1
|
Wang Y, Zhao X, Li Z, Wang W, Jiang Y, Zhang H, Liu X, Ren Y, Xu X, Hu X. Decidual natural killer cells dysfunction is caused by IDO downregulation in dMDSCs with Toxoplasma gondii infection. Commun Biol 2024; 7:669. [PMID: 38822095 PMCID: PMC11143278 DOI: 10.1038/s42003-024-06365-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 05/21/2024] [Indexed: 06/02/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a crucial role in maintaining maternal-fetal tolerance by expressing some immune-suppressive molecules, such as indoleamine 2,3-dioxygenase (IDO). Toxoplasma gondii (T. gondii) infection can break the immune microenvironment of maternal-fetal interface, resulting in adverse pregnancy outcomes. However, whether T. gondii affects IDO expression in dMDSCs and the molecular mechanism of its effect are still unclear. Here we show, the mRNA level of IDO is increased but the protein level decreased in infected dMDSCs. Mechanistically, the upregulation of transcriptional levels of IDO in dMDSCs is regulated through STAT3/p52-RelB pathway and the decrease of IDO expression is due to its degradation caused by increased SOCS3 after T. gondii infection. In vivo, the adverse pregnancy outcomes of IDO-/- infected mice are more severe than those of wide-type infected mice and obviously improved after exogenous kynurenine treatment. Also, the reduction of IDO in dMDSCs induced by T. gondii infection results in the downregulation of TGF-β and IL-10 expression in dNK cells regulated through Kyn/AhR/SP1 signal pathway, eventually leading to the dysfunction of dNK cells and contributing the occurrence of adverse pregnancy outcomes. This study reveals a novel molecular mechanism in adverse pregnancy outcome induced by T. gondii infection.
Collapse
Affiliation(s)
- Yu Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiaoyue Zhao
- Department of Clinical Psychology, Yantai Affiliated hospital of Binzhou Medial University, Yantai, 264100, Shandong, PR China
| | - Zhidan Li
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Wenxiao Wang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Yuzhu Jiang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Haixia Zhang
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xianbing Liu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Yushan Ren
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xiaoyan Xu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China
| | - Xuemei Hu
- Department of Immunology, Binzhou Medical University, Yantai, 264003, Shandong, PR China.
| |
Collapse
|
2
|
Ustiuzhanina MO, Streltsova MA, Timofeev ND, Kryukov MA, Chudakov DM, Kovalenko EI. Autologous T-Cell-Free Antigen Presentation System Unveils hCMV-Specific NK Cell Response. Cells 2024; 13:530. [PMID: 38534374 DOI: 10.3390/cells13060530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 03/28/2024] Open
Abstract
NK cells play a decisive role in controlling hCMV infection by combining innate and adaptive-like immune reactions. The hCMV-derived VMAPRTLFL (LFL) peptide is a potent activator of NKG2C+ NK cells. Proposed here is an autologous system of LFL stimulation without T lymphocytes and exogenous cytokines that allows us to evaluate NK-cell hCMV-specific responses in more native settings. In this model, we evaluated LFL-induced IFNγ production, focusing on signaling pathways and the degranulation and proliferation of NK cells orchestrated by microenvironment cytokine production and analyzed the transcriptome of expanded NK cells. NK cells of individuals having high anti-hCMV-IgG levels, in contrast to NK cells of hCMV-seronegative and low-positive donors, displayed increased IFNγ production and degranulation and activation levels and enhanced proliferation upon LFL stimulation. Cytokine profiles of these LFL-stimulated cultures demonstrated a proinflammatory shift. LFL-induced NK-cell IFNγ production was dependent on the PI3K and Ras/Raf/Mek signaling pathways, independently of cytokines. In hCMV-seropositive individuals, this model allowed obtaining NK-cell antigen-specific populations proliferating in response to LFL. The transcriptomic profile of these expanded NK cells showed increased adaptive gene expression and metabolic activation. The results complement the existing knowledge about hCMV-specific NK-cell response. This model may be further exploited for the identification and characterization of antigen-specific NK cells.
Collapse
Affiliation(s)
- Maria O Ustiuzhanina
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maria A Streltsova
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Nikita D Timofeev
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| | - Maxim A Kryukov
- Ecole Polytechnique Federale de Lausanne, 1015 Lausanne, Switzerland
| | - Dmitriy M Chudakov
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
- Institute of Translational Medicine, Pirogov Russian National Research Medical University, 117997 Moscow, Russia
- Central European Institute of Technology, Masaryk University, 60200 Brno, Czech Republic
- Abu Dhabi Stem Cells Center, Abu Dhabi, United Arab Emirates
| | - Elena I Kovalenko
- Shemyakin and Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia
| |
Collapse
|
3
|
Tamai S, Ichinose T, Jiapaer S, Hirai N, Sabit H, Tanaka S, Kinoshita M, Kobayashi M, Hirao A, Nakada M. Therapeutic potential of pentamidine for glioma-initiating cells and glioma cells through multimodal antitumor effects. Cancer Sci 2023. [PMID: 37142416 DOI: 10.1111/cas.15827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/07/2023] [Accepted: 04/12/2023] [Indexed: 05/06/2023] Open
Abstract
Glioma-initiating cells, which comprise a heterogeneous population of glioblastomas, contribute to resistance against aggressive chemoradiotherapy. Using drug reposition, we investigated a therapeutic drug for glioma-initiating cells. Drug screening was undertaken to select candidate agents that inhibit proliferation of two different glioma-initiating cells lines. The alteration of proliferation and stemness of the two glioma-initiating cell lines, and proliferation, migration, cell cycle, and survival of these two differentiated glioma-initiating cell lines and three different glioblastoma cell lines treated with the candidate agent were evaluated. We also used a xenograft glioma mouse model to evaluate anticancer effects of treated glioma cell lines. Among the 1301 agents, pentamidine-an antibiotic for Pneumocystis jirovecii-emerged as a successful antiglioma agent. Pentamidine treatment suppressed proliferation and stemness in glioma-initiating cell lines. Proliferation and migration were inhibited in all differentiated glioma-initiating cells and glioblastoma cell lines, with cell cycle arrest and caspase-dependent apoptosis induction. The in vivo study reproduced the same findings as the in vitro studies. Pentamidine showed a stronger antiproliferative effect on glioma-initiating cells than on differentiated cells. Western blot analysis revealed pentamidine inhibited phosphorylation of signal transducer and activator of transcription 3 in all cell lines, whereas Akt expression was suppressed in glioma-initiating cells but not in differentiated lines. In the present study, we identified pentamidine as a potential therapeutic drug for glioma. Pentamidine could be promising for the treatment of glioblastomas by targeting both glioma-initiating cells and differentiated cells through its multifaceted antiglioma effects.
