1
|
Prell A, Wigger D, Huwiler A, Schumacher F, Kleuser B. The sphingosine kinase 2 inhibitors ABC294640 and K145 elevate (dihydro)sphingosine 1-phosphate levels in various cells. J Lipid Res 2024; 65:100631. [PMID: 39182604 PMCID: PMC11465068 DOI: 10.1016/j.jlr.2024.100631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/12/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024] Open
Abstract
Sphingosine kinases (SphKs), enzymes that produce the bioactive lipids dihydrosphingosine 1-phosphate (dhS1P) and sphingosine 1-phosphate (S1P), are associated with various diseases, including cancer and infections. For this reason, a number of SphK inhibitors have been developed. Although off-target effects have been described for selected agents, SphK inhibitors are mostly used in research without monitoring the effects on the sphingolipidome. We have now investigated the effects of seven commonly used SphK inhibitors (5c, ABC294640 (opaganib), N,N-dimethylsphingosine, K145, PF-543, SLM6031434, and SKI-II) on profiles of selected sphingolipids in Chang, HepG2, and human umbilical vein endothelial cells. While we observed the expected (dh)S1P reduction for N,N-dimethylsphingosine, PF-543, SKI-II, and SLM6031434, 5c showed hardly any effect. Remarkably, for K145 and ABC294640, both reported to be specific for SphK2, we observed dose-dependent strong increases in dhS1P and S1P across cell lines. Compensatory effects of SphK1 could be excluded, as this observation was also made in SphK1-deficient HK-2 cells. Furthermore, we observed effects on dihydroceramide desaturase activity for all inhibitors tested, as has been previously noted for ABC294640 and SKI-II. In additional mechanistic studies, we investigated the massive increase of dhS1P and S1P after short-term cell treatment with ABC294640 and K145 in more detail. We found that both compounds affect sphingolipid de novo synthesis, with 3-ketodihydrosphingosine reductase and dihydroceramide desaturase as their targets. Our study indicates that none of the seven SphK inhibitors tested was free of unexpected on-target and/or off-target effects. Therefore, it is important to monitor cellular sphingolipid profiles when SphK inhibitors are used in mechanistic studies.
Collapse
Affiliation(s)
- Agata Prell
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Dominik Wigger
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Andrea Huwiler
- Institute of Pharmacology, Inselspital, INO-F, University of Bern, Bern, Switzerland
| | - Fabian Schumacher
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany
| | - Burkhard Kleuser
- Department of Pharmacology and Toxicology, Institute of Pharmacy, Freie Universität Berlin, Berlin, Germany.
| |
Collapse
|
2
|
Fohmann I, Weinmann A, Schumacher F, Peters S, Prell A, Weigel C, Spiegel S, Kleuser B, Schubert-Unkmeir A. Sphingosine kinase 1/S1P receptor signaling axis is essential for cellular uptake of Neisseria meningitidis in brain endothelial cells. PLoS Pathog 2023; 19:e1011842. [PMID: 38033162 PMCID: PMC10715668 DOI: 10.1371/journal.ppat.1011842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/12/2023] [Accepted: 11/18/2023] [Indexed: 12/02/2023] Open
Abstract
Invasion of brain endothelial cells (BECs) is central to the pathogenicity of Neisseria meningitidis infection. Here, we established a key role for the bioactive sphingolipid sphingosine-1-phosphate (S1P) and S1P receptor (S1PR) 2 in the uptake process. Quantitative sphingolipidome analyses of BECs infected with N. meningitidis revealed elevated S1P levels, which could be attributed to enhanced expression of the enzyme sphingosine kinase 1 and its activity. Increased activity was dependent on the interaction of meningococcal type IV pilus with the endothelial receptor CD147. Concurrently, infection led to increased expression of the S1PR2. Blocking S1PR2 signaling impaired epidermal growth factor receptor (EGFR) phosphorylation, which has been shown to be involved in cytoskeletal remodeling and bacterial endocytosis. Strikingly, targeting S1PR1 or S1PR3 also interfered with bacterial uptake. Collectively, our data support a critical role of the SphK/S1P/S1PR axis in the invasion of N. meningitidis into BECs, defining a potential target for adjuvant therapy.
Collapse
Affiliation(s)
- Ingo Fohmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Alina Weinmann
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Fabian Schumacher
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Simon Peters
- Institute for Hygiene and Microbiology, University of Würzburg, Würzburg, Germany
| | - Agata Prell
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | - Cynthia Weigel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology and the Massey Cancer Center, Virginia Commonwealth University School of Medicine, Richmond, Virginia, United States of America
| | - Burkhard Kleuser
- Institute of Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Berlin, Germany
| | | |
Collapse
|
3
|
Wang S, Huo Y, Zhang J, Li L, Cao F, Song Y, Zhang Y, Yang K. Design, synthesis, antitumor activity, and molecular dynamics simulations of novel sphingosine kinase 2 inhibitors. Bioorg Med Chem 2023; 93:117441. [PMID: 37586181 DOI: 10.1016/j.bmc.2023.117441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/06/2023] [Accepted: 08/08/2023] [Indexed: 08/18/2023]
Abstract
Targeting sphingosine kinase 2 (SphK2) has become a novel strategy for the treatment of cancer. However, potent and selective SphK2 inhibitors are rare. In our work, a series of novel SphK2 inhibitors were innovatively designed, synthesized and screened. Compound 12e showed the best inhibitory activity. Molecular dynamics simulations were carried out to analyze the detailed interactions between the SphK2 and its inhibitors. Moreover, 12e exhibited anti-proliferative activity in various cancer cells, and inhibited the migration of human breast cancer cells MCF-7.
Collapse
Affiliation(s)
- ShaSha Wang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yidan Huo
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Jinmiao Zhang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Longfei Li
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Fei Cao
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yali Song
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China
| | - Yajing Zhang
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China.
| | - Kan Yang
- Key Laboratory of Pharmaceutical Quality Control of Hebei Province, College of Pharmaceutical Sciences, Hebei University, Baoding 071002, China.
| |
Collapse
|
4
|
Afrin F, Mateen S, Oman J, Lai JCK, Barrott JJ, Pashikanti S. Natural Products and Small Molecules Targeting Cellular Ceramide Metabolism to Enhance Apoptosis in Cancer Cells. Cancers (Basel) 2023; 15:4645. [PMID: 37760612 PMCID: PMC10527029 DOI: 10.3390/cancers15184645] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 09/08/2023] [Accepted: 09/11/2023] [Indexed: 09/29/2023] Open
Abstract
Molecular targeting strategies have been used for years in order to control cancer progression and are often based on targeting various enzymes involved in metabolic pathways. Keeping this in mind, it is essential to determine the role of each enzyme in a particular metabolic pathway. In this review, we provide in-depth information on various enzymes such as ceramidase, sphingosine kinase, sphingomyelin synthase, dihydroceramide desaturase, and ceramide synthase which are associated with various types of cancers. We also discuss the physicochemical properties of well-studied inhibitors with natural product origins and their related structures in terms of these enzymes. Targeting ceramide metabolism exhibited promising mono- and combination therapies at preclinical stages in preventing cancer progression and cemented the significance of sphingolipid metabolism in cancer treatments. Targeting ceramide-metabolizing enzymes will help medicinal chemists design potent and selective small molecules for treating cancer progression at various levels.
Collapse
Affiliation(s)
- Farjana Afrin
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Sameena Mateen
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jordan Oman
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - James C. K. Lai
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| | - Jared J. Barrott
- Cell Biology and Physiology, College of Life Sciences, Brigham Young University, Provo, UT 84602, USA;
| | - Srinath Pashikanti
- Biomedical and Pharmaceutical Sciences, Kasiska Division of Health Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (F.A.); (S.M.); (J.O.); (J.C.K.L.)
| |
Collapse
|
5
|
Fei X, Dou YN, Sun K, Wei J, Guo Q, Wang L, Wu X, Lv W, Jiang X, Fei Z. TRIM22 promotes the proliferation of glioblastoma cells by activating MAPK signaling and accelerating the degradation of Raf-1. Exp Mol Med 2023; 55:1203-1217. [PMID: 37258577 PMCID: PMC10318069 DOI: 10.1038/s12276-023-01007-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 01/14/2023] [Accepted: 03/15/2023] [Indexed: 06/02/2023] Open
Abstract
The tripartite motif (TRIM) 22 and mitogen-activated protein kinase (MAPK) signaling pathways play critical roles in the growth of glioblastoma (GBM). However, the molecular mechanism underlying the relationship between TRIM22 and MAPK signaling remains unclear. Here, we found that TRIM22 binds to exon 2 of the sphingosine kinase 2 (SPHK2) gene. An ERK1/2-driven luciferase reporter construct identified TRIM22 as a potential activator of MAPK signaling. Knockout and overexpression of TRIM22 regulate the inhibition and activation of MAPK signaling through the RING-finger domain. TRIM22 binds to Raf-1, a negative regulator of MAPK signaling, and accelerates its degradation by inducing K48-linked ubiquitination, which is related to the CC and SPRY domains of TRIM22 and the C1D domain of Raf-1. In vitro and in vivo, an SPHK2 inhibitor (K145), an ERK1/2 inhibitor (selumetinib), and the nonphosphorylated mutant Raf-1S338A inhibited GBM growth. In addition, deletion of the RING domain and the nuclear localization sequence of TRIM22 significantly inhibited TRIM22-induced proliferation of GBM cells in vivo and in vitro. In conclusion, our study showed that TRIM22 regulates SPHK2 transcription and activates MAPK signaling through posttranslational modification of two critical regulators of MAPK signaling in GBM cells.
