1
|
Swaminathan S, Grover CE, Mugisha AS, Sichterman LE, Lee Y, Yang P, Mallery EL, Jareczek JJ, Leach AG, Xie J, Wendel JF, Szymanski DB, Zabotina OA. Daily glycome and transcriptome profiling reveals polysaccharide structures and correlated glycosyltransferases critical for cotton fiber growth. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024. [PMID: 39441672 DOI: 10.1111/tpj.17084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 09/02/2024] [Accepted: 09/28/2024] [Indexed: 10/25/2024]
Abstract
Cotton fiber is the most valuable naturally available material for the textile industry and the fiber length and strength are key determinants of its quality. Dynamic changes in the pectin, xyloglucan, xylan, and cellulose polysaccharide epitope content during fiber growth contribute to complex remodeling of fiber cell wall (CW) and quality. Detailed knowledge about polysaccharide compositional and structural alteration in the fiber during fiber elongation and strengthening is important to understand the molecular dynamics of fiber development and improve its quality. Here, large-scale glycome profiling coupled with fiber phenotype and transcriptome profiling was conducted on fiber collected daily covering the most critical window of fiber development. The profiling studies with high temporal resolution allowed us to identify specific polysaccharide epitopes associated with distinct fiber phenotypes that might contribute to fiber quality. This study revealed the critical role of highly branched RG-I pectin epitopes such as β-1,4-linked-galactans, β-1,6-linked-galactans, and arabinogalactans, in addition to earlier reported homogalacturonans and xyloglucans in the formation of cotton fiber middle lamella and contributing to fiber plasticity and elongation. We also propose the essential role of heteroxylans (Xyl-MeGlcA and Xyl-3Ar), as a guiding factor for secondary CW cellulose microfibril arrangement, thus contributing to fiber strength. Correlation analysis of profiles of polysaccharide epitopes from glycome data and expression profiles of glycosyltransferase-encoding genes from transcriptome data identified several key putative glycosyltransferases that are potentially involved in synthesizing the critical polysaccharide epitopes. The findings of this study provide a foundation to identify molecular factors that dictate important fiber traits.
Collapse
Affiliation(s)
- Sivakumar Swaminathan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Corrinne E Grover
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Alither S Mugisha
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Lauren E Sichterman
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Youngwoo Lee
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Pengcheng Yang
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Eileen L Mallery
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Josef J Jareczek
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Alexis G Leach
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Jun Xie
- Department of Statistics, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Jonathan F Wendel
- Department of Ecology, Evolution and Organismal Biology, Iowa State University, Ames, Iowa, 50011, USA
| | - Daniel B Szymanski
- Department of Biological Sciences, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Olga A Zabotina
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa, 50011, USA
| |
Collapse
|
2
|
Cosgrove D, Dupree P, Gomez ED, Haigler CH, Kubicki JD, Zimmer J. How Many Glucan Chains Form Plant Cellulose Microfibrils? A Mini Review. Biomacromolecules 2024; 25:6357-6366. [PMID: 39207939 PMCID: PMC11480985 DOI: 10.1021/acs.biomac.4c00995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Assessing the number of glucan chains in cellulose microfibrils (CMFs) is crucial for understanding their structure-property relationships and interactions within plant cell walls. This Review examines the conclusions and limitations of the major experimental techniques that have provided insights into this question. Small-angle X-ray and neutron scattering data predominantly support an 18-chain model, although analysis is complicated by factors such as fibril coalescence and matrix polysaccharide associations. Solid-state nuclear magnetic resonance (NMR) spectroscopy allows the estimation of the CMF width from the ratio of interior to surface glucose residues. However, there is uncertainty in the assignment of NMR spectral peaks to surface or interior chains. Freeze-fracture transmission electron microscopy images show cellulose synthase complexes to be "rosettes" of six lobes each consistent with a trimer of cellulose synthase enzymes, consistent with the synthesis of 18 parallel glucan chains in the CMF. Nevertheless, the number of chains in CMFs remains to be conclusively demonstrated.
Collapse
Affiliation(s)
- Daniel
J. Cosgrove
- Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Paul Dupree
- Department
of Biochemistry, University of Cambridge, Cambridge CB2 1QW, United Kingdom
| | - Enrique D. Gomez
- Pennsylvania
State University, University
Park, Pennsylvania 16802, United States
| | - Candace H. Haigler
- Crop
Sciences and Department of Botany, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - James D. Kubicki
- Department
of Geological Sciences, UTEP University
of Texas El Paso, El Paso, Texas 79968, United States
| | - Jochen Zimmer
- Molecular
Physiology and Biological Physics, University
of Virginia, Charlottesville, Virginia 22903-1738, United States
| |
Collapse
|
3
|
Zhu X, Ma X, Hu W, Xing Y, Huang S, Chen Z, Fang L. Genome-wide identification of TBL gene family and functional analysis of GhTBL84 under cold stress in cotton. FRONTIERS IN PLANT SCIENCE 2024; 15:1431835. [PMID: 38957598 PMCID: PMC11217346 DOI: 10.3389/fpls.2024.1431835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024]
Abstract
Cotton fiber, the mainstay of the world's textile industry, is formed by the differentiation of epidermal cells on the outer peridium of the ovule. The TBL gene family is involved in the regulation of epidermal hair development as well as response to abiotic stress. However, the function of TBL genes in cotton has not been systematically studied yet. Here, we identified 131 and 130 TBL genes in TM-1 (Gossypium hirsutum) and Hai7124 (Gossypium barbadense), respectively. Phylogenetic, gene structure, expression pattern and cis-element of promoter analysis were performed and compared. Single gene association analysis indicated that more TBL genes related to fiber quality traits were found in G. barbadense, whereas more genes associated with yield traits were found in G. hirsutum. One gene, GhTBL84 (GH_D04G0930), was induced by treatment at 4°C for 12 and 24 h in G. hirsutum and silencing of the GhTBL84 gene by VIGS technology in TM-1 can significantly improve the resistance of cotton seedlings to low temperature stress. In sum, our study conducted a genome-wide identification and comparative analysis of TBL family genes in G. hirsutum and G. barbadense and demonstrated a group of TBL genes significantly associated with fiber quality and excavated cold stress responsive gene, such as GhTBL84, providing a theoretical basis for further improving cotton agronomic traits.
Collapse
Affiliation(s)
- Xiaoqing Zhu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Xiaowei Ma
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Wanying Hu
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Yulin Xing
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Shengcai Huang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Zequan Chen
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| | - Lei Fang
- Zhejiang Provincial Key Laboratory of Crop Genetic Resources, Institute of Crop Science, Plant Precision Breeding Academy, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
- Hainan Institute of Zhejiang University, Sanya, China
| |
Collapse
|
4
|
Wu A, Lian B, Hao P, Fu X, Zhang M, Lu J, Ma L, Yu S, Wei H, Wang H. GhMYB30-GhMUR3 affects fiber elongation and secondary wall thickening in cotton. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:694-712. [PMID: 37988560 DOI: 10.1111/tpj.16523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 10/17/2023] [Accepted: 10/23/2023] [Indexed: 11/23/2023]
Abstract
Xyloglucan, an important hemicellulose, plays a crucial role in maintaining cell wall structure and cell elongation. However, the effects of xyloglucan on cotton fiber development are not well understood. GhMUR3 encodes a xyloglucan galactosyltransferase that is essential for xyloglucan synthesis and is highly expressed during fiber elongation. In this study, we report that GhMUR3 participates in cotton fiber development under the regulation of GhMYB30. Overexpression GhMUR3 affects the fiber elongation and cell wall thickening. Transcriptome showed that the expression of genes involved in secondary cell wall synthesis was prematurely activated in OE-MUR3 lines. In addition, GhMYB30 was identified as a key regulator of GhMUR3 by Y1H, Dual-Luc, and electrophoretic mobility shift assay (EMSA) assays. GhMYB30 directly bound the GhMUR3 promoter and activated GhMUR3 expression. Furthermore, DAP-seq of GhMYB30 was performed to identify its target genes in the whole genome. The results showed that many target genes were associated with fiber development, including cell wall synthesis-related genes, BR-related genes, reactive oxygen species pathway genes, and VLCFA synthesis genes. It was demonstrated that GhMYB30 may regulate fiber development through multiple pathways. Additionally, GhMYB46 was confirmed to be a target gene of GhMYB30 by EMSA, and GhMYB46 was significantly increased in GhMYB30-silenced lines, indicating that GhMYB30 inhibited GhMYB46 expression. Overall, these results revealed that GhMUR3 under the regulation of GhMYB30 and plays an essential role in cotton fiber elongation and secondary wall thickening. Additionally, GhMYB30 plays an important role in the regulation of fiber development and regulates fiber secondary wall synthesis by inhibiting the expression of GhMYB46.
