss N, Sands MS, Wong M, Cooper JD. Gene therapy ameliorates spontaneous seizures associated with cortical neuron loss in a Cln2R207X mouse model. J Clin Invest 2023; 133:e165908. [PMID: 37104037 PMCID: PMC10266778 DOI: 10.1172/jci165908] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 04/25/2023] [Indexed: 04/28/2023] Open
Abstract
Although a disease-modifying therapy for classic late infantile neuronal ceroid lipofuscinosis (CLN2 disease) exists, poor understanding of cellular pathophysiology has hampered the development of more effective and persistent therapies. Here, we investigated the nature and progression of neurological and underlying neuropathological changes in Cln2R207X mice, which carry one of the most common pathogenic mutations in human patients but are yet to be fully characterized. Long-term electroencephalography recordings revealed progressive epileptiform abnormalities, including spontaneous seizures, providing a robust, quantifiable, and clinically relevant phenotype. These seizures were accompanied by the loss of multiple cortical neuron populations, including those stained for interneuron markers. Further histological analysis revealed early localized microglial activation months before neuron loss started in the thalamocortical system and spinal cord, which was accompanied by astrogliosis. This pathology was more pronounced and occurred in the cortex before the thalamus or spinal cord and differed markedly from the staging seen in mouse models of other forms of neuronal ceroid lipofuscinosis. Neonatal administration of adeno-associated virus serotype 9-mediated gene therapy ameliorated the seizure and gait phenotypes and prolonged the life span of Cln2R207X mice, attenuating most pathological changes. Our findings highlight the importance of clinically relevant outcome measures for judging preclinical efficacy of therapeutic interventions for CLN2 disease.
Collapse
Affiliation(s)
| | | | | | | | | | - Joshua T. Dearborn
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | | | - Mark S. Sands
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| | | | - Jonathan D. Cooper
- Department of Pediatrics
- Department of Neurology, and
- Department of Genetics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
10
|
Chen J, Soni RK, Xu Y, Simoes S, Liang FX, DeFreitas L, Hwang R, Montesinos J, Lee JH, Area-Gomez E, Nandakumar R, Vardarajan B, Marquer C. Juvenile CLN3 disease is a lysosomal cholesterol storage disorder: similarities with Niemann-Pick type C disease. EBioMedicine 2023; 92:104628. [PMID: 37245481 PMCID: PMC10227369 DOI: 10.1016/j.ebiom.2023.104628] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 04/30/2023] [Accepted: 05/10/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND The most common form of neuronal ceroid lipofuscinosis (NCL) is juvenile CLN3 disease (JNCL), a currently incurable neurodegenerative disorder caused by mutations in the CLN3 gene. Based on our previous work and on the premise that CLN3 affects the trafficking of the cation-independent mannose-6 phosphate receptor and its ligand NPC2, we hypothesised that dysfunction of CLN3 leads to the aberrant accumulation of cholesterol in the late endosomes/lysosomes (LE/Lys) of JNCL patients' brains. METHODS An immunopurification strategy was used to isolate intact LE/Lys from frozen autopsy brain samples. LE/Lys isolated from samples of JNCL patients were compared with age-matched unaffected controls and Niemann-Pick Type C (NPC) disease patients. Indeed, mutations in NPC1 or NPC2 result in the accumulation of cholesterol in LE/Lys of NPC disease samples, thus providing a positive control. The lipid and protein content of LE/Lys was then analysed using lipidomics and proteomics, respectively. FINDINGS Lipid and protein profiles of LE/Lys isolated from JNCL patients were profoundly altered compared to controls. Importantly, cholesterol accumulated in LE/Lys of JNCL samples to a comparable extent than in NPC samples. Lipid profiles of LE/Lys were similar in JNCL and NPC patients, except for levels of bis(monoacylglycero)phosphate (BMP). Protein profiles detected in LE/Lys of JNCL and NPC patients appeared identical, except for levels of NPC1. INTERPRETATION Our results support that JNCL is a lysosomal cholesterol storage disorder. Our findings also support that JNCL and NPC disease share pathogenic pathways leading to aberrant lysosomal accumulation of lipids and proteins, and thus suggest that the treatments available for NPC disease may be beneficial to JNCL patients. This work opens new avenues for further mechanistic studies in model systems of JNCL and possible therapeutic interventions for this disorder. FUNDING San Francisco Foundation.
Collapse
Affiliation(s)
- Jacinda Chen
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Rajesh Kumar Soni
- Proteomics and Macromolecular Crystallography Shared Resource, Herbert Irving Comprehensive Cancer Center, New York City, NY 10032, USA
| | - Yimeng Xu
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Sabrina Simoes
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Feng-Xia Liang
- Microscopy Core Laboratory of Division of Advanced Research Technologies, New York University Grossman School of Medicine, New York City, NY 10016, USA
| | - Laura DeFreitas
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Robert Hwang
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Jorge Montesinos
- Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Joseph H Lee
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA; G. H. Sergievsky Center, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Epidemiology, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Estela Area-Gomez
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA; Institute of Human Nutrition, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Renu Nandakumar
- Biomarkers Core Laboratory, Irving Institute for Clinical and Translational Research, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Badri Vardarajan
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Neurology, Columbia University Irving Medical Center, New York City, NY 10032, USA; G. H. Sergievsky Center, Columbia University Irving Medical Center, New York City, NY 10032, USA
| | - Catherine Marquer
- Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Irving Medical Center, New York City, NY 10032, USA; Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York City, NY 10032, USA.
| |
Collapse
|
11
|
Pezzini F, Fiorini M, Doccini S, Santorelli FM, Zanusso G, Simonati A. Enhanced expression of the autophagosomal marker LC3-II in detergent-resistant protein lysates from a CLN3 patient's post-mortem brain. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166756. [PMID: 37209872 DOI: 10.1016/j.bbadis.2023.166756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/22/2023]
Abstract
• Neuronal Ceroido Lipofuscinoses (NCL) are inherited, neurodegenerative disorders associated with lysosomal storage. • Impaired autophagy plays a pathogenetic role in several NCL forms, including CLN3 disease, but study on human brains lacks. • In post-mortem brain samples of a CLN3 patient the LC3-I to LC3-II shift was consistent with activated autophagy. However, the autophagic process seemed to be ineffective due to the presence of lysosomal storage markers. • After fractionation with buffers of increasing detergent-denaturing strength, a peculiar solubility pattern of LC3-II was observed in CLN3 patient's samples, suggesting a different lipid composition of the membranes where LC3-II is stacked.
Collapse
Affiliation(s)
- Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology (Child Neurology and Psychiatry), University of Verona, 37134 Verona, Italy.
| | - Michele Fiorini
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona (Neuropathology Laboratory), 37134 Verona, Italy.
| | - Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit-IRCCS Stella Maris, 56128 Pisa, Italy.
| | - Filippo Maria Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit-IRCCS Stella Maris, 56128 Pisa, Italy
| | - Gianluigi Zanusso
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona (Neuropathology Laboratory), 37134 Verona, Italy.
| | - Alessandro Simonati
- Department of Surgery, Dentistry, Paediatrics and Gynaecology (Child Neurology and Psychiatry), University of Verona, 37134 Verona, Italy.
| |
Collapse
|
12
|
Relton EL, Roth NJ, Yasa S, Kaleem A, Hermey G, Minnis CJ, Mole SE, Shelkovnikova T, Lefrancois S, McCormick PJ, Locker N. The Batten disease protein CLN3 is important for stress granules dynamics and translational activity. J Biol Chem 2023; 299:104649. [PMID: 36965618 PMCID: PMC10149212 DOI: 10.1016/j.jbc.2023.104649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/04/2023] [Accepted: 03/16/2023] [Indexed: 03/27/2023] Open
Abstract
The assembly of membrane-less organelles such as stress granules (SGs) is emerging as central in helping cells rapidly respond and adapt to stress. Following stress sensing, the resulting global translational shutoff leads to the condensation of stalled mRNAs and proteins into SGs. By reorganizing cytoplasmic contents, SGs can modulate RNA translation, biochemical reactions, and signaling cascades to promote survival until the stress is resolved. While mechanisms for SG disassembly are not widely understood, the resolution of SGs is important for maintaining cell viability and protein homeostasis. Mutations that lead to persistent or aberrant SGs are increasingly associated with neuropathology and a hallmark of several neurodegenerative diseases. Mutations in CLN3 are causative of juvenile neuronal ceroid lipofuscinosis, a rare neurodegenerative disease affecting children also known as Batten disease. CLN3 encodes a transmembrane lysosomal protein implicated in autophagy, endosomal trafficking, metabolism, and response to oxidative stress. Using a HeLa cell model lacking CLN3, we now show that CLN3KO is associated with an altered metabolic profile, reduced global translation, and altered stress signaling. Furthermore, loss of CLN3 function results in perturbations in SG dynamics, resulting in assembly and disassembly defects, and altered expression of the key SG nucleating factor G3BP1. With a growing interest in SG-modulating drugs for the treatment of neurodegenerative diseases, novel insights into the molecular basis of CLN3 Batten disease may reveal avenues for disease-modifying treatments for this debilitating childhood disease.
Collapse
Affiliation(s)
- Emily L Relton
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Nicolas J Roth
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Seda Yasa
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Canada
| | - Abuzar Kaleem
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Christopher J Minnis
- Great Ormond Street, Institute of Child Health and MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, United Kingdom
| | - Sara E Mole
- Great Ormond Street, Institute of Child Health and MRC Laboratory for Molecular Cell Biology and Great Ormond Street, Institute of Child Health, University College London, London, United Kingdom
| | - Tatyana Shelkovnikova
- Sheffield Institute for Translational Neuroscience, Department of Neuroscience, University of Sheffield, Sheffield, United Kingdom
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, Canada
| | - Peter J McCormick
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine, Queen Mary, University of London, Charterhouse Square, London, United Kingdom
| | - Nicolas Locker
- Faculty of Health and Medical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom.
| |
Collapse
|
13
|
Remtulla AAN, Huber RJ. The conserved cellular roles of CLN proteins: Novel insights from Dictyostelium discoideum. Eur J Cell Biol 2023; 102:151305. [PMID: 36917916 DOI: 10.1016/j.ejcb.2023.151305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/15/2023] [Accepted: 03/07/2023] [Indexed: 03/14/2023] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), collectively referred to as Batten disease, are a group of fatal neurodegenerative disorders that primarily affect children. The etiology of Batten disease is linked to mutations in 13 genes that encode distinct CLN proteins, whose functions have yet to be fully elucidated. The social amoeba Dictyostelium discoideum has been adopted as an efficient and powerful model system for studying the diverse cellular roles of CLN proteins. The genome of D. discoideum encodes several homologs of human CLN proteins, and a growing body of literature supports the conserved roles and networking of CLN proteins in D. discoideum and humans. In humans, CLN proteins have diverse cellular roles related to autophagy, signal transduction, lipid homeostasis, lysosomal ion homeostasis, and intracellular trafficking. Recent work also indicates that CLN proteins play an important role in protein secretion. Remarkably, many of these findings have found parallels in studies with D. discoideum. Accordingly, this review will highlight the translatable value of novel work with D. discoideum in the field of NCL research and propose further avenues of research using this biomedical model organism for studying the NCLs.
