1
|
Carotenuto P, Romano A, Barbato A, Quadrano P, Brillante S, Volpe M, Ferrante L, Tammaro R, Morleo M, De Cegli R, Iuliano A, Testa M, Andreone F, Ciliberto G, Clery E, Troncone G, Palma G, Arra C, Barbieri A, Capone M, Madonna G, Ascierto PA, Lanfrancone L, Indrieri A, Franco B. Targeting the MITF/APAF-1 axis as salvage therapy for MAPK inhibitors in resistant melanoma. Cell Rep 2022; 41:111601. [DOI: 10.1016/j.celrep.2022.111601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 02/09/2022] [Accepted: 10/13/2022] [Indexed: 11/09/2022] Open
|
2
|
Gorombei P, Guidez F, Ganesan S, Chiquet M, Pellagatti A, Goursaud L, Tekin N, Beurlet S, Patel S, Guerenne L, Le Pogam C, Setterblad N, de la Grange P, LeBoeuf C, Janin A, Noguera ME, Sarda-Mantel L, Merlet P, Boultwood J, Konopleva M, Andreeff M, West R, Pla M, Adès L, Fenaux P, Krief P, Chomienne C, Omidvar N, Padua RA. BCL-2 Inhibitor ABT-737 Effectively Targets Leukemia-Initiating Cells with Differential Regulation of Relevant Genes Leading to Extended Survival in a NRAS/BCL-2 Mouse Model of High Risk-Myelodysplastic Syndrome. Int J Mol Sci 2021; 22:ijms221910658. [PMID: 34638998 PMCID: PMC8508829 DOI: 10.3390/ijms221910658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022] Open
Abstract
During transformation, myelodysplastic syndromes (MDS) are characterized by reducing apoptosis of bone marrow (BM) precursors. Mouse models of high risk (HR)-MDS and acute myelogenous leukemia (AML) post-MDS using mutant NRAS and overexpression of human BCL-2, known to be poor prognostic indicators of the human diseases, were created. We have reported the efficacy of the BCL-2 inhibitor, ABT-737, on the AML post-MDS model; here, we report that this BCL-2 inhibitor also significantly extended survival of the HR-MDS mouse model, with reductions of BM blasts and lineage negative/Sca1+/KIT+ (LSK) cells. Secondary transplants showed increased survival in treated compared to untreated mice. Unlike the AML model, BCL-2 expression and RAS activity decreased following treatment and the RAS:BCL-2 complex remained in the plasma membrane. Exon-specific gene expression profiling (GEP) of HR-MDS mice showed 1952 differentially regulated genes upon treatment, including genes important for the regulation of stem cells, differentiation, proliferation, oxidative phosphorylation, mitochondrial function, and apoptosis; relevant in human disease. Spliceosome genes, found to be abnormal in MDS patients and downregulated in our HR-MDS model, such as Rsrc1 and Wbp4, were upregulated by the treatment, as were genes involved in epigenetic regulation, such as DNMT3A and B, upregulated upon disease progression and downregulated upon treatment.
Collapse
Affiliation(s)
- Petra Gorombei
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Fabien Guidez
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Saravanan Ganesan
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Mathieu Chiquet
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Andrea Pellagatti
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Haematology Theme, Oxford OX3 9DU, UK; (A.P.); (J.B.)
| | - Laure Goursaud
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Nilgun Tekin
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Stephanie Beurlet
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Satyananda Patel
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Laura Guerenne
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Carole Le Pogam
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Niclas Setterblad
- Imagerie Département, Université de Paris, Institut de la Recherche Saint-Louis, 75010 Paris, France;
| | - Pierre de la Grange
- GenoSplice Technology, Paris Biotech Santé, 29 Rue du Faubourg Saint-Jacques, 75014 Paris, France;
| | - Christophe LeBoeuf
- INSERM UMR-S942, Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France; (C.L.); (A.J.)
| | - Anne Janin
- INSERM UMR-S942, Université de Paris, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France; (C.L.); (A.J.)
| | - Maria-Elena Noguera
- Department of Cytology, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France;
| | - Laure Sarda-Mantel
- Radiopharmacie AP-HP, Hôpital Saint-Louis, Service Medicine Nuclear, AP-HP Lariboisiere, 75010 Paris, France;
| | - Pascale Merlet
- Nuclear Medicine, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France;
| | - Jacqueline Boultwood
- Blood Cancer UK Molecular Haematology Unit, Nuffield Division of Clinical Laboratory Sciences, Radcliffe Department of Medicine, University of Oxford, and BRC Haematology Theme, Oxford OX3 9DU, UK; (A.P.); (J.B.)
| | - Marina Konopleva
- M. D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (M.K.); (M.A.)
| | - Michael Andreeff
- M. D. Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA; (M.K.); (M.A.)
