1
|
Budzynska K, Siemionow M, Stawarz K, Chambily L, Siemionow K. Chimeric Cell Therapies as a Novel Approach for Duchenne Muscular Dystrophy (DMD) and Muscle Regeneration. Biomolecules 2024; 14:575. [PMID: 38785982 PMCID: PMC11117592 DOI: 10.3390/biom14050575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/06/2024] [Accepted: 05/11/2024] [Indexed: 05/25/2024] Open
Abstract
Chimerism-based strategies represent a pioneering concept which has led to groundbreaking advancements in regenerative medicine and transplantation. This new approach offers therapeutic potential for the treatment of various diseases, including inherited disorders. The ongoing studies on chimeric cells prompted the development of Dystrophin-Expressing Chimeric (DEC) cells which were introduced as a potential therapy for Duchenne Muscular Dystrophy (DMD). DMD is a genetic condition that leads to premature death in adolescent boys and remains incurable with current methods. DEC therapy, created via the fusion of human myoblasts derived from normal and DMD-affected donors, has proven to be safe and efficacious when tested in experimental models of DMD after systemic-intraosseous administration. These studies confirmed increased dystrophin expression, which correlated with functional and morphological improvements in DMD-affected muscles, including cardiac, respiratory, and skeletal muscles. Furthermore, the application of DEC therapy in a clinical study confirmed its long-term safety and efficacy in DMD patients. This review summarizes the development of chimeric cell technology tested in preclinical models and clinical studies, highlighting the potential of DEC therapy in muscle regeneration and repair, and introduces chimeric cell-based therapies as a promising, novel approach for muscle regeneration and the treatment of DMD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Katarzyna Budzynska
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
- Chair and Department of Traumatology, Orthopaedics, and Surgery of the Hand, Poznan University of Medical Sciences, 61-545 Poznan, Poland
| | - Katarzyna Stawarz
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Lucile Chambily
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| | - Krzysztof Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL 60607, USA; (K.B.); (K.S.); (L.C.); (K.S.)
| |
Collapse
|
2
|
Patel RK, Parappilly M, Rahman S, Schwantes IR, Sewell M, Giske NR, Whalen RM, Durmus NG, Wong MH. The Hallmarks of Circulating Hybrid Cells. Results Probl Cell Differ 2024; 71:467-485. [PMID: 37996690 DOI: 10.1007/978-3-031-37936-9_21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023]
Abstract
While tumor metastases represent the primary driver of cancer-related mortality, our understanding of the mechanisms that underlie metastatic initiation and progression remains incomplete. Recent work identified a novel tumor-macrophage hybrid cell population, generated through the fusion between neoplastic and immune cells. These hybrid cells are detected in primary tumor tissue, peripheral blood, and in metastatic sites. In-depth analyses of hybrid cell biology indicate that they can exploit phenotypic properties of both parental tumor and immune cells, in order to intravasate into circulation, evade the immune response, and seed tumors at distant sites. Thus, it has become increasingly evident that the development and dissemination of tumor-immune hybrid cells play an intricate and fundamental role in the metastatic cascade and can provide invaluable information regarding tumor characteristics and patient prognostication. In this chapter, we review the current understanding of this novel hybrid cell population, the specific hallmarks of cancer that these cells exploit to promote cancer progression and metastasis, and discuss exciting new frontiers that remain to be explored.
Collapse
Affiliation(s)
- Ranish K Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Michael Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Shahrose Rahman
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Issac R Schwantes
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Marisa Sewell
- Department of Surgery, Oregon Health & Science University, Portland, OR, USA
| | - Nicole R Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Riley M Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA
| | - Naside Gozde Durmus
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR, USA.
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR, USA.
| |
Collapse
|
3
|
Dittmar T, Sieler M, Hass R. Why do certain cancer cells alter functionality and fuse? Biol Chem 2023; 404:951-960. [PMID: 37246410 DOI: 10.1515/hsz-2023-0162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 05/11/2023] [Indexed: 05/30/2023]
Abstract
Cancer cell fusion represents a rare event. However, the surviving cancer hybrid cells after a post-hybrid selection process (PHSP) can overgrow other cancer cells by exhibiting a proliferation advantage and/or expression of cancer stem-like properties. Addition of new tumor properties during hetero-fusion of cancer cells e.g. with mesenchymal stroma-/stem-like cells (MSC) contribute to enhanced tumor plasticity via acquisition of new/altered functionalities. This provides new avenues for tumor development and metastatic behavior. Consequently, the present review article will also address the question as to whether cancer cell fusion represents a general and possibly evolutionary-conserved program or rather a random process?
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Mareike Sieler
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, D-58448 Witten, Germany
| | - Ralf Hass
- Department of Obstetrics and Gynecology, Biochemistry and Tumor Biology Laboratory, Hannover Medical School, D-30625 Hannover, Germany
| |
Collapse
|
4
|
Dittmar T, Hass R. Intrinsic signalling factors associated with cancer cell-cell fusion. Cell Commun Signal 2023; 21:68. [PMID: 37016404 PMCID: PMC10071245 DOI: 10.1186/s12964-023-01085-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/21/2023] [Indexed: 04/06/2023] Open
Abstract
Cellular fusion e.g. between cancer cells and normal cells represents a stepwise process that is tightly regulated. During a pre-hybrid preparation program somatic cells and/or cancer cells are promoted to a pro-fusogenic state as a prerequisite to prepare a fusion process. A pro-fusogenic state requires significant changes including restructure of the cytoskeleton, e.g., by the formation of F-actin. Moreover, distinct plasma membrane lipids such as phosphatidylserine play an important role during cell fusion. In addition, the expression of distinct fusogenic factors such as syncytins and corresponding receptors are of fundamental importance to enable cellular mergers. Subsequent hybrid formation and fusion are followed by a post-hybrid selection process. Fusion among normal cells is important and often required during organismal development. Cancer cells fusion appears more rarely and is associated with the generation of new cancer hybrid cell populations. These cancer hybrid cells contribute to an elevated tumour plasticity by altered metastatic behaviour, changes in therapeutic and apoptotic responses, and even in the formation of cancer stem/ initiating cells. While many parts within this multi-step cascade are still poorly understood, this review article predominantly focusses on the intracellular necessities for fusion among cancer cells or with other cell populations of the tumour microenvironment. Video Abstract.
Collapse
Affiliation(s)
- Thomas Dittmar
- Institute of Immunology, Centre for Biomedical Education and Research (ZBAF), Witten/Herdecke University, Stockumer Str. 10, 58448, Witten, Germany.
| | - Ralf Hass
- Biochemistry and Tumor Biology Laboratory, Department of Obstetrics and Gynaecology, Hannover Medical School, 30625, Hannover, Germany.
