1
|
Silva SB, Ruiz TFR, Dos Santos FCA, Taboga SR, Vilamaior PSL. Impacts of heavy metal exposure on the prostate of murine models: Mechanisms of toxicity. Reprod Toxicol 2023; 120:108448. [PMID: 37490985 DOI: 10.1016/j.reprotox.2023.108448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/21/2023] [Indexed: 07/27/2023]
Abstract
Heavy metals are elements found into the environment mainly due to anthropogenic activities. Naturally occurring and higher released doses cause disorders in the prostate, which depends on appropriate hormonal regulation, and exposure to heavy metals may impair prostate homeostasis. The current work highlighted the main mechanisms of toxicity of different environmental heavy metal contaminants, such as aluminum, arsenic, cadmium, chromium, lead, mercury, and nickel, and their impacts found in the prostate morphophysiology of murine models. The repercussions triggered by heavy metals on the prostate include hormonal imbalance and oxidative damage, leading to morphological alterations, which can vary according to the chemical properties of each element, exposure time and concentration, and age. The information of altered biological pathways and its impacts on the prostate of exposed murines are related to human outcomes being useful in the real context of human exposure.
Collapse
Affiliation(s)
- Stella Bicalho Silva
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Thalles Fernando Rocha Ruiz
- Department of Structural and Functional Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Cristina Alcantara Dos Santos
- Department of Histology, Embryology and Cell Biology, Laboratory of Microscopy Applied to Reproduction, Institute of Biological Sciences, Federal University of Goiás, Goiânia, Goiás, Brazil
| | - Sebastião Roberto Taboga
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil
| | - Patricia Simone Leite Vilamaior
- Department of Biological Sciences, Institute of Biosciences, Humanities and Exact Sciences, São Paulo State University (UNESP), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
2
|
Ronchetti GZ, Simões MR, Schereider IRG, Leal MAS, Peçanha GAW, Padilha AS, Vassallo DV. Oxidative Stress Induced by 30 Days of Mercury Exposure Accelerates Hypertension Development in Prehypertensive Young SHRs. Cardiovasc Toxicol 2022; 22:929-939. [DOI: 10.1007/s12012-022-09769-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 10/20/2022] [Indexed: 11/16/2022]
|
3
|
Santamaria-Juarez C, Atonal-Flores F, Diaz A, Sarmiento-Ortega VE, Garcia-Gonzalez M, Aguilar-Alonso P, Lopez-Lopez G, Brambila E, Treviño S. Aortic dysfunction by chronic cadmium exposure is linked to multiple metabolic risk factors that converge in anion superoxide production. Arch Physiol Biochem 2022; 128:748-756. [PMID: 32067514 DOI: 10.1080/13813455.2020.1726403] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
CONTEXT The chronic exposure to Cadmium (Cd) constitute an risk to develop hypertension and cardiovascular diseases associated with the increase of oxidative stress. OBJECTIVE In this study, we investigate the role of metabolic changes produced by exposure to Cd on the endothelial dysfunction via oxidative stress. METHODS Male Wistar rats were exposed to Cd (32.5-ppm) for 2-months. The zoometry and blood pressure were evaluated, also glucose and lipids profiles in serum and vascular reactivity evaluated in isolated aorta rings. RESULTS Rats exposed to Cd showed an increase of blood pressure and biochemical parameters similar to metabolic syndrome. Additionally, rats exposed to Cd showed a reduced relaxation in aortic rings, which was reversed after the addition of SOD and apocynin an inhibitor of NADPH. CONCLUSION The Cd-exposition induced hypertension and endothelial injury by that modifying the vascular relaxation and develop oxidative stress via NADPH oxidase, superoxide and loss nitric oxide bioavailability.
Collapse
Affiliation(s)
- Celeste Santamaria-Juarez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Fausto Atonal-Flores
- Department of Physiology, Faculty of Medicine, University Autonomous of Puebla, The Volcano, Mexico
| | - Alfonso Diaz
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Victor E Sarmiento-Ortega
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Miguel Garcia-Gonzalez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Patricia Aguilar-Alonso
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Gustavo Lopez-Lopez
- Department of Pharmacy, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Eduardo Brambila
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| | - Samuel Treviño
- Laboratory of Chemical-Clinical Investigations, Department of Clinical Chemistry, Faculty of Chemistry Science, University Autonomous of Puebla, Puebla, Mexico
| |
Collapse
|
4
|
Miguel M, Vassallo DV, Wiggers GA. Bioactive Peptides and Hydrolysates from Egg Proteins as a New Tool for Protection Against Cardiovascular Problems. Curr Pharm Des 2021; 26:3676-3683. [PMID: 32216734 DOI: 10.2174/1381612826666200327181458] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 03/12/2020] [Indexed: 01/21/2023]
Abstract
The aim of the present work is to review the potential beneficial effects of dietary supplementation with bioactive egg protein hydrolysates or peptides on cardiometabolic changes associated with oxidative stress. The development of nutritionally improved food products designed to address specific health concerns is of particular interest because many bioactive food compounds can be potentially useful in various physiological functions such as for reducing oxidative stress. The results presented suggest that egg hydrolysates or derived peptides could be included in the diet to prevent and/or reduce some cardiometabolic complications associated with oxidative stress-related diseases.
Collapse
Affiliation(s)
- Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación em Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Dalton V Vassallo
- Department of Physiological Sciences, Universidade Federal do Espirito Santo and School of Medicine of Santa Casa de Misericordia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitoria, Espirito Santo, Brazil
| | - Giulia A Wiggers
- Cardiovascular Physiology Research Group, Federal University of Pampa, BR 472 - Km 592 - PO box 118. Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
5
|
Zhang W, Du J, Li H, Yang Y, Cai C, Gao Q, Xing Y, Shao B, Li G. Multiple-element exposure and metabolic syndrome in Chinese adults: A case-control study based on the Beijing population health cohort. ENVIRONMENT INTERNATIONAL 2020; 143:105959. [PMID: 32673904 DOI: 10.1016/j.envint.2020.105959] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 06/15/2020] [Accepted: 06/18/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Metabolic syndrome (MetS) patients have a considerably increased risk for noncommunicable diseases, which poses a serious burden on public health. The effects of different elements on MetS have received increasing attention in the field of noncommunicable diseases over the past decade. These elements can exert adverse or favourable effects on human health by synergistic or antagonistic actions. Nevertheless, few studies have explored the relationship between multiple-element exposure and MetS. METHOD A total of 2095 MetS patients and 2039 controls free of major cardiovascular disease at baseline and follow-up visits were frequency matched for age (±5 years) and sex. The internal exposure levels of 15 elements in serum were investigated. Logistic regression models were employed to estimate odds ratios (ORs) of MetS for element concentrations categorized according to quartiles in the controls. RESULT Magnesium (Mg), selenium (Se), barium (Ba) and mercury (Hg) were significantly associated with MetS in the multi-element exposure model. The ORs for the extreme quartiles of Mg, Se, Ba, and Hg were 0.29 (95% CI: 0.23-0.37, P-trend < 0.001), 0.52 (95% CI: 0.42-0.65, P-trend < 0.001), 1.86 (95% CI: 1.51-2.28, P-trend < 0.001), and 2.61 (95% CI: 2.11-3.22, P-trend < 0.001), respectively. Ba may be antagonistic to Mg and Se in the human body. CONCLUSIONS Our study suggested that MetS was negatively associated with Mg and Se and positively associated with Ba and Hg. There were significant dose-response relationships between Mg, Se, Ba and Hg and the prevalence of MetS, suggesting that multiple elements may be involved in MetS.