| | - Robert West
- Department of Public Health, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| | - Marika Pla
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Lionel Adès
- INSERM UMR-S944, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France; (L.A.); (P.F.)
| | - Pierre Fenaux
- INSERM UMR-S944, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis, 75010 Paris, France; (L.A.); (P.F.)
| | - Patricia Krief
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Christine Chomienne
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
| | - Nader Omidvar
- Department of Haematology, Cardiff University School of Medicine, Cardiff CF14 4XN, UK;
| | - Rose Ann Padua
- INSERM UMR-S1131, Université de Paris, Institut de la Recherche Saint-Louis, Assistance Publique-Hôpitaux de Paris (AP-HP), Hôpital Saint-Louis Hôpital, 75010 Paris, France; (P.G.); (F.G.); (S.G.); (M.C.); (L.G.); (N.T.); (S.B.); (S.P.); (L.G.); (C.L.P.); (M.P.); (P.K.); (C.C.)
- Correspondence: ; Tel.: +33-1-57-27-90-22; Fax: +33-1-57-27-90-13
| |
Collapse
|
3
|
Pieper IL, Radley G, Chan CHH, Friedmann Y, Foster G, Thornton CA. Quantification methods for human and large animal leukocytes using DNA dyes by flow cytometry. Cytometry A 2016; 89:565-74. [DOI: 10.1002/cyto.a.22874] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Revised: 02/19/2016] [Accepted: 04/26/2016] [Indexed: 01/18/2023]
Affiliation(s)
- Ina Laura Pieper
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Gemma Radley
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Chris H. H. Chan
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Yasmin Friedmann
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
| | - Graham Foster
- Calon Cardio-Technology, Institute of Life Science; Swansea SA2 8PP United Kingdom
| | - Catherine A. Thornton
- Institute of Life Science, Swansea University Medical School; Swansea SA2 8PP United Kingdom
| |
Collapse
|
4
|
García-Cano J, Ambroise G, Pascual-Serra R, Carrión MC, Serrano-Oviedo L, Ortega-Muelas M, Cimas FJ, Sabater S, Ruiz-Hidalgo MJ, Sanchez Perez I, Mas A, Jalón FA, Vazquez A, Sánchez-Prieto R. Exploiting the potential of autophagy in cisplatin therapy: A new strategy to overcome resistance. Oncotarget 2016; 6:15551-65. [PMID: 26036632 PMCID: PMC4558170 DOI: 10.18632/oncotarget.3902] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 04/24/2015] [Indexed: 01/07/2023] Open
Abstract
Resistance to cisplatin is a major challenge in the current cancer therapy. In order to explore new therapeutic strategies to cisplatin resistance, we evaluated, in a model of lung cancer (H1299 and H460 cell lines), the nature of the pathways leading to cell death. We observed that H1299 displayed a natural resistance to cisplatin due to an inability to trigger an apoptotic response that correlates with the induction of autophagy. However, pharmacological and genetic approaches showed how autophagy was a mechanism associated to cell death rather than to resistance. Indeed, pro-autophagic stimuli such as mTOR or Akt inhibition mediate cell death in both cell lines to a similar extent. We next evaluated the response to a novel platinum compound, monoplatin, able to promote cell death in an exclusive autophagy-dependent manner. In this case, no differences were observed between both cell lines. Furthermore, in response to monoplatin, two molecular hallmarks of cisplatin response (p53 and MAPKs) were not implicated, indicating the ability of this pro-autophagic compound to overcome cisplatin resistance. In summary, our data highlight how induction of autophagy could be used in cisplatin resistant tumours and an alternative treatment for p53 mutated patient in a synthetic lethally approach.