Collapse
Affiliation(s)
- Sho Tamai
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Toshiya Ichinose
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Shabierjiang Jiapaer
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Nozomi Hirai
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
- Department of Neurosurgery, Toho University Ohashi Medical Center, Tokyo, Japan
| | - Hemragul Sabit
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Shingo Tanaka
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Masashi Kinoshita
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| | - Masahiko Kobayashi
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Atsushi Hirao
- Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Ishikawa, Japan
| | - Mitsutoshi Nakada
- Department of Neurosurgery, Graduate School of Medical Science, Kanazawa University, Ishikawa, Japan
| |
Collapse
|
4
|
Influence of Advanced Organ Support (ADVOS) on Cytokine Levels in Patients with Acute-on-Chronic Liver Failure (ACLF). J Clin Med 2022; 11:jcm11102782. [PMID: 35628913 PMCID: PMC9144177 DOI: 10.3390/jcm11102782] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 05/07/2022] [Accepted: 05/10/2022] [Indexed: 02/04/2023] Open
Abstract
Background: ADVanced Organ Support (ADVOS) is a novel type of extracorporeal albumin dialysis that supports multiorgan function in patients with acute-on-chronic liver failure (ACLF). No data exist on whether ADVOS affects inflammatory cytokine levels, which play a relevant role in ACLF. Aim: Our aim was to quantify cytokine levels both before and after a single ADVOS treatment in patients with ACLF at a regular dialysis ward. Methods and results: In this prospective study, 15 patients (60% men) with ACLF and an indication for renal replacement therapy were included. Patient liver function was severely compromised, reflected by a median CLIF-consortium ACLF score of 38 (IQR 35; 40). Blood samples were directly taken before and after ADVOS dialysis. The concentration of cytokines for IL-1β, IFN-α2, IFN-γ, TNF-α, MCP-1, IL-6, IL-8, IL-10, IL-12p70, IL-17A, IL-18, IL-23, IL-33 were quantified via a cytometric bead array. We found no significant (p > 0.05) change in cytokine levels, even when patients were stratified for dialysis time (<480 min versus ≥480 min). The relevance of the assessed cytokines in contributing to systemic inflammation in ACLF was demonstrated by Ingenuity pathway analysis®. Conclusion: Concentrations of pathomechanistically relevant cytokines remained unchanged both before and after ADVOS treatment in patients with ACLF.
Collapse
|
5
|
Rashidi S, Vieira C, Tuteja R, Mansouri R, Ali-Hassanzadeh M, Muro A, Nguewa P, Manzano-Román R. Immunomodulatory Potential of Non-Classical HLA-G in Infections including COVID-19 and Parasitic Diseases. Biomolecules 2022; 12:257. [PMID: 35204759 PMCID: PMC8961671 DOI: 10.3390/biom12020257] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 01/23/2022] [Accepted: 01/31/2022] [Indexed: 02/04/2023] Open
Abstract
Human Leukocyte Antigen-G (HLA-G), a polymorphic non-classical HLA (HLA-Ib) with immune-regulatory properties in cancers and infectious diseases, presents both membrane-bound and soluble (sHLA-G) isoforms. Polymorphism has implications in host responses to pathogen infections and in pathogenesis. Differential expression patterns of HLA-G/sHLA-G or its polymorphism seem to be related to different pathological conditions, potentially acting as a disease progression biomarker. Pathogen antigens might be involved in the regulation of both membrane-bound and sHLA-G levels and impact immune responses during co-infections. The upregulation of HLA-G in viral and bacterial infections induce tolerance to infection. Recently, sHLA-G was found useful to identify the prognosis of Coronavirus disease 2019 (COVID-19) among patients and it was observed that the high levels of sHLA-G are associated with worse prognosis. The use of pathogens, such as Plasmodium falciparum, as immune modulators for other infections could be extended for the modulation of membrane-bound HLA-G in COVID-19-infected tissues. Overall, such information might open new avenues concerning the effect of some pathogens such as parasites in decreasing the expression level of HLA-G to restrict pathogenesis in some infections or to influence the immune responses after vaccination among others.
Collapse
Affiliation(s)
- Sajad Rashidi
- Department of Parasitology and Mycology, School of Medicine, Shiraz University of Medical Sciences, Shiraz 7134845794, Iran;
| | - Carmen Vieira
- Infectious and Tropical Diseases Group (E-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (C.V.); (A.M.)
| | - Renu Tuteja
- Parasite Biology Group, ICGEB, Aruna Asaf Ali Marg, New Delhi 110067, India;
| | - Reza Mansouri
- Department of Immunology, Faculty of Medicine, Shahid Sadoughi University of Medical Sciences and Health Services, Yazd 8915173143, Iran;
| | - Mohammad Ali-Hassanzadeh
- Department of Immunology, School of Medicine, Jiroft University of Medical Sciences, Jiroft 7861615765, Iran;
| | - Antonio Muro
- Infectious and Tropical Diseases Group (E-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (C.V.); (A.M.)
| | - Paul Nguewa
- Department of Microbiology and Parasitology, ISTUN Institute of Tropical Health, IdiSNA (Navarra Institute for Health Research), University of Navarra, c/ Irunlarrea 1, 31008 Pamplona, Spain
| | - Raúl Manzano-Román
- Infectious and Tropical Diseases Group (E-INTRO), Institute of Biomedical Research of Salamanca-Research Center for Tropical Diseases (IBSAL-CIETUS), Faculty of Pharmacy, University of Salamanca, 37008 Salamanca, Spain; (C.V.); (A.M.)