Collapse
Affiliation(s)
- Aimin Wu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, Hubei, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Boying Lian
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Pengbo Hao
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiaokang Fu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Meng Zhang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Jianhua Lu
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Liang Ma
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Shuxun Yu
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430000, Hubei, China
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hengling Wei
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Hantao Wang
- National Key Laboratory of Cotton Bio-Breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
- Western Agricultural Research Center, Chinese Academy of Agricultural Sciences, Changji, 831100, Xinjiang, China
| |
Collapse
|
5
|
Zhai Z, Zhang K, Fang Y, Yang Y, Cao X, Liu L, Tian Y. Systematically and Comprehensively Understanding the Regulation of Cotton Fiber Initiation: A Review. PLANTS (BASEL, SWITZERLAND) 2023; 12:3771. [PMID: 37960127 PMCID: PMC10648247 DOI: 10.3390/plants12213771] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 11/15/2023]
Abstract
Cotton fibers provide an important source of raw materials for the textile industry worldwide. Cotton fiber is a kind of single cell that differentiates from the epidermis of the ovule and provides a perfect research model for the differentiation and elongation of plant cells. Cotton fiber initiation is the first stage throughout the entire developmental process. The number of fiber cell initials on the seed ovule epidermis decides the final fiber yield. Thus, it is of great significance to clarify the mechanism underlying cotton fiber initiation. Fiber cell initiation is controlled by complex and interrelated regulatory networks. Plant phytohormones, transcription factors, sugar signals, small signal molecules, functional genes, non-coding RNAs, and histone modification play important roles during this process. Here, we not only summarize the different kinds of factors involved in fiber cell initiation but also discuss the mechanisms of these factors that act together to regulate cotton fiber initiation. Our aim is to synthesize a systematic and comprehensive review of different factors during fiber initiation that will provide the basics for further illustrating these mechanisms and offer theoretical guidance for improving fiber yield in future molecular breeding work.
Collapse
Affiliation(s)
- Zeyang Zhai
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Kaixin Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yao Fang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yujie Yang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Xu Cao
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Li Liu
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| | - Yue Tian
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212003, China; (Z.Z.); (K.Z.); (Y.F.); (Y.Y.); (X.C.); (L.L.)
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agricultural and Rural Areas, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212018, China
| |
Collapse
|
6
|
LaFave Q, Etukuri SP, Courtney CL, Kothari N, Rife TW, Saski CA. A Simplified Microscopy Technique to Rapidly Characterize Individual Fiber Traits in Cotton. Methods Protoc 2023; 6:92. [PMID: 37888024 PMCID: PMC10609321 DOI: 10.3390/mps6050092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/28/2023] Open
Abstract
Recent advances in phenotyping techniques have substantially improved the ability to mitigate type-II errors typically associated with high variance in phenotyping data sets. In particular, the implementation of automated techniques such as the High-Volume Instrument (HVI) and the Advanced Fiber Information System (AFIS) have significantly enhanced the reproducibility and standardization of various fiber quality measurements in cotton. However, micronaire is not a direct measure of either maturity or fineness, lending to limitations. AFIS only provides a calculated form of fiber diameter, not a direct measure, justifying the need for a visual-based reference method. Obtaining direct measurements of individual fibers through cross-sectional analysis and electron microscopy is a widely accepted standard but is time-consuming and requires the use of hazardous chemicals and specialized equipment. In this study, we present a simplified fiber histology and image acquisition technique that is both rapid and reproducible. We also introduce an automated image analysis program that utilizes machine learning to differentiate good fibers from bad and to subsequently collect critical phenotypic measurements. These methods have the potential to improve the efficiency of cotton fiber phenotyping, allowing for greater precision in unravelling the genetic architecture of critical traits such as fiber diameter, shape, areas of the secondary cell wall/lumen, and others, ultimately leading to larger genetic gains in fiber quality and improvements in cotton.
Collapse
Affiliation(s)
- Quinn LaFave
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (Q.L.); (S.P.E.); (C.L.C.)
| | - Shalini P. Etukuri
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (Q.L.); (S.P.E.); (C.L.C.)
| | - Chaney L. Courtney
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (Q.L.); (S.P.E.); (C.L.C.)
| | | | - Trevor W. Rife
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (Q.L.); (S.P.E.); (C.L.C.)
| | - Christopher A. Saski
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (Q.L.); (S.P.E.); (C.L.C.)
| |
Collapse
|
7
|
Jareczek JJ, Grover CE, Wendel JF. Cotton fiber as a model for understanding shifts in cell development under domestication. FRONTIERS IN PLANT SCIENCE 2023; 14:1146802. [PMID: 36938017 PMCID: PMC10017751 DOI: 10.3389/fpls.2023.1146802] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 02/21/2023] [Indexed: 05/27/2023]
Abstract
Cotton fiber provides the predominant plant textile in the world, and it is also a model for plant cell wall biosynthesis. The development of the single-celled cotton fiber takes place across several overlapping but discrete stages, including fiber initiation, elongation, the transition from elongation to secondary cell wall formation, cell wall thickening, and maturation and cell death. During each stage, the developing fiber undergoes a complex restructuring of genome-wide gene expression change and physiological/biosynthetic processes, which ultimately generate a strikingly elongated and nearly pure cellulose product that forms the basis of the global cotton industry. Here, we provide an overview of this developmental process focusing both on its temporal as well as evolutionary dimensions. We suggest potential avenues for further improvement of cotton as a crop plant.
Collapse
Affiliation(s)
- Josef J. Jareczek
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
- Biology Department, Bellarmine University, Louisville, KY, United States
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, IA, United States
| |
Collapse
|
8
|
Tian Z, Zhang Y, Zhu L, Jiang B, Wang H, Gao R, Friml J, Xiao G. Strigolactones act downstream of gibberellins to regulate fiber cell elongation and cell wall thickness in cotton (Gossypium hirsutum). THE PLANT CELL 2022; 34:4816-4839. [PMID: 36040191 PMCID: PMC9709996 DOI: 10.1093/plcell/koac270] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 08/25/2022] [Indexed: 05/21/2023]
Abstract
Strigolactones (SLs) are a class of phytohormones that regulate plant shoot branching and adventitious root development. However, little is known regarding the role of SLs in controlling the behavior of the smallest unit of the organism, the single cell. Here, taking advantage of a classic single-cell model offered by the cotton (Gossypium hirsutum) fiber cell, we show that SLs, whose biosynthesis is fine-tuned by gibberellins (GAs), positively regulate cell elongation and cell wall thickness by promoting the biosynthesis of very long-chain fatty acids (VLCFAs) and cellulose, respectively. Furthermore, we identified two layers of transcription factors (TFs) involved in the hierarchical regulation of this GA-SL crosstalk. The top-layer TF GROWTH-REGULATING FACTOR 4 (GhGRF4) directly activates expression of the SL biosynthetic gene DWARF27 (D27) to increase SL accumulation in fiber cells and GAs induce GhGRF4 expression. SLs induce the expression of four second-layer TF genes (GhNAC100-2, GhBLH51, GhGT2, and GhB9SHZ1), which transmit SL signals downstream to two ketoacyl-CoA synthase genes (KCS) and three cellulose synthase (CesA) genes by directly activating their transcription. Finally, the KCS and CesA enzymes catalyze the biosynthesis of VLCFAs and cellulose, respectively, to regulate development of high-grade cotton fibers. In addition to providing a theoretical basis for cotton fiber improvement, our results shed light on SL signaling in plant development at the single-cell level.
Collapse
Affiliation(s)
| | | | - Liping Zhu
- College of Life Sciences, Shaanxi Normal University, Xi’an,
China
| | - Bin Jiang
- College of Life Sciences, Shaanxi Normal University, Xi’an,
China
| | - Huiqin Wang
- College of Life Sciences, Shaanxi Normal University, Xi’an,
China
| | - Ruxi Gao
- College of Life Sciences, Northwest A&F University,
Shaanxi, Yangling, China
| | - Jiří Friml
- Institute of Science and Technology Austria, 3400
Klosterneuburg, Austria
| | | |
Collapse
|
9
|
Graham BP, Park J, Billings GT, Hulse‐Kemp AM, Haigler CH, Lobaton E. Efficient imaging and computer vision detection of two cell shapes in young cotton fibers. APPLICATIONS IN PLANT SCIENCES 2022; 10:e11503. [PMID: 36518948 PMCID: PMC9742826 DOI: 10.1002/aps3.11503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/09/2022] [Accepted: 08/17/2022] [Indexed: 06/17/2023]
Abstract
Premise The shape of young cotton (Gossypium) fibers varies within and between commercial cotton species, as revealed by previous detailed analyses of one cultivar of G. hirsutum and one of G. barbadense. Both narrow and wide fibers exist in G. hirsutum cv. Deltapine 90, which may impact the quality of our most abundant renewable textile material. More efficient cellular phenotyping methods are needed to empower future research efforts. Methods We developed semi-automated imaging methods for young cotton fibers and a novel machine learning algorithm for the rapid detection of tapered (narrow) or hemisphere (wide) fibers in homogeneous or mixed populations. Results The new methods were accurate for diverse accessions of G. hirsutum and G. barbadense and at least eight times more efficient than manual methods. Narrow fibers dominated in the three G. barbadense accessions analyzed, whereas the three G. hirsutum accessions showed a mixture of tapered and hemisphere fibers in varying proportions. Discussion The use or adaptation of these improved methods will facilitate experiments with higher throughput to understand the biological factors controlling the variable shapes of young cotton fibers or other elongating single cells. This research also enables the exploration of links between early cell shape and mature cotton fiber quality in diverse field-grown cotton accessions.
