1
|
Ahmad F, Soe S, Albon J, Errington R, Theobald P. Quantifying the microstructural and biomechanical changes in the porcine ventricles during growth and remodelling. Acta Biomater 2023; 171:166-192. [PMID: 37797709 DOI: 10.1016/j.actbio.2023.09.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 09/19/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Cardiac tissue growth and remodelling (G & R) occur in response to the changing physiological demands of the heart after birth. The early shift to pulmonary circulation produces an immediate increase in ventricular workload, causing microstructural and biomechanical changes that serve to maintain overall physiological homoeostasis. Such cardiac G & R continues throughout life. Quantifying the tissue's mechanical and microstructural changes because of G & R is of increasing interest, dovetailing with the emerging fields of personalised and precision solutions. This study aimed to determine equibiaxial, and non-equibiaxial extension, stress-relaxation, and the underlying microstructure of the passive porcine ventricles tissue at four time points spanning from neonatal to adulthood. The three-dimensional microstructure was investigated via two-photon excited fluorescence and second-harmonic generation microscopy on optically cleared tissues, describing the 3D orientation, rotation and dispersion of the cardiomyocytes and collagen fibrils. The results revealed that during biomechanical testing, myocardial ventricular tissue possessed non-linear, anisotropic, and viscoelastic behaviour. An increase in stiffness and viscoelasticity was noted for the left and right ventricular free walls from neonatal to adulthood. Microstructural analyses revealed concomitant increases in cardiomyocyte rotation and dispersion. This study provides baseline data, describing the biomechanical and microstructural changes in the left and right ventricular myocardial tissue during G & R, which should prove valuable to researchers in developing age-specific, constitutive models for more accurate computational simulations. STATEMENT OF SIGNIFICANCE: There is a dearth of experimental data describing the growth and remodelling of left and right ventricular tissue. The published literature is fragmented, with data reported via different experimental techniques using tissues harvested from a variety of animals, with different gender and ages. This prevents developing a continuum of data spanning birth to death, so limiting the potential that can be leveraged to aid computational modelling and simulations. In this study, equibiaxial, non-equibiaxial, and stress-relaxation data are presented, describing directional-dependent material responses. The biomechanical data is consolidated with equivalent microstructural data, an important element for the development of future material models. Combined, these data describe microstructural and biomechanical changes in the ventricles, spanning G &R from neonatal to adulthood.
Collapse
Affiliation(s)
- Faizan Ahmad
- School of Engineering, Cardiff University, UK; School of Health Sciences, Birmingham City University, UK.
| | - Shwe Soe
- FET - Engineering, Design and Mathematics, University of West of England, UK
| | - Julie Albon
- School of Optometry and Vision Sciences, Cardiff University, UK; Viva Scientia Bioimaging Laboratories, Cardiff University, UK
| | | | | |
Collapse
|
2
|
Jannasch A, Schnabel C, Galli R, Faak S, Büttner P, Dittfeld C, Tugtekin SM, Koch E, Matschke K. Optical coherence tomography and multiphoton microscopy offer new options for the quantification of fibrotic aortic valve disease in ApoE -/- mice. Sci Rep 2021; 11:5834. [PMID: 33712671 PMCID: PMC7955095 DOI: 10.1038/s41598-021-85142-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 02/25/2021] [Indexed: 01/31/2023] Open
Abstract
Aortic valve sclerosis is characterized as the thickening of the aortic valve without obstruction of the left ventricular outflow. It has a prevalence of 30% in people over 65 years old. Aortic valve sclerosis represents a cardiovascular risk marker because it may progress to moderate or severe aortic valve stenosis. Thus, the early recognition and management of aortic valve sclerosis are of cardinal importance. We examined the aortic valve geometry and structure from healthy C57Bl6 wild type and age-matched hyperlipidemic ApoE-/- mice with aortic valve sclerosis using optical coherence tomography (OCT) and multiphoton microscopy (MPM) and compared results with histological analyses. Early fibrotic thickening, especially in the tip region of the native aortic valve leaflets from the ApoE-/- mice, was detectable in a precise spatial resolution using OCT. Evaluation of the second harmonic generation signal using MPM demonstrated that collagen content decreased in all aortic valve leaflet regions in the ApoE-/- mice. Lipid droplets and cholesterol crystals were detected using coherent anti-Stokes Raman scattering in the tissue from the ApoE-/- mice. Here, we demonstrated that OCT and MPM, which are fast and precise contactless imaging approaches, are suitable for defining early morphological and structural alterations of sclerotic murine aortic valves.