| |
Collapse
|
6
|
Shmeleva EV, Colucci F. Maternal natural killer cells at the intersection between reproduction and mucosal immunity. Mucosal Immunol 2021; 14:991-1005. [PMID: 33903735 PMCID: PMC8071844 DOI: 10.1038/s41385-020-00374-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 11/24/2020] [Accepted: 12/02/2020] [Indexed: 02/07/2023]
Abstract
Many maternal immune cells populate the decidua, which is the mucosal lining of the uterus transformed during pregnancy. Here, abundant natural killer (NK) cells and macrophages help the uterine vasculature adapt to fetal demands for gas and nutrients, thereby supporting fetal growth. Fetal trophoblast cells budding off the forming placenta and invading deep into maternal tissues come into contact with these and other immune cells. Besides their homeostatic functions, decidual NK cells can respond to pathogens during infection, but in doing so, they may become conflicted between destroying the invader and sustaining fetoplacental growth. We review how maternal NK cells balance their double duty both in the local microenvironment of the uterus and systemically, during toxoplasmosis, influenza, cytomegalovirus, malaria and other infections that threat pregnancy. We also discuss recent developments in the understanding of NK-cell responses to SARS-Cov-2 infection and the possible dangers of COVID-19 during pregnancy.
Collapse
Affiliation(s)
- Evgeniya V Shmeleva
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK
| | - Francesco Colucci
- Department of Obstetrics & Gynaecology, University of Cambridge, National Institute for Health Research Cambridge Biomedical Research Centre, Cambridge, CB2 0SW, UK.
- Centre for Trophoblast Research, University of Cambridge, Cambridge, UK.
| |
Collapse
|
7
|
The Role and Function of Regulatory T Cells in Toxoplasma gondii-Induced Adverse Pregnancy Outcomes. J Immunol Res 2021; 2021:8782672. [PMID: 34458378 PMCID: PMC8390175 DOI: 10.1155/2021/8782672] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/22/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022] Open
Abstract
Infection with Toxoplasma gondii (T. gondii) during the pregnant period and its potentially miserable outcomes for the fetus, newborn, and even adult offspring continuously occur worldwide. People acquire infection through the consumption of infected and undercooked meat or contaminated food or water. T. gondii infection in pregnant women primarily during the gestation causes microcephaly, mental and psychomotor retardation, or death. Abnormal pregnancy outcomes are mainly associated with regulatory T cell (Treg) dysfunction. Tregs, a special subpopulation of T cells, function as a vital regulator in maintaining immune homeostasis. Tregs exert a critical effect on forming and maintaining maternal-fetal tolerance and promoting fetal development during the pregnancy period. Forkhead box P3 (Foxp3), a significant functional factor of Tregs, determines the status of Tregs. In this review, we summarize the effects of T. gondii infection on host Tregs and its critical transcriptional factor, Foxp3.
Collapse
|
8
|
Tao Y, Huang F, Zhang Z, Tao X, Wu Q, Qiu L, Wei H. Probiotic Enterococcus faecalis Symbioflor 1 ameliorates pathobiont-induced miscarriage through bacterial antagonism and Th1-Th2 modulation in pregnant mice. Appl Microbiol Biotechnol 2020; 104:5493-5504. [PMID: 32314005 DOI: 10.1007/s00253-020-10609-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/24/2020] [Accepted: 04/05/2020] [Indexed: 12/17/2022]
Abstract
The bacterium-bacterium interaction between pathogenic and probiotic Enterococcus as well as the bacterium-host interaction between Enterococcus and intestinal epithelium has drawn increasing attentions, but the influence of those interactions on host pregnancy remains largely unexplored. In the present study, we evaluated the effects of probiotic E. faecalis Symbioflor 1 or/and pathogenic E. faecalis OG1RF on the miscarriage of pregnant mice. Using in vitro assays of competition and exclusion and displacement, antagonistic property of E. faecalis Symbioflor 1 against E. faecalis OG1RF was observed, and the former inhibited the translocation of the later in vivo. The rate of miscarriage induced by E. faecalis OG1RF challenge was significantly reduced by 28% with E. faecalis Symbioflor 1 intervention; and the tissue integrity of ileum, colon, uterus, and placenta and placental blood cell density in pregnant mice were drastically improved by such probiotic intervention. Compared with the controls, probiotic intervention significantly upregulated the level of IL-10 and TGF-β, downregulated levels of IFN-γ, and increased progesterone level that reversed the trend of being Th1 predominance state reported for adverse pregnancy outcome at early pregnancy stage. In conclusion, E. faecalis Symbioflor 1 decreased the translocation of E. faecalis OG1RF, prevented pathogen-induced tissue damage, and changed Th1-Th2 homeostasis toward Th2 predominance during early pregnancy resulting in decreased miscarriage. KEY POINTS: •The mechanism of how probiotic E. faecalis Symbioflor 1 improves pregnancy of mice • Influence of interactions of pathogenic and probiotic Enterococcus on host pregnancy • E. faecalis Symbioflor 1 change Th1-Th2 homeostasis toward Th2 predominance.
Collapse
Affiliation(s)
- Yue Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Fuqing Huang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Zhihong Zhang
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Xueying Tao
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China
| | - Qinglong Wu
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX, 77030, USA
- Texas Children's Microbiome Center, Texas Children's Hospital, Houston, TX, 77030, USA
| | - Liang Qiu
- Jiangxi University of Traditional Chinese Medicine, Nanchang, 330004, Jiangxi, China.
| | - Hua Wei
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330047, Jiangxi, China.
| |
Collapse
|
9
|
Rios L, Campos EE, Menon R, Zago MP, Garg NJ. Epidemiology and pathogenesis of maternal-fetal transmission of Trypanosoma cruzi and a case for vaccine development against congenital Chagas disease. Biochim Biophys Acta Mol Basis Dis 2020; 1866:165591. [PMID: 31678160 PMCID: PMC6954953 DOI: 10.1016/j.bbadis.2019.165591] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 09/12/2019] [Accepted: 09/25/2019] [Indexed: 12/11/2022]
Abstract
Trypanos o ma cruzi (T. cruzi or Tc) is the causative agent of Chagas disease (CD). It is common for patients to suffer from non-specific symptoms or be clinically asymptomatic with acute and chronic conditions acquired through various routes of transmission. The expecting women and their fetuses are vulnerable to congenital transmission of Tc. Pregnant women face formidable health challenges because the frontline antiparasitic drugs, benznidazole and nifurtimox, are contraindicated during pregnancy. However, it is worthwhile to highlight that newborns can be cured if they are diagnosed and given treatment in a timely manner. In this review, we discuss the pathogenesis of maternal-fetal transmission of Tc and provide a justification for the investment in the development of vaccines against congenital CD.