Collapse
Affiliation(s)
- Adam A N Remtulla
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada
| | - Robert J Huber
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, Ontario, Canada; Department of Biology, Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
14
|
Nittari G, Tomassoni D, Roy P, Martinelli I, Tayebati SK, Amenta F. Batten disease through different in vivo and in vitro models: A review. J Neurosci Res 2023; 101:298-315. [PMID: 36434776 DOI: 10.1002/jnr.25147] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/25/2022] [Accepted: 11/09/2022] [Indexed: 11/27/2022]
Abstract
Batten disease consists of a family of primarily autosomal recessive, progressive neuropediatric disorders, also known as neuronal ceroid lipofuscinoses (NCLs). These pathologies are characterized by seizures and visual, cognitive and motor decline, and premature death. The pathophysiology of this rare disease is still unclear despite the years of trials and financial aids. This paper has reviewed advantages and limits of in vivo and in vitro models of Batten disease from murine and larger animal models to primitive unicellular models, until the most recently developed patient-derived induced pluripotent stem cells. For each model advantages, limits and applications were analyzed. The first prototypes investigated were murine models that due to their limits were replaced by larger animals. In vitro models gradually replaced animal models for practical, cost, and ethical reasons. Using induced pluripotent stem cells to study neurodegeneration is a new way of studying the disease, since they can be distinguished into differentiating elements like neurons, which are susceptible to neurodegeneration. In vivo and in vitro models have contributed to clarifying to some extent the pathophysiology of the disease. The collection and sharing of suitable human bio samples likely through biobanks can contribute to a better understanding, prevention, and to identify possible treatment strategies of Batten disease.
Collapse
Affiliation(s)
- Giulio Nittari
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Daniele Tomassoni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Proshanta Roy
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Ilenia Martinelli
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Seyed Khosrow Tayebati
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| | - Francesco Amenta
- School of Medicinal and Health Products Sciences, Clinical Research, Telemedicine and Telepharmacy Center, University of Camerino, Camerino, Italy
| |
Collapse
|
15
|
Waku T, Nakada S, Masuda H, Sumi H, Wada A, Hirose S, Aketa I, Kobayashi A. The CNC-family transcription factor Nrf3 coordinates the melanogenesis cascade through macropinocytosis and autophagy regulation. Cell Rep 2023; 42:111906. [PMID: 36640303 DOI: 10.1016/j.celrep.2022.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 10/06/2022] [Accepted: 12/09/2022] [Indexed: 12/31/2022] Open
Abstract
Melanin is a pigment produced from the amino acid L-tyrosine in melanosomes. The CNC-family transcription factor Nrf3 is expressed in the basal layer of the epidermis, where melanocytes reside, but its melanogenic function is unclear. Here, we show that Nrf3 regulates macropinocytosis and autophagy to coordinate melanogenesis cascade. In response to an exogenous inducer of melanin production, forskolin, Nrf3 upregulates the core melanogenic gene circuit, which includes Mitf, Tyr, Tyrp1, Pmel, and Oca2. Furthermore, Nrf3 induces the gene expression of Cln3, an autophagosome-related factor, for melanin precursor uptake by macropinocytosis. Ulk2 and Gabarapl2 are also identified as Nrf3-target autophagosome-related genes for melanosome formation. In parallel, Nrf3 prompts autolysosomal melanosome degradation for melanocyte survival. An endogenous melanogenic inducer αMSH also activates Nrf3-mediated melanin production, whereas it is suppressed by an HIV-1 protease inhibitor, nelfinavir. These findings indicate the significant role of Nrf3 in the melanogenesis and the anti-melanogenic potential of nelfinavir.
Collapse
Affiliation(s)
- Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruka Masuda
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Haruna Sumi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Ayaka Wada
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Shuuhei Hirose
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Department of Medical Life Systems, Faculty of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan; Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Miyakodani, Tatara, Kyotanabe, Kyoto 610-0394, Japan.
| |
Collapse
|
16
|
Scerra G, De Pasquale V, Scarcella M, Caporaso MG, Pavone LM, D'Agostino M. Lysosomal positioning diseases: beyond substrate storage. Open Biol 2022; 12:220155. [PMID: 36285443 PMCID: PMC9597170 DOI: 10.1098/rsob.220155] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
Lysosomal storage diseases (LSDs) comprise a group of inherited monogenic disorders characterized by lysosomal dysfunctions due to undegraded substrate accumulation. They are caused by a deficiency in specific lysosomal hydrolases involved in cellular catabolism, or non-enzymatic proteins essential for normal lysosomal functions. In LSDs, the lack of degradation of the accumulated substrate and its lysosomal storage impairs lysosome functions resulting in the perturbation of cellular homeostasis and, in turn, the damage of multiple organ systems. A substantial number of studies on the pathogenesis of LSDs has highlighted how the accumulation of lysosomal substrates is only the first event of a cascade of processes including the accumulation of secondary metabolites and the impairment of cellular trafficking, cell signalling, autophagic flux, mitochondria functionality and calcium homeostasis, that significantly contribute to the onset and progression of these diseases. Emerging studies on lysosomal biology have described the fundamental roles of these organelles in a variety of physiological functions and pathological conditions beyond their canonical activity in cellular waste clearance. Here, we discuss recent advances in the knowledge of cellular and molecular mechanisms linking lysosomal positioning and trafficking to LSDs.
Collapse
Affiliation(s)
- Gianluca Scerra
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Valeria De Pasquale
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino 1, 80137 Naples, Italy
| | - Melania Scarcella
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Maria Gabriella Caporaso
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Luigi Michele Pavone
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Massimo D'Agostino
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
17
|
Liao CL, Hu RC, Liao MS, Chen YJ, Chen YP, Hsieh HH, Tai CH, Chou TC, Chu CY, Chen YJ, Lo LC, Lin JJ. Unveiling a novel serpinB2/tripeptidyl peptidase II signaling axis during senescence. J Cell Sci 2022; 135:275508. [PMID: 35466366 DOI: 10.1242/jcs.259513] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 04/15/2022] [Indexed: 11/20/2022] Open
Abstract
Tripeptidyl peptidase II (TPPII) degrades N-terminal tripeptides from proteins and peptides. Studies in both human and mice have shown that TPPII deficiency is linked to cellular immune-senescence, lifespan regulation, and the aging process. However, the mechanism of how TPPII participates in these processes is less clear. In this study, we established a chemical probe-based assay and found that while the mRNA and protein levels of TPPII were not altered during senescence, its enzymatic activity was reduced in senescent human fibroblasts. We also showed that elevation of serine protease inhibitor serpinB2 reduced TPPII activity in senescent cells. Moreover, suppression of TPPII led to elevation of lysosomal contents as well as TPPI and -galactosidase activities, suggesting that the lysosome biogenesis is induced to compensate for the reduction of TPPII activity in senescent cells. Together this study discloses a critical role of the serpinB2/TPPII signaling pathway in proteostasis during senescence. Since serpinB2 level can be increased by a variety of cellular stresses, reduction of TPPII activity through activation of serpinB2 might represent a common pathway for cells to respond to different stress conditions.
Collapse
Affiliation(s)
- Chia-Li Liao
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Rong-Chi Hu
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| | - Min-Shiang Liao
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yi-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Ya-Ping Chen
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Hsi-Hsien Hsieh
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, 112, Taiwan
| | - Chih-Hsuan Tai
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Tzyy-Chao Chou
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Chi-Yuan Chu
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Yu-Ju Chen
- Institute of Chemistry, Academia Sinica, Taipei 115, Taiwan
| | - Lee-Chiang Lo
- Department of Chemistry, National Taiwan University, Taipei 106, Taiwan
| | - Jing-Jer Lin
- Institute of Biochemistry and Molecular Biology, National Taiwan University College of Medicine, Taipei, 100, Taiwan
| |
Collapse
|
18
|
Simonati A, Williams RE. Neuronal Ceroid Lipofuscinosis: The Multifaceted Approach to the Clinical Issues, an Overview. Front Neurol 2022; 13:811686. [PMID: 35359645 PMCID: PMC8961688 DOI: 10.3389/fneur.2022.811686] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Accepted: 01/11/2022] [Indexed: 01/04/2023] Open
Abstract
The main aim of this review is to summarize the current state-of-art in the field of childhood Neuronal Ceroid Lipofuscinosis (NCL), a group of rare neurodegenerative disorders. These are genetic diseases associated with the formation of toxic endo-lysosomal storage. Following a brief historical review of the evolution of NCL definition, a clinically-oriented approach is used describing how the early symptoms and signs affecting motor, visual, cognitive domains, and including seizures, may lead clinicians to a rapid molecular diagnosis, avoiding the long diagnostic odyssey commonly observed. We go on to focus on recent advances in NCL research and summarize contributions to knowledge of the pathogenic mechanisms underlying NCL. We describe the large variety of experimental models which have aided this research, as well as the most recent technological developments which have shed light on the main mechanisms involved in the cellular pathology, such as apoptosis and autophagy. The search for innovative therapies is described. Translation of experimental data into therapeutic approaches is being established for several of the NCLs, and one drug is now commercially available. Lastly, we show the importance of palliative care and symptomatic treatments which are still the main therapeutic interventions.
Collapse
Affiliation(s)
- Alessandro Simonati
- Departments of Surgery, Dentistry, Paediatrics, and Gynaecology, School of Medicine, University of Verona, Verona, Italy
- Department of Clinical Neuroscience, AOUI-VR, Verona, Italy
- *Correspondence: Alessandro Simonati
| | - Ruth E. Williams
- Department of Children's Neuroscience, Evelina London Children's Hospital, London, United Kingdom
- Ruth E. Williams
| |
Collapse
|
19
|
Kim WD, Wilson-Smillie MLDM, Thanabalasingam A, Lefrancois S, Cotman SL, Huber RJ. Autophagy in the Neuronal Ceroid Lipofuscinoses (Batten Disease). Front Cell Dev Biol 2022; 10:812728. [PMID: 35252181 PMCID: PMC8888908 DOI: 10.3389/fcell.2022.812728] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/24/2022] [Indexed: 12/22/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), also referred to as Batten disease, are a family of neurodegenerative diseases that affect all age groups and ethnicities around the globe. At least a dozen NCL subtypes have been identified that are each linked to a mutation in a distinct ceroid lipofuscinosis neuronal (CLN) gene. Mutations in CLN genes cause the accumulation of autofluorescent lipoprotein aggregates, called ceroid lipofuscin, in neurons and other cell types outside the central nervous system. The mechanisms regulating the accumulation of this material are not entirely known. The CLN genes encode cytosolic, lysosomal, and integral membrane proteins that are associated with a variety of cellular processes, and accumulated evidence suggests they participate in shared or convergent biological pathways. Research across a variety of non-mammalian and mammalian model systems clearly supports an effect of CLN gene mutations on autophagy, suggesting that autophagy plays an essential role in the development and progression of the NCLs. In this review, we summarize research linking the autophagy pathway to the NCLs to guide future work that further elucidates the contribution of altered autophagy to NCL pathology.