Collapse
Affiliation(s)
- Benjamin P. Graham
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNorth Carolina27695‐7620USA
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina27695‐7612USA
| | - Jeremy Park
- Department of Computer ScienceNorth Carolina State UniversityRaleighNorth Carolina27695‐8206USA
| | - Grant T. Billings
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNorth Carolina27695‐7620USA
- Bioinformatics Graduate ProgramNorth Carolina State UniversityRaleighNorth Carolina27695‐7566USA
| | - Amanda M. Hulse‐Kemp
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNorth Carolina27695‐7620USA
- Bioinformatics Graduate ProgramNorth Carolina State UniversityRaleighNorth Carolina27695‐7566USA
- Genomics and Bioinformatics Research Unit, U.S. Department of Agriculture, Agricultural Research ServiceRaleighNorth Carolina27606‐7825USA
| | - Candace H. Haigler
- Department of Crop and Soil SciencesNorth Carolina State UniversityRaleighNorth Carolina27695‐7620USA
- Department of Plant and Microbial BiologyNorth Carolina State UniversityRaleighNorth Carolina27695‐7612USA
| | - Edgar Lobaton
- Department of Electrical and Computer EngineeringNorth Carolina State UniversityRaleighNorth Carolina27695‐7911USA
| |
Collapse
|
10
|
Zhang J, Mei H, Lu H, Chen R, Hu Y, Zhang T. Transcriptome Time-Course Analysis in the Whole Period of Cotton Fiber Development. FRONTIERS IN PLANT SCIENCE 2022; 13:864529. [PMID: 35463423 PMCID: PMC9022538 DOI: 10.3389/fpls.2022.864529] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
Gossypium hirsutum and Gossypium barbadense are the widely cultivated tetraploid cottons around the world, which evolved great differences in the fiber yield and quality due to the independent domestication process. To reveal the genetic basis of the difference, we integrated 90 samples from ten time points during the fiber developmental period for investigating the dynamics of gene expression changes associated with fiber in G. hirsutum acc. TM-1 and G. barbadense cv. Hai7124 and acc. 3-79. Globally, 44,484 genes expressed in all three cultivars account for 61.14% of the total genes. About 61.39% (N = 3,412) of the cotton transcription factors were involved in fiber development, which consisted of 58 cotton TF families. The differential analysis of intra- and interspecies showed that 3 DPA had more expression changes. To discover the genes with temporally changed expression profiles during the whole fiber development, 1,850 genes predominantly expressed in G. hirsutum and 1,050 in G. barbadense were identified, respectively. Based on the weighted gene co-expression network and time-course analysis, several candidate genes, mainly involved in the secondary cell wall synthesis and phytohormones, were identified in this study, underlying possibly the transcriptional regulation and molecular mechanisms of the fiber quality differences between G. barbadense and G. hirsutum. The quantitative real-time PCR validation of the candidate genes was consistent with the RNA-seq data. Our study provides a strong rationale for the analysis of gene function and breeding of high-quality cotton.
Collapse
|
11
|
Avci U, Nakashima J. A Flat Embedding Method to Orient Gravistimulated Root Samples for Sectioning. Methods Mol Biol 2021; 2368:153-163. [PMID: 34647255 DOI: 10.1007/978-1-0716-1677-2_11] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2023]
Abstract
Microscopy is an important tool used for biological research and has played a crucial role toward understanding of cellular mechanisms and protein function. However, specific steps in processing of biological samples for microscopy warrant improvements to consistently generate data that can more reliably help in explaining mechanisms underlying complex biological phenomenon. Due to their small and fragile nature, some biological specimens such as Arabidopsis thaliana roots are vulnerable to damage during long sample preparation steps. Moreover, when specimens with a small diameter (typically less than 100 μm) are embedded in conventional silicone mold or capsule embedding, it is not only difficult to locate their orientation inside the capsule, but also a challenge to obtain good median longitudinal sections. Specimen orientation in particular is crucial because understanding certain plant biological processes such as gravitropism rely on precisely knowing spatial information of cells and tissues of the plant organ being studied. Here, we present a simple embedding technique to properly orient small plant organs such as roots so that the desired sectioning plane is achieved. This method is inexpensive and can be accomplished with minimal equipment and supplies.
Collapse
Affiliation(s)
- Utku Avci
- Faculty of Agriculture, Department of Agricultural Biotechnology, Eskisehir Osmangazi University, Eskisehir, Turkey
| | | |
Collapse
|
12
|
Graham BP, Haigler CH. Microtubules exert early, partial, and variable control of cotton fiber diameter. PLANTA 2021; 253:47. [PMID: 33484350 DOI: 10.1007/s00425-020-03557-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 12/30/2020] [Indexed: 05/07/2023]
Abstract
Variable cotton fiber diameter is set early in anisotropic elongation by cell-type-specific processes involving the temporal and spatial regulation of microtubules in the apical region. Cotton fibers are single cells that originate from the seed epidermis of Gossypium species. Then, they undergo extreme anisotropic elongation and limited diametric expansion. The details of cellular morphogenesis determine the quality traits that affect fiber uses and value, such as length, strength, and diameter. Lower and more consistent diameter would increase the competitiveness of cotton fiber with synthetic fiber, but we do not know how this trait is controlled. The complexity of the question is indicated by the existence of fibers in two major width classes in the major commercial species: broad and narrow fibers exist in commonly grown G. hirsutum, whereas G. barbadense produces only narrow fiber. To further understand how fiber diameter is controlled, we used ovule cultures, morphology measurements, and microtubule immunofluorescence to observe the effects of microtubule antagonists on fiber morphology, including shape and diameter within 80 µm of the apex. The treatments were applied at either one or two days post-anthesis during different stages of fiber morphogenesis. The results showed that inhibiting the presence and/or dynamic activity of microtubules caused larger diameter tips to form, with greater effects often observed with earlier treatment. The presence and geometry of a microtubule-depleted-zone below the apex were transiently correlated with the apical diameter of the narrow tip types. Similarly, the microtubule antagonists had somewhat different effects between tip types. Overall, the results demonstrate cell-type-specific mechanisms regulating fiber expansion within 80 µm of the apex, with variation in the impact of microtubules between tip types and over developmental time.
Collapse
Affiliation(s)
- Benjamin P Graham
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Candace H Haigler
- Department of Crop and Soil Sciences and Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
13
|
Pierce ET, Graham BP, Stiff MR, Osborne JA, Haigler CH. Cultures of Gossypium barbadense cotton ovules offer insights into the microtubule-mediated control of fiber cell expansion. PLANTA 2019; 249:1551-1563. [PMID: 30729290 DOI: 10.1007/s00425-019-03106-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 01/31/2019] [Indexed: 05/23/2023]
Abstract
A novel method for culturing ovules of Gossypium barbadense allowed in vitro comparisons with Gossypium hirsutum and revealed variable roles of microtubules in controlling cotton fiber cell expansion. Cotton fibers undergo extensive elongation and secondary wall thickening as they develop into our most important renewable textile material. These single cells elongate at the apex as well as elongating and expanding in diameter behind the apex. These multiple growth modes represent an interesting difference compared to classical tip-growing cells that needs to be explored further. In vitro ovule culture enables experimental analysis of the controls of cotton fiber development in commonly grown Gossypium hirsutum cotton, but, previously, there was no equivalent system for G. barbadense, which produces higher quality cotton fiber. Here, we describe: (a) how to culture the ovules of G. barbadense successfully, and (b) the results of an in vitro experiment comparing the role of microtubules in controlling cell expansion in different zones near the apex of three types of cotton fiber tips. Adding the common herbicide fluridone, 1-Methyl-3-phenyl-5-[3-(trifluoromethyl)phenyl]-4(1H)-pyridinone, to the medium supported G. barbadense ovule culture, with positive impacts on the number of useful ovules and fiber length. The effect is potentially mediated through inhibited synthesis of abscisic acid, which antagonized the positive effects of fluridone. Fiber development was perturbed by adding colchicine, a microtubule antagonist, to ovules of G. barbadense and G. hirsutum cultured 2 days after flowering. The results supported the zonal control of cell expansion in one type of G. hirsutum fiber tip and highlighted differences in the role of microtubules in modulating cell expansion between three types of cotton fiber tips.
Collapse
Affiliation(s)
- Ethan T Pierce
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Benjamin P Graham
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael R Stiff
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA
- Department of Biology, Lenoir-Rhyne University, Hickory, NC, 28601, USA
| | - Jason A Osborne
- Department of Statistics, North Carolina State University, Raleigh, NC, 27695, USA
| | - Candace H Haigler
- Department of Crop and Soil Sciences, North Carolina State University, Raleigh, NC, 27695, USA.