Collapse
Affiliation(s)
- Xiaowei Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Ya-Nan Dou
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Kai Sun
- Department of Neurosurgery, Daping Hospital, Third Military Medical University, Chongqing, China
| | - Jialiang Wei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Qingdong Guo
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Li Wang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiuquan Wu
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Weihao Lv
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China
| | - Xiaofan Jiang
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China.
| | - Zhou Fei
- Department of Neurosurgery, Xijing Hospital, Air Force Military Medical University, Xi'an, Shaanxi, China.
| |
Collapse
|
6
|
Raza Y, Atallah J, Luberto C. Advancements on the Multifaceted Roles of Sphingolipids in Hematological Malignancies. Int J Mol Sci 2022; 23:12745. [PMID: 36361536 PMCID: PMC9654982 DOI: 10.3390/ijms232112745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/07/2022] [Accepted: 10/17/2022] [Indexed: 09/19/2023] Open
Abstract
Dysregulation of sphingolipid metabolism plays a complex role in hematological malignancies, beginning with the first historical link between sphingolipids and apoptosis discovered in HL-60 leukemic cells. Numerous manuscripts have reviewed the field including the early discoveries that jumpstarted the studies. Many studies discussed here support a role for sphingolipids, such as ceramide, in combinatorial therapeutic regimens to enhance anti-leukemic effects and reduce resistance to standard therapies. Additionally, inhibitors of specific nodes of the sphingolipid pathway, such as sphingosine kinase inhibitors, significantly reduce leukemic cell survival in various types of leukemias. Acid ceramidase inhibitors have also shown promising results in acute myeloid leukemia. As the field moves rapidly, here we aim to expand the body of literature discussed in previously published reviews by focusing on advances reported in the latter part of the last decade.
Collapse
Affiliation(s)
- Yasharah Raza
- Department of Pharmacological Sciences, Molecular and Cellular Pharmacology, Stony Brook University, Stony Brook, NY 11794, USA
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
| | - Jane Atallah
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| | - Chiara Luberto
- Stony Brook Cancer Center, Stony Brook University Hospital, Stony Brook, NY 11794, USA
- Department of Physiology and Biophysics, Stony Brook University, Stony Brook, NY 11794, USA
| |
Collapse
|
7
|
Pashikanti S, Foster DJ, Kharel Y, Brown AM, Bevan DR, Lynch KR, Santos WL. Sphingosine Kinase 2 Inhibitors: Rigid Aliphatic Tail Derivatives Deliver Potent and Selective Analogues. ACS BIO & MED CHEM AU 2022; 2:469-489. [PMID: 36281302 PMCID: PMC9585524 DOI: 10.1021/acsbiomedchemau.2c00017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Sphingosine 1-phosphate
(S1P) is a pleiotropic signaling molecule
that interacts with five native G-protein coupled receptors (S1P1–5)
to regulate cell growth, survival, and proliferation. S1P has been
implicated in a variety of pathologies including cancer, kidney fibrosis,
and multiple sclerosis. As key mediators in the synthesis of S1P,
sphingosine kinase (SphK) isoforms 1 and 2 have attracted attention
as viable targets for pharmacologic intervention. In this report,
we describe the design, synthesis, and biological evaluation of sphingosine
kinase 2 (SphK2) inhibitors with a focus on systematically introducing
rigid structures in the aliphatic lipid tail present in existing SphK2
inhibitors. Experimental as well as molecular modeling studies suggest
that conformationally restricted “lipophilic tail” analogues
bearing a bulky terminal moiety or an internal phenyl ring are useful
to complement the “J”-shaped sphingosine binding pocket
of SphK2. We identified 14c (SLP9101555) as a potent
SphK2 inhibitor (Ki = 90 nM) with 200-fold
selectivity over SphK1. Molecular docking studies indicated key interactions:
the cyclohexyl ring binding in the cleft deep in the pocket, a trifluoromethyl
group fitting in a small side cavity, and a hydrogen bond between
the guanidino group and Asp308 (amino acid numbering refers to human
SphK2 (isoform c) orthologue). In vitro studies using
U937 human histiocytic lymphoma cells showed marked decreases in extracellular
S1P levels in response to our SphK2 inhibitors. Administration of 14c (dose: 5 mg/kg) to mice resulted in a sustained increase
of circulating S1P levels, suggesting target engagement.
Collapse
Affiliation(s)
- Srinath Pashikanti
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Biomedical and Pharmaceutical Sciences, Idaho State University, Pocatello, Idaho 83209, United States
| | - Daniel J. Foster
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M. Brown
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - David R. Bevan
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry, Virginia Tech, Blacksburg, Virginia 24060, United States
- Virginia Tech Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24060, United States
| |
Collapse
|
8
|
Revealing 2-Dimethylhydrazino-2-alkyl alkynyl sphingosine derivatives as Sphingosine Kinase 2 inhibitors: some hints on the structural basis for selective inhibition. Bioorg Chem 2022; 121:105668. [DOI: 10.1016/j.bioorg.2022.105668] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 02/02/2022] [Accepted: 02/07/2022] [Indexed: 12/29/2022]
|
9
|
Bennett MK, Li M, Tea MN, Pitman MR, Toubia J, Wang PPS, Anderson D, Creek DJ, Orlowski RZ, Gliddon BL, Powell JA, Wallington-Beddoe CT, Pitson SM. Resensitising proteasome inhibitor-resistant myeloma with sphingosine kinase 2 inhibition. Neoplasia 2021; 24:1-11. [PMID: 34826777 PMCID: PMC8626806 DOI: 10.1016/j.neo.2021.11.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 11/15/2021] [Accepted: 11/15/2021] [Indexed: 12/13/2022]
Abstract
The introduction of the proteasome inhibitor bortezomib into treatment regimens for myeloma has led to substantial improvement in patient survival. However, whilst bortezomib elicits initial responses in many myeloma patients, this haematological malignancy remains incurable due to the development of acquired bortezomib resistance. With other patients presenting with disease that is intrinsically bortezomib resistant, it is clear that new therapeutic approaches are desperately required to target bortezomib-resistant myeloma. We have previously shown that targeting sphingolipid metabolism with the sphingosine kinase 2 (SK2) inhibitor K145 in combination with bortezomib induces synergistic death of bortezomib-naïve myeloma. In the current study, we have demonstrated that targeting sphingolipid metabolism with K145 synergises with bortezomib and effectively resensitises bortezomib-resistant myeloma to this proteasome inhibitor. Notably, these effects were dependent on enhanced activation of the unfolded protein response, and were observed in numerous separate myeloma models that appear to have different mechanisms of bortezomib resistance, including a new bortezomib-resistant myeloma model we describe which possesses a clinically relevant proteasome mutation. Furthermore, K145 also displayed synergy with the next-generation proteasome inhibitor carfilzomib in bortezomib-resistant and carfilzomib-resistant myeloma cells. Together, these findings indicate that targeting sphingolipid metabolism via SK2 inhibition may be effective in combination with a broad spectrum of proteasome inhibitors in the proteasome inhibitor resistant setting, and is an approach worth clinical exploration.
Collapse
Affiliation(s)
- Melissa K Bennett
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia
| | - Manjun Li
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia
| | - Melinda N Tea
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide SA, 5000, Australia
| | - John Toubia
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Paul P-S Wang
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; ACRF Cancer Genomics Facility, Centre for Cancer Biology, SA Pathology, Adelaide, South Australia, 5000, Australia
| | - Dovile Anderson
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Darren J Creek
- Drug Delivery, Disposition and Dynamics, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria, Australia
| | - Robert Z Orlowski
- Department of Lymphoma and Myeloma, The University of Texas M.D. Anderson Cancer Center, Houston, TX 77030, USA
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide SA, 5000, Australia
| | - Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide SA, 5000, Australia; College of Medicine and Public Health, Flinders University, Bedford Park SA, 5042, Australia; Flinders Medical Centre, Bedford Park SA, 5042, Australia.
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Bradley Building, North Tce, Adelaide SA, 5000, Australia; School of Biological Sciences, University of Adelaide, Adelaide SA, 5000, Australia; Adelaide Medical School, University of Adelaide, Adelaide SA, 5000, Australia.
| |
Collapse
|
10
|
Shamshiddinova M, Gulyamov S, Kim HJ, Jung SH, Baek DJ, Lee YM. A Dansyl-Modified Sphingosine Kinase Inhibitor DPF-543 Enhanced De Novo Ceramide Generation. Int J Mol Sci 2021; 22:ijms22179190. [PMID: 34502095 PMCID: PMC8431253 DOI: 10.3390/ijms22179190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 12/29/2022] Open
Abstract
Sphingosine-1-phosphate (S1P) synthesized by sphingosine kinase (SPHK) is a signaling molecule, involved in cell proliferation, growth, differentiation, and survival. Indeed, a sharp increase of S1P is linked to a pathological outcome with inflammation, cancer metastasis, or angiogenesis, etc. In this regard, SPHK/S1P axis regulation has been a specific issue in the anticancer strategy to turn accumulated sphingosine (SPN) into cytotoxic ceramides (Cers). For these purposes, there have been numerous chemicals synthesized for SPHK inhibition. In this study, we investigated the comparative efficiency of dansylated PF-543 (DPF-543) on the Cers synthesis along with PF-543. DPF-543 deserved attention in strong cytotoxicity, due to the cytotoxic Cers accumulation by ceramide synthase (CerSs). DPF-543 exhibited dual actions on Cers synthesis by enhancing serine palmitoyltransferase (SPT) activity, and by inhibiting SPHKs, which eventually induced an unusual environment with a high amount of 3-ketosphinganine and sphinganine (SPA). SPA in turn was consumed to synthesize Cers via de novo pathway. Interestingly, PF-543 increased only the SPN level, but not for SPA. In addition, DPF-543 mildly activates acid sphingomyelinase (aSMase), which contributes a partial increase in Cers. Collectively, a dansyl-modified DPF-543 relatively enhanced Cers accumulation via de novo pathway which was not observed in PF-543. Our results demonstrated that the structural modification on SPHK inhibitors is still an attractive anticancer strategy by regulating sphingolipid metabolism.
Collapse
Affiliation(s)
- Maftuna Shamshiddinova
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Shokhid Gulyamov
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Hee-Jung Kim
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Seo-Hyeon Jung
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
| | - Dong-Jae Baek
- College of Pharmacy, Mokpo National University, Jeonnam 58628, Korea;
| | - Yong-Moon Lee
- College of Pharmacy, Chungbuk National University, Chungbuk 28160, Korea; (M.S.); (S.G.); (H.-J.K.); (S.-H.J.)