Collapse
Affiliation(s)
- William D. Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - Aruban Thanabalasingam
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de La Recherche Scientifique, Laval, QC, Canada
- Department of Anatomy and Cell Biology, McGill University, Montreal, QC, Canada
- Centre D'Excellence en Recherche sur Les Maladies Orphelines–Fondation Courtois (CERMO-FC), Université Du Québec à Montréal (UQAM), Montréal, QC, Canada
| | - Susan L. Cotman
- Department of Neurology, Center for Genomic Medicine, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA, United States
| | - Robert J. Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
20
|
Cotman SL, Lefrancois S. CLN3, at the crossroads of endocytic trafficking. Neurosci Lett 2021; 762:136117. [PMID: 34274435 DOI: 10.1016/j.neulet.2021.136117] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 12/29/2022]
Abstract
The CLN3 gene was identified over two decades ago, but the primary function of the CLN3 protein remains unknown. Recessive inheritance of loss of function mutations in CLN3 are responsible for juvenile neuronal ceroid lipofuscinosis (Batten disease, or CLN3 disease), a fatal childhood onset neurodegenerative disease causing vision loss, seizures, progressive dementia, motor function loss and premature death. CLN3 is a multipass transmembrane protein that primarily localizes to endosomes and lysosomes. Defects in endocytosis, autophagy, and lysosomal function are common findings in CLN3-deficiency model systems. However, the molecular mechanisms underlying these defects have not yet been fully elucidated. In this mini-review, we will summarize the current understanding of the CLN3 protein interaction network and discuss how this knowledge is starting to delineate the molecular pathogenesis of CLN3 disease. Accumulating evidence strongly points towards CLN3 playing a role in regulation of the cytoskeleton and cytoskeletal associated proteins to tether cellular membranes, regulation of membrane complexes such as channels/transporters, and modulating the function of small GTPases to effectively mediate vesicular movement and membrane dynamics.
Collapse
Affiliation(s)
- Susan L Cotman
- Center for Genomic Medicine, Department of Neurology, Mass General Research Institute, Massachusetts General Hospital, 185 Cambridge St., Boston, MA 02114, United States.
| | - Stéphane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut national de la recherche scientifique, Laval H7V 1B7, Canada; Department of Anatomy and Cell Biology, McGill University, Montreal H3A 0C7, Canada; Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal H2X 3Y7, Canada.
| |
Collapse
|
21
|
Pesaola F, Quassollo G, Venier AC, De Paul AL, Noher I, Bisbal M. The neuronal ceroid lipofuscinosis-related protein CLN8 regulates endo-lysosomal dynamics and dendritic morphology. Biol Cell 2021; 113:419-437. [PMID: 34021618 DOI: 10.1111/boc.202000016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/18/2021] [Accepted: 05/22/2021] [Indexed: 11/29/2022]
Abstract
BACKGROUND INFORMATION The endo-lysosomal system (ELS) comprises a set of membranous organelles responsible for transporting intracellular and extracellular components within cells. Defects in lysosomal proteins usually affect a large variety of processes and underlie many diseases, most of them with a strong neuronal impact. Mutations in the endoplasmic reticulum-resident CLN8 protein cause CLN8 disease. This condition is one of the 14 known neuronal ceroid lipofuscinoses (NCLs), a group of inherited diseases characterised by accumulation of lipofuscin-like pigments within lysosomes. Besides mediating the transport of soluble lysosomal proteins, recent research suggested a role for CLN8 in the transport of vesicles and lipids, and autophagy. However, the consequences of CLN8 deficiency on ELS structure and activity, as well as the potential impact on neuronal development, remain poorly characterised. Therefore, we performed CLN8 knockdown in neuronal and non-neuronal cell models to analyse structural, dynamic and functional changes in the ELS and to assess the impact of CLN8 deficiency on axodendritic development. RESULTS CLN8 knockdown increased the size of the Golgi apparatus, the number of mobile vesicles and the speed of endo-lysosomes. Using the fluorescent fusion protein mApple-LAMP1-pHluorin, we detected significant lysosomal alkalisation in CLN8-deficient cells. In turn, experiments in primary rat hippocampal neurons showed that CLN8 deficiency decreased the complexity and size of the somatodendritic compartment. CONCLUSIONS Our results suggest the participation of CLN8 in vesicular distribution, lysosomal pH and normal development of the dendritic tree. We speculate that the defects triggered by CLN8 deficiency on ELS structure and dynamics underlie morphological alterations in neurons, which ultimately lead to the characteristic neurodegeneration observed in this NCL. SIGNIFICANCE This is, to our knowledge, the first characterisation of the effects of CLN8 dysfunction on the structure and dynamics of the ELS. Moreover, our findings suggest a novel role for CLN8 in somatodendritic development, which may account at least in part for the neuropathological manifestations associated with CLN8 disease.
Collapse
Affiliation(s)
- Favio Pesaola
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de Córdoba, Córdoba, 5014, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Médicas "Mercedes y Martin Ferreyra"- IMMF-UNC-CONICET, Laboratorio de Neurobiología, Av. Friuli 2434, 5016 Córdoba, Argentina, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Gonzalo Quassollo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Médicas "Mercedes y Martin Ferreyra"- IMMF-UNC-CONICET, Laboratorio de Neurobiología, Av. Friuli 2434, 5016 Córdoba, Argentina, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Ana Clara Venier
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de Córdoba, Córdoba, 5014, Argentina.,Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Ciencias de la Salud (INICSA), Bv. de la Reforma y Enfermera Gordillo, Ciudad Universitaria, Córdoba, 5016, Argentina
| | - Ana Lucía De Paul
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigación en Ciencias de la Salud (INICSA), Bv. de la Reforma y Enfermera Gordillo, Ciudad Universitaria, Córdoba, 5016, Argentina.,Universidad Nacional de Córdoba, Facultad de Ciencias Médicas, Centro de Microscopía Electrónica, Bv. de la Reforma y Enfermera Gordillo, Ciudad Universitaria, Córdoba, 5016, Argentina
| | - Ines Noher
- Programa de Investigación Translacional de Lipofuscinosis Ceroidea Neuronal, Hospital de Niños de Córdoba, Córdoba, 5014, Argentina
| | - Mariano Bisbal
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Investigaciones Médicas "Mercedes y Martin Ferreyra"- IMMF-UNC-CONICET, Laboratorio de Neurobiología, Av. Friuli 2434, 5016 Córdoba, Argentina, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.,Instituto Universitario de Ciencias Biomédicas Córdoba, Córdoba, 5016, Argentina
| |
Collapse
|
22
|
A human model of Batten disease shows role of CLN3 in phagocytosis at the photoreceptor-RPE interface. Commun Biol 2021; 4:161. [PMID: 33547385 PMCID: PMC7864947 DOI: 10.1038/s42003-021-01682-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Accepted: 11/25/2020] [Indexed: 02/07/2023] Open
Abstract
Mutations in CLN3 lead to photoreceptor cell loss in CLN3 disease, a lysosomal storage disorder characterized by childhood-onset vision loss, neurological impairment, and premature death. However, how CLN3 mutations cause photoreceptor cell death is not known. Here, we show that CLN3 is required for phagocytosis of photoreceptor outer segment (POS) by retinal pigment epithelium (RPE) cells, a cellular process essential for photoreceptor survival. Specifically, a proportion of CLN3 in human, mouse, and iPSC-RPE cells localized to RPE microvilli, the site of POS phagocytosis. Furthermore, patient-derived CLN3 disease iPSC-RPE cells showed decreased RPE microvilli density and reduced POS binding and ingestion. Notably, POS phagocytosis defect in CLN3 disease iPSC-RPE cells could be rescued by wild-type CLN3 gene supplementation. Altogether, these results illustrate a novel role of CLN3 in regulating POS phagocytosis and suggest a contribution of primary RPE dysfunction for photoreceptor cell loss in CLN3 disease that can be targeted by gene therapy.
Collapse
|
23
|
Shematorova EK, Shpakovski GV. Current Insights in Elucidation of Possible Molecular Mechanisms of the Juvenile Form of Batten Disease. Int J Mol Sci 2020; 21:ijms21218055. [PMID: 33137890 PMCID: PMC7663513 DOI: 10.3390/ijms21218055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 10/21/2020] [Accepted: 10/22/2020] [Indexed: 12/14/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) collectively constitute one of the most common forms of inherited childhood-onset neurodegenerative disorders. They form a heterogeneous group of incurable lysosomal storage diseases that lead to blindness, motor deterioration, epilepsy, and dementia. Traditionally the NCL diseases were classified according to the age of disease onset (infantile, late-infantile, juvenile, and adult forms), with at least 13 different NCL varieties having been described at present. The current review focuses on classic juvenile NCL (JNCL) or the so-called Batten (Batten-Spielmeyer-Vogt; Spielmeyer-Sjogren) disease, which represents the most common and the most studied form of NCL, and is caused by mutations in the CLN3 gene located on human chromosome 16. Most JNCL patients carry the same 1.02-kb deletion in this gene, encoding an unusual transmembrane protein, CLN3, or battenin. Accordingly, the names CLN3-related neuronal ceroid lipofuscinosis or CLN3-disease sometimes have been used for this malady. Despite excessive in vitro and in vivo studies, the precise functions of the CLN3 protein and the JNCL disease mechanisms remain elusive and are the main subject of this review. Although the CLN3 gene is highly conserved in evolution of all mammalian species, detailed analysis of recent genomic and transcriptomic data indicates the presence of human-specific features of its expression, which are also under discussion. The main recorded to date changes in cell metabolism, to some extent contributing to the emergence and progression of JNCL disease, and human-specific molecular features of CLN3 gene expression are summarized and critically discussed with an emphasis on the possible molecular mechanisms of the malady appearance and progression.