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
14
|
Guo X, Runavot JL, Bourot S, Meulewaeter F, Hernandez-Gomez M, Holland C, Harholt J, Willats WGT, Mravec J, Knox P, Ulvskov P. Metabolism of polysaccharides in dynamic middle lamellae during cotton fibre development. PLANTA 2019; 249:1565-1581. [PMID: 30737556 DOI: 10.1007/s00425-019-03107-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 02/04/2019] [Indexed: 06/09/2023]
Abstract
Evidence is presented that cotton fibre adhesion and middle lamella formation are preceded by cutin dilution and accompanied by rhamnogalacturonan-I metabolism. Cotton fibres are single cell structures that early in development adhere to one another via the cotton fibre middle lamella (CFML) to form a tissue-like structure. The CFML is disassembled around the time of initial secondary wall deposition, leading to fibre detachment. Observations of CFML in the light microscope have suggested that the development of the middle lamella is accompanied by substantial cell-wall metabolism, but it has remained an open question as to which processes mediate adherence and which lead to detachment. The mechanism of adherence and detachment were investigated here using glyco-microarrays probed with monoclonal antibodies, transcript profiling, and observations of fibre auto-digestion. The results suggest that adherence is brought about by cutin dilution, while the presence of relevant enzyme activities and the dynamics of rhamnogalacturonan-I side-chain accumulation and disappearance suggest that both attachment and detachment are accompanied by rhamnogalacturonan-I metabolism.
Collapse
Affiliation(s)
- Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Jean-Luc Runavot
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Ghent, Belgium
| | - Stéphane Bourot
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Ghent, Belgium
| | - Frank Meulewaeter
- Bayer CropScience NV, Innovation Center, Technologiepark 38, 9052, Ghent, Belgium
| | - Mercedes Hernandez-Gomez
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Claire Holland
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Jesper Harholt
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - William G T Willats
- School of Agriculture, Food and Rural Development, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Jozef Mravec
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark
| | - Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
| | - Peter Ulvskov
- Department of Plant and Environmental Sciences, Copenhagen University, Frederiksberg, Denmark.
| |
Collapse
|
15
|
Naoumkina M, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Florane CB. Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population. BMC Genomics 2019; 20:112. [PMID: 30727946 DOI: 10.1186/s12864-019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 05/28/2023] Open
Abstract
BACKGROUND Improving cotton fiber length without reducing yield is one of the major goals of cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to the narrow genetic diversity of modern cotton cultivars and negative correlations between fiber quality and yield traits. A multi-parent advanced generation inter-cross (MAGIC) population developed through random mating provides an excellent genetic resource that allows quantitative trait loci (QTL) and causal genes to be identified. RESULTS An Upland cotton MAGIC population, consisting of 550 recombinant inbred lines (RILs) derived from eleven different cultivars, was used to identify fiber length QTLs and potential genes that contribute to longer fibers. A genome wide association study (GWAS) identified a cluster of single nucleotide polymorphisms (SNPs) on chromosome (Chr.) D11 that is significantly associated with fiber length. Further evaluation of the Chr. D11 genomic region among lines of the MAGIC population detected that 90% of RILs have a D11 haplotype similar to the reference TM-1 genome (D11-ref), whereas 10% of RILs inherited an alternative haplotype from one of the parents (D11-alt). The average length of fibers of D11-alt RILs was significantly shorter compared to D11-ref RILs, suggesting that alleles in the D11-alt haplotype contributed to the inferior fiber quality. RNAseq analysis of the longest and shortest fiber length RILs from D11-ref and D11-alt populations identified 949 significantly differentially expressed genes (DEGs). Gene set enrichment analysis revealed that different functional categories of genes were over-represented during fiber elongation between the four selected RILs. We found 12 genes possessing non-synonymous SNPs (nsSNPs) significantly associated with the fiber length, and three that were highly significant and were clustered at D11:24-Mb, including D11G1928, D11G1929 and D11G1931. CONCLUSION The results of this study provide insights into molecular aspects of genetic variation in fiber length and suggests candidate genes for genetic manipulation for cotton improvement.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
- Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Johnie N Jenkins
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| | - Jack C McCarty
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| | - Christopher B Florane
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| |
Collapse
|
16
|
Naoumkina M, Thyssen GN, Fang DD, Jenkins JN, McCarty JC, Florane CB. Genetic and transcriptomic dissection of the fiber length trait from a cotton (Gossypium hirsutum L.) MAGIC population. BMC Genomics 2019; 20:112. [PMID: 30727946 PMCID: PMC6366115 DOI: 10.1186/s12864-019-5427-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 01/02/2019] [Indexed: 11/10/2022] Open
Abstract
Background Improving cotton fiber length without reducing yield is one of the major goals of cotton breeding. However, genetic improvement of cotton fiber length by breeding has been a challenge due to the narrow genetic diversity of modern cotton cultivars and negative correlations between fiber quality and yield traits. A multi-parent advanced generation inter-cross (MAGIC) population developed through random mating provides an excellent genetic resource that allows quantitative trait loci (QTL) and causal genes to be identified. Results An Upland cotton MAGIC population, consisting of 550 recombinant inbred lines (RILs) derived from eleven different cultivars, was used to identify fiber length QTLs and potential genes that contribute to longer fibers. A genome wide association study (GWAS) identified a cluster of single nucleotide polymorphisms (SNPs) on chromosome (Chr.) D11 that is significantly associated with fiber length. Further evaluation of the Chr. D11 genomic region among lines of the MAGIC population detected that 90% of RILs have a D11 haplotype similar to the reference TM-1 genome (D11-ref), whereas 10% of RILs inherited an alternative haplotype from one of the parents (D11-alt). The average length of fibers of D11-alt RILs was significantly shorter compared to D11-ref RILs, suggesting that alleles in the D11-alt haplotype contributed to the inferior fiber quality. RNAseq analysis of the longest and shortest fiber length RILs from D11-ref and D11-alt populations identified 949 significantly differentially expressed genes (DEGs). Gene set enrichment analysis revealed that different functional categories of genes were over-represented during fiber elongation between the four selected RILs. We found 12 genes possessing non-synonymous SNPs (nsSNPs) significantly associated with the fiber length, and three that were highly significant and were clustered at D11:24-Mb, including D11G1928, D11G1929 and D11G1931. Conclusion The results of this study provide insights into molecular aspects of genetic variation in fiber length and suggests candidate genes for genetic manipulation for cotton improvement. Electronic supplementary material The online version of this article (10.1186/s12864-019-5427-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.
| | - Gregory N Thyssen
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA.,Cotton Chemistry and Utilization Research Unit, USDA-ARS-SRRC, 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| | - Johnie N Jenkins
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| | - Jack C McCarty
- Genetics and Sustainable Agriculture Research Unit, USDA-ARS, 810 Highway 12 East, Mississippi State, MS, 39762, USA
| | - Christopher B Florane
- Cotton Fiber Bioscience Research Unit, United States Department of Agriculture (USDA), Agricultural Research Service (ARS), Southern Regional Research Center (SRRC), 1100 Robert E. Lee Blvd, New Orleans, LA, 70124, USA
| |
Collapse
|
17
|
Ijaz B, Zhao N, Kong J, Hua J. Fiber Quality Improvement in Upland Cotton ( Gossypium hirsutum L.): Quantitative Trait Loci Mapping and Marker Assisted Selection Application. FRONTIERS IN PLANT SCIENCE 2019; 10:1585. [PMID: 31921240 PMCID: PMC6917639 DOI: 10.3389/fpls.2019.01585] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/12/2019] [Indexed: 05/17/2023]
Abstract
Genetic improvement in fiber quality is one of the main challenges for cotton breeders. Fiber quality traits are controlled by multiple genes and are classified as complex quantitative traits, with a negative relationship with yield potential, so the genetic gain is low in traditional genetic improvement by phenotypic selection. The availability of Gossypium genomic sequences facilitates the development of high-throughput molecular markers, quantitative trait loci (QTL) fine mapping and gene identification, which helps us to validate candidate genes and to use marker assisted selection (MAS) on fiber quality in breeding programs. Based on developments of high density linkage maps, QTLs fine mapping, marker selection and omics, we have performed trait dissection on fiber quality traits in diverse populations of upland cotton. QTL mapping combined with multi-omics approaches such as, RNA sequencing datasets to identify differentially expressed genes have benefited the improvement of fiber quality. In this review, we discuss the application of molecular markers, QTL mapping and MAS for fiber quality improvement in upland cotton.