Collapse
Affiliation(s)
- Jesús García-Cano
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas. Universidad de Castilla-La Mancha, Albacete, Spain
| | - Gorbatchev Ambroise
- INSERM U.1197/Université Paris-Sud/Equipe Labellisée Ligue Nationale Contre le Cancer, Hôpital Paul Brousse, Villejuif, France
| | - Raquel Pascual-Serra
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas. Universidad de Castilla-La Mancha, Albacete, Spain
| | - Maria Carmen Carrión
- Departamento de Química Inorgánica, Orgánica y Bioquímica, UCLM. Facultad de Ciencias y Tecnologías Químicas-IRICA, Ciudad Real, Spain.,Fundación Parque Científico y Tecnológico de Castilla-La Mancha, Albacete, Spain
| | - Leticia Serrano-Oviedo
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas. Universidad de Castilla-La Mancha, Albacete, Spain
| | - Marta Ortega-Muelas
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas. Universidad de Castilla-La Mancha, Albacete, Spain
| | - Francisco J Cimas
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas. Universidad de Castilla-La Mancha, Albacete, Spain
| | - Sebastià Sabater
- Radiation Oncology Department, Complejo Hospitalario Universitario Albacete (CHUA), Spain
| | - María José Ruiz-Hidalgo
- Departamento de Química Orgánica, Inorgánica y Bioquímica, Facultad de Medicina, Albacete, Spain.,Unidad asociada de Biomedicina, UCLM-CSIC, Albacete, Spain
| | - Isabel Sanchez Perez
- Department of Biochemistry, School of Medicine, UAM/Biomedical Research Institute of Madrid, Madrid CSIC/UAM, Madrid, Spain.,Unidad asociada de Biomedicina, UCLM-CSIC, Albacete, Spain
| | - Antonio Mas
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas. Universidad de Castilla-La Mancha, Albacete, Spain.,Unidad asociada de Biomedicina, UCLM-CSIC, Albacete, Spain.,Facultad de Farmacia, Universidad de Castilla-La Mancha, Albacete, Spain
| | - Félix A Jalón
- Departamento de Química Inorgánica, Orgánica y Bioquímica, UCLM. Facultad de Ciencias y Tecnologías Químicas-IRICA, Ciudad Real, Spain
| | - Aimé Vazquez
- INSERM U.1197/Université Paris-Sud/Equipe Labellisée Ligue Nationale Contre le Cancer, Hôpital Paul Brousse, Villejuif, France
| | - Ricardo Sánchez-Prieto
- Unidad de Medicina Molecular, Centro Regional de Investigaciones Biomédicas. Universidad de Castilla-La Mancha, Albacete, Spain.,Fundación Parque Científico y Tecnológico de Castilla-La Mancha, Albacete, Spain.,Unidad asociada de Biomedicina, UCLM-CSIC, Albacete, Spain
| |
Collapse
|
5
|
The BH3 Mimetic Obatoclax Accumulates in Lysosomes and Causes Their Alkalinization. PLoS One 2016; 11:e0150696. [PMID: 26950068 PMCID: PMC4780728 DOI: 10.1371/journal.pone.0150696] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/17/2016] [Indexed: 11/25/2022] Open
Abstract
Obatoclax belongs to a class of compounds known as BH3 mimetics which function as antagonists of Bcl-2 family apoptosis regulators. It has undergone extensive preclinical and clinical evaluation as a cancer therapeutic. Despite this, it is clear that obatoclax has additional pharmacological effects that contribute to its cytotoxic activity. It has been claimed that obatoclax, either alone or in combination with other molecularly targeted therapeutics, induces an autophagic form of cell death. In addition, obatoclax has been shown to inhibit lysosomal function, but the mechanism of this has not been elucidated. We have evaluated the mechanism of action of obatoclax in eight ovarian cancer cell lines. Consistent with its function as a BH3 mimetic, obatoclax induced apoptosis in three cell lines. However, in the remaining cell lines another form of cell death was evident because caspase activation and PARP cleavage were not observed. Obatoclax also failed to show synergy with carboplatin and paclitaxel, chemotherapeutic agents which we have previously shown to be synergistic with authentic Bcl-2 family antagonists. Obatoclax induced a profound accumulation of LC-3 but knockdown of Atg-5 or beclin had only minor effects on the activity of obatoclax in cell growth assays suggesting that the inhibition of lysosomal function rather than stimulation of autophagy may play a more prominent role in these cells. To evaluate how obatoclax inhibits lysosomal function, confocal microscopy studies were conducted which demonstrated that obatoclax, which contains two basic pyrrole groups, accumulates in lysosomes. Studies using pH sensitive dyes demonstrated that obatoclax induced lysosomal alkalinization. Furthermore, obatoclax was synergistic in cell growth/survival assays with bafilomycin and chloroquine, two other drugs which cause lysosomal alkalinization. These studies explain, for the first time, how obatoclax inhibits lysosomal function and suggest that lysosomal alkalinization contributes to the cytotoxic activity of obatoclax.