Collapse
Affiliation(s)
- Lizette Rios
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | - E Emanuel Campos
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, University of Texas Medical Branch, Galveston, TX, USA
| | - M Paola Zago
- Instituto de Patología Experimental, Universidad Nacional de Salta - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Salta, Argentina.
| | - Nisha J Garg
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, TX, USA; Institute for Human Infections and Immunity, University of Texas Medical Branch, Galveston, TX, USA.
| |
Collapse
|
10
|
The Impact of IL-6 and IL-10 Gene Polymorphisms in Diffuse Large B-Cell Lymphoma Risk and Overall Survival in an Arab Population: A Case-Control Study. Cancers (Basel) 2020; 12:cancers12020382. [PMID: 32046104 PMCID: PMC7072608 DOI: 10.3390/cancers12020382] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Revised: 01/10/2020] [Accepted: 02/05/2020] [Indexed: 11/22/2022] Open
Abstract
B-cell lymphomas can be classified as Hodgkin and non-Hodgkin lymphomas. Diffuse large B-cell lymphoma (DLBCL) is the most common non-Hodgkin Lymphoma (NHL). The incidence of NHL is variable and affected by age, gender, racial, and geographic factors. There is strong evidence that the immune-regulatory cytokines have a major role in hematologic malignancies. In this study, we analyzed the relationship between seven single nucleotide polymorphisms (SNPs) in two selected cytokines (IL-6 rs1800795G > C, rs1800796G > C, rs1800797G > A, IL-10 rs1800871G > A, rs1800872G > T, rs1800890A > T, rs1800896T > C) and the risk and overall survival of DLBCL patients in a Jordanian Arab population. One hundred and twenty-five DLBCL patients diagnosed at King Abdullah University Hospital (KAUH) from the period 2013–2018 and 238 matched healthy controls were included in the study. Genomic DNA was extracted from formalin-fixed paraffin-embedded tissues. Genotyping of the genetic polymorphisms was conducted using a sequencing protocol. Our study showed no significant differences in the distribution of all studied polymorphisms of DLBCL between patients and controls. The IL-6 rs1800797 was the only SNP to show significant survival results, DLBCL subjects with the codominant model (GG/AG/AA) genotypes and recessive model (AA genotype in comparison with the combined GG/GA genotype) had worse overall survival (p = 0.028 and 0.016, respectively).
Collapse
|
11
|
Optimization of in vitro trophoblast assay for real-time impedimetric sensing of trophoblast-erythrocyte interactions in Plasmodium falciparum malaria. Anal Bioanal Chem 2020; 412:3915-3923. [PMID: 31989195 DOI: 10.1007/s00216-020-02413-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/20/2019] [Accepted: 01/13/2020] [Indexed: 10/25/2022]
Abstract
Sequestration of Plasmodium falciparum-infected erythrocytes (IEs) is responsible for the pathophysiology of placental malaria, leading to serious complications such as intrauterine growth restriction and low birth weight. However, it is an experimental challenge to study the biology of human placenta. Conventional cell culture-based in vitro placental models rely on immunostaining techniques and high-magnification microscopy is limited in providing real-time quantitative analysis. Impedimetric sensing in combination with cell culture may offer a useful tool. In this paper, we report that real-time label-free measurement of cellular electrical impedance using xCELLigence technology can be used to quantify the proliferation, syncytial fusion, and long-term response of BeWo cells to IEs cytoadhesion. Specifically, we optimized key experimental parameters of cell seeding density and concentration of forskolin, a compound used to promote cell syncitiation, based on electrical signals and immunostaining results. Prolonged time of infection with IEs that led to cell-cell junction vanishment in BeWo cells and release of inflammatory cytokines were monitored in real time by continuous change in electrical impedance. The results suggest that the impedimetric technique is sensitive and can offer new opportunities for the study of cellular responses of trophoblast cells to IEs. The developed system can provide potentially a high-throughput screening tool of anti-adhesion or anti-inflammatory drugs for placental malaria infections.
Collapse
|
12
|
Wang HF, Jiang YZ, Ren LQ, Liu XB, Zhang HX, Hu XM. The Role of Soluble HLA-G in the Vertical Transmission of Toxoplasma gondii. Mol Biol 2019. [DOI: 10.1134/s002689331902016x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Borges M, Magalhães Silva T, Brito C, Teixeira N, Roberts CW. How does toxoplasmosis affect the maternal-foetal immune interface and pregnancy? Parasite Immunol 2018; 41:e12606. [PMID: 30471137 DOI: 10.1111/pim.12606] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 11/13/2018] [Accepted: 11/20/2018] [Indexed: 12/11/2022]
Abstract
Toxoplasma gondii is a zoonotic parasite which, depending on the geographical location, can infect between 10% and 90% of humans. Infection during pregnancy may result in congenital toxoplasmosis. The effects on the foetus vary depending on the stage of gestation in which primary maternal infection arises. A large body of research has focused on understanding immune response to toxoplasmosis, although few studies have addressed how it is affected by pregnancy or the pathological consequences of infection at the maternal-foetal interface. There is a lack of knowledge about how maternal immune cells, specifically macrophages, are modulated during infection and the resulting consequences for parasite control and pathology. Herein, we discuss the potential of T. gondii infection to affect the maternal-foetal interface and the potential of pregnancy to disrupt maternal immunity to T. gondii infection.