Collapse
Affiliation(s)
- Babar Ijaz
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Nan Zhao
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jie Kong
- Institute of Economic Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, China
| | - Jinping Hua
- Laboratory of Cotton Genetics, Genomics and Breeding/Key Laboratory of Crop Heterosis and Utilization of Ministry of Education/Beijing Key Laboratory of Crop Genetic Improvement, College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
- *Correspondence: Jinping Hua,
| |
Collapse
|
18
|
Kumar V, Singh B, Singh SK, Rai KM, Singh SP, Sable A, Pant P, Saxena G, Sawant SV. Role of GhHDA5 in H3K9 deacetylation and fiber initiation in Gossypium hirsutum. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 95:1069-1083. [PMID: 29952050 DOI: 10.1111/tpj.14011] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Revised: 06/12/2018] [Accepted: 06/19/2018] [Indexed: 05/28/2023]
Abstract
Cotton fibers are single-celled trichomes that initiate from the epidermal cells of the ovules at or before anthesis. Here, we identified that the histone deacetylase (HDAC) activity is essential for proper cotton fiber initiation. We further identified 15 HDACs homoeologs in each of the A- and D-subgenomes of Gossypium hirsutum. Few of these HDAC homoeologs expressed preferentially during the early stages of fiber development [-1, 0 and 6 days post-anthesis (DPA)]. Among them, GhHDA5 expressed significantly at the time of fiber initiation (-1 and 0 DPA). The in vitro assay for HDAC activity indicated that GhHDA5 primarily deacetylates H3K9 acetylation marks. Moreover, the reduced expression of GhHDA5 also suppresses fiber initiation and lint yield in the RNA interference (RNAi) lines. The 0 DPA ovules of GhHDA5RNAi lines also showed alterations in reactive oxygen species homeostasis and elevated autophagic cell death in the developing fibers. The differentially expressed genes (DEGs) identified through RNA-seq of RNAi line (DEP12) and their pathway analysis showed that GhHDA5 modulates expression of many stress and development-related genes involved in fiber development. The reduced expression of GhHDA5 in the RNAi lines also resulted in H3K9 hyper-acetylation on the promoter region of few DEGs assessed by chromatin immunoprecipitation assay. The positively co-expressed genes with GhHDA5 showed cumulative higher expression during fiber initiation, and gene ontology annotation suggests their involvement in fiber development. Furthermore, the predicted protein interaction network in the positively co-expressed genes indicates HDA5 modulates fiber initiation-specific gene expression through a complex involving reported repressors.
Collapse
Affiliation(s)
- Verandra Kumar
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Babita Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| | - Sunil K Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Krishan M Rai
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Surendra P Singh
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Department of Botany, University of Lucknow, Lucknow, India
| | - Anshulika Sable
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
| | - Poonam Pant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| | - Gauri Saxena
- Department of Botany, University of Lucknow, Lucknow, India
| | - Samir V Sawant
- Plant Molecular Biology Laboratory, National Botanical Research Institute, Lucknow, India
- Academy of Scientific and Innovative Research (AcSIR), CSIR-NBRI, Lucknow, India
| |
Collapse
|
19
|
Is it possible to use the stalks of Gossypium hirsitum L., an important by-product of cotton cultivation, as an alternative source of bioactive components? Eur Food Res Technol 2018. [DOI: 10.1007/s00217-017-3029-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
20
|
Guo K, Tu L, He Y, Deng J, Wang M, Huang H, Li Z, Zhang X. Interaction between calcium and potassium modulates elongation rate in cotton fiber cells. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:5161-5175. [PMID: 29045717 PMCID: PMC5853336 DOI: 10.1093/jxb/erx346] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Accepted: 09/14/2017] [Indexed: 05/20/2023]
Abstract
Calcium (Ca2+) is necessary for fiber cell development in cotton (Gossypium hirsutum), both as a cell wall structural component and for environmental signaling responses. It is also known that potassium (K+) plays a critical role in cotton fiber cell elongation. However, it is unclear whether Ca2+ integrates its activities with K+ to regulate fiber elongation. Here, we report the novel discovery that Ca2+ deficiency, when integrated with K+ signaling, promotes fiber elongation. Using inductively coupled plasma-mass spectrometry (ICP-MS), we determined dynamic profiles of the ionome in ovules and fibers at different developmental stages, and found that a high accumulation of macro-elements, but not Ca2+, was associated with longer fibers. Using an in vitro ovule culture system, we found that under Ca2+-deficient conditions, sufficient K+ (52 mM) rapidly induced ovule and fiber browning, while reduced K+ (2 or 27 mM) not only suppressed tissue browning but also altered fiber elongation. Reduced K+ also enhanced reactive oxygen species scavenging ability and maintained abscisic acid and jasmonic acid levels, which in turn compensated for Ca2+ deficiency. Ca2+ deficiency combined with reduced K+ (0 mM Ca2+ and 27 mM K+) produced longer fibers in cultured ovules, due to cell wall loosening by phytosulfokine (PSK), expansin (EXP), and xyloglucan endotransglycosylase/hydrolase (XTH), and an increase of the K+ content of fiber cells. Using transgenic cotton, we showed that the CBL-INTERACTING PROTEIN KINASE 6 (GhCIPK6) gene mediates the uptake of K+ under Ca2+-deficient conditions. This study establishes a new link between Ca2+, K+, and fiber elongation.
Collapse
Affiliation(s)
- Kai Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
- Correspondence:
| | - Yonghui He
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jinwu Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Hui Huang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
21
|
Martínez-Sanz M, Pettolino F, Flanagan B, Gidley MJ, Gilbert EP. Structure of cellulose microfibrils in mature cotton fibres. Carbohydr Polym 2017; 175:450-463. [DOI: 10.1016/j.carbpol.2017.07.090] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 07/19/2017] [Accepted: 07/30/2017] [Indexed: 12/16/2022]
|
22
|
Hernandez-Gomez MC, Runavot JL, Meulewaeter F, Knox JP. Developmental features of cotton fibre middle lamellae in relation to cell adhesion and cell detachment in cultivars with distinct fibre qualities. BMC PLANT BIOLOGY 2017; 17:69. [PMID: 28359260 PMCID: PMC5374667 DOI: 10.1186/s12870-017-1017-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 03/24/2017] [Indexed: 05/24/2023]
Abstract
BACKGROUND Cotton fibre quality traits such as fibre length, strength, and degree of maturation are determined by genotype and environment during the sequential phases of cotton fibre development (cell elongation, transition to secondary cell wall construction and cellulose deposition). The cotton fibre middle lamella (CFML) is crucial for both cell adhesion and detachment processes occurring during fibre development. To explore the relationship between fibre quality and the pace at which cotton fibres develop, a structural and compositional analysis of the CFML was carried out in several cultivars with different fibre properties belonging to four commercial species: Gossypium hirsutum, G. barbadense, G. herbaceum and G. arboreum. RESULTS Cotton fibre cell adhesion, through the cotton fibre middle lamella (CFML), is a developmentally regulated process determined by genotype. The CFML is composed of de-esterified homogalacturonan, xyloglucan and arabinan in all four fibre-producing cotton species: G. hirsutum, G. barbadense, G. herbaceum and G. arboreum. Conspicuous paired cell wall bulges are a feature of the CFML of two G. hirsutum cultivars from the onset of fibre cell wall detachment to the start of secondary cell wall deposition. Xyloglucan is abundant in the cell wall bulges and in later stages pectic arabinan is absent from these regions. CONCLUSIONS The CFML of cotton fibres is re-structured during the transition phase. Paired cell wall bulges, rich in xyloglucan, are significantly more evident in the G. hirsutum cultivars than in other cotton species.
Collapse
Affiliation(s)
| | - Jean-Luc Runavot
- Bayer CropScience NV - Innovation Center, Technologiepark, 38, 9052, Ghent, Belgium
| | - Frank Meulewaeter
- Bayer CropScience NV - Innovation Center, Technologiepark, 38, 9052, Ghent, Belgium
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK.
| |
Collapse
|
23
|
Biological Importance of Cotton By-Products Relative to Chemical Constituents of the Cotton Plant. Molecules 2017; 22:molecules22010093. [PMID: 28067842 PMCID: PMC6155835 DOI: 10.3390/molecules22010093] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 12/21/2016] [Accepted: 12/26/2016] [Indexed: 01/28/2023] Open
Abstract
Although cultivated for over 7000 years, mainly for production of cotton fibre, the cotton plant has not been fully explored for potential uses of its other parts. Despite cotton containing many important chemical compounds, limited understanding of its phytochemical composition still exists. In order to add value to waste products of the cotton industry, such as cotton gin trash, this review focuses on phytochemicals associated with different parts of cotton plants and their biological activities. Three major classes of compounds and some primary metabolites have been previously identified in the plant. Among these compounds, most terpenoids and their derivatives (51), fatty acids (four), and phenolics (six), were found in the leaves, bolls, stalks, and stems. Biological activities, such as anti-microbial and anti-inflammatory activities, are associated with some of these phytochemicals. For example, β-bisabolol, a sesquiterpenoid enriched in the flowers of cotton plants, may have anti-inflammatory product application. Considering the abundance of biologically active compounds in the cotton plant, there is scope to develop a novel process within the current cotton fibre production system to separate these valuable phytochemicals, developing them into potentially high-value products. This scenario may present the cotton processing industry with an innovative pathway towards a waste-to-profit solution.