Collapse
Affiliation(s)
- Anett Jannasch
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstraße 76, 01307, Dresden, Germany.
| | - Christian Schnabel
- Department of Anesthesiology and Intensive Care Medicine and Clinical Sensoring and Monitoring, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Roberta Galli
- Department of Anesthesiology and Intensive Care Medicine and Clinical Sensoring and Monitoring, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Saskia Faak
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstraße 76, 01307, Dresden, Germany
| | - Petra Büttner
- Department of Cardiology, Heart Center Leipzig At University Leipzig, Leipzig, Germany
| | - Claudia Dittfeld
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstraße 76, 01307, Dresden, Germany
| | - Sems Malte Tugtekin
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstraße 76, 01307, Dresden, Germany
| | - Edmund Koch
- Department of Anesthesiology and Intensive Care Medicine and Clinical Sensoring and Monitoring, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Klaus Matschke
- Department of Cardiac Surgery, Carl Gustav Carus Faculty of Medicine, Technische Universität Dresden, Heart Centre Dresden, Fetscherstraße 76, 01307, Dresden, Germany
| |
Collapse
|
3
|
Borile G, Sandrin D, Filippi A, Anderson KI, Romanato F. Label-Free Multiphoton Microscopy: Much More Than Fancy Images. Int J Mol Sci 2021; 22:2657. [PMID: 33800802 PMCID: PMC7961783 DOI: 10.3390/ijms22052657] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 02/19/2021] [Accepted: 03/02/2021] [Indexed: 02/07/2023] Open
Abstract
Multiphoton microscopy has recently passed the milestone of its first 30 years of activity in biomedical research. The growing interest around this approach has led to a variety of applications from basic research to clinical practice. Moreover, this technique offers the advantage of label-free multiphoton imaging to analyze samples without staining processes and the need for a dedicated system. Here, we review the state of the art of label-free techniques; then, we focus on two-photon autofluorescence as well as second and third harmonic generation, describing physical and technical characteristics. We summarize some successful applications to a plethora of biomedical research fields and samples, underlying the versatility of this technique. A paragraph is dedicated to an overview of sample preparation, which is a crucial step in every microscopy experiment. Afterwards, we provide a detailed review analysis of the main quantitative methods to extract important information and parameters from acquired images using second harmonic generation. Lastly, we discuss advantages, limitations, and future perspectives in label-free multiphoton microscopy.
Collapse
Affiliation(s)
- Giulia Borile
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Deborah Sandrin
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| | - Andrea Filippi
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
| | - Kurt I. Anderson
- Crick Advanced Light Microscopy Facility (CALM), The Francis Crick Institute, London NW1 1AT, UK;
| | - Filippo Romanato
- Laboratory of Optics and Bioimaging, Institute of Pediatric Research Città della Speranza, 35127 Padua, Italy;
- Department of Physics and Astronomy “G. Galilei”, University of Padua, 35131 Padua, Italy; (D.S.); (A.F.)
- L.I.F.E.L.A.B. Program, Consorzio per la Ricerca Sanitaria (CORIS), Veneto Region, 35128 Padua, Italy
| |
Collapse
|
4
|
Region-Specific Microstructure in the Neonatal Ventricles of a Porcine Model. Ann Biomed Eng 2018; 46:2162-2176. [PMID: 30014287 PMCID: PMC6267669 DOI: 10.1007/s10439-018-2089-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 07/03/2018] [Indexed: 12/15/2022]
Abstract
The neonate transitions from placenta-derived oxygen, to supply from the pulmonary system, moments after birth. This requires a series of structural developments to divert more blood through the right heart and onto the lungs, with the tissue quickly remodelling to the changing ventricular workload. In some cases, however, the heart structure does not fully develop causing poor circulation and inefficient oxygenation, which is associated with an increase in mortality and morbidity. This study focuses on developing an enhanced knowledge of the 1-day old heart, quantifying the region-specific microstructural parameters of the tissue. This will enable more accurate mathematical and computational simulations of the young heart. Hearts were dissected from 12, 1-day-old deceased Yorkshire piglets (mass: 2.1–2.4 kg, length: 0.38–0.51 m), acquired from a breeding farm. Evans blue dye was used to label the heart equator and to demarcate the left and right ventricle free walls. Two hearts were used for three-dimensional diffusion-tensor magnetic resonance imaging, to quantify the fractional anisotropy (FA). The remaining hearts were used for two-photon excited fluorescence and second-harmonic generation microscopy, to quantify the cardiomyocyte and collagen fibril structures within the anterior and posterior aspects of the right and left ventricles. FA varied significantly across both ventricles, with the greatest in the equatorial region, followed by the base and apex. The FA in each right ventricular region was statistically greater than that in the left. Cardiomyocyte and collagen fibre rotation was greatest in the anterior wall of both ventricles, with less dispersion when compared to the posterior walls. In defining these key parameters, this study provides a valuable insight into the 1-day-old heart that will provide a valuable platform for further investigation the normal and abnormal heart using mathematical and computational models.