Collapse
Affiliation(s)
- Margarida Borges
- UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Tânia Magalhães Silva
- Instituto de Biologia Molecular e Celular (IBMC), University of Porto, Porto, Portugal.,Instituto de Investigação e Inovação em Saúde (i3S), University of Porto, Porto, Portugal
| | - Carina Brito
- UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Natércia Teixeira
- UCIBIO/REQUIMTE, Department of Biological Sciences, Faculty of Pharmacy, University of Porto, Porto, Portugal
| | - Craig W Roberts
- Strathclyde Institute for Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK
| |
Collapse
|
14
|
Piao LX, Cheng JH, Aosai F, Zhao XD, Norose K, Jin XJ. Cellular immunopathogenesis in primary Toxoplasma gondii
infection during pregnancy. Parasite Immunol 2018; 40:e12570. [DOI: 10.1111/pim.12570] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Lian Xun Piao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Jia Hui Cheng
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Fumie Aosai
- Department of Infection and Host Defense; Graduate School of Medicine; Chiba University; Chiba Japan
- Department of Infection and Host Defense; Graduate School of Medicine; Shinshu University; Matsumoto Japan
| | - Xu Dong Zhao
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| | - Kazumi Norose
- Department of Infection and Host Defense; Graduate School of Medicine; Chiba University; Chiba Japan
| | - Xue Jun Jin
- Key Laboratory of Natural Resources of Changbai Mountain & Functional Molecules, Ministry of Education, Molecular Medicine Research Center, College of Pharmacy; Yanbian University; Yanji China
| |
Collapse
|
15
|
Zhan S, Zheng J, Zhang H, Zhao M, Liu X, Jiang Y, Yang C, Ren L, Liu Z, Hu X. LILRB4 Decrease on uDCs Exacerbate Abnormal Pregnancy Outcomes Following Toxoplasma gondii Infection. Front Microbiol 2018; 9:588. [PMID: 29643846 PMCID: PMC5882840 DOI: 10.3389/fmicb.2018.00588] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/14/2018] [Indexed: 12/22/2022] Open
Abstract
Toxoplasma gondii (T. gondii) infection in early pregnancy can result in miscarriage, dead fetus, and other abnormalities. The LILRB4 is a central inhibitory receptor in uterine dendritic cells (uDCs) that plays essential immune-regulatory roles at the maternal–fetal interface. In this study, T. gondii-infected human primary uDCs and T. gondii-infected LILRB4-/- pregnant mice were utilized. The immune mechanisms underlying the role of LILRB4 on uDCs were explored in the development of abnormal pregnancy outcomes following T. gondii infection in vitro and in vivo. Our results showed that the expression levels of LILRB4 on uDCs from normal pregnant mice were obviously higher than non-pregnant mice, and peaked in mid-gestation. The LILRB4 expression on uDC subsets, especially tolerogenic subsets, from mid-gestation was obviously down-regulated after T. gondii infection and LILRB4 decrease could further regulate the expression of functional molecules (CD80, CD86, and HLA-DR or MHC II) on uDCs, contributing to abnormal pregnancy outcomes. Our results will shed light on the molecular immune mechanisms of uDCs in abnormal pregnancy outcomes by T. gondii infection.
Collapse
Affiliation(s)
- Shaowei Zhan
- Department of Gynecology and Obstetrics, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Jing Zheng
- Department of Gynecology and Obstetrics, Yantai Traditional Chinese Medicine Hospital, Yantai, China
| | - Haixia Zhang
- Department of Immunology, Department of Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Mingdong Zhao
- Department of Radiology, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xianbing Liu
- Department of Immunology, Department of Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Yuzhu Jiang
- Department of Immunology, Department of Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Chunyan Yang
- Department of Immunology, Department of Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Liqin Ren
- Department of Immunology, Department of Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Zhiqiang Liu
- Department of Gynecology and Obstetrics, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Xuemei Hu
- Department of Immunology, Department of Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| |
Collapse
|
16
|
Sabbagh A, Sonon P, Sadissou I, Mendes-Junior CT, Garcia A, Donadi EA, Courtin D. The role of HLA-G in parasitic diseases. HLA 2018; 91:255-270. [PMID: 29368453 DOI: 10.1111/tan.13196] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023]
Abstract
Little attention has been devoted to the role of HLA-G gene and molecule on parasitic disorders, and the available studies have focused on malaria, African and American trypanosomiasis, leishmaniosis, toxoplasmosis and echinococcosis. After reporting a brief description regarding the role of the cells of innate and adaptive immune system against parasites, we reviewed the major features of the HLA-G gene and molecule and the role of HLA-G on the major cells of immune system. Increased levels of soluble HLA-G (sHLA-G) have been observed in patients presenting toxoplasmosis and in the active phase of echinococcosis. In addition, increased sHLA-G has also been associated with increased susceptibility to malaria and increased susceptibility to develop human African trypanosomiasis (HAT). In contrast, decreased membrane-bound HLA-G has been reported in placenta of patients infected with Plasmodium falciparum and in heart and colon of patients presenting Chagas disease. The 3' untranslated region of the HLA-G gene has been the main focus of studies on malaria, HAT and Chagas disease, exhibiting distinct patterns of associations. Considering that HLA-G is an immune checkpoint molecule, inhibiting the activity of several cells of the immune system, the excessive neoexpression and the increased sHLA-G levels together with the decreased constitutive tissue expression of membrane-bound HLA-G may be detrimental to the host infected with parasite agents.