Collapse
|
24
|
Zhang F, Jin X, Wang L, Li S, Wu S, Cheng C, Zhang T, Guo W. A Cotton Annexin Affects Fiber Elongation and Secondary Cell Wall Biosynthesis Associated with Ca2+ Influx, ROS Homeostasis, and Actin Filament Reorganization. PLANT PHYSIOLOGY 2016; 171:1750-70. [PMID: 27255486 PMCID: PMC4936584 DOI: 10.1104/pp.16.00597] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Accepted: 06/01/2016] [Indexed: 05/23/2023]
Abstract
Annexins play pivotal roles in a variety of cellular processes as well as in fiber development; however, the functional mechanisms of their activities are unclear. Here, an annexin gene that is preferentially expressed in fibers, GhFAnnxA, was found to be significantly associated with various cotton (Gossypium hirsutum) fiber traits. Transgenic analysis demonstrated that GhFAnnxA affected cotton fiber elongation and was involved in secondary cell wall (SCW) biosynthesis. Functional studies demonstrated that GhFAnnxA may act as a Ca(2+) conductance regulator and that reactive oxygen species (ROS) produced by Rbohs in a Ca(2+)-dependent manner may determine fiber elongation caused by elevated intracellular turgor and cell wall loosening. However, excessive hydrogen peroxide (H2O2) inhibited cotton fiber elongation in vitro. We speculate that a positive feedback loop involving ROS and Ca(2+) is regulated by GhCDPK1 and regulates fiber cell elongation. Furthermore, the convergence of actin filaments is altered by their interaction with GhFAnnxA, and this also may contribute to fiber elongation. Moreover, GhFAnnxA may affect SCW biosynthesis through changes in cell wall components caused by an increase in H2O2 levels. These results not only provide new insights into the signaling pathways of GhFAnnxA in fiber development but also clarify the role of ROS in fiber development.
Collapse
Affiliation(s)
- Feng Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Xuanxiang Jin
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Like Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shufen Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Shuang Wu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Chaoze Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Tianzhen Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing 210095, Jiangsu Province, People's Republic of China
| |
Collapse
|
25
|
Stiff MR, Haigler CH. Cotton fiber tips have diverse morphologies and show evidence of apical cell wall synthesis. Sci Rep 2016; 6:27883. [PMID: 27301434 PMCID: PMC4908599 DOI: 10.1038/srep27883] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 05/24/2016] [Indexed: 12/31/2022] Open
Abstract
Cotton fibers arise through highly anisotropic expansion of a single seed epidermal cell. We obtained evidence that apical cell wall synthesis occurs through examining the tips of young elongating Gossypium hirsutum (Gh) and G. barbadense (Gb) fibers. We characterized two tip types in Gh fiber (hemisphere and tapered), each with distinct apical diameter, central vacuole location, and distribution of cell wall components. The apex of Gh hemisphere tips was enriched in homogalacturonan epitopes, including a relatively high methyl-esterified form associated with cell wall pliability. Other wall components increased behind the apex including cellulose and the α-Fuc-(1,2)-β-Gal epitope predominantly found in xyloglucan. Gb fibers had only one narrow tip type featuring characters found in each Gh tip type. Pulse-labeling of cell wall glucans indicated wall synthesis at the apex of both Gh tip types and in distal zones. Living Gh hemisphere and Gb tips ruptured preferentially at the apex upon treatment with wall degrading enzymes, consistent with newly synthesized wall at the apex. Gh tapered tips ruptured either at the apex or distantly. Overall, the results reveal diverse cotton fiber tip morphologies and support primary wall synthesis occurring at the apex and discrete distal regions of the tip.
Collapse
Affiliation(s)
- Michael R Stiff
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 USA
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, North Carolina 27695 USA.,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, North Carolina 27695 USA
| |
Collapse
|
26
|
Li Y, Tu L, Pettolino FA, Ji S, Hao J, Yuan D, Deng F, Tan J, Hu H, Wang Q, Llewellyn DJ, Zhang X. GbEXPATR, a species-specific expansin, enhances cotton fibre elongation through cell wall restructuring. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:951-63. [PMID: 26269378 DOI: 10.1111/pbi.12450] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 05/08/2015] [Accepted: 05/26/2015] [Indexed: 05/18/2023]
Abstract
Cotton provides us the most important natural fibre. High fibre quality is the major goal of cotton breeding, and introducing genes conferring longer, finer and stronger fibre from Gossypium barbadense to Gossypium hirsutum is an important breeding strategy. We previously analysed the G. barbadense fibre development mechanism by gene expression profiling and found two homoeologous fibre-specific α-expansins from G. barbadense, GbEXPA2 and GbEXPATR. GbEXPA2 (from the DT genome) is a classical α-expansin, while its homoeolog, GbEXPATR (AT genome), encodes a truncated protein lacking the normal C-terminal polysaccharide-binding domain of other α-expansins and is specifically expressed in G. barbadense. Silencing EXPA in G. hirsutum induced shorter fibres with thicker cell walls. GbEXPA2 overexpression in G. hirsutum had no effect on mature fibre length, but produced fibres with a slightly thicker wall and increased crystalline cellulose content. Interestingly, GbEXPATR overexpression resulted in longer, finer and stronger fibres coupled with significantly thinner cell walls. The longer and thinner fibre was associated with lower expression of a number of secondary wall-associated genes, especially chitinase-like genes, and walls with lower cellulose levels but higher noncellulosic polysaccharides which advocated that a delay in the transition to secondary wall synthesis might be responsible for better fibre. In conclusion, we propose that α-expansins play a critical role in fibre development by loosening the cell wall; furthermore, a truncated form, GbEXPATR, has a more dramatic effect through reorganizing secondary wall synthesis and metabolism and should be a candidate gene for developing G. hirsutum cultivars with superior fibre quality.
Collapse
Affiliation(s)
- Yang Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Filomena A Pettolino
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Canberra, ACT, Australia
| | - Shengmei Ji
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Juan Hao
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Daojun Yuan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Fenglin Deng
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Jiafu Tan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Haiyan Hu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Qing Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Danny J Llewellyn
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Plant Industry, Canberra, ACT, Australia
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, China
| |
Collapse
|
27
|
Yang J, Hu W, Zhao W, Chen B, Wang Y, Zhou Z, Meng Y. Fruiting Branch K(+) Level Affects Cotton Fiber Elongation Through Osmoregulation. FRONTIERS IN PLANT SCIENCE 2016; 7:13. [PMID: 26834777 PMCID: PMC4722289 DOI: 10.3389/fpls.2016.00013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 01/07/2016] [Indexed: 05/08/2023]
Abstract
Potassium (K) deficiency in cotton plants results in reduced fiber length. As one of the primary osmotica, K(+) contributes to an increase in cell turgor pressure during fiber elongation. Therefore, it is hypothesized that fiber length is affected by K deficiency through an osmotic pathway, so in 2012 and 2013, an experiment was conducted to test this hypothesis by imposing three potassium supply regimes (0, 125, 250 kg K ha(-1)) on a low-K-sensitive cultivar, Siza 3, and a low-K-tolerant cultivar, Simian 3. We found that fibers were longer in the later season bolls than in the earlier ones in cotton plants grown under normal growth conditions, but later season bolls showed a greater sensitivity to low-K stress, especially the low-K sensitive genotype. We also found that the maximum velocity of fibre elongation (V max) is the parameter that best reflects the change in fiber elongation under K deficiency. This parameter mostly depends on cell turgor, so the content of the osmotically active solutes was analyzed accordingly. Statistical analysis showed that K(+) was the major osmotic factor affecting fiber length, and malate was likely facilitating K(+) accumulation into fibers, which enabled the low-K-tolerant genotype to cope with low-K stress. Moreover, the low-K-tolerant genotype tended to have greater K(+) absorptive capacities in the upper fruiting branches. Based on our findings, we suggest a fertilization scheme for Gossypium hirsutum that adds extra potash fertilizer or distributes it during the development of late season bolls to mitigate K deficiency in the second half of the growth season and to enhance fiber length in late season bolls.
Collapse
Affiliation(s)
| | | | | | | | | | - Zhiguo Zhou
- Key Laboratory of Crop Physiology and Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural UniversityNanjing, China
| | - Yali Meng
- Key Laboratory of Crop Physiology and Ecology, Department of Agronomy, College of Agriculture, Nanjing Agricultural UniversityNanjing, China
| |
Collapse
|
28
|
|
29
|
Hernandez-Gomez MC, Runavot JL, Guo X, Bourot S, Benians TAS, Willats WGT, Meulewaeter F, Knox JP. Heteromannan and Heteroxylan Cell Wall Polysaccharides Display Different Dynamics During the Elongation and Secondary Cell Wall Deposition Phases of Cotton Fiber Cell Development. PLANT & CELL PHYSIOLOGY 2015; 56:1786-97. [PMID: 26187898 PMCID: PMC4562070 DOI: 10.1093/pcp/pcv101] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 06/27/2015] [Indexed: 05/18/2023]
Abstract
The roles of non-cellulosic polysaccharides in cotton fiber development are poorly understood. Combining glycan microarrays and in situ analyses with monoclonal antibodies, polysaccharide linkage analyses and transcript profiling, the occurrence of heteromannan and heteroxylan polysaccharides and related genes in developing and mature cotton (Gossypium spp.) fibers has been determined. Comparative analyses on cotton fibers at selected days post-anthesis indicate different temporal and spatial regulation of heteromannan and heteroxylan during fiber development. The LM21 heteromannan epitope was more abundant during the fiber elongation phase and localized mainly in the primary cell wall. In contrast, the AX1 heteroxylan epitope occurred at the transition phase and during secondary cell wall deposition, and localized in both the primary and the secondary cell walls of the cotton fiber. These developmental dynamics were supported by transcript profiling of biosynthetic genes. Whereas our data suggest a role for heteromannan in fiber elongation, heteroxylan is likely to be involved in the regulation of cellulose deposition of secondary cell walls. In addition, the relative abundance of these epitopes during fiber development varied between cotton lines with contrasting fiber characteristics from four species (G. hirsutum, G. barbadense, G. arboreum and G. herbaceum), suggesting that these non-cellulosic polysaccharides may be involved in determining final fiber quality and suitability for industrial processing.