Collapse
|
5
|
Pinkert MA, Hortensius RA, Ogle BM, Eliceiri KW. Imaging the Cardiac Extracellular Matrix. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1098:21-44. [PMID: 30238364 DOI: 10.1007/978-3-319-97421-7_2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Cardiovascular disease is the global leading cause of death. One route to address this problem is using biomedical imaging to measure the molecules and structures that surround cardiac cells. This cellular microenvironment, known as the cardiac extracellular matrix, changes in composition and organization during most cardiac diseases and in response to many cardiac treatments. Measuring these changes with biomedical imaging can aid in understanding, diagnosing, and treating heart disease. This chapter supports those efforts by reviewing representative methods for imaging the cardiac extracellular matrix. It first describes the major biological targets of ECM imaging, including the primary imaging target of fibrillar collagen. Then it discusses the imaging methods, describing their current capabilities and limitations. It categorizes the imaging methods into two main categories: organ-scale noninvasive methods and cellular-scale invasive methods. Noninvasive methods can be used on patients, but only a few are clinically available, and others require further development to be used in the clinic. Invasive methods are the most established and can measure a variety of properties, but they cannot be used on live patients. Finally, the chapter concludes with a perspective on future directions and applications of biomedical imaging technologies.
Collapse
Affiliation(s)
- Michael A Pinkert
- Laboratory for Optical and Computational Instrumentation and Department of Medical Physics, University of Wisconsin at Madison, Madison, WI, USA.,Morgridge Institute for Research, Madison, WI, USA
| | - Rebecca A Hortensius
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Brenda M Ogle
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Kevin W Eliceiri
- Laboratory for Optical and Computational Instrumentation and Department of Medical Physics, University of Wisconsin at Madison, Madison, WI, USA. .,Morgridge Institute for Research, Madison, WI, USA.
| |
Collapse
|
6
|
Quantitative imaging of fibrotic and morphological changes in liver of non-alcoholic steatohepatitis (NASH) model mice by second harmonic generation (SHG) and auto-fluorescence (AF) imaging using two-photon excitation microscopy (TPEM). Biochem Biophys Rep 2016; 8:277-283. [PMID: 28955967 PMCID: PMC5614464 DOI: 10.1016/j.bbrep.2016.09.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/06/2016] [Accepted: 09/22/2016] [Indexed: 12/18/2022] Open
Abstract
Non-alcoholic steatohepatitis (NASH) is a common liver disorder caused by fatty liver. Because NASH is associated with fibrotic and morphological changes in liver tissue, a direct imaging technique is required for accurate staging of liver tissue. For this purpose, in this study we took advantage of two label-free optical imaging techniques, second harmonic generation (SHG) and auto-fluorescence (AF), using two-photon excitation microscopy (TPEM). Three-dimensional ex vivo imaging of tissues from NASH model mice, followed by image processing, revealed that SHG and AF are sufficient to quantitatively characterize the hepatic capsule at an early stage and parenchymal morphologies associated with liver disease progression, respectively. Combination of two label-free optical imaging techniques for the evaluation of liver disease is proposed. SHG is sufficient to quantitatively characterize the hepatic capsule at an early stage of NASH. Auto-fluorescence is useful to evaluate the parenchymal morphologies associated with liver disease progression.