Collapse
Affiliation(s)
- A Sabbagh
- UMR 216 MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| | - P Sonon
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - I Sadissou
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - C T Mendes-Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brazil
| | - A Garcia
- UMR 216 MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France.,Centre d'Etude et de Recherche sur le Paludisme Associé à la Grossesse et à l'Enfance (CERPAGE), Faculté des Sciences de la Santé, Cotonou, Bénin
| | - E A Donadi
- Department of Medicine, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - D Courtin
- UMR 216 MERIT, Institut de Recherche pour le Développement, Faculté de Pharmacie de Paris, Université Paris Descartes, Paris, France
| |
Collapse
|
17
|
Ahouty B, Koffi M, Ilboudo H, Simo G, Matovu E, Mulindwa J, Hertz-Fowler C, Bucheton B, Sidibé I, Jamonneau V, MacLeod A, Noyes H, N’Guetta SP. Candidate genes-based investigation of susceptibility to Human African Trypanosomiasis in Côte d'Ivoire. PLoS Negl Trop Dis 2017; 11:e0005992. [PMID: 29059176 PMCID: PMC5695625 DOI: 10.1371/journal.pntd.0005992] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/02/2017] [Accepted: 09/25/2017] [Indexed: 01/31/2023] Open
Abstract
Human African Trypanosomiasis (HAT) or sleeping sickness is a Neglected Tropical Disease. Long regarded as an invariably fatal disease, there is increasing evidence that infection by T. b. gambiense can result in a wide range of clinical outcomes, including latent infections, which are long lasting infections with no parasites detectable by microscopy. The determinants of this clinical diversity are not well understood but could be due in part to parasite or host genetic diversity in multiple genes, or their interactions. A candidate gene association study was conducted in Côte d’Ivoire using a case-control design which included a total of 233 subjects (100 active HAT cases, 100 controls and 33 latent infections). All three possible pairwise comparisons between the three phenotypes were tested using 96 SNPs in16 candidate genes (IL1, IL4, IL4R, IL6, IL8, IL10, IL12, IL12R, TNFA, INFG, MIF, APOL1, HPR, CFH, HLA-A and HLA-G). Data from 77 SNPs passed quality control. There were suggestive associations at three loci in IL6 and TNFA in the comparison between active cases and controls, one SNP in each of APOL1, MIF and IL6 in the comparison between latent infections and active cases and seven SNP in IL4, HLA-G and TNFA between latent infections and controls. No associations remained significant after Bonferroni correction, but the Benjamini Hochberg false discovery rate test indicated that there were strong probabilities that at least some of the associations were genuine. The excess of associations with latent infections despite the small number of samples available suggests that these subjects form a distinct genetic cluster different from active HAT cases and controls, although no clustering by phenotype was observed by principle component analysis. This underlines the complexity of the interactions existing between host genetic polymorphisms and parasite diversity. Since it was first identified, human African trypanosomiasis (HAT) or sleeping sickness has been described as invariably fatal. Recent data however suggest that infection by T. b. gambiense can result in a wide range of clinical outcomes in its human host including long lasting infections, that can be detected by the presence of antibodies, but in which parasites cannot be seen by microscopy; these cases are known as latent infections. While the factors determining, this varied response have not been clearly characterized, the effectors of the immune responses have been partially implicated as key players. We collected samples from people with active HAT, latent infections and controls in endemic foci in the Côte d’Ivoire. We tested the role of single nucleotide polymorphisms (SNPs) in 16 genes on susceptibility/resistance to HAT by means of a candidate gene association study. There was some evidence that variants of the genes for IL4, IL6, APOL1, HLAG, MIF and TNFA modified the risk of developing HAT. These proteins regulate the inflammatory response to many infections or are directly involved in killing the parasites. In this study, the results were statistically weak and would be inconclusive on their own, however other studies have also found associations in these genes, increasing the chance that the variants that we have identified play a genuine role in the response to trypanosome infection in Côte D’Ivoire.
Collapse
Affiliation(s)
- Bernardin Ahouty
- Laboratoire de Génétique, Félix Houphouët Boigny University, Abidjan, Côte d’Ivoire
| | - Mathurin Koffi
- Unité de Recherche en Génétique et Epidémiology Moléculaire, Jean Lorougnon Guédé University, Daloa, Côte d’Ivoire
- * E-mail:
| | - Hamidou Ilboudo
- Unité Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Gustave Simo
- Department of Biochemistry, University of Dchang, Dchang, Cameroon
| | - Enock Matovu
- School of Veterinary Medicine, Makerere University, Kampala, Uganda
| | - Julius Mulindwa
- School of Veterinary Medicine, Makerere University, Kampala, Uganda
| | | | - Bruno Bucheton
- Unité Mixte de Recherche 177 IRD-CIRAD, Institut de Recherche pour le Développement, Montpellier, France
| | - Issa Sidibé
- Unité Maladies à Vecteurs et Biodiversité, Centre International de Recherche-Développement sur l’Elevage en zone Subhumide, Bobo-Dioulasso, Burkina Faso
| | - Vincent Jamonneau
- Unité Mixte de Recherche 177 IRD-CIRAD, Institut de Recherche pour le Développement, Montpellier, France
- Unité de Recherche Glossines et Trypanosomes, Institut Pierre Richet, Bouaké, Côte d’Ivoire
| | - Annette MacLeod
- Wellcome Center for Molecular Parasitology, University of Glasgow, Glasgow, United Kingdom
| | - Harry Noyes
- Centre for Genomic Research, University of Liverpool, Liverpool, United Kingdom
| | | | | |
Collapse
|
18
|
Li Z, Zhao M, Li T, Zheng J, Liu X, Jiang Y, Zhang H, Hu X. Decidual Macrophage Functional Polarization during Abnormal Pregnancy due to Toxoplasma gondii: Role for LILRB4. Front Immunol 2017; 8:1013. [PMID: 28883820 PMCID: PMC5573710 DOI: 10.3389/fimmu.2017.01013] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022] Open
Abstract
During gestation, Toxoplasma gondii infection produces a series of complications including stillbirths, abortions, and congenital malformations. The inhibitory receptor, LILRB4, which is mainly expressed by professional antigen-presenting cells (especially macrophages and dendritic cells) may play an important immune-regulatory role at the maternal-fetal interface. To assess the role of LILRB4 during T. gondii infection, LILRB4-/- and T. gondii infected pregnant mouse models were established. Further, human primary-decidual macrophages were treated with anti-LILRB4 neutralizing antibody and then infected with T. gondii. These in vivo and in vitro models were used to explore the role of LILRB4 in T. gondii-mediated abnormal pregnancy outcomes. The results showed that abnormal pregnancy outcomes were more prevalent in LILRB4-/- infected pregnant mice than in wild-type infected pregnant mice. In subsequent experiments, expression levels of LILRB4, M1, and M2 membrane-functional molecules, arginine metabolic enzymes, and related cytokines were assessed in uninfected, infected, LILRB4-neutralized infected, and LILRB4-/- infected models. The results demonstrated T. gondii infection to downregulate LILRB4 on decidual macrophages, which strengthened M1 activation functions and weakened M2 tolerance functions by changing M1 and M2 membrane molecule expression, synthesis of arginine metabolic enzymes, and cytokine secretion profiles. These changes contributed to abnormal pregnancy outcomes. The results of this study provide not only a deeper understanding of the immune mechanisms operational during abnormal pregnancy, induced by T. gondii infection, but also identify potential avenues for therapeutic and preventive treatment of congenital toxoplasmosis.