Collapse
Affiliation(s)
- Mercedes C Hernandez-Gomez
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK These authors contributed equally to this work
| | - Jean-Luc Runavot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium These authors contributed equally to this work
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Stéphane Bourot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Thomas A S Benians
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - William G T Willats
- Department of Plant and Environmental Sciences, University of CopenhagenThorvaldsensvej 40, 1871 Frederiksberg C, Copenhagen, Denmark
| | - Frank Meulewaeter
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - J Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| |
Collapse
|
30
|
Sun X, Gong SY, Nie XY, Li Y, Li W, Huang GQ, Li XB. A R2R3-MYB transcription factor that is specifically expressed in cotton (Gossypium hirsutum) fibers affects secondary cell wall biosynthesis and deposition in transgenic Arabidopsis. PHYSIOLOGIA PLANTARUM 2015; 154:420-32. [PMID: 25534543 DOI: 10.1111/ppl.12317] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2014] [Revised: 11/30/2014] [Accepted: 12/12/2014] [Indexed: 05/22/2023]
Abstract
Secondary cell wall (SCW) is an important industrial raw material for pulping, papermaking, construction, lumbering, textiles and potentially for biofuel production. The process of SCW thickening of cotton fibers lays down the cellulose that will constitute the bulk (up to 96%) of the fiber at maturity. In this study, a gene encoding a MYB-domain protein was identified in cotton (Gossypium hirsutum) and designated as GhMYBL1. Quantitative real-time polymerase chain reaction (RT-PCR) analysis revealed that GhMYBL1 was specifically expressed in cotton fibers at the stage of secondary wall deposition. Further analysis indicated that this protein is a R2R3-MYB transcription factor, and is targeted to the cell nucleus. Overexpression of GhMYBL1 in Arabidopsis affected the formation of SCW in the stem xylem of the transgenic plants. The enhanced SCW thickening also occurred in the interfascicular fibers, xylary fibers and vessels of the GhMYBL1-overexpression transgenic plants. The expression of secondary wall-associated genes, such as CesA4, CesA7, CesA8, PAL1, F5H and 4CL1, were upregulated, and consequently, cellulose and lignin biosynthesis were enhanced in the GhMYBL1 transgenic plants. These data suggested that GhMYBL1 may participate in modulating the process of secondary wall biosynthesis and deposition of cotton fibers.
Collapse
Affiliation(s)
- Xiang Sun
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Si-Ying Gong
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xiao-Ying Nie
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Yang Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Wen Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Geng-Qing Huang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | - Xue-Bao Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, School of Life Sciences, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
31
|
Tuttle JR, Nah G, Duke MV, Alexander DC, Guan X, Song Q, Chen ZJ, Scheffler BE, Haigler CH. Metabolomic and transcriptomic insights into how cotton fiber transitions to secondary wall synthesis, represses lignification, and prolongs elongation. BMC Genomics 2015; 16:477. [PMID: 26116072 PMCID: PMC4482290 DOI: 10.1186/s12864-015-1708-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 06/19/2015] [Indexed: 11/20/2022] Open
Abstract
Background The morphogenesis of single-celled cotton fiber includes extreme elongation and staged cell wall differentiation. Designing strategies for improving cotton fiber for textiles and other uses relies on uncovering the related regulatory mechanisms. In this research we compared the transcriptomes and metabolomes of two Gossypium genotypes, Gossypium barbadense cv Phytogen 800 and G. hirsutum cv Deltapine 90. When grown in parallel, the two types of fiber developed similarly except for prolonged fiber elongation in the G. barbadense cultivar. The data were collected from isolated fibers between 10 to 28 days post anthesis (DPA) representing: primary wall synthesis to support elongation; transitional cell wall remodeling; and secondary wall cellulose synthesis, which was accompanied by continuing elongation only in G. barbadense fiber. Results Of 206 identified fiber metabolites, 205 were held in common between the two genotypes. Approximately 38,000 transcripts were expressed in the fiber of each genotype, and these were mapped to the reference set and interpreted by homology to known genes. The developmental changes in the transcriptomes and the metabolomes were compared within and across genotypes with several novel implications. Transitional cell wall remodeling is a distinct stable developmental stage lasting at least four days (18 to 21 DPA). Expression of selected cell wall related transcripts was similar between genotypes, but cellulose synthase gene expression patterns were more complex than expected. Lignification was transcriptionally repressed in both genotypes. Oxidative stress was lower in the fiber of G. barbadense cv Phytogen 800 as compared to G. hirsutum cv Deltapine 90. Correspondingly, the G. barbadense cultivar had enhanced capacity for management of reactive oxygen species during its prolonged elongation period, as indicated by a 138-fold increase in ascorbate concentration at 28 DPA. Conclusions The parallel data on deep-sequencing transcriptomics and non-targeted metabolomics for two genotypes of single-celled cotton fiber showed that a discrete developmental stage of transitional cell wall remodeling occurs before secondary wall cellulose synthesis begins. The data showed how lignification can be transcriptionally repressed during secondary cell wall synthesis, and they implicated enhanced capacity to manage reactive oxygen species through the ascorbate-glutathione cycle as a positive contributor to fiber length. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1708-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- John R Tuttle
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA.
| | - Gyoungju Nah
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Mary V Duke
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | | | - Xueying Guan
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Qingxin Song
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Z Jeffrey Chen
- Institute for Cellular and Molecular Biology and Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX, 78712, USA.
| | - Brian E Scheffler
- USDA ARS Genomics and Bioinformatics Research Unit, Stoneville, MS, 38776, USA.
| | - Candace H Haigler
- Department of Crop Science, North Carolina State University, Raleigh, NC, 27695, USA. .,Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, 27695, USA.
| |
Collapse
|
32
|
Avci U, Nakashima J. A flat embedding method to orient thin biological samples for sectioning. Methods Mol Biol 2015; 1309:13-22. [PMID: 25981764 DOI: 10.1007/978-1-4939-2697-8_2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/22/2023]
Abstract
Microscopy is an important tool used for biological research and has played a crucial role toward understanding of cellular mechanisms and protein function. However, specific steps in processing of biological samples for microscopy warrant improvements to consistently generate data that can more reliably help in explaining mechanisms underlying complex biological phenomenon. Due to their small and fragile nature, some biological specimens such as Arabidopsis thaliana roots are vulnerable to damage during long sample preparation steps. Moreover, when specimens with a small diameter (typically less than 100 μm) are embedded in conventional silicone mold or capsule embedding, it is not only difficult to locate their orientation inside the capsule but also a challenge to obtain good median longitudinal sections. Specimen orientation in particular is crucial because understanding certain plant biological processes such as gravitropism rely on precisely knowing spatial information of cells and tissues of the plant organ being studied. Here we present a simple embedding technique to properly orient small plant organs so that the desired sectioning plane is achieved. This method is also inexpensive and can be accomplished with only minimal equipment and supplies.
Collapse
Affiliation(s)
- Utku Avci
- Complex Carbohydrate Research Center, University of Georgia, Athens, GA, 30602, USA,
| | | |
Collapse
|
33
|
Runavot JL, Guo X, Willats WGT, Knox JP, Goubet F, Meulewaeter F. Non-cellulosic polysaccharides from cotton fibre are differently impacted by textile processing. PLoS One 2014; 9:e115150. [PMID: 25517975 PMCID: PMC4269390 DOI: 10.1371/journal.pone.0115150] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 11/19/2014] [Indexed: 01/26/2023] Open
Abstract
Cotton fibre is mainly composed of cellulose, although non-cellulosic polysaccharides play key roles during fibre development and are still present in the harvested fibre. This study aimed at determining the fate of non-cellulosic polysaccharides during cotton textile processing. We analyzed non-cellulosic cotton fibre polysaccharides during different steps of cotton textile processing using GC-MS, HPLC and comprehensive microarray polymer profiling to obtain monosaccharide and polysaccharide amounts and linkage compositions. Additionally, in situ detection was used to obtain information on polysaccharide localization and accessibility. We show that pectic and hemicellulosic polysaccharide levels decrease during cotton textile processing and that some processing steps have more impact than others. Pectins and arabinose-containing polysaccharides are strongly impacted by the chemical treatments, with most being removed during bleaching and scouring. However, some forms of pectin are more resistant than others. Xylan and xyloglucan are affected in later processing steps and to a lesser extent, whereas callose showed a strong resistance to the chemical processing steps. This study shows that non-cellulosic polysaccharides are differently impacted by the treatments used in cotton textile processing with some hemicelluloses and callose being resistant to these harsh treatments.