- Correspondence: ; Tel.: +82-43-261-2825
| |
Collapse
|
11
|
Regulation of hepatic insulin signaling and glucose homeostasis by sphingosine kinase 2. Proc Natl Acad Sci U S A 2020; 117:24434-24442. [PMID: 32917816 PMCID: PMC7533871 DOI: 10.1073/pnas.2007856117] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hepatic insulin resistance is a chief pathogenic determinant in the development of type 2 diabetes, which is often associated with abnormal hepatic lipid regulation. Sphingolipids are a class of essential lipids in the liver, where sphingosine kinase 2 (SphK2) is a key enzyme in their catabolic pathway. However, roles of SphK2 and its related sphingolipids in hepatic insulin resistance remain elusive. Here we generate liver-specific Sphk2 knockout mice, demonstrating that SphK2 in the liver is essential for insulin sensitivity and glucose homeostasis. We also identify sphingosine as a bona fide endogenous inhibitor of hepatic insulin signaling. These findings provide physiological insights into SphK2 and sphingosine, which could be therapeutic targets for the management of insulin resistance and diabetes. Sphingolipid dysregulation is often associated with insulin resistance, while the enzymes controlling sphingolipid metabolism are emerging as therapeutic targets for improving insulin sensitivity. We report herein that sphingosine kinase 2 (SphK2), a key enzyme in sphingolipid catabolism, plays a critical role in the regulation of hepatic insulin signaling and glucose homeostasis both in vitro and in vivo. Hepatocyte-specific Sphk2 knockout mice exhibit pronounced insulin resistance and glucose intolerance. Likewise, SphK2-deficient hepatocytes are resistant to insulin-induced activation of the phosphoinositide 3-kinase (PI3K)-Akt-FoxO1 pathway and elevated hepatic glucose production. Mechanistically, SphK2 deficiency leads to the accumulation of sphingosine that, in turn, suppresses hepatic insulin signaling by inhibiting PI3K activation in hepatocytes. Either reexpressing functional SphK2 or pharmacologically inhibiting sphingosine production restores insulin sensitivity in SphK2-deficient hepatocytes. In conclusion, the current study provides both experimental findings and mechanistic data showing that SphK2 and sphingosine in the liver are critical regulators of insulin sensitivity and glucose homeostasis.
Collapse
|
12
|
Hengst JA, Dick TE, Smith CD, Yun JK. Analysis of selective target engagement by small-molecule sphingosine kinase inhibitors using the Cellular Thermal Shift Assay (CETSA). Cancer Biol Ther 2020; 21:841-852. [PMID: 32835586 DOI: 10.1080/15384047.2020.1798696] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The recently renewed interest in scientific rigor and reproducibility is of critical importance for both scientists developing new targeted small-molecule inhibitors and those employing these molecule in cellular studies, alike. While off-target effects are commonly considered as limitations for any given small-molecule inhibitor, the ability of a given compound to distinguish between enzyme isoforms is often neglected when employing compounds in cellular studies. To call attention to this issue, we have compared the results of an assay for "direct target engagement", the Cellular Thermal Shift Assay (CETSA), to the published isoform selectivity of 12 commercially available sphingosine kinase 1 and 2 (SphK 1 and SphK2) inhibitors. Our results suggest that, at the concentrations commonly employed in cellular assay systems, none of the tested SKIs can be considered isoform selective. Thus, caution and complimentary assay strategies must be employed to fully discern isoform selectivity for the SphKs. Moreover, caution must be employed by the scientific community as a whole when designing experiments that aim to discern the effects of one enzyme isoform versus another to ensure that the concentration ranges used are able to distinguish isoform selectivity.
Collapse
Affiliation(s)
- Jeremy A Hengst
- Department of Pharmacology, Penn State Hershey College of Medicine , Hershey, PA, USA.,The Jake Gittlen Cancer Research Laboratories, Penn State Hershey College of Medicine , Hershey, PA, USA
| | - Taryn E Dick
- Department of Pharmacology, Penn State Hershey College of Medicine , Hershey, PA, USA.,The Jake Gittlen Cancer Research Laboratories, Penn State Hershey College of Medicine , Hershey, PA, USA
| | - Charles D Smith
- Department of Pharmacology, Penn State Hershey College of Medicine , Hershey, PA, USA
| | - Jong K Yun
- Department of Pharmacology, Penn State Hershey College of Medicine , Hershey, PA, USA.,The Jake Gittlen Cancer Research Laboratories, Penn State Hershey College of Medicine , Hershey, PA, USA
| |
Collapse
|
13
|
Solger F, Kunz TC, Fink J, Paprotka K, Pfister P, Hagen F, Schumacher F, Kleuser B, Seibel J, Rudel T. A Role of Sphingosine in the Intracellular Survival of Neisseria gonorrhoeae. Front Cell Infect Microbiol 2020; 10:215. [PMID: 32477967 PMCID: PMC7235507 DOI: 10.3389/fcimb.2020.00215] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 04/20/2020] [Indexed: 11/29/2022] Open
Abstract
Obligate human pathogenic Neisseria gonorrhoeae are the second most frequent bacterial cause of sexually transmitted diseases. These bacteria invade different mucosal tissues and occasionally disseminate into the bloodstream. Invasion into epithelial cells requires the activation of host cell receptors by the formation of ceramide-rich platforms. Here, we investigated the role of sphingosine in the invasion and intracellular survival of gonococci. Sphingosine exhibited an anti-gonococcal activity in vitro. We used specific sphingosine analogs and click chemistry to visualize sphingosine in infected cells. Sphingosine localized to the membrane of intracellular gonococci. Inhibitor studies and the application of a sphingosine derivative indicated that increased sphingosine levels reduced the intracellular survival of gonococci. We demonstrate here, that sphingosine can target intracellular bacteria and may therefore exert a direct bactericidal effect inside cells.
Collapse
Affiliation(s)
- Franziska Solger
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Tobias C Kunz
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Julian Fink
- Department of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Kerstin Paprotka
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Pauline Pfister
- Department of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Franziska Hagen
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| | - Fabian Schumacher
- Department of Toxicology, University of Potsdam, Nuthetal, Germany.,Department of Molecular Biology, University of Duisburg-Essen, Essen, Germany
| | - Burkhard Kleuser
- Department of Toxicology, University of Potsdam, Nuthetal, Germany
| | - Jürgen Seibel
- Department of Organic Chemistry, University of Würzburg, Würzburg, Germany
| | - Thomas Rudel
- Chair of Microbiology, University of Würzburg Biocenter, Würzburg, Germany
| |
Collapse
|
14
|
LeBlanc FR, Pearson JM, Tan SF, Cheon H, Xing JC, Dunton W, Feith DJ, Loughran TP. Sphingosine kinase-2 is overexpressed in large granular lymphocyte leukaemia and promotes survival through Mcl-1. Br J Haematol 2020; 190:405-417. [PMID: 32124438 DOI: 10.1111/bjh.16530] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2019] [Accepted: 01/17/2020] [Indexed: 12/30/2022]
Abstract
Sphingolipid metabolism is increasingly recognised as a therapeutic target in cancer due to its regulation of cell proliferation and apoptosis. The sphingolipid rheostat is proposed to control cell fate through maintaining balance between pro-apoptotic and pro-survival sphingolipids. This balance is regulated by metabolising enzymes involved in sphingolipid production. One such enzyme, sphingosine kinase-2 (SPHK2), produces pro-survival sphingosine 1-phosphate (S1P) by phosphorylation of pro-apoptotic sphingosine. Elevated SPHK2 has been found in multiple cancer types and contributes to cell survival, chemotherapeutic resistance and apoptosis resistance. We have previously shown elevation of S1P in large granular lymphocyte (LGL) leukaemia serum and cells isolated from patients. Here, we examined SPHK2 expression in LGL leukaemia and found SPHK2 mRNA and protein upregulation in a majority of LGL leukaemia patient samples. Knockdown of SPHK2 with siRNA in LGL leukaemia cell lines decreased proliferation. Additionally, the use of ABC294640 or K145, both SPHK2-specific inhibitors, decreased viability of LGL leukaemia cell lines. ABC294640 selectively induced apoptosis in LGL cell lines and freshly isolated LGL leukaemia patient cells compared to normal controls. Mechanistically, SPHK2 inhibition downregulated pro-survival myeloid cell leukaemia-1 (Mcl-1) protein through proteasomal degradation. Targeting of SPHK2 therefore provides a novel therapeutic approach for the treatment of LGL leukaemia.
Collapse
Affiliation(s)
- Francis R LeBlanc
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, USA
| | - Jennifer M Pearson
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, USA
| | - Su-Fern Tan
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, USA
| | - HeeJin Cheon
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, USA
| | - Jeffrey C Xing
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, USA
| | - Wendy Dunton
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, USA
| | - David J Feith
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, USA
| | - Thomas P Loughran
- University of Virginia Cancer Center and Department of Medicine, Division of Hematology & Oncology, University of Virginia, Charlottesville, VA, USA
| |
Collapse
|
15
|
Magli E, Corvino A, Fiorino F, Frecentese F, Perissutti E, Saccone I, Santagada V, Caliendo G, Severino B. Design of Sphingosine Kinases Inhibitors: Challenges and Recent Developments. Curr Pharm Des 2020; 25:956-968. [PMID: 30947653 DOI: 10.2174/1381612825666190404115424] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/27/2019] [Indexed: 12/28/2022]
Abstract
BACKGROUND Sphingosine kinases (SphKs) catalyze the phosphorylation of sphingosine to form the bioactive sphingolipid metabolite sphingosine-1-phosphate (S1P). S1P is an important lipid mediator with a wide range of biological functions; it is also involved in a variety of diseases such as inflammatory diseases, Alzheimer's disease and cancer. METHODS This review reports the recent advancement in the research of SphKs inhibitors. Our purpose is also to provide a complete overview useful for underlining the features needed to select a specific pharmacological profile. DISCUSSION Two distinct mammalian SphK isoforms have been identified, SphK1 and SphK2. These isoforms are encoded by different genes and exhibit distinct subcellular localizations, biochemical properties and functions. SphK1 and SphK2 inhibition can be useful in different pathological conditions. CONCLUSION SphK1 and SphK2 have many common features but different and even opposite biological functions. For this reason, several research groups are interested in understanding the therapeutic usefulness of a selective or non-selective inhibitor of SphKs. Moreover, a compensatory mechanism for the two isoforms has been demonstrated, thus leading to the development of dual inhibitors.