Collapse
Affiliation(s)
- Elena K. Shematorova
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
| | - George V. Shpakovski
- Laboratory of Mechanisms of Gene Expression, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya 16/10, 117997 Moscow, Russia;
- National Research Center “Kurchatov Institute”, 1, Academika Kurchatova pl., 123182 Moscow, Russia
- Correspondence: ; Tel.: +7-(495)-330-4953; Fax: +7-(495)-335-7103
| |
Collapse
|
24
|
Sex differences in gene expression with galactosylceramide treatment in Cln3Δex7/8 mice. PLoS One 2020; 15:e0239537. [PMID: 33006978 PMCID: PMC7531864 DOI: 10.1371/journal.pone.0239537] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 09/09/2020] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND CLN3 disease is caused by mutations in the CLN3 gene. The purpose of this study is to discern global expression patterns reflecting therapeutic targets in CLN3 disease. METHODS Differential gene expression in vehicle-exposed mouse brain was determined after intraperitoneal vehicle/Galactosylceramide (GalCer) injections for 40 weeks with GeneChip Mouse Genome 430 2.0 arrays. RESULTS Analysis identified 66 genes in male and 30 in female brains differentially expressed in GalCer-treated versus vehicle-exposed Cln3Δex7/8 mice. Gene ontology revealed aberrations of biological function including developmental, cellular, and behavioral processes. GalCer treatment altered pathways of long-term potentiation/depression, estrogen signaling, synaptic vesicle cycle, ErbB signaling, and prion diseases in males, but prolactin signaling, selenium compound metabolism and steroid biosynthesis in females. Gene-gene network analysis highlighted networks functionally pertinent to GalCer treatment encompassing motor dysfunction, neurodegeneration, memory disorder, inflammation and astrogliosis in males, and, cataracts, inflammation, astrogliosis, and anxiety in females. CONCLUSIONS This study sheds light on global expression patterns following GalCer treatment of Cln3Δex7/8 mice. Understanding molecular effects of GalCer on mouse brain gene expression, paves the way for personalized strategies for treating this debilitating disease in humans.
Collapse
|
25
|
Butz ES, Chandrachud U, Mole SE, Cotman SL. Moving towards a new era of genomics in the neuronal ceroid lipofuscinoses. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165571. [DOI: 10.1016/j.bbadis.2019.165571] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 10/12/2019] [Accepted: 10/14/2019] [Indexed: 12/15/2022]
|
26
|
Kloska A, Węsierska M, Malinowska M, Gabig-Cimińska M, Jakóbkiewicz-Banecka J. Lipophagy and Lipolysis Status in Lipid Storage and Lipid Metabolism Diseases. Int J Mol Sci 2020; 21:E6113. [PMID: 32854299 PMCID: PMC7504288 DOI: 10.3390/ijms21176113] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/12/2020] [Accepted: 08/21/2020] [Indexed: 12/15/2022] Open
Abstract
This review discusses how lipophagy and cytosolic lipolysis degrade cellular lipids, as well as how these pathway ys communicate, how they affect lipid metabolism and energy homeostasis in cells and how their dysfunction affects the pathogenesis of lipid storage and lipid metabolism diseases. Answers to these questions will likely uncover novel strategies for the treatment of aforementioned human diseases, but, above all, will avoid destructive effects of high concentrations of lipids-referred to as lipotoxicity-resulting in cellular dysfunction and cell death.
Collapse
Affiliation(s)
- Anna Kloska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Węsierska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Marcelina Malinowska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| | - Magdalena Gabig-Cimińska
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
- Laboratory of Molecular Biology, Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Kładki 24, 80-822 Gdańsk, Poland
| | - Joanna Jakóbkiewicz-Banecka
- Department of Medical Biology and Genetics, Faculty of Biology, University of Gdańsk, Wita Stwosza 59, 80-308 Gdańsk, Poland; (A.K.); (M.W.); (M.M.)
| |
Collapse
|
27
|
Therapeutic efficacy of antisense oligonucleotides in mouse models of CLN3 Batten disease. Nat Med 2020; 26:1444-1451. [PMID: 32719489 DOI: 10.1038/s41591-020-0986-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/19/2020] [Indexed: 02/07/2023]
Abstract
CLN3 Batten disease is an autosomal recessive, neurodegenerative, lysosomal storage disease caused by mutations in CLN3, which encodes a lysosomal membrane protein1-3. There are no disease-modifying treatments for this disease that affects up to 1 in 25,000 births, has an onset of symptoms in early childhood and typically is fatal by 20-30 years of life4-7. Most patients with CLN3 Batten have a deletion encompassing exons 7 and 8 (CLN3∆ex7/8), creating a reading frameshift7,8. Here we demonstrate that mice with this deletion can be effectively treated using an antisense oligonucleotide (ASO) that induces exon skipping to restore the open reading frame. A single treatment of neonatal mice with an exon 5-targeted ASO-induced robust exon skipping for more than a year, improved motor coordination, reduced histopathology in Cln3∆ex7/8 mice and increased survival in a new mouse model of the disease. ASOs also induced exon skipping in cell lines derived from patients with CLN3 Batten disease. Our findings demonstrate the utility of ASO-based reading-frame correction as an approach to treat CLN3 Batten disease and broaden the therapeutic landscape for ASOs in the treatment of other diseases using a similar strategy.
Collapse
|
28
|
Zhong Y, Mohan K, Liu J, Al-Attar A, Lin P, Flight RM, Sun Q, Warmoes MO, Deshpande RR, Liu H, Jung KS, Mitov MI, Lin N, Butterfield DA, Lu S, Liu J, Moseley HNB, Fan TWM, Kleinman ME, Wang QJ. Loss of CLN3, the gene mutated in juvenile neuronal ceroid lipofuscinosis, leads to metabolic impairment and autophagy induction in retinal pigment epithelium. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165883. [PMID: 32592935 DOI: 10.1016/j.bbadis.2020.165883] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/08/2020] [Accepted: 06/16/2020] [Indexed: 12/13/2022]
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL, aka. juvenile Batten disease or CLN3 disease) is a lysosomal storage disease characterized by progressive blindness, seizures, cognitive and motor failures, and premature death. JNCL is caused by mutations in the Ceroid Lipofuscinosis, Neuronal 3 (CLN3) gene, whose function is unclear. Although traditionally considered a neurodegenerative disease, CLN3 disease displays eye-specific effects: Vision loss not only is often one of the earliest symptoms of JNCL, but also has been reported in non-syndromic CLN3 disease. Here we described the roles of CLN3 protein in maintaining healthy retinal pigment epithelium (RPE) and normal vision. Using electroretinogram, fundoscopy and microscopy, we showed impaired visual function, retinal autofluorescent lesions, and RPE disintegration and metaplasia/hyperplasia in a Cln3 ~ 1 kb-deletion mouse model [1] on C57BL/6J background. Utilizing a combination of biochemical analyses, RNA-Seq, Seahorse XF bioenergetic analysis, and Stable Isotope Resolved Metabolomics (SIRM), we further demonstrated that loss of CLN3 increased autophagic flux, suppressed mTORC1 and Akt activities, enhanced AMPK activity, and up-regulated gene expression of the autophagy-lysosomal system in RPE-1 cells, suggesting autophagy induction. This CLN3 deficiency induced autophagy induction coincided with decreased mitochondrial oxygen consumption, glycolysis, the tricarboxylic acid (TCA) cycle, and ATP production. We also reported for the first time that loss of CLN3 led to glycogen accumulation despite of impaired glycogen synthesis. Our comprehensive analyses shed light on how loss of CLN3 affect autophagy and metabolism. This work suggests possible links among metabolic impairment, autophagy induction and lysosomal storage, as well as between RPE atrophy/degeneration and vision loss in JNCL.
Collapse
Affiliation(s)
- Yu Zhong
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kabhilan Mohan
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Jinpeng Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | - Ahmad Al-Attar
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Penghui Lin
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Robert M Flight
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Qiushi Sun
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Marc O Warmoes
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Rahul R Deshpande
- Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Huijuan Liu
- Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States
| | - Kyung Sik Jung
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Mihail I Mitov
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| | | | - D Allan Butterfield
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Chemistry, University of Kentucky, Lexington, KY, United States
| | - Shuyan Lu
- Pfizer Inc., San Diego, CA, United States
| | - Jinze Liu
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Computer Science, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Hunter N B Moseley
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Department of Molecular and Cellular Biochemistry, University of Kentucky, Lexington, KY, United States; Institute for Biomedical Informatics, University of Kentucky, Lexington, KY, United States
| | - Teresa W M Fan
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States; Center for Environmental and Systems Biochemistry, University of Kentucky, Lexington, KY, United States; Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Mark E Kleinman
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States
| | - Qing Jun Wang
- Department of Ophthalmology and Visual Sciences, University of Kentucky, Lexington, KY, United States; Markey Cancer Center, University of Kentucky, Lexington, KY, United States.
| |
Collapse
|
29
|
Otsu W, Ishida K, Nakamura S, Shimazawa M, Tsusaki H, Hara H. Blue light-emitting diode irradiation promotes transcription factor EB-mediated lysosome biogenesis and lysosomal cell death in murine photoreceptor-derived cells. Biochem Biophys Res Commun 2020; 526:479-484. [PMID: 32234235 DOI: 10.1016/j.bbrc.2020.03.118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 03/20/2020] [Indexed: 11/19/2022]
Abstract
Exposure to blue light from light-emitting diodes (LEDs) is a source of damage for human eyes in today's modern life. Although it is well known that blue light can cause cellular damage and death, the molecular mechanism underlying this is still not fully understood. Here, we demonstrated that exposure to blue LED light increased lysosome levels and perinuclear cluster formation in 661W murine photoreceptor-derived cells. Irradiation with blue LED light promoted the nuclear transport of transcription factor EB (TFEB) and a subsequent increase in lysosomal-related gene expression. Moreover, blue LED light induced morphological changes in lysosomal structure and lysosomal membrane permeabilization (LMP). These effects were suppressed by an antioxidant, N-acetylcysteine (NAC). Finally, a calcium ion chelator, BAPTA-AM, attenuated blue LED light-induced lysosomal biogenesis and cell death. Taken together, these findings suggest that oxidative stress under blue LED light increases lysosome levels via the TFEB pathway in a calcium-dependent manner, resulting in the accumulation of damaged lysosomes and subsequently lysosomal cell death. Our results imply that lysosomal homeostasis plays a key role in the maintenance of eye function and the progression of retinal diseases.