Collapse
Affiliation(s)
- Zhidan Li
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Mingdong Zhao
- Department of Radiology, Binzhou Affiliated Hospital of Binzhou Medical University, Binzhou, China
| | - Teng Li
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Jing Zheng
- Department of Gynecology and Obstetrics, Yantai Traditional Chinese Medicine Hospital, Yantai, China
| | - Xianbing Liu
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Yuzhu Jiang
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Haixia Zhang
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| | - Xuemei Hu
- Department of Immunology, Medicine & Pharmacy Research Center, Binzhou Medical University, Yantai, China
| |
Collapse
|
19
|
Carrillo I, Droguett D, Castillo C, Liempi A, Muñoz L, Maya JD, Galanti N, Kemmerling U. Caspase-8 activity is part of the BeWo trophoblast cell defense mechanisms against Trypanosoma cruzi infection. Exp Parasitol 2016; 168:9-15. [DOI: 10.1016/j.exppara.2016.06.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Accepted: 06/17/2016] [Indexed: 02/08/2023]
|
20
|
Souza DMBO, Genre J, Silva TGA, Soares CP, Rocha KBF, Oliveira CN, Jatobá CAN, Andrade JMDL, Moreau P, Medeiros ADC, Donadi EA, Crispim JCDO. Upregulation of Soluble HLA-G5 and HLA-G6 Isoforms in the Milder Histopathological Stages of Helicobacter pylori Infection: A Role for Subverting Immune Responses? Scand J Immunol 2016; 83:38-43. [PMID: 26346688 DOI: 10.1111/sji.12385] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 08/27/2015] [Indexed: 12/16/2022]
Abstract
The subversion mechanisms employed by Helicobacter pylori (H. pylori) to escape from immune surveillance and to establish persistent infection are poorly understood. Growing evidence indicates that expression of HLA-G, a non-classical major histocompatibility complex molecule, negatively regulates immune responses in pathological conditions, including infectious diseases. In this context, we aimed to evaluate HLA-G expression in the gastric microenvironment of individuals harbouring H. pylori and to correlate it with histological variables. Fifty-four gastric specimens from patients harbouring H. pylori infection were evaluated by immunohistochemistry using anti-HLA-G monoclonal antibody. As a result, HLA-G expression was detected in 43 of 54 specimens harbouring H. pylori. The presence of HLA-G was significantly associated with milder colonization by H. pylori (P < 0.02), milder inflammatory activity (P < 0.02) and bacterium histological location in the gastric antrum. This study is the first to explore HLA-G expression in the context of bacterial infection. Whether the biological role of HLA-G during H. pylori infection is beneficial or hazardous for patients remains to be defined.
Collapse
Affiliation(s)
- D M B Oliveira Souza
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brasil
| | - J Genre
- Programa de Pós-Graduação em Ciências da Saúde, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brasil
| | - T G Alves Silva
- Departamento de Análises Clinicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Júlio de Mesquita Filho, São Paulo, Brasil
| | - C P Soares
- Departamento de Análises Clinicas, Faculdade de Ciências Farmacêuticas, Universidade Estadual Júlio de Mesquita Filho, São Paulo, Brasil
| | - K Borges Ferreira Rocha
- Departamento de Patologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brasil
| | - C Nunes Oliveira
- Departamento de Patologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brasil
| | - C A Nunes Jatobá
- Departamento de Patologia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brasil
| | - J Marco de Leon Andrade
- Departamento de Estatística, Instituto de Ciências Exatas, Universidade de Brasília, Brasília/DF, Brasil
| | - P Moreau
- Commissariat à l'Energie Atomique et aux Energies Alternatives, Institut des Maladies Emergentes et des Thérapies Innovantes, Service de Recherches en Hémato- Immunologie, Hôpital Saint-Louis 1, Paris, France.,Université Paris-Diderot Sorbonne Paris-Cité, UMR E5 Institut Universitaire d'Hématologie, Hôpital Saint-Louis 1, Paris, France
| | - A da Cunha Medeiros
- Departamento de Cirurgia, Faculdade de Medicina, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brasil
| | - E A Donadi
- Divisão de Imunologia Clínica, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, São Paulo, Brasil
| | - J C de Oliveira Crispim
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Centro de Ciências da Saúde, Universidade Federal do Rio Grande do Norte, Rio Grande do Norte, Brasil
| |
Collapse
|
21
|
IL-10 regulate decidual Tregs apoptosis contributing to the abnormal pregnancy with Toxoplasma gondii infection. Microb Pathog 2015; 89:210-6. [DOI: 10.1016/j.micpath.2015.10.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2015] [Revised: 09/29/2015] [Accepted: 10/04/2015] [Indexed: 11/19/2022]
|
22
|
The activating effect of IFN-γ on monocytes/macrophages is regulated by the LIF-trophoblast-IL-10 axis via Stat1 inhibition and Stat3 activation. Cell Mol Immunol 2014; 12:326-41. [PMID: 25027966 DOI: 10.1038/cmi.2014.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 05/30/2014] [Accepted: 05/30/2014] [Indexed: 12/28/2022] Open
Abstract
Interferon gamma (IFN-γ) and leukemia inhibitory factor (LIF) are key gestational factors that may differentially affect leukocyte function during gestation. Because IFN-γ induces a pro-inflammatory phenotype in macrophages and because trophoblast cells are principal targets of LIF in the placenta, we investigated whether and how soluble factors from trophoblast cells regulate the effects of IFN-γ on macrophage activation. IFN-γ reduces macrophage motility, but enhances Stat1 activation, pro-inflammatory gene expression and cytotoxic functions. Soluble factors from villous cytotrophoblasts (vCT+LIF cells) and BeWo cells (BW/ST+LIF cells) that were differentiated in the presence of LIF inhibit macrophage Stat1 activation but inversely sustain Stat3 activation in response to IFN-γ. vCT+LIF cells produce soluble factors that induce Stat3 activation; this effect is partially abrogated in the presence of neutralizing anti-interleukin 10 (IL-10) antibodies. Moreover, soluble factors from BW/ST+LIF cells reduce cell proliferation but enhance the migratory responses of monocytes. In addition, these factors reverse the inhibitory effect of IFN-γ on monocyte/macrophage motility. BW/ST+LIF cells also generate IFN-γ-activated macrophages with enhanced IL-10 expression, but reduced tumor-necrosis factor alpha (TNF-α), CD14 and CD40 expression as well as impaired cytotoxic function. Additional assays performed in the presence of neutralizing anti-IL-10 antibodies and exogenous IL-10 demonstrate that reduced macrophage cytotoxicity and proliferation, but increased cell motility result from the ability of trophoblast IL-10 to sustain Stat3 activation and suppress IFN-γ-induced Stat1 activation. These in vitro studies are the first to describe the regulatory role of the LIF-trophoblast-IL-10 axis in the process of macrophage activation in response to pro-inflammatory cytokines.