Collapse
Affiliation(s)
- Elisa Magli
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Angela Corvino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Ferdinando Fiorino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Francesco Frecentese
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Elisa Perissutti
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Irene Saccone
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Vincenzo Santagada
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Giuseppe Caliendo
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| | - Beatrice Severino
- Department of Pharmacy, School of Medicine, University of Naples Federico II, Naples, Italy
| |
Collapse
|
16
|
Hait NC, Maiti A, Xu P, Qi Q, Kawaguchi T, Okano M, Takabe K, Yan L, Luo C. Regulation of hypoxia-inducible factor functions in the nucleus by sphingosine-1-phosphate. FASEB J 2020; 34:4293-4310. [PMID: 32017264 PMCID: PMC10112293 DOI: 10.1096/fj.201901734rr] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 01/03/2020] [Accepted: 01/09/2020] [Indexed: 12/14/2022]
Abstract
Sphingosine kinase 2 (SphK2) is known to phosphorylate the nuclear sphingolipid metabolite to generate sphingosine-1-phosphate (S1P). Nuclear S1P is involved in epigenetic regulation of gene expression; however, the underlying mechanisms are not well understood. In this work, we have identified the role of nuclear S1P and SphK2 in regulating hypoxia-responsive master transcription factors hypoxia-inducible factor (HIF)-1α/2α, and their functions in breast cancer, with a focus on triple-negative breast cancer (TNBC). We have shown SphK2 is associated with HIF-1α in protein complexes, and is enriched at the promoters of HIF target genes, including vascular endothelial growth factor (VEGF), where it enhances local histone H3 acetylation and transcription. S1P specifically binds to the PAS domains of HIF-1α. SphK2, and HIF-1α expression levels are elevated in metastatic estrogen receptor-positive (ER+) and TNBC clinical tissue specimens compared to healthy breast tissue samples. To determine if S1P formation in the nucleus by SphK2 is a key regulator of HIF functions, we found using a preclinical TNBC xenograft mouse model, and an existing selective SphK2 inhibitor K-145, that nuclear S1P, histone acetylation, HIF-1α expression, and TNBC tumor growth were all reduced in vivo. Our results suggest that S1P and SphK2 in the nucleus are linked to the regulation of HIF-1α/2α functions associated with breast cancer progression, and may provide potential therapeutic targets.
Collapse
Affiliation(s)
- Nitai C Hait
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Aparna Maiti
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA.,Department of Molecular & Cellular Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Pan Xu
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| | - Qianya Qi
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Tsutomu Kawaguchi
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Maiko Okano
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Kazuaki Takabe
- Division of Breast Surgery and Department of Surgical Oncology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Li Yan
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Cheng Luo
- Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China.,School of Pharmacy, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
17
|
Abstract
There is substantial evidence that the enzymes, sphingosine kinase 1 and 2, which catalyse the formation of the bioactive lipid sphingosine 1-phosphate, are involved in pathophysiological processes. In this chapter, we appraise the evidence that both enzymes are druggable and describe how isoform-specific inhibitors can be developed based on the plasticity of the sphingosine-binding site. This is contextualised with the effect of sphingosine kinase inhibitors in cancer, pulmonary hypertension, neurodegeneration, inflammation and sickling.
Collapse
Affiliation(s)
- Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK
| | - David R Adams
- Institute of Chemical Sciences, Heriot-Watt University, Edinburgh, Scotland, UK
| | - Nigel J Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde , Glasgow, Scotland, UK.
| |
Collapse
|
18
|
Vettorazzi M, Insuasty D, Lima S, Gutiérrez L, Nogueras M, Marchal A, Abonia R, Andújar S, Spiegel S, Cobo J, Enriz RD. Design of new quinolin-2-one-pyrimidine hybrids as sphingosine kinases inhibitors. Bioorg Chem 2019; 94:103414. [PMID: 31757412 DOI: 10.1016/j.bioorg.2019.103414] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/25/2019] [Accepted: 10/29/2019] [Indexed: 12/27/2022]
Abstract
Sphingosine-1-phosphate is now emerging as an important player in cancer, inflammation, autoimmune, neurological and cardiovascular disorders. Abundance evidence in animal and humans cancer models has shown that SphK1 is linked to cancer. Thus, there is a great interest in the development new SphK1 inhibitors as a potential new treatment for cancer. In a search for new SphK1 inhibitors we selected the well-known SKI-II inhibitor as the starting structure and we synthesized a new inhibitor structurally related to SKI-II with a significant but moderate inhibitory effect. In a second approach, based on our molecular modeling results, we designed new structures based on the structure of PF-543, the most potent known SphK1 inhibitor. Using this approach, we report the design, synthesis and biological evaluation of a new series of compounds with inhibitory activity against both SphK1 and SphK2. These new inhibitors were obtained incorporating new connecting chains between their polar heads and hydrophobic tails. On the other hand, the combined techniques of molecular dynamics simulations and QTAIM calculations provided complete and detailed information about the molecular interactions that stabilize the different complexes of these new inhibitors with the active sites of the SphK1. This information will be useful in the design of new SphK inhibitors.
Collapse
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Daniel Insuasty
- Departamento de Química y Biología, Universidad del Norte, Km 5 vía Puerto Colombia, Barranquilla 081007, Colombia; Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Santiago Lima
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Lucas Gutiérrez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Manuel Nogueras
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Antonio Marchal
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain
| | - Rodrigo Abonia
- Research Group of Heterocyclic Compounds, Department of Chemistry, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Sebastián Andújar
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA 23298 USA
| | - Justo Cobo
- Inorganic and Organic Department, University of Jaén, Campus Las Lagunillas s/n, 23071 Jaén, Spain.
| | - Ricardo D Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL). Ejercito de los Andes 950, 5700 San Luis, Argentina.
| |
Collapse
|
19
|
Grassi S, Mauri L, Prioni S, Cabitta L, Sonnino S, Prinetti A, Giussani P. Sphingosine 1-Phosphate Receptors and Metabolic Enzymes as Druggable Targets for Brain Diseases. Front Pharmacol 2019; 10:807. [PMID: 31427962 PMCID: PMC6689979 DOI: 10.3389/fphar.2019.00807] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 06/21/2019] [Indexed: 12/12/2022] Open
Abstract
The central nervous system is characterized by a high content of sphingolipids and by a high diversity in terms of different structures. Stage- and cell-specific sphingolipid metabolism and expression are crucial for brain development and maintenance toward adult age. On the other hand, deep dysregulation of sphingolipid metabolism, leading to altered sphingolipid pattern, is associated with the majority of neurological and neurodegenerative diseases, even those totally lacking a common etiological background. Thus, sphingolipid metabolism has always been regarded as a promising pharmacological target for the treatment of brain disorders. However, any therapeutic hypothesis applied to complex amphipathic sphingolipids, components of cellular membranes, has so far failed probably because of the high regional complexity and specificity of the different biological roles of these structures. Simpler sphingosine-based lipids, including ceramide and sphingosine 1-phosphate, are important regulators of brain homeostasis, and, thanks to the relative simplicity of their metabolic network, they seem a feasible druggable target for the treatment of brain diseases. The enzymes involved in the control of the levels of bioactive sphingoids, as well as the receptors engaged by these molecules, have increasingly allured pharmacologists and clinicians, and eventually fingolimod, a functional antagonist of sphingosine 1-phosphate receptors with immunomodulatory properties, was approved for the therapy of relapsing-remitting multiple sclerosis. Considering the importance of neuroinflammation in many other brain diseases, we would expect an extension of the use of such analogs for the treatment of other ailments in the future. Nevertheless, many aspects other than neuroinflammation are regulated by bioactive sphingoids in healthy brain and dysregulated in brain disease. In this review, we are addressing the multifaceted possibility to address the metabolism and biology of bioactive sphingosine 1-phosphate as novel targets for the development of therapeutic paradigms and the discovery of new drugs.
Collapse
Affiliation(s)
- Sara Grassi
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Laura Mauri
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Simona Prioni
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Livia Cabitta
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Sandro Sonnino
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Alessandro Prinetti
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Paola Giussani
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Praharaj PP, Naik PP, Panigrahi DP, Bhol CS, Mahapatra KK, Patra S, Sethi G, Bhutia SK. Intricate role of mitochondrial lipid in mitophagy and mitochondrial apoptosis: its implication in cancer therapeutics. Cell Mol Life Sci 2019; 76:1641-1652. [PMID: 30539200 PMCID: PMC11105358 DOI: 10.1007/s00018-018-2990-x] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 12/05/2018] [Accepted: 12/06/2018] [Indexed: 02/06/2023]
Abstract
The efficacy of chemotherapy is mostly restricted by the drug resistance developed during the course of cancer treatment. Mitophagy, as a pro-survival mechanism, crucially maintains mitochondrial homeostasis and it is one of the mechanisms that cancer cells adopt for their progression. On the other hand, mitochondrial apoptosis, a precisely regulated form of cell death, acts as a tumor-suppressive mechanism by targeting cancer cells. Mitochondrial lipids, such as cardiolipin, ceramide, and sphingosine-1-phosphate, act as a mitophageal signal for the clearance of damaged mitochondria by interacting with mitophagic machinery as well as activate mitochondrial apoptosis via the release of cytochrome c into the cytoplasm. In the recent time, the lipid-mediated lethal mitophagy has also been used as an alternative approach to abolish the survival role of lipid in cancer. Therefore, by targeting mitochondrial lipids in cancer cells, the detailed mechanism linked to drug resistance can be unraveled. In this review, we precisely discuss the current knowledge about the multifaceted role of mitochondrial lipid in regulating mitophagy and mitochondrial apoptosis and its application in effective cancer therapy.