Collapse
Affiliation(s)
- Wataru Otsu
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Kodai Ishida
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Shinsuke Nakamura
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan; Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideshi Tsusaki
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Department of Biomedical Research Laboratory, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan; Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
30
|
Huber RJ. Molecular networking in the neuronal ceroid lipofuscinoses: insights from mammalian models and the social amoeba Dictyostelium discoideum. J Biomed Sci 2020; 27:64. [PMID: 32430003 PMCID: PMC7238602 DOI: 10.1186/s12929-020-00653-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Accepted: 04/22/2020] [Indexed: 12/26/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs), commonly known as Batten disease, belong to a family of neurological disorders that cause blindness, seizures, loss of motor function and cognitive ability, and premature death. There are 13 different subtypes of NCL that are associated with mutations in 13 genetically distinct genes (CLN1-CLN8, CLN10-CLN14). Similar clinical and pathological profiles of the different NCL subtypes suggest that common disease mechanisms may be involved. As a result, there have been many efforts to determine how NCL proteins are connected at the cellular level. A main driving force for NCL research has been the utilization of mammalian and non-mammalian cellular models to study the mechanisms underlying the disease. One non-mammalian model that has provided significant insight into NCL protein function is the social amoeba Dictyostelium discoideum. Accumulated data from Dictyostelium and mammalian cells show that NCL proteins display similar localizations, have common binding partners, and regulate the expression and activities of one another. In addition, genetic models of NCL display similar phenotypes. This review integrates findings from Dictyostelium and mammalian models of NCL to highlight our understanding of the molecular networking of NCL proteins. The goal here is to help set the stage for future work to reveal the cellular mechanisms underlying the NCLs.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, Ontario, K9L 0G2, Canada.
| |
Collapse
|
31
|
Domowicz MS, Chan WC, Claudio-Vázquez P, Henry JG, Ware CB, Andrade J, Dawson G, Schwartz NB. Global Brain Transcriptome Analysis of a Tpp1 Neuronal Ceroid Lipofuscinoses Mouse Model. ASN Neuro 2020; 11:1759091419843393. [PMID: 31003587 PMCID: PMC6475859 DOI: 10.1177/1759091419843393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
In humans, homozygous mutations in the TPP1 gene results in loss
of tripeptidyl peptidase 1 (TPP1) enzymatic activity, leading to late infantile
neuronal ceroid lipofuscinoses disease. Using a mouse model that targets the
Tpp1 gene and recapitulates the pathology and clinical
features of the human disease, we analyzed end-stage (4 months) transcriptional
changes associated with lack of TPP1 activity. Using RNA sequencing technology,
Tpp1 expression changes in the forebrain/midbrain and
cerebellum of 4-month-old homozygotes were compared with strain-related
controls. Transcriptional changes were found in 510 and 1,550 gene transcripts
in forebrain/midbrain and cerebellum, respectively, from
Tpp1-deficient brain tissues when compared with age-matched
controls. Analysis of the differentially expressed genes using the Ingenuity™
pathway software, revealed increased neuroinflammation activity in microglia and
astrocytes that could lead to neuronal dysfunction, particularly in the
cerebellum. We also observed upregulation in the production of nitric oxide and
reactive oxygen species; activation of leukocyte extravasation signals and
complement pathways; and downregulation of major transcription factors involved
in control of circadian rhythm. Several of these expression changes were
confirmed by independent quantitative polymerase chain reaction and histological
analysis by mRNA in situ hybridization, which allowed for an
in-depth anatomical analysis of the pathology and provided independent
confirmation of at least two of the major networks affected in this model. The
identification of differentially expressed genes has revealed new lines of
investigation for this complex disorder that may lead to novel therapeutic
targets.
Collapse
Affiliation(s)
- Miriam S Domowicz
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Wen-Ching Chan
- 2 Center for Research Informatics, Biological Sciences Division, The University of Chicago, IL, USA
| | | | - Judith G Henry
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Christopher B Ware
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Jorge Andrade
- 2 Center for Research Informatics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Glyn Dawson
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA
| | - Nancy B Schwartz
- 1 Department of Pediatrics, Biological Sciences Division, The University of Chicago, IL, USA.,3 Department of Biochemistry and Molecular Biology, Biological Sciences Division, The University of Chicago, IL, USA
| |
Collapse
|
32
|
Doccini S, Morani F, Nesti C, Pezzini F, Calza G, Soliymani R, Signore G, Rocchiccioli S, Kanninen KM, Huuskonen MT, Baumann MH, Simonati A, Lalowski MM, Santorelli FM. Proteomic and functional analyses in disease models reveal CLN5 protein involvement in mitochondrial dysfunction. Cell Death Discov 2020; 6:18. [PMID: 32257390 PMCID: PMC7105465 DOI: 10.1038/s41420-020-0250-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
CLN5 disease is a rare form of late-infantile neuronal ceroid lipofuscinosis (NCL) caused by mutations in the CLN5 gene that encodes a protein whose primary function and physiological roles remains unresolved. Emerging lines of evidence point to mitochondrial dysfunction in the onset and progression of several forms of NCL, offering new insights into putative biomarkers and shared biological processes. In this work, we employed cellular and murine models of the disease, in an effort to clarify disease pathways associated with CLN5 depletion. A mitochondria-focused quantitative proteomics approach followed by functional validations using cell biology and immunofluorescence assays revealed an impairment of mitochondrial functions in different CLN5 KO cell models and in Cln5 - /- cerebral cortex, which well correlated with disease progression. A visible impairment of autophagy machinery coupled with alterations of key parameters of mitophagy activation process functionally linked CLN5 protein to the process of neuronal injury. The functional link between impaired cellular respiration and activation of mitophagy pathways in the human CLN5 disease condition was corroborated by translating organelle-specific proteome findings to CLN5 patients' fibroblasts. Our study highlights the involvement of CLN5 in activation of mitophagy and mitochondrial homeostasis offering new insights into alternative strategies towards the CLN5 disease treatment.
Collapse
Affiliation(s)
- Stefano Doccini
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Federica Morani
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Claudia Nesti
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| | - Francesco Pezzini
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Giulio Calza
- Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Rabah Soliymani
- Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Giovanni Signore
- NEST, Scuola Normale Superiore, Pisa, Italy
- Fondazione Pisana per la Scienza, Pisa, Italy
| | | | - Katja M. Kanninen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Mikko T. Huuskonen
- A. I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, Kuopio, Finland
| | - Marc H. Baumann
- Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Alessandro Simonati
- Neurology (Child Neurology and Neuropathology), Department of Neuroscience, Biomedicine and Movement, University of Verona, Verona, Italy
| | - Maciej M. Lalowski
- Medicum, Biochemistry/Developmental Biology and HiLIFE, Meilahti Clinical Proteomics Core Facility, University of Helsinki, Helsinki, Finland
| | - Filippo M. Santorelli
- Molecular Medicine for Neurodegenerative and Neuromuscular Diseases Unit, IRCCS Stella Maris Foundation, Pisa, Italy
| |
Collapse
|
33
|
Yasa S, Modica G, Sauvageau E, Kaleem A, Hermey G, Lefrancois S. CLN3 regulates endosomal function by modulating Rab7A-effector interactions. J Cell Sci 2020; 133:jcs.234047. [PMID: 32034082 DOI: 10.1242/jcs.234047] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 01/22/2020] [Indexed: 01/02/2023] Open
Abstract
Mutations in CLN3 are a cause of juvenile neuronal ceroid lipofuscinosis (JNCL), also known as Batten disease. Clinical manifestations include cognitive regression, progressive loss of vision and motor function, epileptic seizures and a significantly reduced lifespan. CLN3 localizes to endosomes and lysosomes, and has been implicated in intracellular trafficking and autophagy. However, the precise molecular function of CLN3 remains to be elucidated. Previous studies showed an interaction between CLN3 and Rab7A, a small GTPase that regulates several functions at late endosomes. We confirmed this interaction in live cells and found that CLN3 is required for the efficient endosome-to-TGN trafficking of the lysosomal sorting receptors because it regulates the Rab7A interaction with retromer. In cells lacking CLN3 or expressing CLN3 harbouring a disease-causing mutation, the lysosomal sorting receptors were degraded. We also demonstrated that CLN3 is required for the Rab7A-PLEKHM1 interaction, which is required for fusion of autophagosomes to lysosomes. Overall, our data provide a molecular explanation behind phenotypes observed in JNCL and give an indication of the pathogenic mechanism behind Batten disease.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Seda Yasa
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada H7V 1B7
| | - Graziana Modica
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada H7V 1B7
| | - Etienne Sauvageau
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada H7V 1B7
| | - Abuzar Kaleem
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Guido Hermey
- Institute for Molecular and Cellular Cognition, Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20251 Hamburg, Germany
| | - Stephane Lefrancois
- Centre Armand-Frappier Santé Biotechnologie, Institut National de la Recherche Scientifique, Laval, Canada H7V 1B7 .,Department of Anatomy and Cell Biology, McGill University, Montreal, Canada H3A 0C7.,Centre d'Excellence en Recherche sur les Maladies Orphelines - Fondation Courtois (CERMO-FC), Université du Québec à Montréal (UQAM), Montréal, Canada H2X 3Y7
| |
Collapse
|
34
|
Petcherski A, Chandrachud U, Butz ES, Klein MC, Zhao WN, Reis SA, Haggarty SJ, Ruonala MO, Cotman SL. An Autophagy Modifier Screen Identifies Small Molecules Capable of Reducing Autophagosome Accumulation in a Model of CLN3-Mediated Neurodegeneration. Cells 2019; 8:cells8121531. [PMID: 31783699 PMCID: PMC6953052 DOI: 10.3390/cells8121531] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 11/23/2019] [Accepted: 11/24/2019] [Indexed: 12/17/2022] Open
Abstract
Alterations in the autophagosomal–lysosomal pathway are a major pathophysiological feature of CLN3 disease, which is the most common form of childhood-onset neurodegeneration. Accumulating autofluorescent lysosomal storage material in CLN3 disease, consisting of dolichols, lipids, biometals, and a protein that normally resides in the mitochondria, subunit c of the mitochondrial ATPase, provides evidence that autophagosomal–lysosomal turnover of cellular components is disrupted upon loss of CLN3 protein function. Using a murine neuronal cell model of the disease, which accurately mimics the major gene defect and the hallmark features of CLN3 disease, we conducted an unbiased search for modifiers of autophagy, extending previous work by further optimizing a GFP-LC3 based assay and performing a high-content screen on a library of ~2000 bioactive compounds. Here we corroborate our earlier screening results and identify expanded, independent sets of autophagy modifiers that increase or decrease the accumulation of autophagosomes in the CLN3 disease cells, highlighting several pathways of interest, including the regulation of calcium signaling, microtubule dynamics, and the mevalonate pathway. Follow-up analysis on fluspirilene, nicardipine, and verapamil, in particular, confirmed activity in reducing GFP-LC3 vesicle burden, while also demonstrating activity in normalizing lysosomal positioning and, for verapamil, in promoting storage material clearance in CLN3 disease neuronal cells. This study demonstrates the potential for cell-based screening studies to identify candidate molecules and pathways for further work to understand CLN3 disease pathogenesis and in drug development efforts.
Collapse
Affiliation(s)
- Anton Petcherski
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
- Center for Membrane Proteomics, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Uma Chandrachud
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Elisabeth S. Butz
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Madeleine C. Klein
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Wen-Ning Zhao
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Surya A. Reis
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Stephen J. Haggarty
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
| | - Mika O. Ruonala
- Center for Membrane Proteomics, Goethe University of Frankfurt, 60438 Frankfurt am Main, Germany;
| | - Susan L. Cotman
- Center for Genomic Medicine, Department of Neurology, Massachusetts General Hospital Research Institute, Harvard Medical School, Boston, MA 02114, USA; (A.P.); (U.C.); (E.S.B.); (M.C.K.); (W.-N.Z.); (S.A.R.); (S.J.H.)