Collapse
|
7
|
Toepfer CN, Sikkel MB, Caorsi V, Vydyanath A, Torre I, Copeland O, Lyon AR, Marston SB, Luther PK, Macleod KT, West TG, Ferenczi MA. A post-MI power struggle: adaptations in cardiac power occur at the sarcomere level alongside MyBP-C and RLC phosphorylation. Am J Physiol Heart Circ Physiol 2016; 311:H465-75. [PMID: 27233767 PMCID: PMC5005282 DOI: 10.1152/ajpheart.00899.2015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 05/24/2016] [Indexed: 01/25/2023]
Abstract
Myocardial remodeling in response to chronic myocardial infarction (CMI) progresses through two phases, hypertrophic "compensation" and congestive "decompensation." Nothing is known about the ability of uninfarcted myocardium to produce force, velocity, and power during these clinical phases, even though adaptation in these regions likely drives progression of compensation. We hypothesized that enhanced cross-bridge-level contractility underlies mechanical compensation and is controlled in part by changes in the phosphorylation states of myosin regulatory proteins. We induced CMI in rats by left anterior descending coronary artery ligation. We then measured mechanical performance in permeabilized ventricular trabecula taken distant from the infarct zone and assayed myosin regulatory protein phosphorylation in each individual trabecula. During full activation, the compensated myocardium produced twice as much power and 31% greater isometric force compared with noninfarcted controls. Isometric force during submaximal activations was raised >2.4-fold, while power was 2-fold greater. Electron and confocal microscopy demonstrated that these mechanical changes were not a result of increased density of contractile protein and therefore not an effect of tissue hypertrophy. Hence, sarcomere-level contractile adaptations are key determinants of enhanced trabecular mechanics and of the overall cardiac compensatory response. Phosphorylation of myosin regulatory light chain (RLC) increased and remained elevated post-MI, while phosphorylation of myosin binding protein-C (MyBP-C) was initially depressed but then increased as the hearts became decompensated. These sensitivities to CMI are in accordance with phosphorylation-dependent regulatory roles for RLC and MyBP-C in crossbridge function and with compensatory adaptation in force and power that we observed in post-CMI trabeculae.
Collapse
Affiliation(s)
- Christopher N Toepfer
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Laboratory of Molecular Physiology, National Heart and Lung Institute, National Institutes of Health, Bethesda, Maryland;
| | - Markus B Sikkel
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Valentina Caorsi
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Laboratoire Physico-Chimie, UMR168, Institute Curie, Paris, France
| | - Anupama Vydyanath
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Iratxe Torre
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - O'Neal Copeland
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Alexander R Lyon
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Nationa Institute of Health Research Cardiovascular Biomedical Research Unit, Royal Brompton Hospital, London, United Kingdom
| | - Steven B Marston
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Pradeep K Luther
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Kenneth T Macleod
- Department of Cardiac Medicine, National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Timothy G West
- Royal Veterinary College London, Structure & Motion Laboratory, North Mymms, United Kingdom; and
| | - Michael A Ferenczi
- Molecular Medicine Section, National Heart and Lung Institute, Imperial College London, London, United Kingdom; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore
| |
Collapse
|
8
|
Jensen T, Holten-Rossing H, Svendsen IMH, Jacobsen C, Vainer B. Quantitative analysis of myocardial tissue with digital autofluorescence microscopy. J Pathol Inform 2016; 7:15. [PMID: 27141321 PMCID: PMC4837794 DOI: 10.4103/2153-3539.179908] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Accepted: 02/23/2016] [Indexed: 01/04/2023] Open
Abstract
Background: The opportunity offered by whole slide scanners of automated histological analysis implies an ever increasing importance of digital pathology. To go beyond the importance of conventional pathology, however, digital pathology may need a basic histological starting point similar to that of hematoxylin and eosin staining in conventional pathology. This study presents an automated fluorescence-based microscopy approach providing highly detailed morphological data from unstained microsections. This data may provide a basic histological starting point from which further digital analysis including staining may benefit. Methods: This study explores the inherent tissue fluorescence, also known as autofluorescence, as a mean to quantitate cardiac tissue components in histological microsections. Data acquisition using a commercially available whole slide scanner and an image-based quantitation algorithm are presented. Results: It is shown that the autofluorescence intensity of unstained microsections at two different wavelengths is a suitable starting point for automated digital analysis of myocytes, fibrous tissue, lipofuscin, and the extracellular compartment. The output of the method is absolute quantitation along with accurate outlines of above-mentioned components. The digital quantitations are verified by comparison to point grid quantitations performed on the microsections after Van Gieson staining. Conclusion: The presented method is amply described as a prestain multicomponent quantitation and outlining tool for histological sections of cardiac tissue. The main perspective is the opportunity for combination with digital analysis of stained microsections, for which the method may provide an accurate digital framework.