Collapse
Affiliation(s)
- Weichunbai Zhang
- School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Jing Du
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Hong Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yi Yang
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Chang Cai
- Research and Innovation Office, Murdoch University, Perth, Australia
| | - Qun Gao
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Yang Xing
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China
| | - Bing Shao
- School of Public Health, Capital Medical University, Beijing, China; Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing, China.
| | - Gang Li
- Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing Center for Disease Prevention and Control, Beijing, China.
| |
Collapse
|
6
|
Ijaz MU, Batool M, Ashraf A, Siddique MH, Zafar S, Muzammil S, Ayaz F, Samad A, Al-Ghanim K, Mahboob S. A study on the potential reprotoxic effects of thimerosal in male albino rats. Saudi J Biol Sci 2020; 27:2798-2802. [PMID: 32994739 PMCID: PMC7499386 DOI: 10.1016/j.sjbs.2020.06.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/21/2020] [Accepted: 06/25/2020] [Indexed: 11/22/2022] Open
Abstract
Thimerosal is ethyl mercury based compound which is being used as a preservative in vaccines since decades. Pharmaceutical products and vaccines that contain thimerosal are among the potential source of mercury exposure. Current research was intended to ascertain the reprotoxic effects of thimerosal on rat testes. Twenty-four adult male albino rats were sorted into four groups (n = 6). The first group was a control group. Rats of experimental Group 2, 3 and 4 were treated with various dosages of thimerosal (0.5, 10, 50 mg/kg) respectively. Rats were decapitated after thirty days of trial and different parameters were analyzed. Thimerosal exposure resulted in a significant decrease in antioxidant enzyme activities including catalase (CAT), peroxidase (POD), superoxide dismutase (SOD), glutathione reductase (GSR) and increased levels of thiobarbituric acid reactive substances (TBARS). Different doses of thimerosal significantly decreased (p < 0.05) the concentration of plasma testosterone, luteinizing hormone (LH) and follicle stimulating hormone (FSH). Additionally, Daily sperm production (DSP) and efficiency of daily sperm production were significantly reduced followed by thimerosal exposure. Moreover, thimerosal significantly (p < 0.05) decreased the primary spermatocytes, secondary spermatocytes, number of spermatogonia along with spermatids. Thimerosal induced adverse histopathological and morphological changes in testicular tissues such as decreased Leydig cells, diameter of seminiferous tubules, tunica albuginea height and epithelial height. On the other hand, the increase in tubular lumen and interstitial spaces was observed due to thimerosal. These outcomes indicated that thimerosal has potential reprotoxic effects in male albino rats.
Collapse
Affiliation(s)
- Muhammad Umar Ijaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Moazama Batool
- Department of Zoology, Govt. College Women University, Sialkot, Pakistan
| | - Asma Ashraf
- Department of Zoology, Government College University, Faisalabad, Pakistan
| | | | - Sara Zafar
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Saima Muzammil
- Department of Microbiology, Government College University, Faisalabad, Pakistan
| | - Fatima Ayaz
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Abdul Samad
- Department of Zoology, Wildlife and Fisheries, University of Agriculture, Faisalabad, Pakistan
| | - Khalid Al-Ghanim
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shahid Mahboob
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
7
|
Chronic Mercury Exposure in Prehypertensive SHRs Accelerates Hypertension Development and Activates Vasoprotective Mechanisms by Increasing NO and H 2O 2 Production. Cardiovasc Toxicol 2020; 20:197-210. [PMID: 31338744 DOI: 10.1007/s12012-019-09545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Mercury is a heavy metal associated with cardiovascular diseases. Studies have reported increased vascular reactivity without changes in systolic blood pressure (SBP) after chronic mercury chloride (HgCl2) exposure, an inorganic form of the metal, in normotensive rats. However, we do not know whether individuals in the prehypertensive phase, such as young spontaneously hypertensive rats (SHRs), are susceptible to increased arterial blood pressure. We investigated whether chronic HgCl2 exposure in young SHRs accelerates hypertension development by studying the vascular function of mesenteric resistance arteries (MRAs) and SBP in young SHRs during the prehypertensive phase. Four-week-old male SHRs were divided into two groups: the SHR control group (vehicle) and the SHR HgCl2 group (4 weeks of exposure). The results showed that HgCl2 treatment accelerated the development of hypertension; reduced vascular reactivity to phenylephrine in MRAs; increased nitric oxide (NO) generation; promoted vascular dysfunction by increasing the production of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2); increased Gp91Phox protein levels and in situ levels of superoxide anion (O2·-); and reduced vasoconstrictor prostanoid production compared to vehicle treatment. Although HgCl2 accelerated the development of hypertension, the HgCl2-exposed animals also exhibited a vasoprotective mechanism to counterbalance the rapid increase in SBP by decreasing vascular reactivity through H2O2 and NO overproduction. Our results suggest that HgCl2 exposure potentiates this vasoprotective mechanism against the early establishment of hypertension. Therefore, we are concluding that chronic exposure to HgCl2 in prehypertensive animals could enhance the risk for cardiovascular diseases.
Collapse
|
8
|
Simões RP, Fardin PBA, Simões MR, Vassallo DV, Padilha AS. Long-term Mercury Exposure Accelerates the Development of Hypertension in Prehypertensive Spontaneously Hypertensive Rats Inducing Endothelial Dysfunction: the Role of Oxidative Stress and Cyclooxygenase-2. Biol Trace Elem Res 2020; 196:565-578. [PMID: 31745719 DOI: 10.1007/s12011-019-01952-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 10/23/2019] [Indexed: 11/28/2022]
Abstract
Mercury is a metal widely dispersed in nature that when in contact with human organism, it damages the cardiovascular system. Long-term mercury exposure for 30 days induces endothelial dysfunction without blood pressure changes in normotensive adult rats. However, it is not known whether exposure to mercury can exacerbate endothelial dysfunction and hypertension development in predisposed animals. Thus, we aimed to investigate the effects of long-term mercury exposure on the blood pressure (BP) and in the isolated aortas of young normotensive and prehypertensive spontaneously hypertensive rats (SHRs). Four-week-old male Wistar rats and SHRs were treated daily with mercury chloride (HgCl2) (1st dose, 4.6 μg/kg; subsequent dose, 0.07 μg/kg/day, im, 30 days) or vehicle. BP was assessed weekly and the vascular reactivity to phenylephrine was evaluated in isolated aorta from rats exposed or not to mercury. Mercury exposure did not affect BP in young Wistar rats but accelerated the development of hypertension in young SHRs. Vascular reactivity to phenylephrine increased only in the aorta from mercury-exposed SHRs. While HgCl2 exposure in SHRs did not alter nitric oxide production, we observed increased superoxide anion production and decreased superoxide dismutase-1 protein expression, and enhanced cyclooxygenase-2 (COX-2) participation with increased prostaglandin (PGE2) production and decreased prostacyclin. In the Wistar group, mercury exposure did not alter superoxide anion production or the COX-2 pathway. Mercury exposure accelerated the natural course of hypertension in young SHRs and increased oxidative stress associated with reduced participation of antioxidant enzymes, an activated COX-2 pathway, thereby producing endothelial dysfunction, which is a risk factor in prehypertensive individuals.
Collapse
Affiliation(s)
- Rakel Passos Simões
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil
| | - Paloma Batista Almeida Fardin
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil
| | - Maylla Ronacher Simões
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil
- School of Sciences of Santa Casa de Misericórdia de Vitoria- EMESCAM, Vitória, ES, Brazil
| | - Alessandra Simão Padilha
- Department of Physiological Sciences, Federal University of Espirito Santo, Av. Marechal Campos, 1468, Vitória, ES, 29040-091, Brazil.
| |
Collapse
|
9
|
Cordeiro ER, Filetti FM, Simões MR, Vassallo DV. Mercury induces nuclear estrogen receptors to act as vasoconstrictors promoting endothelial denudation via the PI3K/Akt signaling pathway. Toxicol Appl Pharmacol 2019; 381:114710. [PMID: 31415774 DOI: 10.1016/j.taap.2019.114710] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 07/29/2019] [Accepted: 08/10/2019] [Indexed: 10/26/2022]
Abstract
Cardiovascular diseases (CVD) are more frequent among postmenopausal women due to the decline of estrogen concentration in plasma. However, the role of the vascular modulator effect of estrogen is controversial, since it occurs both in physiological and pathological conditions, increasing or reducing vascular reactivity. As mercury is widely associated with the development of CVD, we investigated putative hazardous effects on the mechanisms that modulate vascular reactivity in aortic rings of female Wistar rats promoted by acute mercury exposure. Mercury increased vascular reactivity and oxidative stress possibly due to NADPH oxidase participation, increased production of cyclooxygenase-2 (COX-2) and thromboxane A2 (TXA2) formation. The metal also induced endothelial denudation in the aorta by reducing the bioavailability of nitric oxide (NO) and enhancing the activity of the PI3K/Akt signaling pathway. Mercury exposure also induced nuclear estrogen receptors (ERα, ERβ) to act as vasoconstrictors. Our findings suggest that mercury might increase the chances of developing cardiovascular diseases in females and should be considered an important environmental risk factor.