| |
Collapse
|
5
|
Sutton TL, Patel RK, Anderson AN, Bowden SG, Whalen R, Giske NR, Wong MH. Circulating Cells with Macrophage-like Characteristics in Cancer: The Importance of Circulating Neoplastic-Immune Hybrid Cells in Cancer. Cancers (Basel) 2022; 14:cancers14163871. [PMID: 36010865 PMCID: PMC9405966 DOI: 10.3390/cancers14163871] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/14/2022] Open
Abstract
Simple Summary In cancer, disseminated neoplastic cells circulating in blood are a source of tumor DNA, RNA, and protein, which can be harnessed to diagnose, monitor, and better understand the biology of the tumor from which they are derived. Historically, circulating tumor cells (CTCs) have dominated this field of study. While CTCs are shed directly into circulation from a primary tumor, they remain relatively rare, particularly in early stages of disease, and thus are difficult to utilize as a reliable cancer biomarker. Neoplastic-immune hybrid cells represent a novel subpopulation of circulating cells that are more reliably attainable as compared to their CTC counterparts. Here, we review two recently identified circulating cell populations in cancer—cancer-associated macrophage-like cells and circulating hybrid cells—and discuss the future impact for the exciting area of disseminated hybrid cells. Abstract Cancer remains a significant cause of mortality in developed countries, due in part to difficulties in early detection, understanding disease biology, and assessing treatment response. If effectively harnessed, circulating biomarkers promise to fulfill these needs through non-invasive “liquid” biopsy. While tumors disseminate genetic material and cellular debris into circulation, identifying clinically relevant information from these analytes has proven difficult. In contrast, cell-based circulating biomarkers have multiple advantages, including a source for tumor DNA and protein, and as a cellular reflection of the evolving tumor. While circulating tumor cells (CTCs) have dominated the circulating cell biomarker field, their clinical utility beyond that of prognostication has remained elusive, due to their rarity. Recently, two novel populations of circulating tumor-immune hybrid cells in cancer have been characterized: cancer-associated macrophage-like cells (CAMLs) and circulating hybrid cells (CHCs). CAMLs are macrophage-like cells containing phagocytosed tumor material, while CHCs can result from cell fusion between cancer and immune cells and play a role in the metastatic cascade. Both are detected in higher numbers than CTCs in peripheral blood and demonstrate utility in prognostication and assessing treatment response. Additionally, both cell populations are heterogeneous in their genetic, transcriptomic, and proteomic signatures, and thus have the potential to inform on heterogeneity within tumors. Herein, we review the advances in this exciting field.
Collapse
Affiliation(s)
- Thomas L. Sutton
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ranish K. Patel
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ashley N. Anderson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Stephen G. Bowden
- Department of Neurological Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Riley Whalen
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Nicole R. Giske
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97201, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97201, USA
- Correspondence: ; Tel.: +1-503-494-8749; Fax: +1-503-494-4253
| |
Collapse
|
6
|
Generation of Cancer Stem/Initiating Cells by Cell-Cell Fusion. Int J Mol Sci 2022; 23:ijms23094514. [PMID: 35562905 PMCID: PMC9101717 DOI: 10.3390/ijms23094514] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/10/2022] [Accepted: 04/17/2022] [Indexed: 02/04/2023] Open
Abstract
CS/ICs have raised great expectations in cancer research and therapy, as eradication of this key cancer cell type is expected to lead to a complete cure. Unfortunately, the biology of CS/ICs is rather complex, since no common CS/IC marker has yet been identified. Certain surface markers or ALDH1 expression can be used for detection, but some studies indicated that cancer cells exhibit a certain plasticity, so CS/ICs can also arise from non-CS/ICs. Another problem is intratumoral heterogeneity, from which it can be inferred that different CS/IC subclones must be present in the tumor. Cell–cell fusion between cancer cells and normal cells, such as macrophages and stem cells, has been associated with the generation of tumor hybrids that can exhibit novel properties, such as an enhanced metastatic capacity and even CS/IC properties. Moreover, cell–cell fusion is a complex process in which parental chromosomes are mixed and randomly distributed among daughter cells, resulting in multiple, unique tumor hybrids. These, if they have CS/IC properties, may contribute to the heterogeneity of the CS/IC pool. In this review, we will discuss whether cell–cell fusion could also lead to the origin of different CS/ICs that may expand the overall CS/IC pool in a primary tumor.
Collapse
|
7
|
Bonilla-Pons SÀ, Nakagawa S, Bahima EG, Fernández-Blanco Á, Pesaresi M, D'Antin JC, Sebastian-Perez R, Greco D, Domínguez-Sala E, Gómez-Riera R, Compte RIB, Dierssen M, Pulido NM, Cosma MP. Müller glia fused with adult stem cells undergo neural differentiation in human retinal models. EBioMedicine 2022; 77:103914. [PMID: 35278743 PMCID: PMC8917309 DOI: 10.1016/j.ebiom.2022.103914] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/09/2022] [Accepted: 02/18/2022] [Indexed: 12/15/2022] Open
Abstract
Background Visual impairments are a critical medical hurdle to be addressed in modern society. Müller glia (MG) have regenerative potential in the retina in lower vertebrates, but not in mammals. However, in mice, in vivo cell fusion between MG and adult stem cells forms hybrids that can partially regenerate ablated neurons. Methods We used organotypic cultures of human retina and preparations of dissociated cells to test the hypothesis that cell fusion between human MG and adult stem cells can induce neuronal regeneration in human systems. Moreover, we established a microinjection system for transplanting human retinal organoids to demonstrate hybrid differentiation. Findings We first found that cell fusion occurs between MG and adult stem cells, in organotypic cultures of human retina as well as in cell cultures. Next, we showed that the resulting hybrids can differentiate and acquire a proto-neural electrophysiology profile when the Wnt/beta-catenin pathway is activated in the adult stem cells prior fusion. Finally, we demonstrated the engraftment and differentiation of these hybrids into human retinal organoids. Interpretation We show fusion between human MG and adult stem cells, and demonstrate that the resulting hybrid cells can differentiate towards neural fate in human model systems. Our results suggest that cell fusion-mediated therapy is a potential regenerative approach for treating human retinal dystrophies. Funding This work was supported by La Caixa Health (HR17-00231), Velux Stiftung (976a) and the Ministerio de Ciencia e Innovación, (BFU2017-86760-P) (AEI/FEDER, UE), AGAUR (2017 SGR 689, 2017 SGR 926).
Collapse
Affiliation(s)
- Sergi Àngel Bonilla-Pons
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat de Barcelona (UB), Barcelona, Spain
| | - Shoma Nakagawa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Elena Garreta Bahima
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Álvaro Fernández-Blanco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Martina Pesaresi
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Justin Christopher D'Antin
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Ruben Sebastian-Perez
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain
| | - Daniela Greco
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Eduardo Domínguez-Sala
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Raúl Gómez-Riera
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain
| | - Rafael Ignacio Barraquer Compte
- Centro de Oftalmología Barraquer, Barcelona, Spain; Institut Universitari Barraquer, Universitat Autónoma de Barcelona, Barcelona, Spain
| | - Mara Dierssen
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; Biomedical Research Networking Centre On Rare Diseases (CIBERER), Institute of Health Carlos III, Madrid, Spain
| | - Nuria Montserrat Pulido
- Pluripotency for Organ Regeneration, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology (BIST), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain
| | - Maria Pia Cosma
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, C/Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; ICREA, Pg. Lluis Companys 23, Barcelona 08010, Spain; Bioland Laboratory, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Guangzhou 510005, China; CAS Key Laboratory of Regenerative Biology, Guangdong Provincial Key Laboratory of Stem Cell an Regenerative Medicine, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Science, Guangzhou 510530, China.