Collapse
Affiliation(s)
- Prakash P Praharaj
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Prajna P Naik
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
- PG Department of Zoology, Vikram Deb (Auto) College, Jeypore, Odisha, 764001, India
| | - Debasna P Panigrahi
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Chandra S Bhol
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Kewal K Mahapatra
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Srimanta Patra
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| | - Sujit Kumar Bhutia
- Department of Life Science, National Institute of Technology Rourkela, Rourkela, Odisha, 769008, India.
| |
Collapse
|
21
|
Worrell BL, Brown AM, Santos WL, Bevan DR. In Silico Characterization of Structural Distinctions between Isoforms of Human and Mouse Sphingosine Kinases for Accelerating Drug Discovery. J Chem Inf Model 2019; 59:2339-2351. [PMID: 30844267 DOI: 10.1021/acs.jcim.8b00931] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Alterations in cellular signaling pathways are associated with multiple disease states including cancers and fibrosis. Current research efforts to attenuate cancers, specifically lymphatic cancer, focus on inhibition of two sphingosine kinase isoforms, sphingosine kinase 1 (SphK1) and sphingosine kinase 2 (SphK2). Determining differences in structural and physicochemical binding site properties of SphKs is attractive to refine inhibitor potency and isoform selectivity. This study utilizes a predictive in silico approach to determine key differences in binding sites in SphK isoforms in human and mouse species. Homology modeling, molecular docking of inhibitors, analysis of binding pocket residue positions, development of pharmacophore models, and analysis of binding cavity volume were performed to determine isoform- and species-selective characteristics of the binding site and generate a system to rank potential inhibitors. Interestingly, docking studies showed compounds bound to mouse SphK1 in a manner more similar to human SphK2 than to human SphK1, indicating that SphKs in mice have structural properties distinct from humans that confounds prediction of ligand selectivity in mice. Our studies aid in the development and production of new compound classes by highlighting structural distinctions and identifying the role of key residues that cause observable, functional differences in isoforms and between orthologues.
Collapse
Affiliation(s)
- Brittney L Worrell
- Department of Biochemistry , Virginia Tech , 201 Engel Hall (0308) 340 West Campus Drive , Blacksburg , Virginia 24061 , United States
| | - Anne M Brown
- Department of Biochemistry , Virginia Tech , 201 Engel Hall (0308) 340 West Campus Drive , Blacksburg , Virginia 24061 , United States.,University Libraries , Virginia Tech , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - Webster L Santos
- Department of Chemistry , Virginia Tech , Blacksburg , Virginia 24061 , United States , and.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| | - David R Bevan
- Department of Biochemistry , Virginia Tech , 201 Engel Hall (0308) 340 West Campus Drive , Blacksburg , Virginia 24061 , United States.,Virginia Tech Center for Drug Discovery , Virginia Tech , Blacksburg , Virginia 24061 , United States
| |
Collapse
|
22
|
Adams DR, Tawati S, Berretta G, Rivas PL, Baiget J, Jiang Z, Alsfouk A, Mackay SP, Pyne NJ, Pyne S. Topographical Mapping of Isoform-Selectivity Determinants for J-Channel-Binding Inhibitors of Sphingosine Kinases 1 and 2. J Med Chem 2019; 62:3658-3676. [DOI: 10.1021/acs.jmedchem.9b00162] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- David R. Adams
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Salha Tawati
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Giacomo Berretta
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Paula Lopez Rivas
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Jessica Baiget
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Zhong Jiang
- School of Engineering & Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS, U.K
| | - Aisha Alsfouk
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Simon P. Mackay
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Nigel J. Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| | - Susan Pyne
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow G4 0RE, U.K
| |
Collapse
|
23
|
Al-Shujairi WH, Clarke JN, Davies LT, Pitman MR, Calvert JK, Aloia AL, Pitson SM, Carr JM. In vitro and in vivo roles of sphingosine kinase 2 during dengue virus infection. J Gen Virol 2019; 100:629-641. [PMID: 30869582 DOI: 10.1099/jgv.0.001245] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
There is growing evidence of the influence of sphingosine kinase (SK) enzymes on viral infection. Here, the role of sphingosine kinase 2 (SK2), an isoform of SK prominent in the brain, was defined during dengue virus (DENV) infection. Chemical inhibition of SK2 activity using two different SK2 inhibitors, ABC294640 and K145, had no effect on DENV infection in human cells in vitro. In contrast, DENV infection was restricted in SK2-/- immortalized mouse embryonic fibroblasts (iMEFs) with reduced induction of IFN-β mRNA and protein, and mRNA for the IFN-stimulated genes (ISGs) viperin, IFIT1, IRF7 and CXCL10 in DENV-infected SK2-/- compared to WT iMEFs. Intracranial (ic) DENV injection in C57BL/6 SK2-/- mice induced body weight loss earlier than in WT mice but DENV RNA levels were comparable in the brain. Neither SK1 mRNA or sphingosine-1-phosphate (S1P) levels were altered following ic DENV infection in WT or SK2-/- mice but brain S1P levels were reduced in all SK2-/- mice, independent of DENV infection. CD8 mRNA was induced in the brains of both DENV-infected WT and SK2-/- mice, suggesting normal CD8+ T-cell infiltration into the DENV-infected brain independent of SK2 or S1P. Thus, although SK2 may be important for replication of some viruses SK2 activity does not affect DENV infection in vitro and SK2 or S1P levels do not influence DENV infection or T-cell infiltration in the context of infection in the brain.
Collapse
Affiliation(s)
- Wisam H Al-Shujairi
- 1Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, South Australia
- 2Department of Laboratory and Clinical Sciences, College of Pharmacy, University of Babylon, Hilla 51002, Iraq
| | - Jennifer N Clarke
- 1Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, South Australia
| | - Lorena T Davies
- 3Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5000, South Australia
| | - Melissa R Pitman
- 3Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5000, South Australia
| | - Julie K Calvert
- 1Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, South Australia
| | - Amanda L Aloia
- 4Cell Screen SA, Flinders University, Bedford Park, Adelaide, 5042, South Australia
| | - Stuart M Pitson
- 3Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, 5000, South Australia
| | - Jillian M Carr
- 1Microbiology and Infectious Diseases, College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, 5042, South Australia
| |
Collapse
|
24
|
Ding X, Zhang Y, Huang T, Xu G, Peng C, Chen G, Kong B, Friess H, Shen S, Lv Y, Roberts LR, Wang L, Zou X. Targeting sphingosine kinase 2 suppresses cell growth and synergizes with BCL2/BCL-XL inhibitors through NOXA-mediated MCL1 degradation in cholangiocarcinoma. Am J Cancer Res 2019; 9:546-561. [PMID: 30949409 PMCID: PMC6448062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Accepted: 02/11/2019] [Indexed: 06/09/2023] Open
Abstract
Sphingosine kinase 2 (SPHK2) is a key factor within sphingolipid metabolism, responsible for the conversion of pro-apoptotic sphingosine to the pro-survival sphingosine-1-phosphate. We have previously shown that ABC294640, a first-in-class SPHK2 inhibitor, inhibits growth of cholangiocarcinoma cells. In a Phase I study of ABC294640 in tumors, the best response was achieved in a cholangiocarcinoma patient. These data suggest SPHK2 as a novel therapeutic target of cholangiocarcinoma. However, the antitumor mechanism of ABC294640 in cholangiocarcinoma remains not clear. In the current study, we found that ABC294640 upregulated expression of pro-apoptotic NOXA. In cholangiocarcinoma patients, high NOXA mRNA expression was associated with better overall survival. Also, SPHK2 mRNA expression was negatively correlated with NOXA mRNA expression. NOXA is known to degrade MCL1, an anti-apoptotic BCL2 protein. We showed that ABC294640 directed MCL1 for proteasome degradation. Knockdown of NOXA prevented ABC294640-induced MCL1 degradation and apoptosis. In addition, ABC294640 had a synergistic effect with BCL2/BCL-XL inhibitors ABT-263 and Obatoclax in inhibiting cell growth. Combined treatment with ABC294640 and BCL2/BCL-XL inhibitors induced potent apoptosis. Silencing of MCL1 also potentiated ABT-263-induced cytotoxicity. Furthermore, we found that both SPHK2 and MCL1 protein expression were significantly higher in cholangiocarcinoma than that in nontumoral bile ducts. SPHK2 expression correlated significantly with MCL1 expression. Our study reveals that ABC294640 inhibits cholangiocarcinoma cell growth and sensitizes the antitumor effect of BCL2/BCL-XL inhibitors through NOXA-mediated MCL1 degradation. Combinations of ABC294640 with BCL2/BCL-XL inhibitors may provide novel strategies for the treatment of cholangiocarcinoma.