Collapse
Affiliation(s)
- Thomas Jensen
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henrik Holten-Rossing
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Ida M H Svendsen
- Department of Forensic Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Christina Jacobsen
- Department of Forensic Pathology, University of Copenhagen, Copenhagen, Denmark
| | - Ben Vainer
- Department of Pathology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
9
|
Masè M, Cristoforetti A, Avogaro L, Tessarolo F, Piccoli F, Caola I, Pederzolli C, Graffigna A, Ravelli F. A spectral approach for the quantitative description of cardiac collagen network from nonlinear optical imaging. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2016; 2015:6257-60. [PMID: 26737722 DOI: 10.1109/embc.2015.7319822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The assessment of collagen structure in cardiac pathology, such as atrial fibrillation (AF), is essential for a complete understanding of the disease. This paper introduces a novel methodology for the quantitative description of collagen network properties, based on the combination of nonlinear optical microscopy with a spectral approach of image processing and analysis. Second-harmonic generation (SHG) microscopy was applied to atrial tissue samples from cardiac surgery patients, providing label-free, selective visualization of the collagen structure. The spectral analysis framework, based on 2D-FFT, was applied to the SHG images, yielding a multiparametric description of collagen fiber orientation (angle and anisotropy indexes) and texture scale (dominant wavelength and peak dispersion indexes). The proof-of-concept application of the methodology showed the capability of our approach to detect and quantify differences in the structural properties of the collagen network in AF versus sinus rhythm patients. These results suggest the potential of our approach in the assessment of collagen properties in cardiac pathologies related to a fibrotic structural component.
Collapse
|
10
|
Hinderer S, Brauchle E, Schenke-Layland K. Generation and Assessment of Functional Biomaterial Scaffolds for Applications in Cardiovascular Tissue Engineering and Regenerative Medicine. Adv Healthc Mater 2015; 4:2326-41. [PMID: 25778713 PMCID: PMC4745029 DOI: 10.1002/adhm.201400762] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Revised: 02/11/2015] [Indexed: 12/27/2022]
Abstract
Current clinically applicable tissue and organ replacement therapies are limited in the field of cardiovascular regenerative medicine. The available options do not regenerate damaged tissues and organs, and, in the majority of the cases, show insufficient restoration of tissue function. To date, anticoagulant drug-free heart valve replacements or growing valves for pediatric patients, hemocompatible and thrombus-free vascular substitutes that are smaller than 6 mm, and stem cell-recruiting delivery systems that induce myocardial regeneration are still only visions of researchers and medical professionals worldwide and far from being the standard of clinical treatment. The design of functional off-the-shelf biomaterials as well as automatable and up-scalable biomaterial processing methods are the focus of current research endeavors and of great interest for fields of tissue engineering and regenerative medicine. Here, various approaches that aim to overcome the current limitations are reviewed, focusing on biomaterials design and generation methods for myocardium, heart valves, and blood vessels. Furthermore, novel contact- and marker-free biomaterial and extracellular matrix assessment methods are highlighted.