- Correspondence: ; Tel.: +1-617-726-9180
| |
Collapse
|
35
|
Huber RJ, Hughes SM, Liu W, Morgan A, Tuxworth RI, Russell C. The contribution of multicellular model organisms to neuronal ceroid lipofuscinosis research. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165614. [PMID: 31783156 DOI: 10.1016/j.bbadis.2019.165614] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/14/2019] [Accepted: 11/15/2019] [Indexed: 02/07/2023]
Abstract
The NCLs (neuronal ceroid lipofuscinosis) are forms of neurodegenerative disease that affect people of all ages and ethnicities but are most prevalent in children. Commonly known as Batten disease, this debilitating neurological disorder is comprised of 13 different subtypes that are categorized based on the particular gene that is mutated (CLN1-8, CLN10-14). The pathological mechanisms underlying the NCLs are not well understood due to our poor understanding of the functions of NCL proteins. Only one specific treatment (enzyme replacement therapy) is approved, which is for the treating the brain in CLN2 disease. Hence there remains a desperate need for further research into disease-modifying treatments. In this review, we present and evaluate the genes, proteins and studies performed in the social amoeba, nematode, fruit fly, zebrafish, mouse and large animals pertinent to NCL. In particular, we highlight the use of multicellular model organisms to study NCL protein function, pathology and pathomechanisms. Their use in testing novel therapeutic approaches is also presented. With this information, we highlight how future research in these systems may be able to provide new insight into NCL protein functions in human cells and aid in the development of new therapies.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario K9L 0G2, Canada
| | - Stephanie M Hughes
- Department of Biochemistry, School of Biomedical Sciences, Brain Health Research Centre and Genetics Otago, University of Otago, Dunedin, New Zealand
| | - Wenfei Liu
- School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alan Morgan
- Department of Cellular and Molecular Physiology, Institute of Translational Medicine, University of Liverpool, Crown St., Liverpool L69 3BX, UK
| | - Richard I Tuxworth
- Institute of Cancer and Genomic Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Claire Russell
- Dept. Comparative Biomedical Sciences, Royal Veterinary College, Royal College Street, London NW1 0TU, UK.
| |
Collapse
|
36
|
Cellular models of Batten disease. Biochim Biophys Acta Mol Basis Dis 2019; 1866:165559. [PMID: 31655107 PMCID: PMC7338907 DOI: 10.1016/j.bbadis.2019.165559] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 09/05/2019] [Accepted: 09/13/2019] [Indexed: 12/22/2022]
Abstract
The Neuronal Ceroid Lipofuscinoses (NCL), otherwise known as Batten disease, are a group of neurodegenerative diseases caused by mutations in 13 known genes. All except one NCL is autosomal recessive in inheritance, with similar aetiology and characterised by the accumulation of autofluorescent storage material in the lysosomes of cells. Age of onset and the rate of progression vary between the NCLs. They are collectively one of the most common lysosomal storage diseases, but the enigma remains of how genetically distinct diseases result in such remarkably similar pathogenesis. Much has been learnt from cellular studies about the function of the proteins encoded by the affected genes. Such research has utilised primitive unicellular models such as yeast and amoeba containing gene orthologues, cells derived from naturally occurring (sheep) and genetically engineered (mouse) animal models or patient-derived cells. Most recently, patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types to study molecular pathogenesis in the cells most profoundly affected by disease. Here, we review how cell models have informed much of the biochemical understanding of the NCLs and how more complex models are being used to further this understanding and potentially act as platforms for therapeutic efficacy studies in the future. Developments made in cellular models for neuronal ceroid lipofuscinosis (NCL) in basic biology and use as therapeutic platforms. Cellular models elucidating function of NCL proteins. NCL proteins implicated in the mTor signalling pathway. Patient-derived induced pluripotent stem cell (iPSC) lines have been differentiated into neural cell-types providing insights into the molecular pathogenesis of NCL.
Collapse
|
37
|
Brown RA, Voit A, Srikanth MP, Thayer JA, Kingsbury TJ, Jacobson MA, Lipinski MM, Feldman RA, Awad O. mTOR hyperactivity mediates lysosomal dysfunction in Gaucher's disease iPSC-neuronal cells. Dis Model Mech 2019; 12:dmm038596. [PMID: 31519738 PMCID: PMC6826018 DOI: 10.1242/dmm.038596] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 09/06/2019] [Indexed: 12/20/2022] Open
Abstract
Bi-allelic GBA1 mutations cause Gaucher's disease (GD), the most common lysosomal storage disorder. Neuronopathic manifestations in GD include neurodegeneration, which can be severe and rapidly progressive. GBA1 mutations are also the most frequent genetic risk factors for Parkinson's disease. Dysfunction of the autophagy-lysosomal pathway represents a key pathogenic event in GBA1-associated neurodegeneration. Using an induced pluripotent stem cell (iPSC) model of GD, we previously demonstrated that lysosomal alterations in GD neurons are linked to dysfunction of the transcription factor EB (TFEB). TFEB controls the coordinated expression of autophagy and lysosomal genes and is negatively regulated by the mammalian target of rapamycin complex 1 (mTORC1). To further investigate the mechanism of autophagy-lysosomal pathway dysfunction in neuronopathic GD, we examined mTORC1 kinase activity in GD iPSC neuronal progenitors and differentiated neurons. We found that mTORC1 is hyperactive in GD cells as evidenced by increased phosphorylation of its downstream protein substrates. We also found that pharmacological inhibition of glucosylceramide synthase enzyme reversed mTORC1 hyperactivation, suggesting that increased mTORC1 activity is mediated by the abnormal accumulation of glycosphingolipids in the mutant cells. Treatment with the mTOR inhibitor Torin1 upregulated lysosomal biogenesis and enhanced autophagic clearance in GD neurons, confirming that lysosomal dysfunction is mediated by mTOR hyperactivation. Further analysis demonstrated that increased TFEB phosphorylation by mTORC1 results in decreased TFEB stability in GD cells. Our study uncovers a new mechanism contributing to autophagy-lysosomal pathway dysfunction in GD, and identifies the mTOR complex as a potential therapeutic target for treatment of GBA1-associated neurodegeneration.
Collapse
Affiliation(s)
- Robert A Brown
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Antanina Voit
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Manasa P Srikanth
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Julia A Thayer
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Tami J Kingsbury
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- University of Maryland Center for Stem Cell Biology and Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Marlene A Jacobson
- Moulder Center for Drug Discovery Research, Temple University School of Pharmacy, Philadelphia, PA 19140, USA
| | - Marta M Lipinski
- Department of Anesthesiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ricardo A Feldman
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ola Awad
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| |
Collapse
|
38
|
Abstract
Autophagy is an evolutionarily conserved catabolic process that targets different types of cytoplasmic cargo (such as bulk cytoplasm, damaged cellular organelles, and misfolded protein aggregates) for lysosomal degradation. Autophagy is activated in response to biological stress and also plays a critical role in the maintenance of normal cellular homeostasis; the latter function is particularly important for the integrity of postmitotic, metabolically active tissues, such as skeletal muscle. Through impairment of muscle homeostasis, autophagy dysfunction contributes to the pathogenesis of many different skeletal myopathies; the observed autophagy defects differ from disease to disease but have been shown to involve all steps of the autophagic cascade (from induction to lysosomal cargo degradation) and to impair both bulk and selective autophagy. To highlight the molecular and cellular mechanisms that are shared among different myopathies with deficient autophagy, these disorders are discussed based on the nature of the underlying autophagic defect rather than etiology or clinical presentation.
Collapse
Affiliation(s)
- Marta Margeta
- Department of Pathology, University of California, San Francisco, California 94143, USA;
| |
Collapse
|
39
|
Mirza M, Vainshtein A, DiRonza A, Chandrachud U, Haslett LJ, Palmieri M, Storch S, Groh J, Dobzinski N, Napolitano G, Schmidtke C, Kerkovich DM. The CLN3 gene and protein: What we know. Mol Genet Genomic Med 2019; 7:e859. [PMID: 31568712 PMCID: PMC6900386 DOI: 10.1002/mgg3.859] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2018] [Revised: 05/30/2019] [Accepted: 05/31/2019] [Indexed: 12/11/2022] Open
Abstract
Background One of the most important steps taken by Beyond Batten Disease Foundation in our quest to cure juvenile Batten (CLN3) disease is to understand the State of the Science. We believe that a strong understanding of where we are in our experimental understanding of the CLN3 gene, its regulation, gene product, protein structure, tissue distribution, biomarker use, and pathological responses to its deficiency, lays the groundwork for determining therapeutic action plans. Objectives To present an unbiased comprehensive reference tool of the experimental understanding of the CLN3 gene and gene product of the same name. Methods BBDF compiled all of the available CLN3 gene and protein data from biological databases, repositories of federally and privately funded projects, patent and trademark offices, science and technology journals, industrial drug and pipeline reports as well as clinical trial reports and with painstaking precision, validated the information together with experts in Batten disease, lysosomal storage disease, lysosome/endosome biology. Results The finished product is an indexed review of the CLN3 gene and protein which is not limited in page size or number of references, references all available primary experiments, and does not draw conclusions for the reader. Conclusions Revisiting the experimental history of a target gene and its product ensures that inaccuracies and contradictions come to light, long‐held beliefs and assumptions continue to be challenged, and information that was previously deemed inconsequential gets a second look. Compiling the information into one manuscript with all appropriate primary references provides quick clues to which studies have been completed under which conditions and what information has been reported. This compendium does not seek to replace original articles or subtopic reviews but provides an historical roadmap to completed works.