Collapse
Affiliation(s)
- Jean-Luc Runavot
- Bayer CropScience N.V., Innovation Center, Technologiepark 38, Gent, Belgium
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, University of Copenhagen, 1871, Frederiksberg, Denmark
| | - J. Paul Knox
- Centre for Plant Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, United Kingdom
| | - Florence Goubet
- Bayer CropScience N.V., Innovation Center, Technologiepark 38, Gent, Belgium
| | - Frank Meulewaeter
- Bayer CropScience N.V., Innovation Center, Technologiepark 38, Gent, Belgium
- * E-mail:
| |
Collapse
|
34
|
Rajasundaram D, Runavot JL, Guo X, Willats WGT, Meulewaeter F, Selbig J. Understanding the relationship between cotton fiber properties and non-cellulosic cell wall polysaccharides. PLoS One 2014; 9:e112168. [PMID: 25383868 PMCID: PMC4226482 DOI: 10.1371/journal.pone.0112168] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 10/06/2014] [Indexed: 12/03/2022] Open
Abstract
A detailed knowledge of cell wall heterogeneity and complexity is crucial for understanding plant growth and development. One key challenge is to establish links between polysaccharide-rich cell walls and their phenotypic characteristics. It is of particular interest for some plant material, like cotton fibers, which are of both biological and industrial importance. To this end, we attempted to study cotton fiber characteristics together with glycan arrays using regression based approaches. Taking advantage of the comprehensive microarray polymer profiling technique (CoMPP), 32 cotton lines from different cotton species were studied. The glycan array was generated by sequential extraction of cell wall polysaccharides from mature cotton fibers and screening samples against eleven extensively characterized cell wall probes. Also, phenotypic characteristics of cotton fibers such as length, strength, elongation and micronaire were measured. The relationship between the two datasets was established in an integrative manner using linear regression methods. In the conducted analysis, we demonstrated the usefulness of regression based approaches in establishing a relationship between glycan measurements and phenotypic traits. In addition, the analysis also identified specific polysaccharides which may play a major role during fiber development for the final fiber characteristics. Three different regression methods identified a negative correlation between micronaire and the xyloglucan and homogalacturonan probes. Moreover, homogalacturonan and callose were shown to be significant predictors for fiber length. The role of these polysaccharides was already pointed out in previous cell wall elongation studies. Additional relationships were predicted for fiber strength and elongation which will need further experimental validation.
Collapse
Affiliation(s)
- Dhivyaa Rajasundaram
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
| | - Jean-Luc Runavot
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Xiaoyuan Guo
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - William G. T. Willats
- Department of Plant and Environmental Sciences, Faculty of Sciences, University of Copenhagen, Thorvaldsensvej, 40 1.1871, Fredriksberg C, Denmark
| | - Frank Meulewaeter
- Bayer CropScience NV-Innovation Center, Technologiepark 38, 9052 Gent, Belgium
| | - Joachim Selbig
- Institute of Biochemistry and Biology, University of Potsdam, Potsdam-Golm, 14476, Germany
- Max-Planck Institute of Molecular Plant Physiology, Potsdam-Golm, 14476, Germany
- * E-mail:
| |
Collapse
|
35
|
Li L, Huang J, Qin L, Huang Y, Zeng W, Rao Y, Li J, Li X, Xu W. Two cotton fiber-associated glycosyltransferases, GhGT43A1 and GhGT43C1, function in hemicellulose glucuronoxylan biosynthesis during plant development. PHYSIOLOGIA PLANTARUM 2014; 152:367-79. [PMID: 24641584 DOI: 10.1111/ppl.12190] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Revised: 02/11/2014] [Accepted: 02/13/2014] [Indexed: 05/02/2023]
Abstract
Xylan is the major hemicellulosic constituent in dicot secondary cell walls. Cell wall composition of cotton fiber changes dynamically throughout development. Not only the amounts but also the molecular sizes of the hemicellulosic polysaccharides show substantial changes during cotton fiber development. However, none of the genes encoding glycosyltransferases (GTs) responsible for synthesizing xylan have been isolated and characterized in cotton fiber. In this study, we applied a bioinformatics approach and identified two putative GTs from cotton, designated GhGT43A1 and GhGT43C1, which belong to the CAZy GT43 family and are closely related to Arabidopsis IRX9 and IRX14, respectively. We show that GhGT43A1 is highly and preferentially expressed in 15 and 20 days post-anthesis (dpa) cotton fiber, whereas GhGT43C1 is ubiquitously expressed in most organs, with especially high expression in 15 dpa fiber and hypocotyl. Complementation analysis demonstrates that GhG43A1 and GhGT43C1 are orthologs of Arabidopsis IRX9 and IRX14, respectively. Furthermore, we show that overexpression of GhGT43A1 or GhGT43C1 in Arabidopsis results in increased xylan content. We also show that overexpression of GhGT43A1 or GhGT43C1 leads to more cellulose deposition. These findings suggest that GhGT43A1 and GhGT43C1 likely participate in xylan synthesis during fiber development.
Collapse
Affiliation(s)
- Long Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, College of Life Sciences, Central China Normal University, Wuhan, 430079, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Jin X, Li Q, Xiao G, Zhu YX. Using genome-referenced expressed sequence tag assembly to analyze the origin and expression patterns of Gossypium hirsutum transcripts. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2013; 55:576-85. [PMID: 23675784 DOI: 10.1111/jipb.12066] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 05/12/2013] [Indexed: 05/09/2023]
Abstract
We assembled a total of 297,239 Gossypium hirsutum (Gh, a tetraploid cotton, AADD) expressed sequence tag (EST) sequences that were available in the National Center for Biotechnology Information database, with reference to the recently published G. raimondii (Gr, a diploid cotton, DD) genome, and obtained 49,125 UniGenes. The average lengths of the UniGenes were increased from 804 and 791 bp in two previous EST assemblies to 1,019 bp in the current analysis. The number of putative cotton UniGenes with lengths of 3 kb or more increased from 25 or 34 to 1,223. As a result, thousands of originally independent G. hirsutum ESTs were aligned to produce large contigs encoding transcripts with very long open reading frames, indicating that the G. raimondii genome sequence provided remarkable advantages to assemble the tetraploid cotton transcriptome. Significant different distribution patterns within several GO terms, including transcription factor activity, were observed between D- and A-derived assemblies. Transcriptome analysis showed that, in a tetraploid cotton cell, 29,547 UniGenes were possibly derived from the D subgenome while another 19,578 may come from the A subgenome. Finally, some of the in silico data were confirmed by reverse transcription polymerase chain reaction experiments to show the changes in transcript levels for several gene families known to play key role in cotton fiber development. We believe that our work provides a useful platform for functional and evolutionary genomic studies in cotton.
Collapse
Affiliation(s)
- Xiang Jin
- State Key Laboratory of Protein and Plant Gene Research, College of Life Sciences, Peking University, Beijing 100871, China
| | | | | | | |
Collapse
|
37
|
Liu Q, Talbot M, Llewellyn DJ. Pectin methylesterase and pectin remodelling differ in the fibre walls of two gossypium species with very different fibre properties. PLoS One 2013; 8:e65131. [PMID: 23755181 PMCID: PMC3673955 DOI: 10.1371/journal.pone.0065131] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 04/22/2013] [Indexed: 01/30/2023] Open
Abstract
Pectin, a major component of the primary cell walls of dicot plants, is synthesized in Golgi, secreted into the wall as methylesters and subsequently de-esterified by pectin methylesterase (PME). Pectin remodelling by PMEs is known to be important in regulating cell expansion in plants, but has been poorly studied in cotton. In this study, genome-wide analysis showed that PMEs are a large multi-gene family (81 genes) in diploid cotton (Gossypium raimondii), an expansion over the 66 in Arabidopsis and suggests the evolution of new functions in cotton. Relatively few PME genes are expressed highly in fibres based on EST abundance and the five most abundant in fibres were cloned and sequenced from two cotton species. Their significant sequence differences and their stage-specific expression in fibres within a species suggest sub-specialisation during fibre development. We determined the transcript abundance of the five fibre PMEs, total PME enzyme activity, pectin content and extent of de-methylesterification of the pectin in fibre walls of the two cotton species over the first 25-30 days of fibre growth. There was a higher transcript abundance of fibre-PMEs and a higher total PME enzyme activity in G. barbadense (Gb) than in G. hirsutum (Gh) fibres, particularly during late fibre elongation. Total pectin was high, but de-esterified pectin was low during fibre elongation (5-12 dpa) in both Gh and Gb. De-esterified pectin levels rose thereafter when total PME activity increased and this occurred earlier in Gb fibres resulting in a lower degree of esterification in Gb fibres between 17 and 22 dpa. Gb fibres are finer and longer than those of Gh, so differences in pectin remodelling during the transition to wall thickening may be an important factor in influencing final fibre diameter and length, two key quality attributes of cotton fibres.
Collapse
Affiliation(s)
- Qinxiang Liu
- Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Mark Talbot
- Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| | - Danny J. Llewellyn
- Plant Industry, Commonwealth Scientific and Industrial Research Organisation (CSIRO), Canberra, Australian Capital Territory, Australia
| |
Collapse
|