Collapse
Affiliation(s)
- Svenja Hinderer
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
| | - Eva Brauchle
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
- Institute of Interfacial Process Engineering and Plasma Technology (IGVP), University of Stuttgart, Nobelstrasse 12, Stuttgart, 70569, Germany
| | - Katja Schenke-Layland
- Department of Cell and Tissue Engineering, Fraunhofer Institute for Interfacial Engineering and Biotechnology (IGB), Nobelstrasse 12, Stuttgart, 70569, Germany
- Department of Women's Health, Research Institute for Women's Health, Eberhard Karls University Tübingen, Silcherstr. 7/1, Tübingen, 72076, Germany
- Department of Medicine/Cardiology, Cardiovascular Research Laboratories, David Geffen School of Medicine at the, University of California Los Angeles (UCLA), Los Angeles, CA, USA
| |
Collapse
|
11
|
Richardson WJ, Clarke SA, Quinn TA, Holmes JW. Physiological Implications of Myocardial Scar Structure. Compr Physiol 2015; 5:1877-909. [PMID: 26426470 DOI: 10.1002/cphy.c140067] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Once myocardium dies during a heart attack, it is replaced by scar tissue over the course of several weeks. The size, location, composition, structure, and mechanical properties of the healing scar are all critical determinants of the fate of patients who survive the initial infarction. While the central importance of scar structure in determining pump function and remodeling has long been recognized, it has proven remarkably difficult to design therapies that improve heart function or limit remodeling by modifying scar structure. Many exciting new therapies are under development, but predicting their long-term effects requires a detailed understanding of how infarct scar forms, how its properties impact left ventricular function and remodeling, and how changes in scar structure and properties feed back to affect not only heart mechanics but also electrical conduction, reflex hemodynamic compensations, and the ongoing process of scar formation itself. In this article, we outline the scar formation process following a myocardial infarction, discuss interpretation of standard measures of heart function in the setting of a healing infarct, then present implications of infarct scar geometry and structure for both mechanical and electrical function of the heart and summarize experiences to date with therapeutic interventions that aim to modify scar geometry and structure. One important conclusion that emerges from the studies reviewed here is that computational modeling is an essential tool for integrating the wealth of information required to understand this complex system and predict the impact of novel therapies on scar healing, heart function, and remodeling following myocardial infarction.
Collapse
Affiliation(s)
- William J Richardson
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| | - Samantha A Clarke
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA
| | - T Alexander Quinn
- Department of Physiology and Biophysics, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Jeffrey W Holmes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia, USA.,Department of Medicine, University of Virginia, Charlottesville, Virginia, USA.,Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville, Virginia, USA
| |
Collapse
|
12
|
Lagarto J, Dyer BT, Talbot C, Sikkel MB, Peters NS, French PMW, Lyon AR, Dunsby C. Application of time-resolved autofluorescence to label-free in vivo optical mapping of changes in tissue matrix and metabolism associated with myocardial infarction and heart failure. BIOMEDICAL OPTICS EXPRESS 2015; 6:324-46. [PMID: 25780727 PMCID: PMC4354591 DOI: 10.1364/boe.6.000324] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 10/17/2014] [Accepted: 10/21/2014] [Indexed: 05/03/2023]
Abstract
We investigate the potential of an instrument combining time-resolved spectrofluorometry and diffuse reflectance spectroscopy to measure structural and metabolic changes in cardiac tissue in vivo in a 16 week post-myocardial infarction heart failure model in rats. In the scar region, we observed changes in the fluorescence signal that can be explained by increased collagen content, which is in good agreement with histology. In areas remote from the scar tissue, we measured changes in the fluorescence signal (p < 0.001) that cannot be explained by differences in collagen content and we attribute this to altered metabolism within the myocardium. A linear discriminant analysis algorithm was applied to the measurements to predict the tissue disease state. When we combine all measurements, our results reveal high diagnostic accuracy in the infarcted area (100%) and border zone (94.44%) as well as in remote regions from the scar (> 77%). Overall, our results demonstrate the potential of our instrument to characterize structural and metabolic changes in a failing heart in vivo without using exogenous labels.