Collapse
Affiliation(s)
- Xiwei Ding
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Yiyang Zhang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjing 210008, Jiangsu, China
| | - Tianlu Huang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Guifang Xu
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Chunyan Peng
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Gang Chen
- Division of Hepatobiliary Surgery, The First Affiliated Hospital of Wenzhou Medical UniversityWenzhou 325000, Zhejiang, China
| | - Bo Kong
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
- Department of Surgery, Technical University of MunichMunich 80333, Germany
| | - Helmut Friess
- Department of Surgery, Technical University of MunichMunich 80333, Germany
| | - Shanshan Shen
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Ying Lv
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Lewis R Roberts
- Division of Gastroenterology and Hepatology, College of Medicine, Mayo Clinic and Mayo Clinic Cancer CenterRochester 55905, MN, US
| | - Lei Wang
- Department of Gastroenterology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical SchoolNanjing 210008, Jiangsu, China
| | - Xiaoping Zou
- Department of Gastroenterology, Nanjing Drum Tower Hospital, Clinical College of Nanjing Medical UniversityNanjing 210008, Jiangsu, China
| |
Collapse
|
25
|
Vettorazzi M, Vila L, Lima S, Acosta L, Yépes F, Palma A, Cobo J, Tengler J, Malik I, Alvarez S, Marqués P, Cabedo N, Sanz MJ, Jampilek J, Spiegel S, Enriz RD. Synthesis and biological evaluation of sphingosine kinase 2 inhibitors with anti-inflammatory activity. Arch Pharm (Weinheim) 2019; 352:e1800298. [DOI: 10.1002/ardp.201800298] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/28/2018] [Accepted: 12/05/2018] [Indexed: 01/19/2023]
Affiliation(s)
- Marcela Vettorazzi
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL); San Luis Argentina
| | - Laura Vila
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - Santiago Lima
- Department of Biology and Department of Biochemistry and Molecular Biology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Lina Acosta
- Laboratorio de Síntesis Orgánica, Escuela de Química; Universidad Industrial de Santander; Bucaramanga Colombia
| | - Felipe Yépes
- Laboratorio de Síntesis Orgánica, Escuela de Química; Universidad Industrial de Santander; Bucaramanga Colombia
| | - Alirio Palma
- Laboratorio de Síntesis Orgánica, Escuela de Química; Universidad Industrial de Santander; Bucaramanga Colombia
| | - Justo Cobo
- Inorganic and Organic Department; University of Jaén; Jaén Spain
| | - Jan Tengler
- Medis International a.s.; Bolatice Czech Republic
| | - Ivan Malik
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Comenius University; Bratislava Slovakia
| | - Sergio Alvarez
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL); San Luis Argentina
| | - Patrice Marqués
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - Nuria Cabedo
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - María J. Sanz
- Department of Pharmacology; University of Valencia; Valencia Spain
- Institute of Health Research INCLIVA University Clinic Hospital of Valencia; Valencia Spain
| | - Josef Jampilek
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry; Comenius University; Bratislava Slovakia
| | - Sarah Spiegel
- Department of Biology and Department of Biochemistry and Molecular Biology; Virginia Commonwealth University School of Medicine; Richmond Virginia
| | - Ricardo D. Enriz
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis; Instituto Multidisciplinario de Investigaciones Biológicas (IMIBIO-SL); San Luis Argentina
| |
Collapse
|
26
|
Hasanifard L, Sheervalilou R, Majidinia M, Yousefi B. New insights into the roles and regulation of SphK2 as a therapeutic target in cancer chemoresistance. J Cell Physiol 2018; 234:8162-8181. [PMID: 30456838 DOI: 10.1002/jcp.27612] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 09/24/2018] [Indexed: 12/21/2022]
Abstract
Chemoresistance is a complicated process developed by most cancers and accounts for the majority of relapse and metastasis in cancer. The main mechanisms of chemoresistance phenotype include increased expression and/or activated drug efflux pumps, altered DNA repair, altered metabolism of therapeutics as well as impaired apoptotic signaling pathways. Aberrant sphingolipid signaling has also recently received considerable attention in chemoresistance. Sphingolipid metabolites regulate main biological processes such as apoptosis, cell survival, proliferation, and differentiation. Two sphingosine kinases, SphK1 and SphK2, convert sphingosine to sphingosine-1-phosphate, an antiapoptotic bioactive lipid mediator. Numerous evidence has revealed the involvement of activated SphK1 in tumorigenesis and resistance, however, contradictory results have been found for the role of SphK2 in these functions. In some studies, overexpression of SphK2 suppressed cell growth and induced apoptosis. In contrast, some others have shown cell proliferation and tumor promotion effect for SphK2. Our understanding of the role of SphK2 in cancer does not have a sufficient integrity. The main focus of this review will be on the re-evaluation of the role of SphK2 in cell death and chemoresistance in light of our new understanding of molecular targeted therapy. We will also highlight the connections between SphK2 and the DNA damage response. Finally, we will provide our insight into the regulatory mechanisms of SphKs by two main categories, micro and long, noncoding RNAs as the novel players of cancer chemoresistance.
Collapse
Affiliation(s)
- Leili Hasanifard
- Department of Clinical Biochemistry, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Roghayeh Sheervalilou
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
27
|
Shrestha J, Ki SH, Shin SM, Kim SW, Lee JY, Jun HS, Lee T, Kim S, Baek DJ, Park EY. Synthesis of Novel FTY720 Analogs with Anticancer Activity through PP2A Activation. Molecules 2018; 23:molecules23112750. [PMID: 30355990 PMCID: PMC6278267 DOI: 10.3390/molecules23112750] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 10/19/2018] [Accepted: 10/22/2018] [Indexed: 12/16/2022] Open
Abstract
FTY720 inhibits various cancers through PP2A activation. The structure of FTY720 is also used as a basic structure for the design of sphingosine kinase (SK) inhibitors. We have synthesized derivatives using an amide chain in FTY720 with a phenyl backbone, and then compounds were screened by an MTT cell viability assay. The PP2A activity of compound 7 was examined. The phosphorylation levels of AKT and ERK, downstream targets of PP2A, in the presence of compound 7, were determined. Compound 7 may exhibit anticancer effects through PP2A activation rather than the mechanism by inhibition of SK1 in cancer cells. In the docking study of compound 7 and PP2A, the amide chain of compound 7 showed an interaction with Asn61 that was different from FTY720, which is expected to affect the activity of the compound.
Collapse
Affiliation(s)
- Jitendra Shrestha
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea.
| | - Sung Hwan Ki
- College of Pharmacy, Chosun University, Gwangju, 61452, Korea.
| | - Sang Mi Shin
- College of Pharmacy, Chosun University, Gwangju, 61452, Korea.
| | - Seon Woong Kim
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea.
| | - Joo-Youn Lee
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
- Korea Chemical Bank, Korea Research Institute of Chemical Technology, Daejeon 34114, Korea.
| | - Hee-Sook Jun
- Lee Gil Ya Cancer and Diabetes Institute, Department of Molecular Medicine, Gachon University, Incheon 21999, Korea.
- College of Pharmacy and Gachon Institute of Pharmaceutical Science, Gachon University, Incheon 21936, Korea.
| | - Taeho Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences, Kyungpook National University, Daegu 41566, Korea.
| | - Sanghee Kim
- College of Pharmacy, Seoul National University, Seoul 08826, Korea.
| | - Dong Jae Baek
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea.
| | - Eun-Young Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Jeonnam 58554, Korea.
| |
Collapse
|
28
|
Cytoplasmic dynein regulates the subcellular localization of sphingosine kinase 2 to elicit tumor-suppressive functions in glioblastoma. Oncogene 2018; 38:1151-1165. [PMID: 30250299 PMCID: PMC6363647 DOI: 10.1038/s41388-018-0504-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 07/10/2018] [Accepted: 08/24/2018] [Indexed: 11/09/2022]
Abstract
While the two mammalian sphingosine kinases, SK1 and SK2, both catalyze the generation of pro-survival sphingosine 1-phosphate (S1P), their roles vary dependent on their different subcellular localization. SK1 is generally found in the cytoplasm or at the plasma membrane where it can promote cell proliferation and survival. SK2 can be present at the plasma membrane where it appears to have a similar function to SK1, but can also be localized to the nucleus, endoplasmic reticulum or mitochondria where it mediates cell death. Although SK2 has been implicated in cancer initiation and progression, the mechanisms regulating SK2 subcellular localization are undefined. Here, we report that SK2 interacts with the intermediate chain subunits of the retrograde-directed transport motor complex, cytoplasmic dynein 1 (DYNC1I1 and -2), and we show that this interaction, particularly with DYNC1I1, facilitates the transport of SK2 away from the plasma membrane. DYNC1I1 is dramatically downregulated in patient samples of glioblastoma (GBM), where lower expression of DYNC1I1 correlates with poorer patient survival. Notably, low DYNC1I1 expression in GBM cells coincided with more SK2 localized to the plasma membrane, where it has been recently implicated in oncogenesis. Re-expression of DYNC1I1 reduced plasma membrane-localized SK2 and extracellular S1P formation, and decreased GBM tumor growth and tumor-associated angiogenesis in vivo. Consistent with this, chemical inhibition of SK2 reduced the viability of patient-derived GBM cells in vitro and decreased GBM tumor growth in vivo. Thus, these findings demonstrate a tumor-suppressive function of DYNC1I1, and uncover new mechanistic insights into SK2 regulation which may have implications in targeting this enzyme as a therapeutic strategy in GBM.
Collapse
|
29
|
Inuki S, Miyagawa T, Oishi S, Ohno H. Introduction of a Polar Functional Group to the Lipid Tail of 4- epi-Jaspine B Affects Sphingosine Kinase Isoform Selectivity. Chem Pharm Bull (Tokyo) 2018; 66:866-872. [DOI: 10.1248/cpb.c18-00366] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Shinsuke Inuki
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | | | - Shinya Oishi
- Graduate School of Pharmaceutical Sciences, Kyoto University
| | - Hiroaki Ohno
- Graduate School of Pharmaceutical Sciences, Kyoto University
| |
Collapse
|
30
|
Shaw J, Costa-Pinheiro P, Patterson L, Drews K, Spiegel S, Kester M. Novel Sphingolipid-Based Cancer Therapeutics in the Personalized Medicine Era. Adv Cancer Res 2018; 140:327-366. [PMID: 30060815 DOI: 10.1016/bs.acr.2018.04.016] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Sphingolipids are bioactive lipids that participate in a wide variety of biological mechanisms, including cell death and proliferation. The myriad of pro-death and pro-survival cellular pathways involving sphingolipids provide a plethora of opportunities for dysregulation in cancers. In recent years, modulation of these sphingolipid metabolic pathways has been in the forefront of drug discovery for cancer therapeutics. About two decades ago, researchers first showed that standard of care treatments, e.g., chemotherapeutics and radiation, modulate sphingolipid metabolism to increase endogenous ceramides, which kill cancer cells. Strikingly, resistance to these treatments has also been linked to altered sphingolipid metabolism, favoring lipid species that ultimately lead to cell survival. To this end, many inhibitors of sphingolipid metabolism have been developed to further define not only our understanding of these pathways but also to potentially serve as therapeutic interventions. Therefore, understanding how to better use these new drugs that target sphingolipid metabolism, either alone or in combination with current cancer treatments, holds great potential for cancer control. While sphingolipids in cancer have been reviewed previously (Hannun & Obeid, 2018; Lee & Kolesnick, 2017; Morad & Cabot, 2013; Newton, Lima, Maceyka, & Spiegel, 2015; Ogretmen, 2018; Ryland, Fox, Liu, Loughran, & Kester, 2011) in this chapter, we present a comprehensive review on how standard of care therapeutics affects sphingolipid metabolism, the current landscape of sphingolipid inhibitors, and the clinical utility of sphingolipid-based cancer therapeutics.