| |
Collapse
|
8
|
Cwykiel J, Madajka-Niemeyer M, Siemionow M. Development of Donor Recipient Chimeric Cells of bone marrow origin as a novel approach for tolerance induction in transplantation. Stem Cell Investig 2021; 8:8. [PMID: 33969113 DOI: 10.21037/sci-2020-044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 03/03/2021] [Indexed: 12/14/2022]
Abstract
Background Cell therapies and chimerism-based strategies are currently the most successful approach for tolerance induction in transplantation. This study aimed to establish and characterize novel Donor Recipient Chimeric Ccell (DRCC) therapy of bone marrow (BM) origin presenting donor-recipient phenotype to support tolerance induction. Methods Ex vivo fusions of fully MHC-mismatched BM cells from ACI (RT1a) and Lewis (RT1l) rats were performed using polyethylene-glycol (PEG). The creation of rat DRCC was tested by flow cytometry (FC), confocal microscopy and PCR. FC characterized DRCC's phenotype (CD3, CD4, CD8, CD45, CD90, CD11b/c, CD45RA, OX-82, or CD4/CD25) and apoptosis, while mixed lymphocyte reaction assessed DRCC's immunogenicity and colony forming unit assay tested DRCC's differentiation and proliferation. DRCC's polyploidy was evaluated using Hoechst33342 staining and COMET assay tested genotoxicity of fusion procedure. ELISA analyzed the secretion of IL-2, IL-4, IL-10, TGFß1, IFNγ and TNFα by DRCC at day 1, 5 and 14 post-fusion. The DRCC's phenotype after long-term culturing was assessed by reverse-transcription PCR. Results The chimeric state of DRCC was confirmed. Fusion did not change the expression of hematopoietic markers compared to BM controls. Although an increased number of early and late apoptotic (Annexin V+/Sytox blue- and Annexin V+/Sytox blue+, respectively) DRCC was detected at 24h post-fusion, the number significantly decreased at day 5 (38.4%±3.1% and 22.6%±2.5%, vs. 28.3%±2.5% and 13.9%±2.6%, respectively, P<0.05). DRCC presented decreased immunogenicity, increased expression of IL-10 and TGFβ1 and proliferative potential comparable to BM controls. The average percentage of tetraploid DRCC was 3.1%±0.2% compared to 0.96%±0.1% in BM controls. The lack of damage to the DRCC's DNA content supported the DRCC's safety. In culture, DRCC maintained proliferation for up to 28 days while preserving hematopoietic profile. Conclusions This study confirmed feasibility of DRCC creation via ex vivo PEG mediated fusion. The created DRCC revealed pro-tolerogenic properties indicating potential immunomodulatory effect of DRCC therapy when applied in vivo to support tolerance induction in solid organ and vascularized composite allograft transplantation.
Collapse
Affiliation(s)
- Joanna Cwykiel
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| | | | - Maria Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, IL, USA.,Department of Plastic Surgery, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Surgery, Poznan University of Medical Sciences, Poznan, Poland
| |
Collapse
|
9
|
Zhou Y, Cheng JT, Feng ZX, Wang YY, Zhang Y, Cai WQ, Han ZW, Wang XW, Xiang Y, Yang HY, Liu BR, Peng XC, Cui SZ, Xin HW. Could gastrointestinal tumor-initiating cells originate from cell-cell fusion in vivo? World J Gastrointest Oncol 2021; 13:92-108. [PMID: 33643526 PMCID: PMC7896421 DOI: 10.4251/wjgo.v13.i2.92] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/25/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Tumor-initiating cells (TICs) or cancer stem cells are believed to be responsible for gastrointestinal tumor initiation, progression, metastasis, and drug resistance. It is hypothesized that gastrointestinal TICs (giTICs) might originate from cell-cell fusion. Here, we systemically evaluate the evidence that supports or opposes the hypothesis of giTIC generation from cell-cell fusion both in vitro and in vivo. We review giTICs that are capable of initiating tumors in vivo with 5000 or fewer in vivo fused cells. Under this restriction, there is currently little evidence demonstrating that giTICs originate from cell-cell fusion in vivo. However, there are many reports showing that tumor generation in vitro occurs with more than 5000 fused cells. In addition, the mechanisms of giTIC generation via cell-cell fusion are poorly understood, and thus, we propose its potential mechanisms of action. We suggest that future research should focus on giTIC origination from cell-cell fusion in vivo, isolation or enrichment of giTICs that have tumor-initiating capabilities with 5000 or less in vivo fused cells, and further clarification of the underlying mechanisms. Our review of the current advances in our understanding of giTIC origination from cell-cell fusion may have significant implications for the understanding of carcinogenesis and future cancer therapeutic strategies targeting giTICs.
Collapse
Affiliation(s)
- Yang Zhou
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Jun-Ting Cheng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Zi-Xian Feng
- Department of Oncology and Haematology, Lianjiang People's Hospital, Guangzhou 524400, Guangdong Province, China
| | - Ying-Ying Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ying Zhang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Wen-Qi Cai
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Zi-Wen Han
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Xian-Wang Wang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Ying Xiang
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Hui-Yu Yang
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Bing-Rong Liu
- Department of Gastroenterology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450000, Henan Province, China
| | - Xiao-Chun Peng
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Pathophysiology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| | - Shu-Zhong Cui
- State Key Laboratory of Respiratory Disease, Affiliated Cancer Hospital Institute of Guangzhou Medical University, Guangzhou 510095, Guangdong Province, China
| | - Hong-Wu Xin
- Laboratory of Oncology, Center for Molecular Medicine, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
- Department of Biochemistry and Molecular Biology, School of Basic Medicine, Health Science Center, Yangtze University, Jingzhou 434023, Hubei Province, China
| |
Collapse
|
10
|
The Intimate Relationship Among EMT, MET and TME: A T(ransdifferentiation) E(nhancing) M(ix) to Be Exploited for Therapeutic Purposes. Cancers (Basel) 2020; 12:cancers12123674. [PMID: 33297508 PMCID: PMC7762343 DOI: 10.3390/cancers12123674] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/03/2020] [Accepted: 12/03/2020] [Indexed: 12/12/2022] Open
Abstract
Simple Summary Intratumoral heterogeneity is considered the major cause of drug resistance and hence treatment failure in cancer patients. Tumor cells are known for their phenotypic plasticity that is the ability of a cell to reprogram and change its identity to eventually adopt multiple phenotypes. Tumor cell plasticity involves the reactivation of developmental programs, the acquisition of cancer stem cell properties and an enhanced potential for retro- or transdifferentiation. A well-known transdifferentiation mechanism is the process of epithelial-mesenchymal transition (EMT). Current evidence suggests a complex interplay between EMT, genetic and epigenetic alterations, and various signals from the tumor microenvironment (TME) in shaping a tumor cell’s plasticity. The vulnerabilities exposed by cancer cells when residing in a plastic or stem-like state have the potential to be exploited therapeutically, i.e., by converting highly metastatic cells into less aggressive or even harmless postmitotic ones. Abstract Intratumoral heterogeneity is considered the major cause of drug unresponsiveness in cancer and accumulating evidence implicates non-mutational resistance mechanisms rather than genetic mutations in its development. These non-mutational processes are largely driven by phenotypic plasticity, which is defined as the ability of a cell to reprogram and change its identity (phenotype switching). Tumor cell plasticity is characterized by the reactivation of developmental programs that are closely correlated with the acquisition of cancer stem cell properties and an enhanced potential for retrodifferentiation or transdifferentiation. A well-studied mechanism of phenotypic plasticity is the epithelial-mesenchymal transition (EMT). Current evidence suggests a complex interplay between EMT, genetic and epigenetic alterations, and clues from the tumor microenvironment in cell reprogramming. A deeper understanding of the connections between stem cell, epithelial–mesenchymal, and tumor-associated reprogramming events is crucial to develop novel therapies that mitigate cell plasticity and minimize the evolution of tumor heterogeneity, and hence drug resistance. Alternatively, vulnerabilities exposed by tumor cells when residing in a plastic or stem-like state may be exploited therapeutically, i.e., by converting them into less aggressive or even postmitotic cells. Tumor cell plasticity thus presents a new paradigm for understanding a cancer’s resistance to therapy and deciphering its underlying mechanisms.