Collapse
Affiliation(s)
- Evellyn Rodrigues Cordeiro
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Filipe Martinuzo Filetti
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Maylla Ronacher Simões
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil
| | - Dalton Valentim Vassallo
- Dept. of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES CEP 29043-900, Brazil; Health Science Center of Vitória-EMESCAM, Vitória, ES CEP 29045-402, Brazil.
| |
Collapse
|
10
|
Wei B, He M, Cai X, Hou X, Wang Y, Chen J, Lan M, Chen Y, Lou K, Gao F. Vitamin E succinate-grafted-chitosan/chitosan oligosaccharide mixed micelles loaded with C-DMSA for Hg 2+ detection and detoxification in rat liver. Int J Nanomedicine 2019; 14:6917-6932. [PMID: 31695366 PMCID: PMC6717732 DOI: 10.2147/ijn.s213084] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 07/29/2019] [Indexed: 12/03/2022] Open
Abstract
AIM To determine whether the use of a mixed polymeric micelle delivery system based on vitamin E succinate (VES)-grafted-chitosan oligosaccharide (CSO)/VES-grafted-chitosan (CS) mixed micelles (VES-g-CSO/VES-g-CS MM) enhances the delivery of C-DMSA, a theranostic fluorescent probe, for Hg2+ detection and detoxification in vitro and in vivo. METHODS Mixed micelles self-assembled from two polymers, VES-g-CSO and VES-g-CS, were used to load C-DMSA and afforded C-DMSA@VES-g-CSO/VES-g-CS MM for cell and in vivo applications. Fluorescence microscopy was used to assess C-DMSA cellular uptake and Hg2+ detection in L929 cells. C-DMSA@VES-g-CSO/VES-g-CS MM was then administered intravenously. Hg2+ detection was assessed by fluorescence microscopy in terms of bio-distribution while detoxification efficacy in Hg2+-poisoned rat models was evaluated in terms of mercury contents in blood and in liver. RESULTS The C-DMSA loaded mixed micelles, C-DMSA@VES-g-CSO/VES-g-CS MM, significantly enhanced cellular uptake and detoxification efficacy of C-DMSA in Hg2+ pretreated human L929 cells. Evidence from the reduction of liver coefficient, mercury contents in liver and blood, alanine transaminase and aspartate transaminase activities in Hg2+ poisoned SD rats treated with the mixed micelles strongly supported that the micelles were effective for Hg2+ detoxification in vivo. Furthermore, ex vivo fluorescence imaging experiments also supported enhanced Hg2+ detection in rat liver. CONCLUSION The mixed polymeric micelle delivery system could significantly enhance cell uptake and efficacy of a theranostic probe for Hg2+ detection and detoxification treatment in vitro and in vivo. Moreover, this nanoparticle drug delivery system could achieve targeted detection and detoxification in liver.
Collapse
Affiliation(s)
- Binghui Wei
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Muye He
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Xiaoran Cai
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Xinyu Hou
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Yujie Wang
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Jiaojiao Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Minbo Lan
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Yanzuo Chen
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| | - Kaiyan Lou
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- State Key Laboratory of Bioengineering Reactor, Shanghai Key Laboratory of New Drug Design and Shanghai Key Laboratory of Chemical Biology, School of Pharmacy, East China University of Science & Technology, Shanghai200237, People’s Republic of China
| | - Feng Gao
- Shanghai Key Laboratory of Functional Materials Chemistry, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Department of Pharmaceutics, School of Pharmacy, East China University of Science and Technology, Shanghai200237, People’s Republic of China
- Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai200237, People’s Republic of China
| |
Collapse
|
11
|
Bjørklund G, Skalny AV, Rahman MM, Dadar M, Yassa HA, Aaseth J, Chirumbolo S, Skalnaya MG, Tinkov AA. Toxic metal(loid)-based pollutants and their possible role in autism spectrum disorder. ENVIRONMENTAL RESEARCH 2018; 166:234-250. [PMID: 29902778 DOI: 10.1016/j.envres.2018.05.020] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 05/18/2018] [Accepted: 05/18/2018] [Indexed: 06/08/2023]
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, verbal and non-verbal communication, and stereotypic behaviors. Many studies support a significant relationship between many different environmental factors in ASD etiology. These factors include increased daily exposure to various toxic metal-based environmental pollutants, which represent a cause for concern in public health. This article reviews the most relevant toxic metals, commonly found, environmental pollutants, i.e., lead (Pb), mercury (Hg), aluminum (Al), and the metalloid arsenic (As). Additionally, it discusses how pollutants can be a possible pathogenetic cause of ASD through various mechanisms including neuroinflammation in different regions of the brain, fundamentally occurring through elevation of the proinflammatory profile of cytokines and aberrant expression of nuclear factor kappa B (NF-κB). Due to the worldwide increase in toxic environmental pollution, studies on the role of pollutants in neurodevelopmental disorders, including direct effects on the developing brain and the subjects' genetic susceptibility and polymorphism, are of utmost importance to achieve the best therapeutic approach and preventive strategies.
Collapse
Affiliation(s)
- Geir Bjørklund
- Council for Nutritional and Environmental Medicine, Mo i Rana, Norway.
| | - Anatoly V Skalny
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia; All-Russian Research Institute of Medicinal and Aromatic Plants, Moscow, Russia
| | - Md Mostafizur Rahman
- Department of Environmental Sciences, Jahangirnagar University, Dhaka, Bangladesh; Graduate School of Environmental Science, Hokkaido University, Japan
| | - Maryam Dadar
- Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Heba A Yassa
- Faculty of Medicine, Assiut University, Assiut, Egypt
| | - Jan Aaseth
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Elverum, Norway; Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
| | - Salvatore Chirumbolo
- Department of Neurological and Movement Sciences, University of Verona, Verona, Italy
| | | | - Alexey A Tinkov
- Peoples' Friendship University of Russia (RUDN University), Moscow, Russia; Yaroslavl State University, Yaroslavl, Russia
| |
Collapse
|
12
|
Botelho T, Marques VB, Simões MR, do Val Lima PR, Simões FV, Vassallo DV, dos Santos L. Impaired participation of potassium channels and Na+
/K+
-ATPase in vasodilatation due to reduced nitric oxide bioavailability in rats exposed to mercury. Basic Clin Pharmacol Toxicol 2018; 124:190-198. [DOI: 10.1111/bcpt.13113] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 08/13/2018] [Indexed: 12/20/2022]
Affiliation(s)
- Tatiani Botelho
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Brazil
| | - Vinícius B. Marques
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Brazil
| | - Maylla R. Simões
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Brazil
| | | | - Fabiana V. Simões
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Brazil
| | - Dalton V. Vassallo
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Brazil
- Health Science Center of Vitória-EMESCAM; Vitória Brazil
| | - Leonardo dos Santos
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Brazil
| |
Collapse
|
13
|
Sumathi T, Jacob S, Gopalakrishnan R. Methylmercury exposure develops atherosclerotic risk factors in the aorta and programmed cell death in the cerebellum: ameliorative action of Celastrus paniculatus ethanolic extract in male Wistar rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:30212-30223. [PMID: 30155631 DOI: 10.1007/s11356-018-3031-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2018] [Accepted: 08/21/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) is a bioaccumulative global environmental contaminant present in fishes and seafood. MeHg is the methylated form of mercury emitted from diverse anthropogenic and natural sources. MeHg is accumulated in the aquatic environment and eventually reaches human system via food chain by biomagnification. We have reported previously that the neurotoxic effect of MeHg in rat cerebellum is mitigated by the administration of an ayurvedic medicinal plant, Celastrus paniculatus ethanolic extract. The present study has focussed to further explore the mechanism of action of Celastrus paniculatus against MeHg-induced neurotoxicity in the cerebellum. We have also inspected the effect of Celastrus paniculatus (CP) against MeHg-induced atherosclerotic risk factors like alterations in antioxidant levels, aortic lipid profile, and aortic histology by MeHg in the largest vasculature, aorta, which are the initiating factors of cardiovascular diseases. Male Wistar rats were divided as (i) control, (ii) MeHg (5 mg/kg b.w.), (iii) MeHg + CP (200 mg/kg b.w.), and (iv) CP alone (200 mg/kg b.w.). All were given orally for 21 days. In cerebellum Celastrus paniculatus, there were increased mitochondrial electron transport chain (p < 0.05) activity, reduced cytochrome c release (p < 0.05), and caspase 3 mRNA expression (p < 0.05). In the aorta, MeHg-induced oxidative stress, lipid profile changes, and endothelial denudation were ameliorated by Celastrus paniculatus. Hence, we conclude that Celastrus paniculatus protects against MeHg toxicity by inhibiting mitochondrial cytochrome c/caspase 3 apoptotic pathway in the cerebellum and reducing the development of atherosclerotic risk factors in the aorta.