Collapse
Affiliation(s)
- Jeremy Shaw
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Pedro Costa-Pinheiro
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Logan Patterson
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Kelly Drews
- Department of Pathology, University of Virginia, Charlottesville, VA, United States
| | - Sarah Spiegel
- Department of Biochemistry and Molecular Biology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Mark Kester
- Department of Pharmacology, University of Virginia, Charlottesville, VA, United States; University of Virginia Cancer Center, University of Virginia, Charlottesville, VA, United States
| |
Collapse
|
31
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PAB, Pitman MR, Hewett DR, Zannettino ACW, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2018; 8:43602-43616. [PMID: 28467788 PMCID: PMC5546428 DOI: 10.18632/oncotarget.17115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 04/04/2017] [Indexed: 12/22/2022] Open
Abstract
The proteasome inhibitor bortezomib has proven to be invaluable in the treatment of myeloma. By exploiting the inherent high immunoglobulin protein production of malignant plasma cells, bortezomib induces endoplasmic reticulum (ER) stress and the unfolded protein response (UPR), resulting in myeloma cell death. In most cases, however, the disease remains incurable highlighting the need for new therapeutic targets. Sphingosine kinase 2 (SK2) has been proposed as one such therapeutic target for myeloma. Our observations that bortezomib and SK2 inhibitors independently elicited induction of ER stress and the UPR prompted us to examine potential synergy between these agents in myeloma. Targeting SK2 synergistically contributed to ER stress and UPR activation induced by bortezomib, as evidenced by activation of the IRE1 pathway and stress kinases JNK and p38MAPK, thereby resulting in potent synergistic myeloma apoptosis in vitro. The combination of bortezomib and SK2 inhibition also exhibited strong in vivo synergy and favourable effects on bone disease. Therefore, our studies suggest that perturbations of sphingolipid signalling can synergistically enhance the effects seen with proteasome inhibition, highlighting the potential for the combination of these two modes of increasing ER stress to be formally evaluated in clinical trials for the treatment of myeloma patients.
Collapse
Affiliation(s)
- Craig T Wallington-Beddoe
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| | - Melissa K Bennett
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Julia R Zebol
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia
| | - Duncan R Hewett
- School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C W Zannettino
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia.,South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia, Adelaide, Australia.,SA Pathology, Adelaide, Australia.,School of Medicine, University of Adelaide, Australia
| |
Collapse
|
32
|
Neubauer HA, Pham DH, Zebol JR, Moretti PAB, Peterson AL, Leclercq TM, Chan H, Powell JA, Pitman MR, Samuel MS, Bonder CS, Creek DJ, Gliddon BL, Pitson SM. An oncogenic role for sphingosine kinase 2. Oncotarget 2018; 7:64886-64899. [PMID: 27588496 PMCID: PMC5323123 DOI: 10.18632/oncotarget.11714] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/25/2016] [Indexed: 01/02/2023] Open
Abstract
While both human sphingosine kinases (SK1 and SK2) catalyze the generation of the pleiotropic signaling lipid sphingosine 1-phosphate, these enzymes appear to be functionally distinct. SK1 has well described roles in promoting cell survival, proliferation and neoplastic transformation. The roles of SK2, and its contribution to cancer, however, are much less clear. Some studies have suggested an anti-proliferative/pro-apoptotic function for SK2, while others indicate it has a pro-survival role and its inhibition can have anti-cancer effects. Our analysis of gene expression data revealed that SK2 is upregulated in many human cancers, but only to a small extent (up to 2.5-fold over normal tissue). Based on these findings, we examined the effect of different levels of cellular SK2 and showed that high-level overexpression reduced cell proliferation and survival, and increased cellular ceramide levels. In contrast, however, low-level SK2 overexpression promoted cell survival and proliferation, and induced neoplastic transformation in vivo. These findings coincided with decreased nuclear localization and increased plasma membrane localization of SK2, as well as increases in extracellular S1P formation. Hence, we have shown for the first time that SK2 can have a direct role in promoting oncogenesis, supporting the use of SK2-specific inhibitors as anti-cancer agents.
Collapse
Affiliation(s)
- Heidi A Neubauer
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Duyen H Pham
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Julia R Zebol
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Paul A B Moretti
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Amanda L Peterson
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, Australia
| | - Tamara M Leclercq
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Huasheng Chan
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia
| | - Jason A Powell
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Melissa R Pitman
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Michael S Samuel
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Claudine S Bonder
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Darren J Creek
- Monash Institute of Pharmaceutical Science, Monash University, Parkville, Victoria, Australia
| | - Briony L Gliddon
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia
| | - Stuart M Pitson
- Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, South Australia, Australia.,School of Biological Sciences, University of Adelaide, Adelaide, South Australia, Australia.,School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
33
|
Xie V, Tong D, Wallington-Beddoe CT, Bradstock KF, Bendall LJ. Sphingosine kinase 2 supports the development of BCR/ABL-independent acute lymphoblastic leukemia in mice. Biomark Res 2018; 6:6. [PMID: 29441205 PMCID: PMC5800079 DOI: 10.1186/s40364-018-0120-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/30/2018] [Indexed: 01/05/2023] Open
Abstract
Background Sphingosine kinase (SphK) 2 has been implicated in the development of a range of cancers and inhibitors of this enzyme are currently in clinical trial. We have previously demonstrated a role for SphK2 in the development of acute lymphoblastic leukemia (ALL). Methods In this and our previous study we use mouse models: in the previous study the disease was driven by the proto-oncogene BCR/ABL1, while in this study cancer risk was elevated by deletion of the tumor suppressor ARF. Results Mice lacking ARF and SphK2 had a significantly reduced incidence of ALL compared mice with wild type SphK2. Conclusions These results show that the role of SphK2 in ALL development is not limited to BCR/ABL1 driven disease extending the potential use of inhibitors of this enzyme to ALL patients whose disease have driver mutations other than BCR/ABL1.
Collapse
Affiliation(s)
- Vicki Xie
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Daochen Tong
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| | - Craig T Wallington-Beddoe
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia.,3Centre for Cancer Biology, University of South Australia and SA Pathology, Adelaide, Australia.,4College of Medicine and Public Health, Flinders University, Adelaide, Australia.,5School of Medicine, University of Adelaide, Adelaide, Australia
| | - Ken F Bradstock
- 2Haematology Department, Westmead Hospital, Westmead, NSW Australia
| | - Linda J Bendall
- 1Centre for Cancer Research, The Westmead Institute for Medical Research, The University of Sydney, Sydney, Australia
| |
Collapse
|
34
|
The Role of Sphingosine-1-Phosphate and Ceramide-1-Phosphate in Inflammation and Cancer. Mediators Inflamm 2017; 2017:4806541. [PMID: 29269995 PMCID: PMC5705877 DOI: 10.1155/2017/4806541] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/01/2017] [Accepted: 08/30/2017] [Indexed: 01/02/2023] Open
Abstract
Inflammation is part of our body's response to tissue injury and pathogens. It helps to recruit various immune cells to the site of inflammation and activates the production of mediators to mobilize systemic protective processes. However, chronic inflammation can increase the risk of diseases like cancer. Apart from cytokines and chemokines, lipid mediators, particularly sphingosine-1-phosphate (S1P) and ceramide-1-phosphate (C1P), contribute to inflammation and cancer. S1P is an important player in inflammation-associated colon cancer progression. On the other hand, C1P has been recognized to be involved in cancer cell growth, migration, survival, and inflammation. However, whether C1P is involved in inflammation-associated cancer is not yet established. In contrast, few studies have also suggested that S1P and C1P are involved in anti-inflammatory pathways regulated in certain cell types. Ceramide is the substrate for ceramide kinase (CERK) to yield C1P, and sphingosine is phosphorylated to S1P by sphingosine kinases (SphKs). Biological functions of sphingolipid metabolites have been studied extensively. Ceramide is associated with cell growth inhibition and enhancement of apoptosis while S1P and C1P are associated with enhancement of cell growth and survival. Altogether, S1P and C1P are important regulators of ceramide level and cell fate. This review focuses on S1P and C1P involvement in inflammation and cancer with emphasis on recent progress in the field.
Collapse
|
35
|
3-(2-amino-ethyl)-5-[3-(4-butoxyl-phenyl)-propylidene]-thiazolidine-2,4-dione (K145) ameliorated dexamethasone induced hepatic gluconeogenesis through activation of Akt/FoxO1 pathway. Biochem Biophys Res Commun 2017; 493:286-290. [DOI: 10.1016/j.bbrc.2017.09.029] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Accepted: 09/06/2017] [Indexed: 11/22/2022]
|
36
|
Bougault C, El Jamal A, Briolay A, Mebarek S, Boutet MA, Garraud T, Le Goff B, Blanchard F, Magne D, Brizuela L. Involvement of sphingosine kinase/sphingosine 1-phosphate metabolic pathway in spondyloarthritis. Bone 2017; 103:150-158. [PMID: 28684192 DOI: 10.1016/j.bone.2017.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/23/2017] [Accepted: 07/01/2017] [Indexed: 12/13/2022]
Abstract
Spondyloarthritis (SpA) is a relatively common chronic inflammatory joint disorder, with a prevalence of about 0.2-0.5% worldwide. The primary target of the pathological process is the enthesis, where tendons and ligaments attach to underlying bone. These insertion sites are hotspots of bone formation (enthesophytes), which can lead to ankylosis. Unfortunately, the mechanisms causing the onset and progression of entheseal ossification remain largely unknown. Sphingosine 1-phosphate (S1P), a lipid generated after sphingosine phosphorylation by sphingosine kinases 1 and 2 (SK1/2), plays important roles in cell proliferation, differentiation and survival. S1P regulates fundamental biological processes such as cell cycle, inflammatory response or bone homeostasis. Indeed, S1P has been involved in some of most-spread skeletal diseases such as rheumatoid arthritis or osteoarthritis. On the other hand, the implication of S1P in SpA has not been explored yet. In the present work, we observed by ELISA that S1P content was significantly increased in the serum of SpA patients (6.1±4.2μM, n=21) compared to healthy donors (1.6±0.9μM, n=12). In vitro, gene expression of SK1 and SK2 as well as their activity were increased during differentiation of primary murine chondrocytes and osteoblasts into mineralizing cells. In addition, mRNA of the S1P-specific transporter Spns2 and S1P secretion were augmented. Using the pharmacological drugs SKi (SK pan-inhibitor), PF-543 (SK1 specific inhibitor) or K-145 (SK2 specific inhibitor), we showed that the inhibition of SK1 and/or SK2 decreased matrix mineralization, alkaline phosphatase activity and the mRNA expression of Runx2 and Bglap in chondrocytes and osteoblasts. To our knowledge, this is the first study indicating that S1P levels are significantly increased in serum from SpA patients. Moreover, we showed in vitro that SK activity was involved in the mineralization capacity of osteoblasts and chondrocytes. S1P metabolic pathway may represent an ingenious therapeutic target for SpA in the future.