Collapse
|
11
|
Sutton TL, Walker BS, Wong MH. Rebuttal to: Confusion on Cell Fusion. Cell Mol Gastroenterol Hepatol 2020; 11:307-308. [PMID: 33068772 PMCID: PMC7768553 DOI: 10.1016/j.jcmgh.2020.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/10/2020] [Accepted: 09/14/2020] [Indexed: 12/10/2022]
Affiliation(s)
| | | | - Melissa H Wong
- Department of Cell, Developmental and Cancer Biology, Knight Cancer Institute, Oregon Health & Science University, Portland, Oregon.
| |
Collapse
|
12
|
Digesting the Importance of Cell Fusion in the Intestine. Cell Mol Gastroenterol Hepatol 2020; 11:299-302. [PMID: 33068773 PMCID: PMC7768557 DOI: 10.1016/j.jcmgh.2020.07.013] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 05/15/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
|
13
|
Shabo I, Svanvik J, Lindström A, Lechertier T, Trabulo S, Hulit J, Sparey T, Pawelek J. Roles of cell fusion, hybridization and polyploid cell formation in cancer metastasis. World J Clin Oncol 2020; 11:121-135. [PMID: 32257843 PMCID: PMC7103524 DOI: 10.5306/wjco.v11.i3.121] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/02/2020] [Accepted: 03/01/2020] [Indexed: 02/06/2023] Open
Abstract
Cell-cell fusion is a normal biological process playing essential roles in organ formation and tissue differentiation, repair and regeneration. Through cell fusion somatic cells undergo rapid nuclear reprogramming and epigenetic modifications to form hybrid cells with new genetic and phenotypic properties at a rate exceeding that achievable by random mutations. Factors that stimulate cell fusion are inflammation and hypoxia. Fusion of cancer cells with non-neoplastic cells facilitates several malignancy-related cell phenotypes, e.g., reprogramming of somatic cell into induced pluripotent stem cells and epithelial to mesenchymal transition. There is now considerable in vitro, in vivo and clinical evidence that fusion of cancer cells with motile leucocytes such as macrophages plays a major role in cancer metastasis. Of the many changes in cancer cells after hybridizing with leucocytes, it is notable that hybrids acquire resistance to chemo- and radiation therapy. One phenomenon that has been largely overlooked yet plays a role in these processes is polyploidization. Regardless of the mechanism of polyploid cell formation, it happens in response to genotoxic stresses and enhances a cancer cell’s ability to survive. Here we summarize the recent progress in research of cell fusion and with a focus on an important role for polyploid cells in cancer metastasis. In addition, we discuss the clinical evidence and the importance of cell fusion and polyploidization in solid tumors.
Collapse
Affiliation(s)
- Ivan Shabo
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institute, Stockholm SE 171 77, Sweden
- Patient Area of Breast Cancer, Sarcoma and Endocrine Tumours, Theme Cancer, Karolinska University Hospital, Stockholm SE 171 76, Sweden
| | - Joar Svanvik
- The Transplant Institute, Sahlgrenska University Hospital, Gothenburg SE 413 45, Sweden
- Division of Surgery, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE 581 83, Sweden
| | - Annelie Lindström
- Division of Cell Biology, Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, Linköping SE 581 85, Sweden
| | - Tanguy Lechertier
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Sara Trabulo
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - James Hulit
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - Tim Sparey
- Novintum Bioscience Ltd, London Bioscience Innovation Centre, London NW1 0NH, United Kingdom
| | - John Pawelek
- Department of Dermatology and the Yale Cancer Center, Yale University School of Medicine, New Haven, CT 06520, United States
| |
Collapse
|
14
|
Dörnen J, Sieler M, Weiler J, Keil S, Dittmar T. Cell Fusion-Mediated Tissue Regeneration as an Inducer of Polyploidy and Aneuploidy. Int J Mol Sci 2020; 21:E1811. [PMID: 32155721 PMCID: PMC7084716 DOI: 10.3390/ijms21051811] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Revised: 02/28/2020] [Accepted: 03/04/2020] [Indexed: 12/20/2022] Open
Abstract
The biological phenomenon of cell fusion plays a crucial role in several physiological processes, including wound healing and tissue regeneration. Here, it is assumed that bone marrow-derived stem cells (BMSCs) could adopt the specific properties of a different organ by cell fusion, thereby restoring organ function. Cell fusion first results in the production of bi- or multinucleated hybrid cells, which either remain as heterokaryons or undergo ploidy reduction/heterokaryon-to-synkaryon transition (HST), thereby giving rise to mononucleated daughter cells. This process is characterized by a merging of the chromosomes from the previously discrete nuclei and their subsequent random segregation into daughter cells. Due to extra centrosomes concomitant with multipolar spindles, the ploidy reduction/HST could also be associated with chromosome missegregation and, hence, induction of aneuploidy, genomic instability, and even putative chromothripsis. However, while the majority of such hybrids die or become senescent, aneuploidy and genomic instability appear to be tolerated in hepatocytes, possibly for stress-related adaption processes. Likewise, cell fusion-induced aneuploidy and genomic instability could also lead to a malignant conversion of hybrid cells. This can occur during tissue regeneration mediated by BMSC fusion in chronically inflamed tissue, which is a cell fusion-friendly environment, but is also enriched for mutagenic reactive oxygen and nitrogen species.
Collapse
Affiliation(s)
| | | | | | | | - Thomas Dittmar
- Institute of Immunology, Center for Biomedical Education and Research (ZBAF), Witten/Herdecke University, 58448 Witten, Germany; (J.D.); (M.S.); (J.W.); (S.K.)
| |
Collapse
|
15
|
Garvin S, Vikhe Patil E, Arnesson LG, Oda H, Hedayati E, Lindström A, Shabo I. Differences in intra-tumoral macrophage infiltration and radiotherapy response among intrinsic subtypes in pT1-T2 breast cancers treated with breast-conserving surgery. Virchows Arch 2019; 475:151-162. [PMID: 30915533 PMCID: PMC6647441 DOI: 10.1007/s00428-019-02563-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 02/06/2023]
Abstract
Breast cancer (BC) intrinsic subtype classification is based on the expression of estrogen receptor (ER), progesterone receptor (PR), human epidermal growth factor receptor 2 (HER2), and proliferation marker Ki-67. The expression of these markers depends on both the genetic background of the cancer cells and the surrounding tumor microenvironment. In this study, we explore macrophage traits in cancer cells and intra-tumoral M2-macrophage infiltration (MI) in relation to intrinsic subtypes in non-metastatic invasive BC treated with breast conserving surgery, with and without postoperative radiotherapy (RT). Immunostaining of M2-macrophage-specific antigen CD163 in cancer cells and MI were evaluated, together with ER, PR, HER2, and Ki-67-expression in cancer cells. The tumors were classified into intrinsic subtypes according to the ESMO guidelines. The immunostaining of these markers, MI, and clinical data were analyzed in relation to ipsilateral local recurrence (ILR) as well as recurrence-free (RFS) and disease-free specific (DFS) survival. BC intrinsic subtypes are associated with T-stage, Nottingham Histologic Grade (NHG), and MI. Macrophage phenotype in cancer cells is significantly associated with NHG3-tumors. Significant differences in macrophage infiltration were observed among the intrinsic subtypes of pT1-T2 stage BC. Shorter RFS was observed in luminal B HER2neg tumors after RT, suggesting that this phenotype may be more resistant to irradiation. Ki-67-expression was significantly higher in NHG3 and CD163-positive tumors, as well as those with moderate and high MI. Cancer cell ER expression is inversely related to MI and thus might affect the clinical staging and assessment of BC.
Collapse
Affiliation(s)
- Stina Garvin
- Division of Pathology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE 581 85, Linköping, Sweden
| | - Eva Vikhe Patil
- Division of Surgery, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE 581 85, Linköping, Sweden
| | - Lars-Gunnar Arnesson
- Division of Surgery, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE 581 85, Linköping, Sweden
| | - Husam Oda
- Department of Medical Biosciences, Pathology, Umeå University, SE-901 87, Umeå, Sweden
| | - Elham Hedayati
- Department of Oncology-Pathology, Karolinska Institutet, SE 171 76, Stockholm, Sweden
- Patient Area of Breast Cancer Sarcoma and Endocrine Tumors, Theme Cancer, Karolinska University Hospital, SE 171 76, Stockholm, Sweden
| | - Annelie Lindström
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE 581 85, Linköping, Sweden
| | - Ivan Shabo
- Patient Area of Breast Cancer Sarcoma and Endocrine Tumors, Theme Cancer, Karolinska University Hospital, SE 171 76, Stockholm, Sweden.
- Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE 171 77, Stockholm, Sweden.
| |
Collapse
|
16
|
Circulating Hybrid Cells Join the Fray of Circulating Cellular Biomarkers. Cell Mol Gastroenterol Hepatol 2019; 8:595-607. [PMID: 31319228 PMCID: PMC6889578 DOI: 10.1016/j.jcmgh.2019.07.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 07/03/2019] [Accepted: 07/05/2019] [Indexed: 12/11/2022]
Abstract
Gastrointestinal cancers account for more cancer-related deaths than any other organ system, owing in part to difficulties in early detection, treatment response assessment, and post-treatment surveillance. Circulating biomarkers hold the promise for noninvasive liquid biopsy platforms to overcome these obstacles. Although tumors shed detectable levels of degraded genetic material and cellular debris into peripheral blood, identifying reproducible and clinically relevant information from these analytes (eg, cell-free nucleotides, exosomes, proteins) has proven difficult. Cell-based circulating biomarkers also present challenges, but have multiple advantages including allowing for a more comprehensive tumor analysis, and communicating the risk of metastatic spread. Circulating tumor cells have dominated the cancer cell biomarker field with robust evidence in extraintestinal cancers; however, establishing their clinical utility beyond that of prognostication in colorectal and pancreatic cancers has remained elusive. Recently identified novel populations of tumor-derived cells bring renewed potential to this area of investigation. Cancer-associated macrophage-like cells, immune cells with phagocytosed tumor material, also show utility in prognostication and assessing treatment responsiveness. In addition, circulating hybrid cells are the result of tumor-macrophage fusion, with mounting evidence for a role in the metastatic cascade. Because of their relative abundance in circulation, circulating hybrid cells have great potential as a liquid biomarker for early detection, prognostication, and surveillance. In all, the power of the cell reaches beyond enumeration by providing a cellular source of tumor DNA, RNA, and protein, which can be harnessed to impact overall survival.
Collapse
|
17
|
Jardine S, Dhingani N, Muise AM. TTC7A: Steward of Intestinal Health. Cell Mol Gastroenterol Hepatol 2018; 7:555-570. [PMID: 30553809 PMCID: PMC6406079 DOI: 10.1016/j.jcmgh.2018.12.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2018] [Revised: 12/03/2018] [Accepted: 12/06/2018] [Indexed: 12/15/2022]
Abstract
The increasing incidence of pediatric inflammatory bowel disease, coupled with the efficiency of whole-exome sequencing, has led to the identification of tetratricopeptide repeat domain 7A (TTC7A) as a steward of intestinal health. TTC7A deficiency is an autosomal-recessively inherited disease. In the 5 years since the original description, more than 50 patients with more than 20 distinct disease-causing TTC7A mutations have been identified. Patients show heterogenous intestinal and immunologic disease manifestations, including but not limited to multiple intestinal atresias, very early onset inflammatory bowel disease, loss of intestinal architecture, apoptotic enterocolitis, combined immunodeficiency, and various extraintestinal features related to the skin and/or hair. The focus of this review is to highlight trends in patient phenotypes and to consolidate functional data related to the role of TTC7A in maintaining intestinal homeostasis. TTC7A deficiency is fatal in approximately two thirds of patients, and, as more patients continue to be discovered, elucidating the comprehensive role of TTC7A could show druggable targets that may benefit the growing cohort of individuals suffering from inflammatory bowel disease.
Collapse
Affiliation(s)
- Sasha Jardine
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Institute for Medical Science and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Neel Dhingani
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Institute for Medical Science and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada
| | - Aleixo M Muise
- SickKids Inflammatory Bowel Disease Center and Cell Biology Program, Research Institute, Hospital for Sick Children, Toronto, Ontario, Canada; Division of Gastroenterology, Hepatology, and Nutrition, Department of Pediatrics, Institute for Medical Science and Biochemistry, University of Toronto, Hospital for Sick Children, Toronto, Ontario, Canada.
| |
Collapse
|
18
|
Gast CE, Silk AD, Zarour L, Riegler L, Burkhart JG, Gustafson KT, Parappilly MS, Roh-Johnson M, Goodman JR, Olson B, Schmidt M, Swain JR, Davies PS, Shasthri V, Iizuka S, Flynn P, Watson S, Korkola J, Courtneidge SA, Fischer JM, Jaboin J, Billingsley KG, Lopez CD, Burchard J, Gray J, Coussens LM, Sheppard BC, Wong MH. Cell fusion potentiates tumor heterogeneity and reveals circulating hybrid cells that correlate with stage and survival. SCIENCE ADVANCES 2018; 4:eaat7828. [PMID: 30214939 PMCID: PMC6135550 DOI: 10.1126/sciadv.aat7828] [Citation(s) in RCA: 189] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 08/01/2018] [Indexed: 05/06/2023]
Abstract
High lethality rates associated with metastatic cancer highlight an urgent medical need for improved understanding of biologic mechanisms driving metastatic spread and identification of biomarkers predicting late-stage progression. Numerous neoplastic cell intrinsic and extrinsic mechanisms fuel tumor progression; however, mechanisms driving heterogeneity of neoplastic cells in solid tumors remain obscure. Increased mutational rates of neoplastic cells in stressed environments are implicated but cannot explain all aspects of tumor heterogeneity. We present evidence that fusion of neoplastic cells with leukocytes (for example, macrophages) contributes to tumor heterogeneity, resulting in cells exhibiting increased metastatic behavior. Fusion hybrids (cells harboring hematopoietic and epithelial properties) are readily detectible in cell culture and tumor-bearing mice. Further, hybrids enumerated in peripheral blood of human cancer patients correlate with disease stage and predict overall survival. This unique population of neoplastic cells provides a novel biomarker for tumor staging, as well as a potential therapeutic target for intervention.
Collapse
Affiliation(s)
- Charles E. Gast
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Alain D. Silk
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Luai Zarour
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lara Riegler
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joshua G. Burkhart
- Department of Medical Informatics and Clinical Epidemiology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kyle T. Gustafson
- Center for Early Detection Advanced Research, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
| | - Michael S. Parappilly
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Minna Roh-Johnson
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| | - James R. Goodman
- Department of Physiology and Pharmacology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brennan Olson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Mark Schmidt
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - John R. Swain
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Paige S. Davies
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Vidya Shasthri
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Shinji Iizuka
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Patrick Flynn
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Spencer Watson
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - James Korkola
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Sara A. Courtneidge
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jared M. Fischer
- Center for Early Detection Advanced Research, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Molecular and Medical Genetics, Oregon Health & Science University, Portland, OR 97239, USA
| | - Jerry Jaboin
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Department of Radiation Medicine, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kevin G. Billingsley
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Charles D. Lopez
- Department of Medicine, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Julja Burchard
- Department of Computational Biology, Oregon Health & Science University, Portland, OR 97239, USA
| | - Joe Gray
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Lisa M. Coussens
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Brett C. Sheppard
- Department of Surgery, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
| | - Melissa H. Wong
- Department of Cell, Developmental and Cancer Biology, Oregon Health & Science University, Portland, OR 97239, USA
- Knight Cancer Institute, Oregon Health & Science University, Portland, OR 97239, USA
- Corresponding author.
| |
Collapse
|
19
|
Leung G, Muise AM. Monogenic Intestinal Epithelium Defects and the Development of Inflammatory Bowel Disease. Physiology (Bethesda) 2018; 33:360-369. [PMID: 30109822 DOI: 10.1152/physiol.00020.2018] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The incidence of inflammatory bowel disease (IBD) is increasing worldwide, most notably in young children. The development of disease is a combination of several factors, including genetics, environment, the microbiota, and immune system. Recently, next-generation sequencing has allowed for the identification of novel genetic causes for intestinal disease, including pediatric inflammatory bowel disease (IBD). These IBD genes can generally be grouped into genes causing either primary immunodeficiency or intestinal epithelial defects (the focus of this review). Most of these genes have been functionally validated with in vitro and/or animal models, and have been demonstrated to cause intestinal disease. Intestinal epithelial IBD genes are of particular interest since they are the least amenable to current therapies; therefore, further research is warranted to develop potential therapies. A number of cellular pathways are impacted with intestinal epithelial IBD genes, including intestinal epithelial cell adhesion and generation of reactive oxygen species. Here, we describe the currently known IBD risk alleles and monogenic causal intestinal epithelial genes, their putative roles in preserving intestinal epithelial cell homeostasis, and their implications for IBD pathophysiology.