Collapse
Affiliation(s)
- João Lagarto
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ
UK
- Authors contributed equally to this work
| | - Benjamin T. Dyer
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN
UK
- Authors contributed equally to this work
| | - Clifford Talbot
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ
UK
| | - Markus B. Sikkel
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN
UK
| | - Nicholas S. Peters
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN
UK
| | - Paul M. W. French
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN
UK
| | - Alexander R. Lyon
- National Heart and Lung Institute, Imperial College London, Du Cane Road, London, W12 0NN
UK
- Authors contributed equally to this work
| | - Chris Dunsby
- Photonics Group, Department of Physics, Imperial College London, Prince Consort Road, London, SW7 2AZ
UK
- Authors contributed equally to this work
| |
Collapse
|
13
|
Wang Z, Qin W, Shao Y, Ma S, Borg TK, Gao BZ. Pulse splitter-based nonlinear microscopy for live-cardiomyocyte imaging. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2014; 8948. [PMID: 25767692 DOI: 10.1117/12.2041845] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Second harmonic generation (SHG) microscopy is a new imaging technique used in sarcomeric-addition studies. However, during the early stage of cell culture in which sarcomeric additions occur, the neonatal cardiomyocytes that we have been working with are very sensitive to photodamage, the resulting high rate of cell death prevents systematic study of sarcomeric addition using a conventional SHG system. To address this challenge, we introduced use of the pulse-splitter system developed by Na Ji et al. in our two photon excitation fluorescence (TPEF) and SHG hybrid microscope. The system dramatically reduced photodamage to neonatal cardiomyocytes in early stages of culture, greatly increasing cell viability. Thus continuous imaging of live cardiomyocytes was achieved with a stronger laser and for a longer period than has been reported in the literature. The pulse splitter-based TPEF-SHG microscope constructed in this study was demonstrated to be an ideal imaging system for sarcomeric addition-related investigations of neonatal cardiomyocytes in early stages of culture.
Collapse
Affiliation(s)
- Zhonghai Wang
- Department of Bioengineering, COMSET, Clemson University, Clemson, SC 29631, USA
| | - Wan Qin
- Department of Bioengineering, COMSET, Clemson University, Clemson, SC 29631, USA
| | - Yonghong Shao
- Institute of Optoelectronics, Shenzhen University, Shenzhen, Guangdong 518060, PR China
| | - Siyu Ma
- Department of Bioengineering, COMSET, Clemson University, Clemson, SC 29631, USA
| | - Thomas K Borg
- Regenerative Medicine and Cell Biology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bruce Z Gao
- Department of Bioengineering, COMSET, Clemson University, Clemson, SC 29631, USA
| |
Collapse
|
14
|
Moy AJ, Lo PC, Choi B. High-resolution visualization of mouse cardiac microvasculature using optical histology. BIOMEDICAL OPTICS EXPRESS 2013; 5:69-77. [PMID: 24466477 PMCID: PMC3891346 DOI: 10.1364/boe.5.000069] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Revised: 10/04/2013] [Accepted: 11/15/2013] [Indexed: 05/09/2023]
Abstract
Cardiovascular disease typically is associated with dysfunction of the coronary vasculature and microvasculature. The study of cardiovascular disease typically involves imaging of the large coronary vessels and quantification of cardiac blood perfusion. These methods, however, are not well suited for imaging of the cardiac microvasculature. We used the optical histology method, which combines chemical optical clearing and optical imaging, to create high-resolution, wide-field maps of the cardiac microvasculature in ventral slices of mouse heart. We have demonstrated the ability of the optical histology method to enable wide-field visualization of the cardiac microvasculature in high-resolution and anticipate that optical histology may have significant impact in studying cardiovascular disease.
Collapse
|
15
|
Li W, Goldstein DR, Kreisel D. Intravital 2-photon imaging, leukocyte trafficking, and the beating heart. Trends Cardiovasc Med 2013; 23:287-93. [PMID: 23706535 DOI: 10.1016/j.tcm.2013.04.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2013] [Revised: 03/29/2013] [Accepted: 04/01/2013] [Indexed: 01/13/2023]
Abstract
Intravital two-photon microscopy allows for the analysis of single-cell dynamics within intact tissues. As it is well recognized that molecular cues that regulate leukocyte trafficking into inflammatory sites differ between various tissues, it is important to study organ-specific responses. Recently, intravital two-photon microscopy has been expanded to moving organs in the mouse such as beating hearts. Unlike previous experimental approaches to image cardiac tissue explants or isolated perfused heart preparations by two-photon microscopy, intravital imaging accounts for the mechanical force transmitted to vessels by the heartbeat and accurately assesses dynamic leukocyte behavior in the coronary vessels and myocardial tissue. Intravital two-photon imaging of beating hearts is a promising experimental tool that will help elucidate cellular and molecular immune processes that contribute to a variety of cardiovascular diseases.
Collapse
Affiliation(s)
- Wenjun Li
- Department of Surgery, Washington University in St. Louis, New Haven, CT, USA
| | | | | |
Collapse
|