Collapse
Affiliation(s)
- Carole Bougault
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Alaeddine El Jamal
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Anne Briolay
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Saida Mebarek
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | | | | | | | | | - David Magne
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France
| | - Leyre Brizuela
- Univ Lyon, Univ Claude Bernard Lyon 1, CNRS UMR 5246, ICBMS, F-69622 Lyon, France.
| |
Collapse
|
37
|
"Dicing and Splicing" Sphingosine Kinase and Relevance to Cancer. Int J Mol Sci 2017; 18:ijms18091891. [PMID: 28869494 PMCID: PMC5618540 DOI: 10.3390/ijms18091891] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 02/06/2023] Open
Abstract
Sphingosine kinase (SphK) is a lipid enzyme that maintains cellular lipid homeostasis. Two SphK isozymes, SphK1 and SphK2, are expressed from different chromosomes and several variant isoforms are expressed from each of the isozymes, allowing for the multi-faceted biological diversity of SphK activity. Historically, SphK1 is mainly associated with oncogenicity, however in reality, both SphK1 and SphK2 isozymes possess oncogenic properties and are recognized therapeutic targets. The absence of mutations of SphK in various cancer types has led to the theory that cancer cells develop a dependency on SphK signaling (hyper-SphK signaling) or “non-oncogenic addiction”. Here we discuss additional theories of SphK cellular mislocation and aberrant “dicing and splicing” as contributors to cancer cell biology and as key determinants of the success or failure of SphK/S1P (sphingosine 1 phosphate) based therapeutics.
Collapse
|
38
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PA, Pitman MR, Hewett DR, Zannettino AC, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 and 1880=1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Craig T. Wallington-Beddoe
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Melissa K. Bennett
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Julia R. Zebol
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Paul A.B. Moretti
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Melissa R. Pitman
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Duncan R. Hewett
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M. Pitson
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| |
Collapse
|
39
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PA, Pitman MR, Hewett DR, Zannettino AC, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 order by 1-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Craig T. Wallington-Beddoe
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Melissa K. Bennett
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Julia R. Zebol
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Paul A.B. Moretti
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Melissa R. Pitman
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Duncan R. Hewett
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M. Pitson
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| |
Collapse
|
40
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PA, Pitman MR, Hewett DR, Zannettino AC, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 order by 1-- gadu] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Craig T. Wallington-Beddoe
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Melissa K. Bennett
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Julia R. Zebol
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Paul A.B. Moretti
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Melissa R. Pitman
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Duncan R. Hewett
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M. Pitson
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| |
Collapse
|
41
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PA, Pitman MR, Hewett DR, Zannettino AC, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 order by 8029-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Craig T. Wallington-Beddoe
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Melissa K. Bennett
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Julia R. Zebol
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Paul A.B. Moretti
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Melissa R. Pitman
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Duncan R. Hewett
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M. Pitson
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| |
Collapse
|
42
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PA, Pitman MR, Hewett DR, Zannettino AC, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 order by 1-- -] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Craig T. Wallington-Beddoe
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Melissa K. Bennett
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Julia R. Zebol
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Paul A.B. Moretti
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Melissa R. Pitman
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Duncan R. Hewett
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M. Pitson
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| |
Collapse
|
43
|
Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 order by 8029-- awyx] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
|
44
|
Wallington-Beddoe CT, Bennett MK, Vandyke K, Davies L, Zebol JR, Moretti PA, Pitman MR, Hewett DR, Zannettino AC, Pitson SM. Sphingosine kinase 2 inhibition synergises with bortezomib to target myeloma by enhancing endoplasmic reticulum stress. Oncotarget 2017. [DOI: 10.18632/oncotarget.17115 order by 8029-- #] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023] Open
Affiliation(s)
- Craig T. Wallington-Beddoe
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Melissa K. Bennett
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| | - Kate Vandyke
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Lorena Davies
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Julia R. Zebol
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Paul A.B. Moretti
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Melissa R. Pitman
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
| | - Duncan R. Hewett
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Andrew C.W. Zannettino
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Stuart M. Pitson
- Center for Cancer Biology, University of South Australia, Adelaide, Australia
- SA Pathology, Adelaide, Australia
- School of Medicine, University of Adelaide, Australia
| |
Collapse
|
45
|
Pyne NJ, Adams DR, Pyne S. Sphingosine Kinase 2 in Autoimmune/Inflammatory Disease and the Development of Sphingosine Kinase 2 Inhibitors. Trends Pharmacol Sci 2017; 38:581-591. [DOI: 10.1016/j.tips.2017.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Revised: 04/15/2017] [Accepted: 04/20/2017] [Indexed: 10/19/2022]
|
46
|
Identification of selective inhibitors of sphingosine kinases 1 and 2 through a structure–activity relationship study of 4- epi -jaspine B. Bioorg Med Chem 2017; 25:3046-3052. [DOI: 10.1016/j.bmc.2017.03.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 03/21/2017] [Accepted: 03/24/2017] [Indexed: 01/15/2023]
|
47
|
Targeting sphingosine-1-phosphate signaling for cancer therapy. SCIENCE CHINA-LIFE SCIENCES 2017. [DOI: 10.1007/s11427-017-9046-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
48
|
Childress ES, Kharel Y, Brown AM, Bevan DR, Lynch KR, Santos WL. Transforming Sphingosine Kinase 1 Inhibitors into Dual and Sphingosine Kinase 2 Selective Inhibitors: Design, Synthesis, and in Vivo Activity. J Med Chem 2017; 60:3933-3957. [PMID: 28406646 PMCID: PMC6047346 DOI: 10.1021/acs.jmedchem.7b00233] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Sphingosine 1-phosphate (S1P) is a pleiotropic signaling molecule that interacts with its five G-protein coupled receptors (S1P1-5) to regulate cell growth and survival and has been implicated in a variety of diseases including cancer and sickle cell disease. As the key mediators in the synthesis of S1P, sphingosine kinase (SphK) isoforms 1 and 2 have attracted attention as viable targets for pharmaceutical inhibition. In this article, we describe the design, synthesis, and biological evaluation of aminothiazole-based guanidine inhibitors of SphK. Surprisingly, combining features of reported SphK1 inhibitors generated SphK1/2 dual inhibitor 20l (SLC4011540) (hSphK1 Ki = 120 nM, hSphK2 Ki = 90 nM) and SphK2 inhibitor 20dd (SLC4101431) (Ki = 90 nM, 100-fold SphK2 selectivity). These compounds effectively decrease S1P levels in vitro. In vivo administration of 20dd validated that inhibition of SphK2 increases blood S1P levels.
Collapse
Affiliation(s)
- Elizabeth S. Childress
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yugesh Kharel
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Anne M. Brown
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - David R. Bevan
- Department of Biochemistry, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Kevin R. Lynch
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Webster L. Santos
- Department of Chemistry and VT Center for Drug Discovery, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
49
|
Maiti A, Takabe K, Hait NC. Metastatic triple-negative breast cancer is dependent on SphKs/S1P signaling for growth and survival. Cell Signal 2017; 32:85-92. [PMID: 28108260 DOI: 10.1016/j.cellsig.2017.01.021] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Revised: 01/13/2017] [Accepted: 01/13/2017] [Indexed: 12/16/2022]
Abstract
About 40,000 American women die from metastatic breast cancer each year despite advancements in treatment. Approximately, 15% of breast cancers are triple-negative for estrogen receptor, progesterone receptor, and HER2. Triple-negative cancer is characterized by more aggressive, harder to treat with conventional approaches and having a greater possibility of recurrence. Sphingosine-1-phosphate (S1P) is a bioactive sphingolipid signaling mediator has emerged as a key regulatory molecule in breast cancer progression. Therefore, we investigated whether cytosolic sphingosine kinase type 1 (SphK1) and nuclear sphingosine kinase type 2 (SphK2), the enzymes that make S1P are critical for growth and PI3K/AKT, ERK-MAP kinase mediated survival signaling of lung metastatic variant LM2-4 breast cancer cells, generated from the parental triple-negative MDA-MB-231 human breast cancer cell line. Similar with previous report, SphKs/S1P signaling is critical for the growth and survival of estrogen receptor positive MCF-7 human breast cancer cells, was used as our study control. MDA-MB-231 did not show a significant effect of SphKs/S1P signaling on AKT, ERK, and p38 pathways. In contrast, LM2-4 cells that gained lung metastatic phenotype from primary MDA-MB-231 cells show a significant effect of SphKs/S1P signaling requirement on cell growth, survival, and cell motility. PF-543, a selective potent inhibitor of SphK1, attenuated epidermal growth factor (EGF)-mediated cell growth and survival signaling through inhibition of AKT, ERK, and p38 MAP kinase pathways mainly in LM2-4 cells but not in parental MDA-MB-231 human breast cancer cells. Moreover, K-145, a selective inhibitor of SphK2, markedly attenuated EGF-mediated cell growth and survival of LM2-4 cells. We believe this study highlights the importance of SphKs/S1P signaling in metastatic triple-negative breast cancers and targeted therapies.
Collapse
Affiliation(s)
- Aparna Maiti
- Roswell Park Cancer Institute, Division of Breast Surgery, Department of Surgical Oncology, Department of Molecular and Cellular Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Kazuaki Takabe
- Roswell Park Cancer Institute, Division of Breast Surgery, Department of Surgical Oncology, Department of Molecular and Cellular Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA
| | - Nitai C Hait
- Roswell Park Cancer Institute, Division of Breast Surgery, Department of Surgical Oncology, Department of Molecular and Cellular Biology, Elm and Carlton Streets, Buffalo, NY 14263, USA.
| |
Collapse
|
50
|
Pitman MR, Costabile M, Pitson SM. Recent advances in the development of sphingosine kinase inhibitors. Cell Signal 2016; 28:1349-1363. [DOI: 10.1016/j.cellsig.2016.06.007] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Revised: 06/09/2016] [Accepted: 06/09/2016] [Indexed: 12/11/2022]
|