Collapse
Affiliation(s)
- Gabriella Leung
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto , Toronto, Ontario , Canada ; and Department of Paediatrics and Biochemistry, SickKids Inflammatory Bowel Disease Center and Cell Biology Program, University of Toronto, The Hospital for Sick Children , Toronto, Ontario , Canada
| | - Aleixo M Muise
- Department of Paediatrics, Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children, University of Toronto , Toronto, Ontario , Canada ; and Department of Paediatrics and Biochemistry, SickKids Inflammatory Bowel Disease Center and Cell Biology Program, University of Toronto, The Hospital for Sick Children , Toronto, Ontario , Canada
| |
Collapse
|
20
|
Tumor cell expression of CD163 is associated to postoperative radiotherapy and poor prognosis in patients with breast cancer treated with breast-conserving surgery. J Cancer Res Clin Oncol 2018; 144:1253-1263. [PMID: 29725763 PMCID: PMC6002457 DOI: 10.1007/s00432-018-2646-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Accepted: 04/18/2018] [Indexed: 12/12/2022]
Abstract
Purpose Cancer cell fusion with macrophages results in highly tumorigenic hybrids that acquire genetic and phenotypic characteristics from both maternal cells. Macrophage traits, exemplified by CD163 expression, in tumor cells are associated with advanced stages and poor prognosis in breast cancer (BC). In vitro data suggest that cancer cells expressing CD163 acquire radioresistance. Methods Tissue microarray was constructed from primary BC obtained from 83 patients treated with breast-conserving surgery, 50% having received postoperative radiotherapy (RT) and none of the patients had lymph node or distant metastasis. Immunostaining of CD163 in cancer cells and macrophage infiltration (MI) in tumor stroma were evaluated. Macrophage:MCF-7 hybrids were generated by spontaneous in vitro cell fusion. After irradiation (0, 2.5 and 5 Gy γ-radiation), both hybrids and their maternal MCF-7 cells were examined by clonogenic survival. Results CD163-expression by cancer cells was significantly associated with MI and clinicopathological data. Patients with CD163-positive tumors had significantly shorter disease-free survival (DFS) after RT. In vitro generated macrophage:MCF-7 hybrids developed radioresistance and exhibited better survival and colony forming ability after radiation compared to maternal MCF-7 cancer cells. Conclusions Our results suggest that macrophage phenotype in tumor cells results in radioresistance in breast cancer and shorter DFS after radiotherapy.
Collapse
|
21
|
Lindström A, Midtbö K, Arnesson LG, Garvin S, Shabo I. Fusion between M2-macrophages and cancer cells results in a subpopulation of radioresistant cells with enhanced DNA-repair capacity. Oncotarget 2017; 8:51370-51386. [PMID: 28881654 PMCID: PMC5584255 DOI: 10.18632/oncotarget.17986] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 05/07/2017] [Indexed: 12/11/2022] Open
Abstract
Cell fusion is a natural biological process in normal development and tissue regeneration. Fusion between cancer cells and macrophages results in hybrids that acquire genetic and phenotypic characteristics from both maternal cells. There is a growing body of in vitro and in vivo data indicating that this process also occurs in solid tumors and may play a significant role in tumor progression. However, investigations of the response of macrophage:cancer cell hybrids to radiotherapy have been lacking. In this study, macrophage:MCF-7 hybrids were generated by spontaneous in vitro cell fusion. After irradiation, both hybrids and their maternal MCF-7 cells were treated with 0 Gy, 2.5 Gy and 5 Gy γ-radiation and examined by clonogenic survival and comet assays at three time points (0 h, 24 h, and 48 h). Compared to maternal MCF-7 cells, the hybrids showed increased survival fraction and plating efficiency (colony formation ability) after radiation. The hybrids developed less DNA-damage, expressed significantly lower residual DNA-damage, and after higher radiation dose showed less heterogeneity in DNA-damage compared to their maternal MCF-7 cells. To our knowledge this is the first study that demonstrates that macrophage:cancer cell fusion generates a subpopulation of radioresistant cells with enhanced DNA-repair capacity. These findings provide new insight into how the cell fusion process may contribute to clonal expansion and tumor heterogeneity. Furthermore, our results provide support for cell fusion as a mechanism behind the development of radioresistance and tumor recurrence.
Collapse
Affiliation(s)
- Annelie Lindström
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden
| | - Kristine Midtbö
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden
| | - Lars-Gunnar Arnesson
- Division of Surgery, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden
| | - Stina Garvin
- Department of Clinical Pathology, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden
| | - Ivan Shabo
- Division of Surgery, Department of Clinical and Experimental Medicine, Linköping University, SE 581 85, Linköping, Sweden.,Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, SE 171 77, Stockholm, Sweden.,Department of Breast and Endocrine Surgery, Karolinska University Hospital, SE 171 76, Stockholm, Sweden
| |
Collapse
|
22
|
Stem cell transplantation for tetratricopeptide repeat domain 7A deficiency: long-term follow-up. Blood 2016; 128:1306-8. [DOI: 10.1182/blood-2016-01-696385] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
23
|
Shabo I, Midtbö K, Andersson H, Åkerlund E, Olsson H, Wegman P, Gunnarsson C, Lindström A. Macrophage traits in cancer cells are induced by macrophage-cancer cell fusion and cannot be explained by cellular interaction. BMC Cancer 2015; 15:922. [PMID: 26585897 PMCID: PMC4653907 DOI: 10.1186/s12885-015-1935-0] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Accepted: 11/16/2015] [Indexed: 01/10/2023] Open
Abstract
Background Cell fusion is a natural process in normal development and tissue regeneration. Fusion between cancer cells and macrophages generates metastatic hybrids with genetic and phenotypic characteristics from both maternal cells. However, there are no clinical markers for detecting cell fusion in clinical context. Macrophage-specific antigen CD163 expression in tumor cells is reported in breast and colorectal cancers and proposed being caused by macrophages-cancer cell fusion in tumor stroma. The purpose of this study is to examine the cell fusion process as a biological explanation for macrophage phenotype in breast. Methods Monocytes, harvested from male blood donor, were activated to M2 macrophages and co-cultured in ThinCert transwell system with GFP-labeled MCF-7 cancer cells. MCF7/macrophage hybrids were generated by spontaneous cell fusion, isolated by fluorescence-activated cell sorting and confirmed by fluorescence microscopy, short tandem repeats analysis and flow cytometry. CD163 expression was evaluated in breast tumor samples material from 127 women by immunohistochemistry. Results MCF-7/macrophage hybrids were generated spontaneously at average rate of 2 % and showed phenotypic and genetic traits from both maternal cells. CD163 expression in MCF-7 cells could not be induced by paracrine interaction with M2-activated macrophages. CD163 positive cancer cells in tumor sections grew in clonal collection and a cutoff point >25 % of positive cancer cells was significantly correlated to disease free and overall survival. Conclusions In conclusion, macrophage traits in breast cancer might be caused by cell fusion rather than explained by paracrine cellular interaction. These data provide new insights into the role of cell fusion in breast cancer and contributes to the development of clinical markers to identify cell fusion.