Collapse
Affiliation(s)
| | | | - Alberto DiRonza
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Uma Chandrachud
- Center for Genomic Medicine, Massachusetts General Hospital/Harvard Medical School, Boston, Massachusetts
| | | | - Michela Palmieri
- Baylor College of Medicine, Houston, Texas.,Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, Texas
| | - Stephan Storch
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Janos Groh
- Neurology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Niv Dobzinski
- Biochemistry and Biophysics, UCSF School of Medicine, San Francisco, California
| | | | - Carolin Schmidtke
- Biochemistry, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | | |
Collapse
|
40
|
Marques ARA, Di Spiezio A, Thießen N, Schmidt L, Grötzinger J, Lüllmann-Rauch R, Damme M, Storck SE, Pietrzik CU, Fogh J, Bär J, Mikhaylova M, Glatzel M, Bassal M, Bartsch U, Saftig P. Enzyme replacement therapy with recombinant pro-CTSD (cathepsin D) corrects defective proteolysis and autophagy in neuronal ceroid lipofuscinosis. Autophagy 2019; 16:811-825. [PMID: 31282275 DOI: 10.1080/15548627.2019.1637200] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
CTSD (cathepsin D) is one of the major lysosomal proteases indispensable for the maintenance of cellular proteostasis by turning over substrates of endocytosis, phagocytosis and autophagy. Consequently, CTSD deficiency leads to a strong impairment of the lysosomal-autophagy machinery. In mice and humans CTSD dysfunction underlies the congenital variant (CLN10) of neuronal ceroid lipofuscinosis (NCL). NCLs are distinct lysosomal storage disorders (LSDs) sharing various hallmarks, namely accumulation of protein aggregates and ceroid lipofuscin leading to neurodegeneration and blindness. The most established and clinically approved approach to treat LSDs is enzyme replacement therapy (ERT) aiming to replace the defective hydrolase with an exogenously applied recombinant protein. Here we reveal that recombinant human pro-CTSD produced in a mammalian expression system can be efficiently taken up by a variety of cell models, is correctly targeted to lysosomes and processed to the active mature form of the protease. In proof-of-principle experiments we provide evidence that recombinant human CTSD (rhCTSD) can improve the biochemical phenotype of CTSD-deficient hippocampal slice cultures in vitro and retinal cells in vivo. Furthermore, we demonstrate that dosing of rhCTSD in the murine CLN10 model leads to a correction of lysosomal hypertrophy, storage accumulation and impaired autophagic flux in the viscera and central nervous system (CNS). We establish that direct delivery of the recombinant protease to the CNS is required for improvement of neuropathology and lifespan extension. Together these data support the continuation of the pre-clinical studies for the application of rhCTSD in the treatment of NCL.Abbreviations: AIF1/IBA1: allograft inflammatory factor 1; BBB: blood brain barrier; CNS: central nervous system; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; ERT: enzyme replacement therapy; GFAP: glial fibrillary acidic protein; INL: inner nuclear layer; LAMP1: lysosomal-associated membrane protein 1; LAMP2: lysosomal-associated membrane protein 2; MAP1LC3/LC3: microtubule-associated protein 1 light chain 3; LDL: low-density lipoprotein; LRP1: low density lipoprotein receptor-related protein 1; LSD: lysosomal storage disorder; MEFs: mouse embryonic fibroblasts; M6P: mannose 6-phosphate; mCTSD: mature CTSD; NCL: neuronal ceroid lipofuscinosis; ONL: outer nuclear layer; PB: phosphate buffer; proCTSD: pro-cathepsin D; LRPAP1: low density lipoprotein receptor-related protein associated protein 1; rhCTSD: human recombinant CTSD; SAPC: saposin C; SAPD: saposin D; ATP5G1: ATP synthase, H+ transporting, mitochondrial F0 complex, subunit C1 (subunit 9); SQSTM1/p62: sequestosome 1; TPP1: tripeptidyl peptidase I.
Collapse
Affiliation(s)
- André R A Marques
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Niklas Thießen
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Lina Schmidt
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Joachim Grötzinger
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | | | - Markus Damme
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| | - Steffen E Storck
- Institute for Pathobiochemistry, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | - Claus U Pietrzik
- Institute for Pathobiochemistry, University Medical Center of Johannes Gutenberg University Mainz, Mainz, Germany
| | | | - Julia Bär
- Center for Molecular Neurobiology, Emmy-Noether Group "Neuronal Protein Transport", ZMNH, University Medical Center, Hamburg, Germany
| | - Marina Mikhaylova
- Center for Molecular Neurobiology, Emmy-Noether Group "Neuronal Protein Transport", ZMNH, University Medical Center, Hamburg, Germany
| | - Markus Glatzel
- Institute of Neuropathology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mahmoud Bassal
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Udo Bartsch
- Department of Ophthalmology, Experimental Ophthalmology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Paul Saftig
- Institute of Biochemistry, Christian-Albrechts-University Kiel, Kiel, Germany
| |
Collapse
|
41
|
Camargo M, Intasqui P, Belardin L, Antoniassi M, Cardozo K, Carvalho V, Fraietta R, Bertolla R. Molecular pathways of varicocele and its repair – A paired labelled shotgun proteomics approach. J Proteomics 2019; 196:22-32. [DOI: 10.1016/j.jprot.2019.01.019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 01/21/2019] [Accepted: 01/28/2019] [Indexed: 12/28/2022]
|
42
|
Huber RJ, Mathavarajah S. Comparative transcriptomics reveals mechanisms underlying cln3-deficiency phenotypes in Dictyostelium. Cell Signal 2019; 58:79-90. [PMID: 30771446 DOI: 10.1016/j.cellsig.2019.02.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Revised: 01/29/2019] [Accepted: 02/09/2019] [Indexed: 12/28/2022]
Abstract
Mutations in CLN3 cause a juvenile form of neuronal ceroid lipofuscinosis (NCL). This devastating neurological disorder, commonly known as Batten disease, is currently untreatable due to a lack of understanding of the physiological role of the protein. Recently, work in the social amoeba Dictyostelium discoideum has provided valuable new insight into the function of CLN3 in the cell. More specifically, research has linked the Dictyostelium homolog (gene: cln3, protein: Cln3) to protein secretion, adhesion, and aggregation during starvation, which initiates multicellular development. In this study, we used comparative transcriptomics to explore the mechanisms underlying the aberrant response of cln3- cells to starvation. During starvation, 1153 genes were differentially expressed in cln3- cells compared to WT. Among the differentially expressed genes were homologs of other human NCL genes including TPP1/CLN2, CLN5, CTSD/CLN10, PGRN/CLN11, and CTSF/CLN13. STRING and GO term analyses revealed an enrichment of genes linked to metabolic, biosynthetic, and catalytic processes. We then coupled the findings from the RNA-seq analysis to biochemical assays, specifically showing that loss of cln3 affects the expression and activity of lysosomal enzymes, increases endo-lysosomal pH, and alters nitric oxide homeostasis. Finally, we show that cln3- cells accumulate autofluorescent storage bodies during starvation and provide evidence linking the function of Cln3 to Tpp1 and CtsD activity. In total, this study enhances our knowledge of the molecular mechanisms underlying Cln3 function in Dictyostelium.
Collapse
Affiliation(s)
- Robert J Huber
- Department of Biology, Trent University, Peterborough, Ontario, Canada.
| | | |
Collapse
|
43
|
McLaren MD, Mathavarajah S, Huber RJ. Recent Insights into NCL Protein Function Using the Model Organism Dictyostelium discoideum. Cells 2019; 8:cells8020115. [PMID: 30717401 PMCID: PMC6406579 DOI: 10.3390/cells8020115] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 12/16/2022] Open
Abstract
The neuronal ceroid lipofuscinoses (NCLs) are a group of devastating neurological disorders that have a global distribution and affect people of all ages. Commonly known as Batten disease, this form of neurodegeneration is linked to mutations in 13 genetically distinct genes. The precise mechanisms underlying the disease are unknown, in large part due to our poor understanding of the functions of NCL proteins. The social amoeba Dictyostelium discoideum has proven to be an exceptional model organism for studying a wide range of neurological disorders, including the NCLs. The Dictyostelium genome contains homologs of 11 of the 13 NCL genes. Its life cycle, comprised of both single-cell and multicellular phases, provides an excellent system for studying the effects of NCL gene deficiency on conserved cellular and developmental processes. In this review, we highlight recent advances in NCL research using Dictyostelium as a biomedical model.
Collapse
Affiliation(s)
- Meagan D McLaren
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Sabateeshan Mathavarajah
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| | - Robert J Huber
- Department of Biology, Trent University, 1600 West Bank Drive, Peterborough, ON K9L 0G2, Canada.
| |
Collapse
|
44
|
Mukherjee AB, Appu AP, Sadhukhan T, Casey S, Mondal A, Zhang Z, Bagh MB. Emerging new roles of the lysosome and neuronal ceroid lipofuscinoses. Mol Neurodegener 2019; 14:4. [PMID: 30651094 PMCID: PMC6335712 DOI: 10.1186/s13024-018-0300-6] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 12/04/2018] [Indexed: 12/04/2022] Open
Abstract
Neuronal Ceroid Lipofuscinoses (NCLs), commonly known as Batten disease, constitute a group of the most prevalent neurodegenerative lysosomal storage disorders (LSDs). Mutations in at least 13 different genes (called CLNs) cause various forms of NCLs. Clinically, the NCLs manifest early impairment of vision, progressive decline in cognitive and motor functions, seizures and a shortened lifespan. At the cellular level, all NCLs show intracellular accumulation of autofluorescent material (called ceroid) and progressive neuron loss. Despite intense studies the normal physiological functions of each of the CLN genes remain poorly understood. Consequently, the development of mechanism-based therapeutic strategies remains challenging. Endolysosomal dysfunction contributes to pathogenesis of virtually all LSDs. Studies within the past decade have drastically changed the notion that the lysosomes are merely the terminal degradative organelles. The emerging new roles of the lysosome include its central role in nutrient-dependent signal transduction regulating metabolism and cellular proliferation or quiescence. In this review, we first provide a brief overview of the endolysosomal and autophagic pathways, lysosomal acidification and endosome-lysosome and autophagosome-lysosome fusions. We emphasize the importance of these processes as their dysregulation leads to pathogenesis of many LSDs including the NCLs. We also describe what is currently known about each of the 13 CLN genes and their products and how understanding the emerging new roles of the lysosome may clarify the underlying pathogenic mechanisms of the NCLs. Finally, we discuss the current and emerging therapeutic strategies for various NCLs.
Collapse
Affiliation(s)
- Anil B. Mukherjee
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Abhilash P. Appu
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Tamal Sadhukhan
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Sydney Casey
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Avisek Mondal
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| | - Zhongjian Zhang
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
- Present address: Institute of Psychiatry and Neuroscience, Xinxiang Medical University, Xinxiang, 453003 Henan China
| | - Maria B. Bagh
- Section on Developmental Genetics, Program on Endocrinology and Molecular Genetics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, The National Institutes of Health, Bethesda, Maryland 20892-1830 USA
| |
Collapse
|
45
|
Burkovetskaya M, Bosch ME, Karpuk N, Fallet R, Kielian T. Caspase 1 activity influences juvenile Batten disease (CLN3) pathogenesis. J Neurochem 2018; 148:652-668. [PMID: 29873075 DOI: 10.1111/jnc.14480] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 05/30/2018] [Accepted: 06/04/2018] [Indexed: 12/28/2022]
Abstract
Juvenile Neuronal Ceroid Lipofuscinosis (JNCL) is an autosomal recessive lysosomal storage disease caused by loss-of-function mutations in CLN3. Symptoms appear between 5 and 10 years of age, beginning with blindness and seizures, followed by progressive cognitive and motor decline, and premature death. Glial activation and impaired neuronal activity are early signs of pathology in the Cln3Δex7/8 mouse model of JNCL, whereas neuron death occurs much later in the disease process. We previously reported that Cln3Δex7/8 microglia are primed toward a pro-inflammatory phenotype typified by exaggerated caspase 1 inflammasome activation and here we extend those findings to demonstrate heightened caspase activity in the Cln3Δex7/8 mouse brain. Based on the ability of caspase 1 to cleave a large number of substrates that have been implicated in JNCL pathology, we examined the functional implications of caspase 1 inflammasome activity by crossing Cln3Δex7/8 and caspase 1-deficient mice to create Cln3Δex7/8 /Casp-1-/- animals. Caspase 1 deletion influenced motor behavior deficits and astrocyte activation in the context of CLN3 mutation, since both were significantly reversed in Cln3Δex7/8 /Casp-1-/- mice, with phenotypes approaching that of wild-type animals. We also report a progressive age-dependent reduction in whisker length in Cln3Δex7/8 mice that was partially caspase 1-dependent. However, not all CLN3 phenotypes were reversed following caspase 1 deletion, since no significant differences in lysosomal accumulation or microglial activation were observed between Cln3Δex7/8 and Cln3Δex7/8 /Casp-1-/- mice. Although the molecular targets of aberrant caspase 1 activity in the context of CLN3 mutation remain to be identified, our studies suggest that caspase 1 may represent a potential therapeutic target to mitigate some attributes of CLN3 disease. This article is part of the Special Issue "Lysosomal Storage Disorders".