Collapse
Affiliation(s)
- Thangarajan Sumathi
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600113, India.
| | - Sherin Jacob
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600113, India
| | - Rahul Gopalakrishnan
- Department of Medical Biochemistry, Dr. ALM Post Graduate Institute of Basic Medical Sciences, University of Madras, Taramani Campus, Chennai, Tamil Nadu, 600113, India
| |
Collapse
|
14
|
Reactive oxygen species impair the excitation-contraction coupling of papillary muscles after acute exposure to a high copper concentration. Toxicol In Vitro 2018; 51:106-113. [PMID: 29772264 DOI: 10.1016/j.tiv.2018.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 11/24/2022]
Abstract
Copper is an essential metal for homeostasis and the functioning of living organisms. We investigated the effects of a high copper concentration on the myocardial mechanics, investigating the reactive oxygen species (ROS) mediated effects. The developed force of papillary muscles was reduced after acute exposure to a high copper concentration and was prevented by co-incubation with tempol, DMSO and catalase. The reuptake of calcium by the sarcoplasmic reticulum was reduced by copper and restored by tempol. The contractile response to Ca2+ was reduced and reversed by antioxidants. The response to the β-adrenergic agonist decreased after exposure to copper and was restored by tempol and catalase. In addition, the in situ detection showed increased O2·- and OH·. Contractions dependent on the sarcolemmal Ca2+ influx were impaired by copper and restored by antioxidants. Myosin-ATPase activity decreased significantly after copper exposure. In conclusion, a high copper concentration can acutely impair myocardial excitation-contraction coupling, reduce the capacity to generate force, reduce the Ca2+ inflow and its reuptake, and reduce myosin-ATPase activity, and these effects are mediated by the local production of O2·-, OH· and H2O2. These toxicity effects of copper overload suggest that copper is a risk factor for cardiovascular disease.
Collapse
|
15
|
Fayed MR, El-Naga RN, Akool ES, El-Demerdash E. The potential antifibrotic impact of apocynin and alpha-lipoic acid in concanavalin A-induced liver fibrosis in rats: Role of NADPH oxidases 1 and 4. Drug Discov Ther 2018; 12:58-67. [DOI: 10.5582/ddt.2017.01065] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Mostafa R. Fayed
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Kafrelsheikh University
| | - Reem N. El-Naga
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University
| | - El-Sayed Akool
- Pharmacology and Toxicology Department, Faculty of Pharmacy, El-Azhar University
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Egyptian Russian University
| | - Ebtehal El-Demerdash
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Ain Shams University
| |
Collapse
|
16
|
Gökçe G, Arun MZ, Ertuna E. Ergothioneine prevents endothelial dysfunction induced by mercury chloride. Exp Ther Med 2018; 15:4697-4702. [PMID: 29805489 PMCID: PMC5958736 DOI: 10.3892/etm.2018.6079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Accepted: 02/22/2018] [Indexed: 01/23/2023] Open
Abstract
Exposure to mercury has detrimental effects on the cardiovascular system, particularly the vascular endothelium. The present study aimed to investigate the effects of ergothioneine (EGT) on endothelial dysfunction induced by low-dose mercury chloride (HgCl2). Agonist-induced contractions and relaxations were evaluated in isolated aortic rings from 3-month-old male Wistar rats treated by intra-muscular injection to caudal hind leg muscle with HgCl2 (first dose, 4.6 µg/kg; subsequent doses, 0.07 µg/kg/day for 15 days) and optionally with EGT (2 µg/kg for 30 days). Reactive oxygen species (ROS) in aortic rings were measured by means of lucigenin- and luminol-enhanced chemiluminescence. The protein level of endothelial nitric oxide synthase was evaluated by ELISA. Blood glutathione (GSH) and catalase levels, lipid peroxidation and total nitrite were measured spectrophotometrically. The results indicated that low-dose HgCl2 administration impaired acetylcholine (ACh)-induced relaxation and potentiated phenylephrine- and serotonin-induced contractions in rat aortas. In addition, HgCl2 significantly increased the levels of ROS in the aortic tissue. EGT prevented the loss of ACh-induced relaxations and the increase in contractile responses. These effects were accompanied by a significant decrease in ROS levels. EGT also improved the ratio of reduced GSH to oxidized GSH and catalase levels with a concomitant decrease in lipid peroxidation. In conclusion, to the best of our knowledge, the present study was the first to report that EGT prevents endothelial dysfunction induced by low-dose HgCl2 administration. EGT may serve as a therapeutic tool to reduce mercury-associated cardiovascular complications via improving the antioxidant status.
Collapse
Affiliation(s)
- Göksel Gökçe
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Mehmet Zuhuri Arun
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| | - Elif Ertuna
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ege University, Izmir 35040, Turkey
| |
Collapse
|
17
|
Rizzetti DA, da Silva TM, Escobar AG, Piagette J, Peçanha FM, Vassallo DV, Alonso MJ, Salaices M, Wiggers GA. Mercury-induced vascular dysfunction is mediated by angiotensin II AT-1 receptor upregulation. ENVIRONMENTAL RESEARCH 2018; 162:287-296. [PMID: 29407760 DOI: 10.1016/j.envres.2018.01.026] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 01/17/2018] [Accepted: 01/20/2018] [Indexed: 06/07/2023]
Abstract
Low doses of mercury (Hg) promote deleterious effects on cardiovascular system, but the mechanisms implicated remain unclear. This study analyzed whether angiotensin II AT-1 receptors are involved in the vascular dysfunction caused by chronic exposure to low HgCl2 doses. For this, rats were divided into four groups and untreated (saline by im injections and tap water by gavage) or treated for 30 days as follows: Mercury (HgCl2im, first dose of 4.6 µg kg-1 and subsequent doses of 0.07 µg kg-1 day-1, and tap water by gavage); Losartan (saline im and losartan, 15 mg kg-1 day-1, by gavage); Losartan-Mercury (HgCl2im and Losartan by gavage). Systolic blood pressure was measured by tail plethysmography, vascular reactivity in aorta by isolated organ bath, oxidative stress by measuring the levels of reactive oxygen species (ROS), malondialdehyde (MDA) and antioxidant capacity (FRAP) and protein expression of AT-1 receptors by Western Blot. As results, co-treatment with losartan prevented the increased aortic vasoconstrictor responses to phenylephrine (Phe), the involvement of ROS and prostanoids on the response to Phe and the reduced negative endothelial modulation by nitric oxide on these responses. Moreover, this co-treatment avoided the increase in plasmatic and vascular oxidative stress and AT-1 protein expression in aorta. In conclusion, these results suggest that AT-1 receptors upregulation might play a key role in the vascular damage induced by Hg exposure by increasing oxidative stress and probably by reducing NO bioavailability.
Collapse
Affiliation(s)
- Danize A Rizzetti
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Taiz M da Silva
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Alyne G Escobar
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Janaina Piagette
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Franck M Peçanha
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton V Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Marechal Campos, 1468 Vitória, Espírito Santo, Brazil
| | - Maria J Alonso
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, C/ Atenas s/n, Alcorcón, Spain
| | - Mercedes Salaices
- Department of Pharmacology, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo, 4, Madrid, Spain
| | - Giulia A Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
18
|
da Cunha Martins A, Carneiro MFH, Grotto D, Adeyemi JA, Barbosa F. Arsenic, cadmium, and mercury-induced hypertension: mechanisms and epidemiological findings. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2018; 21:61-82. [PMID: 29446707 DOI: 10.1080/10937404.2018.1432025] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Arsenic (As), cadmium (Cd), and mercury (Hg) are toxic elements widely distributed in the environment. Exposure to these elements was attributed to produce several acute and chronic illnesses including hypertension. The aim of this review is to provide a summary of the most frequently proposed mechanisms underlying hypertension associated with As, Cd, and Hg exposure including: oxidative stress, impaired nitric oxide (NO) signaling, modified vascular response to neurotransmitters and disturbed vascular muscle Ca2+ signaling, renal damage, and interference with the renin-angiotensin system. Due to the complexity of the vascular system, a combination rather than a singular mechanism needs to be considered. In addition, epidemiological findings showing the relationship between various biomarkers of metal exposure and hypertension are described. Given the complex etiology of hypertension, further epidemiological studies evaluating the roles of confounding factors such as age, gender, and life style are still necessary.