Collapse
Affiliation(s)
- Ivan Shabo
- Division of Surgery, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, SE 581 85, Linköping, Sweden. .,Department of Surgery, County Council of Östergötland, Linköping, Sweden. .,Endocrine and Sarcoma Surgery Unit, Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden. .,Department of Breast and Endocrine Surgery, Karolinska University Hospital, SE 171 77, Stockholm, Sweden.
| | - Kristine Midtbö
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden.
| | - Henrik Andersson
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden.
| | - Emma Åkerlund
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden.
| | - Hans Olsson
- Division of Pathology, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden.
| | - Pia Wegman
- Division of Clinical Genetics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden.
| | - Cecilia Gunnarsson
- Division of Clinical Genetics, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden.
| | - Annelie Lindström
- Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Health Science, Linköping University, Linköping, Sweden.
| |
Collapse
|
24
|
Smetsers SE, Velleuer E, Dietrich R, Wu T, Brink A, Buijze M, Deeg DJH, Soulier J, Leemans CR, Braakhuis BJM, Brakenhoff RH. Noninvasive molecular screening for oral precancer in Fanconi anemia patients. Cancer Prev Res (Phila) 2015; 8:1102-11. [PMID: 26276748 DOI: 10.1158/1940-6207.capr-15-0220] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Accepted: 08/05/2015] [Indexed: 11/16/2022]
Abstract
LOH at chromosome arms 3p, 9p, 11q, and 17p are well-established oncogenetic aberrations in oral precancerous lesions and promising biomarkers to monitor the development of oral cancer. Noninvasive LOH screening of brushed oral cells is a preferable method for precancer detection in patients at increased risk for head and neck squamous cell carcinoma (HNSCC), such as patients with Fanconi anemia. We determined the prevalence of LOH in brushed samples of the oral epithelium of 141 patients with Fanconi anemia and 144 aged subjects, and studied the association between LOH and HNSCC. LOH was present in 14 (9.9%) nontransplanted patients with Fanconi anemia, whereas LOH was not detected in a low-risk group (n = 50, >58 years, nonsmoking/nonalcohol history) and a group with somewhat increased HNSCC risk (n = 94, >58 years, heavy smoking/excessive alcohol use); Fisher exact test, P = 0.023 and P = 0.001, respectively. Most frequent genetic alteration was LOH at 9p. Age was a significant predictor of LOH (OR, 1.13, P = 0.001). Five patients with Fanconi anemia developed HNSCC during the study at a median age of 39.6 years (range, 24.8-53.7). LOH was significantly associated with HNSCC (Fisher exact test, P = 0.000). Unexpectedly, the LOH assay could not be used for transplanted patients with Fanconi anemia because donor DNA in brushed oral epithelium, most likely from donor leukocytes present in the oral cavity, disturbed the analysis. Noninvasive screening using a LOH assay on brushed samples of the oral epithelium has a promising outlook in patients with Fanconi anemia. However, assays need to be adapted in case of stem cell transplantation, because of contaminating donor DNA.
Collapse
Affiliation(s)
- Stephanie E Smetsers
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Eunike Velleuer
- Clinic of Pediatric Oncology, Hematology and Clinical Immunology, Center for Child and Adolescent Health, Medical Faculty, Heinrich-Heine-University, Düsseldorf, Germany
| | - Ralf Dietrich
- Fanconi-Anämie Hilfe e.V., Unna-Siddinghausen, Germany
| | - Thijs Wu
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Arjen Brink
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Marijke Buijze
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Dorly J H Deeg
- Department of Epidemiology and Biostatistics, EMGO Institute for Health and Care Research, VU University Medical Center, Amsterdam, the Netherlands
| | - Jean Soulier
- Department of Hematology, Saint Louis Hospital, Paris, France
| | - C René Leemans
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Boudewijn J M Braakhuis
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands
| | - Ruud H Brakenhoff
- Section Tumor Biology, Department of Otolaryngology-Head and Neck Surgery, Cancer Center Amsterdam, VU University Medical Center, Amsterdam, the Netherlands.
| |
Collapse
|
25
|
Clawson GA, Matters GL, Xin P, Imamura-Kawasawa Y, Du Z, Thiboutot DM, Helm KF, Neves RI, Abraham T. Macrophage-tumor cell fusions from peripheral blood of melanoma patients. PLoS One 2015; 10:e0134320. [PMID: 26267609 PMCID: PMC4534457 DOI: 10.1371/journal.pone.0134320] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2014] [Accepted: 06/30/2015] [Indexed: 12/13/2022] Open
Abstract
Background While the morbidity and mortality from cancer are largely attributable to its metastatic dissemination, the integral features of the cascade are not well understood. The widely accepted hypothesis is that the primary tumor microenvironment induces the epithelial-to-mesenchymal transition in cancer cells, facilitating their escape into the bloodstream, possibly accompanied by cancer stem cells. An alternative theory for metastasis involves fusion of macrophages with tumor cells (MTFs). Here we culture and characterize apparent MTFs from blood of melanoma patients. Methods We isolated enriched CTC populations from peripheral blood samples from melanoma patients, and cultured them. We interrogated these cultured cells for characteristic BRAF mutations, and used confocal microscopy for immunophenotyping, motility, DNA content and chromatin texture analyses, and then conducted xenograft studies using nude mice. Findings Morphologically, the cultured MTFs were generally large with many pseudopod extensions and lamellipodia. Ultrastructurally, the cultured MTFs appeared to be macrophages. They were rich in mitochondria and lysosomes, as well as apparent melanosomes. The cultured MTF populations were all heterogeneous with regard to DNA content, containing aneuploid and/or high-ploidy cells, and they typically showed large sheets (and/or clumps) of cytoplasmic chromatin. This cytoplasmic DNA was found within heterogeneously-sized autophagic vacuoles, which prominently contained chromatin and micronuclei. Cultured MTFs uniformly expressed pan-macrophage markers (CD14, CD68) and macrophage markers indicative of M2 polarization (CD163, CD204, CD206). They also expressed melanocyte-specific markers (ALCAM, MLANA), epithelial biomarkers (KRT, EpCAM), as well as the pro-carcinogenic cytokine MIF along with functionally related stem cell markers (CXCR4, CD44). MTF cultures from individual patients (5 of 8) contained melanoma-specific BRAF activating mutations. Chromatin texture analysis of deconvoluted images showed condensed DNA (DAPI-intense) regions similar to focal regions described in stem cell fusions. MTFs were readily apparent in vivo in all human melanomas examined, often exhibiting even higher DNA content than the cultured MTFs. When cultured MTFs were transplanted subcutaneously in nude mice, they disseminated and produced metastatic lesions at distant sites. Conclusions and Hypothesis Apparent MTFs are present in peripheral blood of patients with cutaneous melanomas, and they possess the ability to form metastatic lesions when transplanted into mice. We hypothesize that these MTFs arise at the periphery of primary tumors in vivo, that they readily enter the bloodstream and invade distant tissues, secreting cytokines (such as MIF) to prepare “niches” for colonization by metastasis initiating cells.