Collapse
|
23
|
Amiot L, Vu N, Samson M. Immunomodulatory properties of HLA-G in infectious diseases. J Immunol Res 2014; 2014:298569. [PMID: 24839609 PMCID: PMC4009271 DOI: 10.1155/2014/298569] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Revised: 03/09/2014] [Accepted: 03/10/2014] [Indexed: 12/04/2022] Open
Abstract
HLA-G is a nonclassical major histocompatibility complex molecule first described at the maternal-fetal interface, on extravillous cytotrophoblasts. Its expression is restricted to some tissues in normal conditions but increases strongly in pathological conditions. The expression of this molecule has been studied in detail in cancers and is now also beginning to be described in infectious diseases. The relevance of studies on HLA-G expression lies in the well known inhibitory effect of this molecule on all cell types involved in innate and adaptive immunity, favoring escape from immune control. In this review, we summarize the features of HLA-G expression by type of infections (i.e, bacterial, viral, or parasitic) detailing the state of knowledge for each pathogenic agent. The polymorphism, the interference of viral proteins with HLA-G intracellular trafficking, and various cytokines have been described to modulate HLA-G expression during infections. We also discuss the cellular source of HLA-G, according to the type of infection and the potential role of HLA-G. New therapeutic approaches based on synthetic HLA-G-derived proteins or antibodies are emerging in mouse models of cancer or transplantation, and these new therapeutic tools may eventually prove useful for the treatment of infectious diseases.
Collapse
Affiliation(s)
- Laurence Amiot
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche sur la Santé, l'Environnement, et le Travail (IRSET), 2 Avenue du Pr. Leon Bernard CS 34317, 35043 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
- Fédération de Recherche BioSit de Rennes UMS 3480, 35043 Rennes, France
- Department of Biology, University Hospital Pontchaillou, CHU Pontchaillou, 35033 Rennes, France
| | - Nicolas Vu
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche sur la Santé, l'Environnement, et le Travail (IRSET), 2 Avenue du Pr. Leon Bernard CS 34317, 35043 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
- Fédération de Recherche BioSit de Rennes UMS 3480, 35043 Rennes, France
| | - Michel Samson
- Institut National de la Santé et de la Recherche Médicale (Inserm), U.1085, Institut de Recherche sur la Santé, l'Environnement, et le Travail (IRSET), 2 Avenue du Pr. Leon Bernard CS 34317, 35043 Rennes, France
- Université de Rennes 1, 35043 Rennes, France
- Fédération de Recherche BioSit de Rennes UMS 3480, 35043 Rennes, France
| |
Collapse
|
24
|
Angeloni MB, Guirelli PM, Franco PS, Barbosa BF, Gomes AO, Castro AS, Silva NM, Martins-Filho OA, Mineo TWP, Silva DAO, Mineo JR, Ferro EAV. Differential apoptosis in BeWo cells after infection with highly (RH) or moderately (ME49) virulent strains of Toxoplasma gondii is related to the cytokine profile secreted, the death receptor Fas expression and phosphorylated ERK1/2 expression. Placenta 2013; 34:973-82. [PMID: 24074900 DOI: 10.1016/j.placenta.2013.09.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Revised: 08/27/2013] [Accepted: 09/06/2013] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Alterations of apoptosis are commonly associated with pregnancy complications and abortion. Modulation of apoptosis is a relevant feature of Toxoplasma gondii infection and it is related to parasite strain types. The aim of the present study was to evaluate the possible factors that are involved in the differential apoptosis of BeWo cells infected with distinct T. gondii strain types. METHODS Human trophoblastic cells (BeWo cell line) were infected with RH or ME49 strains, the cytokine production was measured and the phosphorylation of anti-apoptotic ERK1/2 protein was analyzed. Also, cells were treated with different cytokines, infected with RH or ME49 strain, and analyzed for apoptosis index and Fas/CD95 death receptor expression. RESULTS ME49-infected BeWo cells exhibited a predominantly pro-inflammatory cytokine profile, whereas cells infected with RH strain had a higher production of anti-inflammatory cytokines. Also, the incidence of apoptosis was higher in ME49-infected cells, which have been treated with pro-inflammatory cytokines compared to cells infected with RH and treated with anti-inflammatory cytokines. Moreover, Fas/CD95 expression was higher in cells infected with either ME49 or RH strain and treated with pro-inflammatory cytokines compared to anti-inflammatory cytokine treatment. The phosphorylation of ERK1/2 protein increased after 24 h of infection only with the RH strain. CONCLUSION These results suggest that opposing mechanisms of interference in apoptosis of BeWo cells after infection with RH or ME49 strains of T. gondii can be associated with the differential cytokine profile secreted, the Fas/CD95 expression and the phosphorylated ERK1/2 expression.
Collapse
Affiliation(s)
- M B Angeloni
- Laboratory of Histology and Embryology, Institute of Biomedical Sciences, Federal University of Uberlândia, Av. Pará, 1720, 38405-320 Uberlândia, MG, Brazil.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Evaluation of protective effect of pVAX-TgMIC13 plasmid against acute and chronic Toxoplasma gondii infection in a murine model. Vaccine 2013; 31:3135-9. [DOI: 10.1016/j.vaccine.2013.05.040] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 04/30/2013] [Accepted: 05/10/2013] [Indexed: 12/26/2022]
|