Collapse
Affiliation(s)
- Airton da Cunha Martins
- a Laboratório de Toxicologia e Essencialidade de Metais, Depto. de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto-SP , Brazil
| | - Maria Fernanda Hornos Carneiro
- a Laboratório de Toxicologia e Essencialidade de Metais, Depto. de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto-SP , Brazil
| | - Denise Grotto
- b Laboratório de Pesquisa em Toxicologia , Universidade de Sorocaba , Sorocaba-SP , Brazil
| | - Joseph A Adeyemi
- a Laboratório de Toxicologia e Essencialidade de Metais, Depto. de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto-SP , Brazil
| | - Fernando Barbosa
- a Laboratório de Toxicologia e Essencialidade de Metais, Depto. de Análises Clínicas, Toxicológicas e Bromatológicas, Faculdade de Ciências Farmacêuticas de Ribeirão Preto , Universidade de São Paulo , Ribeirão Preto-SP , Brazil
| |
Collapse
|
19
|
Spatial, Temporal, and Dietary Variables Associated with Elevated Mercury Exposure in Peruvian Riverine Communities Upstream and Downstream of Artisanal and Small-Scale Gold Mining. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121582. [PMID: 29244775 PMCID: PMC5751000 DOI: 10.3390/ijerph14121582] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 12/12/2017] [Accepted: 12/12/2017] [Indexed: 01/21/2023]
Abstract
Artisanal and small-scale gold mining (ASGM) is a primary contributor to global mercury and its rapid expansion raises concern for human exposure. Non-occupational exposure risks are presumed to be strongly tied to environmental contamination; however, the relationship between environmental and human mercury exposure, how exposure has changed over time, and risk factors beyond fish consumption are not well understood in ASGM settings. In Peruvian riverine communities (n = 12), where ASGM has increased 4–6 fold over the past decade, we provide a large-scale assessment of the connection between environmental and human mercury exposure by comparing total mercury contents in human hair (2-cm segment, n = 231) to locally caught fish tissue, analyzing temporal exposure in women of child bearing age (WCBA, 15–49 years, n = 46) over one year, and evaluating general mercury exposure risks including fish and non-fish dietary items through household surveys and linear mixed models. Calculations of an individual’s oral reference dose using the total mercury content in locally-sourced fish underestimated the observed mercury exposure for individuals in many communities. This discrepancy was particularly evident in communities upstream of ASGM, where mercury levels in river fish, water, and sediment measurements from a previous study were low, yet hair mercury was chronically elevated. Hair from 86% of individuals and 77% of children exceeded a USEPA (U.S. Environmental Protection Agency) provisional level (1.2 µg/g) that could result in child developmental impairment. Chronically elevated mercury exposure was observed in the temporal analysis in WCBA. If the most recent exposure exceeded the USEPA level, there was a 97% probability that the individual exceeded that level 8–10 months of the previous year. Frequent household consumption of some fruits (tomato, banana) and grains (quinoa) was significantly associated with 29–75% reductions in hair mercury. Collectively, these data demonstrate that communities located hundreds of kilometers from ASGM are vulnerable to chronically elevated mercury exposure. Furthermore, unexpected associations with fish mercury contents and non-fish dietary intake highlight the need for more in-depth analyses of exposure regimes to identify the most vulnerable populations and to establish potential interventions.
Collapse
|
20
|
Pantaleão TU, Ferreira ACF, Santos MCS, Figueiredo ÁSP, Louzada RAN, Rosenthal D, Carvalho DP, Corrêa da Costa VM. Effect of thimerosal on thyroid hormones metabolism in rats. Endocr Connect 2017; 6:741-747. [PMID: 29101249 PMCID: PMC5670274 DOI: 10.1530/ec-17-0220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Accepted: 10/05/2017] [Indexed: 01/09/2023]
Abstract
Mercury seems to exert an inhibitory effect on deiodinases, but there are few studies using Thimerosal (TM) as the mercury source. We aimed to elucidate the effect of TM on thyroid hormones peripheral metabolism. Adult Wistar female rats received 0.25 µg or 250 µg TM/100 g BW, IM, twice a week, for a month. We evaluated serum total T3 and T4, D1 activity using 125I-rT3 as tracer, and D2 activity using 125I-T4 NADPH oxidase activity was measured by Amplex-red/HRP method and mRNA levels by real time PCR. Serum T4 was increased and T3 decreased by the greatest dose of TM. Even though D1 activity in pituitary and kidney was reduced by the highest dose of TM, hepatic D1 activity and D1 mRNA levels remained unchanged. D2 activity was also significantly decreased by the highest dose of TM in all CNS samples tested, except cerebellum, but D2 mRNA was unaltered. mRNA levels of the tested NADPH oxidases were not affected by TM and NADPH oxidase activity was either unaltered or decreased. Our results indicate that TM might directly interact with deiodinases, inhibiting their activity probably by binding to their selenium catalytic site, without changes in enzyme expression.
Collapse
Affiliation(s)
- Thiago U Pantaleão
- Laboratório de Fisiologia Endócrina Doris RosenthalInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Andrea C F Ferreira
- Laboratório de Fisiologia Endócrina Doris RosenthalInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
- NUMPEXPólo de Xerém, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Maria C S Santos
- Laboratório de Fisiologia Endócrina Doris RosenthalInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Álvaro S P Figueiredo
- Laboratório de Fisiologia Endócrina Doris RosenthalInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ruy A N Louzada
- Laboratório de Fisiologia Endócrina Doris RosenthalInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Doris Rosenthal
- Laboratório de Fisiologia Endócrina Doris RosenthalInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Denise P Carvalho
- Laboratório de Fisiologia Endócrina Doris RosenthalInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Vânia M Corrêa da Costa
- Laboratório de Fisiologia Endócrina Doris RosenthalInstituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
21
|
Egg white-derived peptides prevent cardiovascular disorders induced by mercury in rats: Role of angiotensin-converting enzyme (ACE) and NADPH oxidase. Toxicol Lett 2017; 281:158-174. [DOI: 10.1016/j.toxlet.2017.10.001] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2017] [Revised: 09/25/2017] [Accepted: 10/01/2017] [Indexed: 12/20/2022]
|
22
|
Xanthine Oxidase Activation Modulates the Endothelial (Vascular) Dysfunction Related to HgCl2 Exposure Plus Myocardial Infarction in Rats. Cardiovasc Toxicol 2017; 18:161-174. [DOI: 10.1007/s12012-017-9427-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
23
|
Akintunde J, Babaita A. Effect of PUFAs from Pteleopsis suberosa stem bark on androgenic enzymes, cellular ATP and prostatic acid phosphatase in mercury chloride – Exposed rat. MIDDLE EAST FERTILITY SOCIETY JOURNAL 2017. [DOI: 10.1016/j.mefs.2017.02.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
|
24
|
Rizzetti DA, Torres JGD, Escobar AG, da Silva TM, Moraes PZ, Hernanz R, Peçanha FM, Castro MM, Vassallo DV, Salaices M, Alonso MJ, Wiggers GA. The cessation of the long-term exposure to low doses of mercury ameliorates the increase in systolic blood pressure and vascular damage in rats. ENVIRONMENTAL RESEARCH 2017; 155:182-192. [PMID: 28222365 DOI: 10.1016/j.envres.2017.02.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 02/15/2017] [Accepted: 02/16/2017] [Indexed: 06/06/2023]
Abstract
This study aimed to verify whether a prolonged exposure to low-level mercury promotes haemodynamic disorders and studied the reversibility of this vascular damage. Rats were divided into seven groups: three control groups received saline solution (im) for 30, 60 or 90 days; two groups received HgCl2 (im, first dose, 4.6μg/kg, subsequent doses 0.07μg/kg/day) for 30 or 60 days; two groups received HgCl2 for 30 or 60 days (im, same doses) followed by a 30-day washout period. Systolic blood pressure (SBP) was measured, along with analysis of vascular response to acetylcholine (ACh) and phenylephrine (Phe) in the absence and presence of endothelium, a nitric oxide (NO) synthase inhibitor, an NADPH oxidase inhibitor, superoxide dismutase, a non-selective cyclooxygenase (COX) inhibitor and an AT1 receptor blocker. Reactive oxygen species (ROS) levels and antioxidant power were measured in plasma. HgCl2 exposure for 30 and 60 days: a) reduced the endothelium-dependent relaxation; b) increased the Phe-induced contraction and the contribution of ROS, COX-derived vasoconstrictor prostanoids and angiotensin II acting on AT1 receptors to this response while the NO participation was reduced; c) increased the oxidative stress in plasma; d) increased the SBP only after 60 days of exposure. After the cessation of HgCl2 exposure, SBP, endothelium-dependent relaxation, Phe-induced contraction and the oxidative stress were normalised, despite the persistence of the increased COX-derived prostanoids. These results demonstrated that long-term HgCl2 exposure increases SBP as a consequence of vascular dysfunction; however, after HgCl2 removal from the environment the vascular function ameliorates.