Collapse
Affiliation(s)
- Gary A. Clawson
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
- * E-mail:
| | - Gail L. Matters
- Department of Biochemistry & Molecular Biology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Ping Xin
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Yuka Imamura-Kawasawa
- Department of Pharmacology and the Institute for Personalized Medicine, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Zhen Du
- Department of Pathology and Gittlen Cancer Research Laboratories, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Diane M. Thiboutot
- Department of Dermatology, Division of Health Science Research, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Klaus F. Helm
- Department of Dermatopathology, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Rogerio I. Neves
- Department of Surgery and the Melanoma Center, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| | - Thomas Abraham
- Department of Neural and Behavioral Science and the Microscopy Imaging Facility, Hershey Medical Center, Pennsylvania State University, Hershey, Pennsylvania, United States of America
| |
Collapse
|
26
|
Pertuy F, Aguilar A, Strassel C, Eckly A, Freund JN, Duluc I, Gachet C, Lanza F, Léon C. Broader expression of the mouse platelet factor 4-cre transgene beyond the megakaryocyte lineage. J Thromb Haemost 2015; 13:115-25. [PMID: 25393502 DOI: 10.1111/jth.12784] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 11/01/2014] [Indexed: 12/31/2022]
Abstract
BACKGROUND Transgenic mice expressing cre recombinase under the control of the platelet factor 4 (Pf4) promoter, in the context of a 100-kb bacterial artificial chromosome, have become a valuable tool with which to study genetic modifications in the platelet lineage. However, the specificity of cre expression has recently been questioned, and the time of its onset during megakaryopoiesis remains unknown. OBJECTIVES/METHODS To characterize the expression of this transgene, we used double-fluorescent cre reporter mice. RESULTS In the bone marrow, Pf4-cre-mediated recombination had occurred in all CD42-positive megakaryocytes as early as stage I of maturation, and in rare CD42-negative cells. In circulating blood, all platelets had recombined, along with only a minor fraction of CD45-positive cells. However, we found that all tissues contained recombined cells of monocyte/macrophage origin. When recombined, these cells might potentially modify the function of the tissues under particular conditions, especially inflammatory conditions, which further increase recombination in immune cells. Unexpectedly, a subset of epithelial cells from the distal colon showed signs of recombination resulting from endogenous Pf4-cre expression. This is probably the basis of the unexplained colon tumors developed by Apc(flox/flox) ;Pf4-cre mice, generated in a separate study on the role of Apc in platelet formation. CONCLUSION Altogether, our results indicate early recombination with full penetrance in megakaryopoiesis, and confirm the value of Pf4-cre mice for the genetic engineering of megakaryocytes and platelets. However, care must be taken when investigating the role of platelets in processes outside hemostasis, especially when immune cells might be involved.
Collapse
Affiliation(s)
- F Pertuy
- INSERM, UMR_S949, Strasbourg, France; Etablissement Français du Sang-Alsace, Strasbourg, France; Faculté de Médecine, Université de Strasbourg, Strasbourg, France; Fédération de Médecine Translationnelle, Strasbourg, France
| | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Siemionow MZ. A systematic review and meta-analysis on the prevalence of Dupuytren disease in the general population of Western countries. Plast Reconstr Surg 2014. [PMID: 24263394 PMCID: PMC7121457 DOI: 10.1007/978-1-4471-6335-0_72] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Dupuytren disease is a fibroproliferative disease of palmar fascia of the hand. Its prevalence has been the subject of several reviews; however, an accurate description of the prevalence range in the general population--and of the relation between age and disease--is lacking. METHODS Embase and PubMed were searched using database-specific Medical Subject Headings; titles and abstracts were searched for the words "Dupuytren," "incidence," and "prevalence." Two reviewers independently assessed the articles using inclusion and exclusion criteria, and rated the included studies with a quality assessment instrument. In a meta-analysis, the median prevalence, as a function of age by sex, was estimated, accompanied by 95 percent prediction intervals. The observed heterogeneity in prevalence was investigated with respect to study quality and geographic location. RESULTS Twenty-three of 199 unique identified articles were included. The number of participants ranged from 37 to 97,537, and age ranged from 18 to 100 years. Prevalence varied from 0.6 to 31.6 percent. The quality of studies differed but could not explain the heterogeneity among studies. Mean prevalence was estimated as 12, 21, and 29 percent at ages 55, 65, and 75 years, respectively, based on the relation between age and prevalence determined from 10 studies. CONCLUSIONS The authors describe a prevalence range of Dupuytren disease in the general population of Western countries. The relation between age and prevalence of Dupuytren disease is given according to sex, including 95 percent prediction intervals. It is possible to determine disease prevalence at a certain age for the total population, and for men and women separately.
Collapse
Affiliation(s)
- Maria Z. Siemionow
- Department of Orthopaedics, University of Illinois at Chicago, Chicago, Illinois USA
| |
Collapse
|
28
|
Shabo I, Olsson H, Elkarim R, Sun XF, Svanvik J. Macrophage Infiltration in Tumor Stroma is Related to Tumor Cell Expression of CD163 in Colorectal Cancer. CANCER MICROENVIRONMENT 2014; 7:61-9. [PMID: 24771466 DOI: 10.1007/s12307-014-0145-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 04/07/2014] [Indexed: 12/11/2022]
Abstract
The scavenger receptor, CD163, is a macrophage-specific marker. Recent studies have shown that CD163 expression in breast and rectal cancer cells is associated with poor prognosis. This study was conducted to evaluate the relationship between CD163 expression as a macrophage trait in cancer cells, and macrophage infiltration and its clinical significance in colorectal cancer. Immunostaining of CD163 and macrophage infiltration were evaluated in paraffin-embedded specimens, earlier analyzed for CD31, D2-40 and S-phase fraction, from primary tumors and normal colorectal mucosa of 75 patients with colorectal carcinoma. The outcomes were analyzed in relation to clinical-pathological data. CD163 expression was positive in cancer cells in 20 % of colorectal cancer patients and was related to advanced tumor stages (P = 0.008) and unfavorable prognosis (p = 0.001). High macrophage infiltration was related to shorter survival and positive CD163 expression in tumor cells. The prognostic impact of macrophage infiltration was independent of tumor stage and CD163 expression in cancer cells (p = 0.034). The expression of macrophage phenotype in colorectal cancer cells is associated with macrophage density in tumor stroma and lower survival rates. Macrophage infiltration has an independent prognostic impact on mortality in colorectal cancer. In accordance with previous experimental studies, these findings provide new insights into the role of macrophages in colorectal cancer.
Collapse
Affiliation(s)
- Ivan Shabo
- Department of surgery, County Council of Östergötland, Linköping, Sweden,
| | | | | | | | | |
Collapse
|
29
|
A systematic review and meta-analysis on the prevalence of Dupuytren disease in the general population of Western countries. Plast Reconstr Surg 2014; 133:593-603. [PMID: 24263394 DOI: 10.1097/01.prs.0000438455.37604.0f] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Dupuytren disease is a fibroproliferative disease of palmar fascia of the hand. Its prevalence has been the subject of several reviews; however, an accurate description of the prevalence range in the general population--and of the relation between age and disease--is lacking. METHODS Embase and PubMed were searched using database-specific Medical Subject Headings; titles and abstracts were searched for the words "Dupuytren," "incidence," and "prevalence." Two reviewers independently assessed the articles using inclusion and exclusion criteria, and rated the included studies with a quality assessment instrument. In a meta-analysis, the median prevalence, as a function of age by sex, was estimated, accompanied by 95 percent prediction intervals. The observed heterogeneity in prevalence was investigated with respect to study quality and geographic location. RESULTS Twenty-three of 199 unique identified articles were included. The number of participants ranged from 37 to 97,537, and age ranged from 18 to 100 years. Prevalence varied from 0.6 to 31.6 percent. The quality of studies differed but could not explain the heterogeneity among studies. Mean prevalence was estimated as 12, 21, and 29 percent at ages 55, 65, and 75 years, respectively, based on the relation between age and prevalence determined from 10 studies. CONCLUSIONS The authors describe a prevalence range of Dupuytren disease in the general population of Western countries. The relation between age and prevalence of Dupuytren disease is given according to sex, including 95 percent prediction intervals. It is possible to determine disease prevalence at a certain age for the total population, and for men and women separately.
Collapse
|