Collapse
Affiliation(s)
- Maria Burkovetskaya
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Megan E Bosch
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Nikolay Karpuk
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Rachel Fallet
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Tammy Kielian
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
46
|
Moreno-García A, Kun A, Calero O, Medina M, Calero M. An Overview of the Role of Lipofuscin in Age-Related Neurodegeneration. Front Neurosci 2018; 12:464. [PMID: 30026686 PMCID: PMC6041410 DOI: 10.3389/fnins.2018.00464] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 06/18/2018] [Indexed: 12/21/2022] Open
Abstract
Despite aging being by far the greatest risk factor for highly prevalent neurodegenerative disorders, the molecular underpinnings of age-related brain changes are still not well understood, particularly the transition from normal healthy brain aging to neuropathological aging. Aging is an extremely complex, multifactorial process involving the simultaneous interplay of several processes operating at many levels of the functional organization. The buildup of potentially toxic protein aggregates and their spreading through various brain regions has been identified as a major contributor to these pathologies. One of the most striking morphologic changes in neurons during normal aging is the accumulation of lipofuscin (LF) aggregates, as well as, neuromelanin pigments. LF is an autofluorescent lipopigment formed by lipids, metals and misfolded proteins, which is especially abundant in nerve cells, cardiac muscle cells and skin. Within the Central Nervous System (CNS), LF accumulates as aggregates, delineating a specific senescence pattern in both physiological and pathological states, altering neuronal cytoskeleton and cellular trafficking and metabolism, and being associated with neuronal loss, and glial proliferation and activation. Traditionally, the accumulation of LF in the CNS has been considered a secondary consequence of the aging process, being a mere bystander of the pathological buildup associated with different neurodegenerative disorders. Here, we discuss recent evidence suggesting the possibility that LF aggregates may have an active role in neurodegeneration. We argue that LF is a relevant effector of aging that represents a risk factor or driver for neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Alejandra Kun
- Biochemistry Section, Science School, Universidad de la República, Montevideo, Uruguay
- Protein and Nucleic Acids Department, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | - Olga Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
| | - Miguel Medina
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| | - Miguel Calero
- Chronic Disease Programme-CROSADIS, Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, Madrid, Spain
- Alzheimer Disease Research Unit, CIEN Foundation, Queen Sofia Foundation Alzheimer Center, Madrid, Spain
| |
Collapse
|
47
|
Schultz ML, Tecedor L, Lysenko E, Ramachandran S, Stein CS, Davidson BL. Modulating membrane fluidity corrects Batten disease phenotypes in vitro and in vivo. Neurobiol Dis 2018; 115:182-193. [PMID: 29660499 PMCID: PMC5969532 DOI: 10.1016/j.nbd.2018.04.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Revised: 03/25/2018] [Accepted: 04/11/2018] [Indexed: 12/19/2022] Open
Abstract
The neuronal ceroid lipofuscinoses are a class of inherited neurodegenerative diseases characterized by the accumulation of autofluorescent storage material. The most common neuronal ceroid lipofuscinosis has juvenile onset with rapid onset blindness and progressive degeneration of cognitive processes. The juvenile form is caused by mutations in the CLN3 gene, which encodes the protein CLN3. While mouse models of Cln3 deficiency show mild disease phenotypes, it is apparent from patient tissue- and cell-based studies that its loss impacts many cellular processes. Using Cln3 deficient mice, we previously described defects in mouse brain endothelial cells and blood-brain barrier (BBB) permeability. Here we expand on this to other components of the BBB and show that Cln3 deficient mice have increased astrocyte endfeet area. Interestingly, this phenotype is corrected by treatment with a commonly used GAP junction inhibitor, carbenoxolone (CBX). In addition to its action on GAP junctions, CBX has also been proposed to alter lipid microdomains. In this work, we show that CBX modifies lipid microdomains and corrects membrane fluidity alterations in Cln3 deficient endothelial cells, which in turn improves defects in endocytosis, caveolin-1 distribution at the plasma membrane, and Cdc42 activity. In further work using the NIH Library of Integrated Network-based Cellular Signatures (LINCS), we discovered other small molecules whose impact was similar to CBX in that they improved Cln3-deficient cell phenotypes. Moreover, Cln3 deficient mice treated orally with CBX exhibited recovery of impaired BBB responses and reduced auto-fluorescence. CBX and the compounds identified by LINCS, many of which have been used in humans or approved for other indications, may find therapeutic benefit in children suffering from CLN3 deficiency through mechanisms independent of their original intended use.
Collapse
Affiliation(s)
- Mark L Schultz
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Luis Tecedor
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Elena Lysenko
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Shyam Ramachandran
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States
| | - Colleen S Stein
- Department of Internal Medicine, University of Iowa, Iowa City, IA 52242, United States
| | - Beverly L Davidson
- The Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, United States; Department of Pathology & Laboratory Medicine, Philadelphia, PA 19104, United States.
| |
Collapse
|
48
|
Altered Expression of Ganglioside Metabolizing Enzymes Results in GM3 Ganglioside Accumulation in Cerebellar Cells of a Mouse Model of Juvenile Neuronal Ceroid Lipofuscinosis. Int J Mol Sci 2018; 19:ijms19020625. [PMID: 29470438 PMCID: PMC5855847 DOI: 10.3390/ijms19020625] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 02/18/2018] [Accepted: 02/19/2018] [Indexed: 01/02/2023] Open
Abstract
Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene. Most JNCL patients exhibit a 1.02 kb genomic deletion removing exons 7 and 8 of this gene, which results in a truncated CLN3 protein carrying an aberrant C-terminus. A genetically accurate mouse model (Cln3Δex7/8 mice) for this deletion has been generated. Using cerebellar precursor cell lines generated from wildtype and Cln3Δex7/8 mice, we have here analyzed the consequences of the CLN3 deletion on levels of cellular gangliosides, particularly GM3, GM2, GM1a and GD1a. The levels of GM1a and GD1a were found to be significantly reduced by both biochemical and cytochemical methods. However, quantitative high-performance liquid chromatography analysis revealed a highly significant increase in GM3, suggesting a metabolic blockade in the conversion of GM3 to more complex gangliosides. Quantitative real-time PCR analysis revealed a significant reduction in the transcripts of the interconverting enzymes, especially of β-1,4-N-acetyl-galactosaminyl transferase 1 (GM2 synthase), which is the enzyme converting GM3 to GM2. Thus, our data suggest that the complex a-series gangliosides are reduced in Cln3Δex7/8 mouse cerebellar precursor cells due to impaired transcription of the genes responsible for their synthesis.
Collapse
|
49
|
Wang H, Wang Y, Hong X, Li S, Wang Y. Quantitative Proteomics Reveals the Mechanism of Oxygen Treatment on Lenses of Alzheimer's Disease Model Mice. J Alzheimers Dis 2018; 54:275-86. [PMID: 27567828 DOI: 10.3233/jad-160263] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) is a neurodegenerative disease with well-characterized pathological features. Yet the underlying mechanisms have not been resolved and an effective therapeutic approach is lacking. Cerebral hypoxia is considered a risk factor of AD. OBJECTIVE We tested whether oxygen supplementation can relieve AD symptoms and how it affects the expression levels of proteins in the lens. METHODS Triple transgenic AD model (3xTg-AD) mice were divided into oxygen treated (OT) and control (Ctrl) groups. Their cognitive performances were tested in a Morris water maze (MWM) paradigm. Then, their eye lens tissues were subjected to quantitative proteomics analysis by the iTRAQ (isobaric tags for relative and absolute quantification) method. The up- and downregulated proteins were classified according to a Gene Ontology (GO) database in PANTHER. Behavioral and proteomic data were compared between the groups. RESULTS Mice in the OT group had better learning and memorizing performance compared with the Ctrl group in MWM test. Lenses from the OT group had 205 differentially regulated proteins, relative to lenses from the Ctrl group, including proteins that are involved in the clearance of amyloid β-protein. CONCLUSION The results of this study indicate that oxygen treatment can improve cognitive function in AD model mice and alters protein expression in a manner consistent with improved redox regulation.
Collapse
Affiliation(s)
- Hao Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Ying Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Xiaoyu Hong
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Microbial Genetic Engineering, Shenzhen University, Shenzhen, China
| | - Shuiming Li
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| | - Yong Wang
- College of Life Sciences and Oceanography, Shenzhen Key Laboratory of Marine Bioresources and Ecology, Shenzhen University, Shenzhen, China
| |
Collapse
|
50
|
Dysregulation of autophagy as a common mechanism in lysosomal storage diseases. Essays Biochem 2017; 61:733-749. [PMID: 29233882 PMCID: PMC5869865 DOI: 10.1042/ebc20170055] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/08/2017] [Accepted: 10/12/2017] [Indexed: 12/19/2022]
Abstract
The lysosome plays a pivotal role between catabolic and anabolic processes as the nexus for signalling pathways responsive to a variety of factors, such as growth, nutrient availability, energetic status and cellular stressors. Lysosomes are also the terminal degradative organelles for autophagy through which macromolecules and damaged cellular components and organelles are degraded. Autophagy acts as a cellular homeostatic pathway that is essential for organismal physiology. Decline in autophagy during ageing or in many diseases, including late-onset forms of neurodegeneration is considered a major contributing factor to the pathology. Multiple lines of evidence indicate that impairment in autophagy is also a central mechanism underlying several lysosomal storage disorders (LSDs). LSDs are a class of rare, inherited disorders whose histopathological hallmark is the accumulation of undegraded materials in the lysosomes due to abnormal lysosomal function. Inefficient degradative capability of the lysosomes has negative impact on the flux through the autophagic pathway, and therefore dysregulated autophagy in LSDs is emerging as a relevant disease mechanism. Pathology in the LSDs is generally early-onset, severe and life-limiting but current therapies are limited or absent; recognizing common autophagy defects in the LSDs raises new possibilities for therapy. In this review, we describe the mechanisms by which LSDs occur, focusing on perturbations in the autophagy pathway and present the latest data supporting the development of novel therapeutic approaches related to the modulation of autophagy.
Collapse
|