Collapse
Affiliation(s)
| | | | - Alyne Goulart Escobar
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Taiz Martins da Silva
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, RS, Brazil; Department of Basic Health Sciences, Universidad Rey Juan Carlos, Alcorcón, Spain; Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain; Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES, Brazil; Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Paola Zambelli Moraes
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Raquel Hernanz
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Franck Maciel Peçanha
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, RS, Brazil
| | - Marta Miguel Castro
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Madrid, Spain
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, ES, Brazil
| | - Mercedes Salaices
- Department of Pharmacology, Universidad Autónoma de Madrid, Madrid, Spain
| | - Maria Jesús Alonso
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Alcorcón, Spain
| | | |
Collapse
|
25
|
Rizzetti DA, Martinez CS, Escobar AG, da Silva TM, Uranga-Ocio JA, Peçanha FM, Vassallo DV, Castro MM, Wiggers GA. Egg white-derived peptides prevent male reproductive dysfunction induced by mercury in rats. Food Chem Toxicol 2016; 100:253-264. [PMID: 28043836 DOI: 10.1016/j.fct.2016.12.038] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 12/28/2016] [Accepted: 12/29/2016] [Indexed: 10/20/2022]
Abstract
Oxidative stress in known to contribute to the male reproductive dysfunction induced by mercury (Hg). Our study tested the hypothesis that the egg white hydrolysate (EWH), a potent antioxidant in vitro, is able to prevent the effects of prolonged Hg exposure on male reproductive system in rats. For this, rats were treated for 60 days with: a) Untreated - saline solution (i.m.); b) Hydrolysate - EWH (1 g/kg/day, gavage); c) Mercury - HgCl2 (1st dose 4.6 μg/kg, subsequent doses 0.07 μg/kg/day, i.m.); d) Hydrolysate-Mercury. At the end of the treatment, sperm motility, count and morphological studies were performed; Reactive Oxygen Species (ROS) levels, lipid peroxidation, antioxidant capacity, histological and immunohistochemical assays on testis and epididymis were also carried out. As results, HgCl2-treatment decreased sperm number, increased sperm transit time in epididymis and impaired sperm morphology. However, these harmful effects were prevented by EWH. HgCl2-treatment also increased ROS levels, lipid peroxidation and antioxidant capacity in testis and epididymis as well as promoted testicular inflammation and histological changes in epididymis. EWH improved histological and immunohistochemical alterations, probably due to its antioxidant property. In conclusion, the EWH could represent a powerful natural alternative to protect the male reproductive system against Hg-induced sperm toxicity.
Collapse
Affiliation(s)
- Danize Aparecida Rizzetti
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Caroline Silveira Martinez
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Alyne Goulart Escobar
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Taiz Martins da Silva
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | | | - Franck Maciel Peçanha
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Cardiac Electromechanical and Vascular Reactivity Laboratory, Universidade Federal do Espírito Santo, Marechal Campos, 1468, Vitória, Espírito Santo, Brazil
| | - Marta Miguel Castro
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Laboratory, Universidade Federal do Pampa, BR 472, Km 592, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
26
|
Rizzetti DA, Altermann CDC, Martinez CS, Peçanha FM, Vassallo DV, Uranga-Ocio JA, Castro MM, Wiggers GA, Mello-Carpes PB. Ameliorative effects of egg white hydrolysate on recognition memory impairments associated with chronic exposure to low mercury concentration. Neurochem Int 2016; 101:30-37. [DOI: 10.1016/j.neuint.2016.10.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/27/2022]
|
27
|
Schmidt PM, Escobar AG, Torres JGD, Martinez CS, Rizzetti DA, Kunz SN, Vassallo DV, Alonso MJ, Peçanha FM, Wiggers GA. Aluminum exposure for one hour decreases vascular reactivity in conductance and resistance arteries in rats. Toxicol Appl Pharmacol 2016; 313:109-118. [PMID: 27984129 DOI: 10.1016/j.taap.2016.10.023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 10/12/2016] [Accepted: 10/25/2016] [Indexed: 02/07/2023]
Abstract
AIMS Aluminum (Al) is an important environmental contaminant; however, there are not enough evidences of Al-induced cardiovascular dysfunction. We investigated the effects of acute exposure to aluminum chloride (AlCl3) on blood pressure, vascular reactivity and oxidative stress. METHODS AND RESULTS Male Wistar rats were divided into two groups: Untreated: vehicle (ultrapure water, ip) and AlCl3: single dose of AlCl3 (100mg/kg,ip). Concentration-response curves to phenylephrine in the absence and presence of endothelium, the nitric oxide synthase inhibitor l-NAME, the potassium channel blocker tetraethylammonium, and the NADPH oxidase inhibitor apocynin were performed in segments from aortic and mesenteric resistance arteries. NO released was assessed in aorta and reactive oxygen species (ROS), malondialdehyde, non-protein thiol levels, antioxidant capacity and enzymatic antioxidant activities were investigated in plasma, aorta and/or mesenteric arteries. After one hour of AlCl3 exposure serum Al levels attained 147.7±25.0μg/L. Al treatment: 1) did not affect blood pressure, heart rate and vasodilator responses induced by acetylcholine or sodium nitroprusside; 2) decreased phenylephrine-induced vasoconstrictor responses; 3) increased endothelial modulation of contractile responses, NO release and vascular ROS production from NADPH oxidase; 4) increased plasmatic, aortic and mesenteric malondialdehyde and ROS production, and 5) decreased antioxidant capacity and affected the antioxidant biomarkers non-protein thiol levels, glutathione peroxidase, glutathione-S-transferase, superoxide dismutase and catalase enzymatic activities. CONCLUSION AlCl3-acute exposure reduces vascular reactivity. This effect is associated with increased NO production, probably acting on K+ channels, which seems to occur as a compensatory mechanism against Al-induced oxidative stress. Our results suggest that Al exerts toxic effects to the vascular system.
Collapse
Affiliation(s)
- Patrícia Medeiros Schmidt
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Alyne Goulart Escobar
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - João Guilherme Dini Torres
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Caroline Silveira Martinez
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Danize Aparecida Rizzetti
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Simone Noremberg Kunz
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Espirito Santo, Brazil
| | - María Jesús Alonso
- Department of Basic Health Sciences, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Franck Maciel Peçanha
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil
| | - Giulia Alessandra Wiggers
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
28
|
Gul N, Khan S, Khan A, Nawab J, Shamshad I, Yu X. Quantification of Hg excretion and distribution in biological samples of mercury-dental-amalgam users and its correlation with biological variables. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:20580-20590. [PMID: 27464660 DOI: 10.1007/s11356-016-7266-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Accepted: 07/14/2016] [Indexed: 06/06/2023]
Abstract
This is the first study conducted to quantify the excretion and distribution of mercury (Hg) with time (days) in the biological samples collected from Hg dental amalgam users (MDA). The individuals, with Hg-based dental filling were selected, and their biological samples (red blood cells (RBCs), plasma, urine, hair, and nails) were collected on first, third, and 12th day of fillings. The concentrations of Hg observed in the biological samples of MDA were also correlated with the biological variables such as age, weight, restoration, fish consumption, number, and surface area of fillings. The concentrations of Hg in the biological samples of MDA were found 6-8 times higher than the non-amalgam users (control). The concentrations of Hg in the RBCs (4.39 μg/L), plasma (3.02 μg/L), and urine (22.5 μg/L) on first day of filling were found comparatively higher than the concentrations observed on third day (2.15, 1.46, and 12.3 μg/L for RBCs, plasma, urine, respectively) and 12th day (3.05, 2.5, 9.12 μg/L for RBCs, plasma, urine, respectively), while Hg concentrations were found lower in the hair and nails on third day of fillings (1.53 μg/g for hair and 2.35 μg/g for nails) as compared to the 12th day (2.95 μg/g for hair and 3.5 μg/g for nails). The correlations were found significant (p ˂ 0.05) between Hg concentrations in the biological samples of MDA and biological variables (the number of restoration, fish consumption, number, and surface area of fillings), while no significant (p ˃ 0.05) correlations were observed for Hg concentrations in the biological samples with age and weight of MDA. These observations unveil the fact that the use of Hg-based dental filling is the undesirable exposure to Hg which should be replaced by composite (a safer filling material).
Collapse
Affiliation(s)
- Nayab Gul
- Department of Environmental Science, University of Peshawar, Peshawar, 25120, Pakistan
| | - Sardar Khan
- Department of Environmental Science, University of Peshawar, Peshawar, 25120, Pakistan.
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan, 316021, China.
| | - Abbas Khan
- Drug Control Administration, Government of Khyber Pakhtunkhwa, Health Department, Peshawar, 25120, Pakistan
| | - Javed Nawab
- Department of Environmental Science, University of Peshawar, Peshawar, 25120, Pakistan
- Department of Environmental and Conservation Sciences, University of Swat, Swat, 19130, Pakistan
| | - Isha Shamshad
- Department of Environmental Science, University of Peshawar, Peshawar, 25120, Pakistan
- Department of Environmental Science, International Islamic University, Islamabad, Pakistan
| | - Xinwei Yu
- Zhejiang Provincial Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center For Disease Control and Prevention, Zhoushan, 316021, China.
| |
Collapse
|
29
|
Effects of Huang Qi Decoction on Endothelial Dysfunction Induced by Homocysteine. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:7272694. [PMID: 27725840 PMCID: PMC5048055 DOI: 10.1155/2016/7272694] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/22/2016] [Accepted: 08/03/2016] [Indexed: 11/17/2022]
Abstract
Vascular endothelial dysfunction can be induced by homocysteine (Hcy) through promoted oxidative stress. Huang Qi decoction (HQD) is a traditional Chinese medical formula and its components possess antioxidant effect. The study herein was therefore designed to investigate the effects of HQD at different dosage on endothelial dysfunction induced by Hcy. Tempol and apocynin were used to investigate whether antioxidant mechanisms were involved. Endothelium-dependent relaxation of rat aortas was investigated by isometric tension recordings. Reactive oxygen species (ROS) in human umbilical vein endothelial cells (HUVECs) was determined by DHE staining. The assessment related to oxidative stress and NO bioavailability was performed by assay kits and western blot. In isometric tension experiment, HQD at the dose of 30 or 100 μg/mL, tempol, or apocynin prevented impaired endothelium-dependent relaxation in isolated aortas elicited by Hcy. In cellular experiments, substantial enhancement in NADPH oxidase and ROS generation and reduction in NO bioavailability triggered by Hcy were reversed by pretreatment of HQD at the dose of 100 μg/mL, tempol, or apocynin. The results proved that HQD at an appropriate dosage presented favorable effects on endothelial dysfunction initiated by Hcy through antioxidant mechanisms. HQD can act as a potent prescription for the treatment of endothelium related vascular complications.
Collapse
|
30
|
Rizzetti DA, Fernandez F, Moreno S, Uranga Ocio JA, Peçanha FM, Vera G, Vassallo DV, Castro MM, Wiggers GA. Egg white hydrolysate promotes neuroprotection for neuropathic disorders induced by chronic exposure to low concentrations of mercury. Brain Res 2016; 1646:482-489. [DOI: 10.1016/j.brainres.2016.06.037] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 01/01/2023]
|
31
|
Perassa LA, Graton ME, Potje SR, Troiano JA, Lima MS, Vale GT, Pereira AAF, Nakamune ACMS, Sumida DH, Tirapelli CR, Bendhack LM, Antoniali C. Apocynin reduces blood pressure and restores the proper function of vascular endothelium in SHR. Vascul Pharmacol 2016; 87:38-48. [PMID: 27353052 DOI: 10.1016/j.vph.2016.06.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/06/2016] [Accepted: 06/18/2016] [Indexed: 10/21/2022]
Abstract
This study has evaluated how the vascular endothelium of hypertensive rats chronically treated with apocynin affects acetylcholine (ACh), sodium nitroprusside (SNP), and phenylephrine (PE) action on the nitric oxide (NO) signal transduction pathway in endothelial (EC) and vascular smooth muscle cells. Treatment with apocynin significantly reduced the mean arterial pressure in spontaneously hypertensive rats (SHR). In addition, apocynin improved the impaired ACh hypotensive effect on SHR. Although systemic oxidative stress was high in SHR, SHR treated with apocynin and normotensive rats presented similar systemic oxidative stress levels. Endothelium significantly blunted PE contractions in intact aortas of treated SHR. The ACh effect was impaired in resistance arteries and aortas of SHR, but this same effect was improved in treated SHR. The SNP potency was higher in intact resistance arteries of treated SHR than in intact resistance arteries of untreated SHR. NO and calcium concentrations increased, whereas reactive oxygen species levels decreased in EC of treated SHR. Aortas of untreated and treated SHR did not differ in terms of sGC alpha or beta units expression. Aorta of treated SHR expressed higher eNOS levels as compared to aorta of untreated SHR. The study groups did not differ with respect to NOX1, NOXO1, or NOX4 expression. However, treatment with apocynin normalized overexpression of NOX2 and its subunit p47phox in aortas of SHR. Based on all the results presented in this study, we suggest apocynin increases NO biovailability by different mechanisms, restoring the proper function of vascular endothelium in SHR.
Collapse
Affiliation(s)
- Ligia A Perassa
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Murilo E Graton
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Simone R Potje
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Jéssica A Troiano
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Mariana S Lima
- Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Gabriel T Vale
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Ariana A F Pereira
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Ana Claúdia M S Nakamune
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Doris H Sumida
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil
| | - Carlos R Tirapelli
- Department of Psychiatry Nursing and Human Sciences, College of Nursing of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Lusiane M Bendhack
- Department of Physics and Chemistry, Faculty of Pharmaceutical Sciences of Ribeirão Preto, USP - University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Cristina Antoniali
- Multicenter Graduate Program in Physiological Sciences, SBFis, Brazil; Department of Basic Sciences, School of Dentistry of Araçatuba, UNESP - Univ Estadual Paulista, Araçatuba, São Paulo, Brazil.
| |
Collapse
|
32
|
Azevedo BF, Simões MR, Fiorim J, Botelho T, Angeli JK, Vieira JVA, Alonso MJ, Salaices M, dos Santos L, Vassallo DV. Chronic mercury exposure at different concentrations produces opposed vascular responses in rat aorta. Clin Exp Pharmacol Physiol 2016; 43:712-9. [DOI: 10.1111/1440-1681.12578] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2015] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 11/30/2022]
Affiliation(s)
- BF Azevedo
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Espirito Santo Brazil
| | - MR Simões
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Espirito Santo Brazil
| | - J Fiorim
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Espirito Santo Brazil
| | - T Botelho
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Espirito Santo Brazil
| | - JK Angeli
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Espirito Santo Brazil
| | - JVA Vieira
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Espirito Santo Brazil
| | - MJ Alonso
- Department of Ciencias Básicas de la Salud; Universidad Rey Juan Carlos; Alcorcón Spain
| | - M Salaices
- Department of Pharmacology; Universidad Autonoma de Madrid; Instituto de Investigación Hospital Universitario La Paz (IdiPAZ); Madrid Spain
| | - L dos Santos
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Espirito Santo Brazil
| | - DV Vassallo
- Department of Physiological Sciences; Federal University of Espirito Santo; Vitória Espirito Santo Brazil
- Health Science of Vitória-EMESCAM; Vitória Espirito Santo Brazil
| |
Collapse
|
33
|
Wiggers GA, Furieri LB, Briones AM, Avendaño MS, Peçanha FM, Vassallo DV, Salaices M, Alonso MJ. Cerebrovascular endothelial dysfunction induced by mercury exposure at low concentrations. Neurotoxicology 2016; 53:282-289. [PMID: 26945730 DOI: 10.1016/j.neuro.2016.02.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 01/26/2023]
Abstract
Mercury (Hg) has many harmful vascular effects by increasing oxidative stress, inflammation and vascular/endothelial dysfunction, all of which may contribute to cerebrovascular diseases development. We aimed to explore the effects of chronic low-mercury concentration on vascular function in cerebral arteries and the mechanisms involved. Basilar arteries from control (vehicle-saline solution, im) and mercury chloride (HgCl2)-treated rats for 30 days (first dose 4.6μg/kg, subsequent dose 0.07μg/kg/day, im, to cover daily loss) were used. Vascular reactivity, protein expression, nitric oxide (NO) levels and superoxide anion (O2(-)) production were analyzed. HgCl2 exposure increased serotonin contraction and reduced the endothelium-dependent vasodilatation to bradykinin. After NO synthase inhibition, serotonin responses were enhanced more in control than in mercury-treated rats while bradykinin-induced relaxation was abolished. NO levels were greater in control than Hg-treated rats. Tiron and indomethacin reduced vasoconstriction and increased the bradykinin-induced relaxation only in HgCl2-treated rats. Vascular O2(-) production was greater in mercury-treated when compared to control rats. Protein expressions of endothelial NO synthase, copper/zinc (Cu/Zn), Manganese (Mn) and extracellular-superoxide dismutases were similar in cerebral arteries from both groups. Results suggest that Hg treatment increases cerebrovascular reactivity by reducing endothelial negative modulation and NO bioavailability; this effect seems to be dependent on increased reactive oxygen species and prostanoids generation. These findings show, for the first time, that brain vasculature are also affected by chronic mercury exposure and offer further evidence that even at small concentration, HgCl2 is hazardous and might be an environmental risk factor accounting for cerebral vasospasm development.
Collapse
Affiliation(s)
- Giulia Alessandra Wiggers
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Rio Grande do Sul, Unipampa, Campus Uruguaiana, BR 472, km 592, PO Box 118, Uruguaiana, RS 97500-970, Brazil; Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo s/n, 28029 Madrid, Spain.
| | - Lorena Barros Furieri
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Avenida Marechal Campos, 1468, Vitória, ES 29040-090, Brazil; Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo s/n, 28029 Madrid, Spain.
| | - Ana María Briones
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo s/n, 28029 Madrid, Spain.
| | - María Soledad Avendaño
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo s/n, 28029 Madrid, Spain.
| | - Franck Maciel Peçanha
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, Rio Grande do Sul, Unipampa, Campus Uruguaiana, BR 472, km 592, PO Box 118, Uruguaiana, RS 97500-970, Brazil; Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo s/n, 28029 Madrid, Spain
| | - Dalton Valentim Vassallo
- Department of Physiological Sciences, Universidade Federal do Espírito Santo, Vitória, Espírito Santo, Avenida Marechal Campos, 1468, Vitória, ES 29040-090, Brazil.
| | - Mercedes Salaices
- Department of Pharmacology, School of Medicine, Universidad Autónoma de Madrid, Calle Arzobispo Morcillo s/n, 28029 Madrid, Spain.
| | - María Jesús Alonso
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avenida de Atenas s/n, 28922 Alcorcón, Madrid, Spain.
| |
Collapse
|
34
|
Saghiri MA, Orangi J, Asatourian A, Sorenson CM, Sheibani N. Functional role of inorganic trace elements in angiogenesis part III: (Ti, Li, Ce, As, Hg, Va, Nb and Pb). Crit Rev Oncol Hematol 2015; 98:290-301. [PMID: 26638864 DOI: 10.1016/j.critrevonc.2015.10.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2015] [Revised: 08/27/2015] [Accepted: 10/15/2015] [Indexed: 02/02/2023] Open
Abstract
Many essential elements exist in nature with significant influence on human health. Angiogenesis is vital in developmental, repair, and regenerative processes, and its aberrant regulation contributes to pathogenesis of many diseases including cancer. Thus, it is of great importance to explore the role of these elements in such a vital process. This is third in a series of reviews that serve as an overview of the role of inorganic elements in regulation of angiogenesis and vascular function. Here we will review the roles of titanium, lithium, cerium, arsenic, mercury, vanadium, niobium, and lead in these processes. The roles of other inorganic elements in angiogenesis were discussed in part I (N, Fe, Se, P, Au, and Ca) and part II (Cr, Si, Zn, Cu, and S) of these series. The methods of exposure, structure, mechanisms, and potential activities of these elements are briefly discussed. An electronic search was performed on the role of these elements in angiogenesis from January 2005 to April 2014. These elements can promote and/or inhibit angiogenesis through different mechanisms. The anti-angiogenic effect of titanium dioxide nanoparticles comes from the inhibition of angiogenic processes, and not from its toxicity. Lithium affects vasculogenesis but not angiogenesis. Nanoceria treatment inhibited tumor growth by inhibiting angiogenesis. Vanadium treatment inhibited cell proliferation and induced cytotoxic effects through interactions with DNA. The negative impact of mercury on endothelial cell migration and tube formation activities was dose and time dependent. Lead induced IL-8 production, which is known to promote tumor angiogenesis. Thus, understanding the impact of these elements on angiogenesis will help in development of new modalities to modulate angiogenesis under various conditions.
Collapse
Affiliation(s)
- Mohammad Ali Saghiri
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran.
| | - Jafar Orangi
- Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Armen Asatourian
- Angiogenesis and Regenerative Group, Dr. H. Afsar Lajevardi Research Cluster, Shiraz, Iran
| | - Christine M Sorenson
- Department of Pediatrics, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| | - Nader Sheibani
- Departments of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA; Department of Biomedical Engineering, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
| |
Collapse
|
35
|
Omanwar S, Fahim M. Mercury Exposure and Endothelial Dysfunction: An Interplay Between Nitric Oxide and Oxidative Stress. Int J Toxicol 2015; 34:300-7. [PMID: 26060268 DOI: 10.1177/1091581815589766] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Vascular endothelium plays a vital role in the organization and function of the blood vessel and maintains homeostasis of the circulatory system and normal arterial function. Functional disruption of the endothelium is recognized as the beginning event that triggers the development of consequent cardiovascular disease (CVD) including atherosclerosis and coronary heart disease. There is a growing data associating mercury exposure with endothelial dysfunction and higher risk of CVD. This review explores and evaluates the impact of mercury exposure on CVD and endothelial function, highlighting the interplay of nitric oxide and oxidative stress.
Collapse
Affiliation(s)
- Swati Omanwar
- School of Sciences, Indira Gandhi National Open University, New Delhi, India
| | - M Fahim
- Hamdard Institute of Medical Science and Research, Hamdard University, New Delhi, India
| |
Collapse
|
36
|
Tinkov AA, Ajsuvakova OP, Skalnaya MG, Popova EV, Sinitskii AI, Nemereshina ON, Gatiatulina ER, Nikonorov AA, Skalny AV. Mercury and metabolic syndrome: a review of experimental and clinical observations. Biometals 2015; 28:231-54. [DOI: 10.1007/s10534-015-9823-2] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2014] [Accepted: 01/15/2015] [Indexed: 12/16/2022]
|
37
|
Moreira ELG, Farina M. An unsolved puzzle: the complex interplay between methylmercury and fish oil-derived fatty acids within the cardiovascular system. Toxicol Res (Camb) 2014. [DOI: 10.1039/c4tx00011k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
38
|
Martinez CS, Escobar AG, Torres JGD, Brum DS, Santos FW, Alonso MJ, Salaices M, Vassallo DV, Peçanha FM, Leivas FG, Wiggers GA. Chronic exposure to low doses of mercury impairs sperm quality and induces oxidative stress in rats. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2014; 77:143-154. [PMID: 24555655 DOI: 10.1080/15287394.2014.867202] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) is a widespread environmental pollutant that adversely affects the male reproductive system. The precise mechanisms underlying mercuric chloride (HgCl2)-induced toxicity are not fully understood; however, evidence indicates that oxidative stress may be involved in this process. Although the adverse effects of high levels of inorganic Hg on the male reproductive system have been investigated, the effects of low levels of exposure are unknown. Therefore, the aim of this study was to investigate the effects of chronic exposure to low concentrations of HgCl2 on sperm parameters, lipid peroxidation, and antioxidant activity of male rats. Three-month-old male Wistar rats were treated for 30 d and divided into groups: control (saline, i.m.) and HgCl2 group (i.m., first dose 4.6 μg/kg, subsequent doses 0.07 μg/kg/d). Sperm parameters (count, motility and morphology) and biomarkers of oxidative stress in testis, epididymis, prostate, and vas deferens were analyzed. Mercury treatment produced a reduction in sperm quantity (testis and epididymis) and daily sperm production, following by decrease in sperm motility and increase on head and tail morphologic abnormalities. HgCl2 exposure was correlated with enhanced oxidative stress in reproductive organs, represented not only by augmented lipid peroxidation but also by changes in antioxidant enzymes activity superoxide dismutase (SOD) and catalase (CAT) and nonprotein thiol levels. In conclusion, chronic exposure to low doses of Hg impaired sperm quality and adversely affected male reproductive functions, which may be due, at least in part, to enhanced oxidative stress.
Collapse
Affiliation(s)
- Caroline S Martinez
- a Postgraduate Program in Biochemistry and Postgraduate Program in Animal Science , Universidade Federal do Pampa , Uruguaiana , RS , Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Modulation of vasodilator response via the nitric oxide pathway after acute methyl mercury chloride exposure in rats. BIOMED RESEARCH INTERNATIONAL 2013; 2013:530603. [PMID: 24024199 PMCID: PMC3760274 DOI: 10.1155/2013/530603] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Revised: 06/14/2013] [Accepted: 07/13/2013] [Indexed: 11/29/2022]
Abstract
Mercury exposure induces endothelial dysfunction leading to loss of endothelium-dependent vasorelaxation due to decreased nitric oxide (NO) bioavailability via increased oxidative stress. Our aim was to investigate whether acute treatment with methyl mercury chloride changes the endothelium-dependent vasodilator response and to explore the possible mechanisms behind the observed effects. Wistar rats were treated with methyl mercury chloride (5 mg/kg, po.). The methyl mercury chloride treatment resulted in an increased aortic vasorelaxant response to acetylcholine (ACh). In methyl-mercury-chloride-exposed rats, the % change in vasorelaxant response of ACh in presence of Nω-Nitro-L-arginine methyl ester hydrochloride (L-NAME; 10−4 M) was significantly increased, and in presence of glybenclamide (10−5 M), the response was similar to that of untreated rats, indicating the involvement of NO and not of endothelium-derived hyperpolarizing factor (EDHF). In addition, superoxide dismutase (SOD) + catalase treatment increased the NO modulation of vasodilator response in methyl-mercury-chloride-exposed rats. Our results demonstrate an increase in the vascular reactivity to ACh in aorta of rats acutely exposed to methyl mercury chloride. Methyl mercury chloride induces nitric oxide synthase (NOS) and increases the NO production along with inducing oxidative stress without affecting the EDHF pathway.
Collapse
|