Collapse
|
6
|
Divergent Effects of Dioxin- or Non-Dioxin-Like Polychlorinated Biphenyls on the Apoptosis of Primary Cell Culture from the Mouse Pituitary Gland. PLoS One 2016; 11:e0146729. [PMID: 26752525 PMCID: PMC4709048 DOI: 10.1371/journal.pone.0146729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Accepted: 12/20/2015] [Indexed: 11/25/2022] Open
Abstract
Polychlorinated biphenyls (PCBs) can disrupt the endocrine function, promote neoplasms and regulate apoptosis in some tissues; however, it is unknown whether PCBs can affect the apoptosis of pituitary cells. The study evaluated the effect of PCBs on the apoptosis of normal pituitary cells and the underlying mechanisms. Primary cell cultures obtained from mouse pituitary glands were exposed to Aroclor 1254 or selected dioxin-like (PCB 77, PCB 126) or non-dioxin-like (PCB 153, PCB 180) congeners. Apoptosis was evaluated by Annexin V staining, DNA fragmentation, and TUNEL assay. Both the expression and activity of caspases were analyzed. Selective thyroid hormone receptor (TR) or aryl-hydrocarbon receptor (AhR) or CYP1A1 antagonist were used to explore the mechanisms underlying PCBs action. Our results showed that Aroclor 1254 induced the apoptosis of pituitary cells as well as the final caspase-3 level and activity through the extrinsic pathway, as shown by the increased caspase-8 level and activity. On the other hand, the intrinsic pathway evaluated by measuring caspase-9 expression was silent. The selected non-dioxin-like congeners either increased (PCB 180) or reduced (PCB 153) pituitary cell apoptosis, affecting the extrinsic pathway (PCB 180), or both the extrinsic and intrinsic pathways (PCB 153), respectively. In contrast, the dioxin-like congeners (PCB 77 and PCB 126) did not affect apoptosis. The anti-apoptotic phenotype of PCB 153 was counteracted by a TR or a CYP1A1 antagonist, whereas the pro-apoptotic effect of PCB 180 was counteracted by an AhR antagonist. The induced apoptosis of Aroclor 1254 or PCB 180 was associated with a reduction of cell proliferation, whereas the decreased apoptosis due to PCB 153 increased cell proliferation by 30%. In conclusion, our data suggest that non-dioxin-like PCBs may modulate apoptosis and the proliferation rate of pituitary cells that have either pro- or anti-apoptotic effects depending on the specific congeners. However, the impact of PCBs on the process of pituitary tumorigenesis remains to be elucidated.
Collapse
|
7
|
Gortat A, Sancho M, Mondragón L, Messeguer À, Pérez-Payá E, Orzáez M. Apaf1 inhibition promotes cell recovery from apoptosis. Protein Cell 2015; 6:833-43. [PMID: 26361785 PMCID: PMC4624680 DOI: 10.1007/s13238-015-0200-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2015] [Accepted: 07/21/2015] [Indexed: 11/26/2022] Open
Abstract
The protein apoptotic protease activating factor 1 (Apaf1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. We have developed a vital method that allows fluorescence-activated cell sorting of cells at different stages of the apoptotic pathway and demonstrated that upon pharmacological inhibition of Apaf1, cells recover from doxorubicin- or hypoxia-induced early apoptosis to normal healthy cell. Inhibiting Apaf1 not only prevents procaspase-9 activation but delays massive mitochondrial damage allowing cell recovery.
Collapse
Affiliation(s)
- Anna Gortat
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Mónica Sancho
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Laura Mondragón
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain
| | - Àngel Messeguer
- Department of Chemical and Biomolecular Nanotechnology, Instituto Química Avanzada de Cataluña (CSIC), 08034, Barcelona, Spain
| | - Enrique Pérez-Payá
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.,Instituto de Biomedicina de Valencia, IBV-CSIC, 46010, Valencia, Spain
| | - Mar Orzáez
- Laboratory of Peptide and Protein Chemistry, Centro de Investigación Príncipe Felipe, 46012, Valencia, Spain.
| |
Collapse
|
8
|
Lang F, Qin Z, Li F, Zhang H, Fang Z, Hao E. Apoptotic Cell Death Induced by Resveratrol Is Partially Mediated by the Autophagy Pathway in Human Ovarian Cancer Cells. PLoS One 2015; 10:e0129196. [PMID: 26067645 PMCID: PMC4466135 DOI: 10.1371/journal.pone.0129196] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Accepted: 05/07/2015] [Indexed: 12/19/2022] Open
Abstract
Resveratrol (trans-3,4,5’ –trihydroxystilbene) is an active compound in food, such as red grapes, peanuts, and berries. Resveratrol exhibits an anticancer effect on various human cancer cells. However, the mechanism of resveratrol-induced anti-cancer effect at the molecular level remains to be elucidated. In this study, the mechanism underlying the anti-cancer effect of resveratrol in human ovarian cancer cells (OVCAR-3 and Caov-3) was investigated using various molecular biology techniques, such as flow cytometry, western blotting, and RNA interference, with a major focus on the potential role of autophagy in resveratrol-induced apoptotic cell death. We demonstrated that resveratrol induced reactive oxygen species (ROS) generation, which triggers autophagy and subsequent apoptotic cell death. Resveratrol induced ATG5 expression and promoted LC3 cleavage. The apoptotic cell death induced by resveratrol was attenuated by both pharmacological and genetic inhibition of autophagy. The autophagy inhibitor chloroquine, which functions at the late stage of autophagy, significantly reduced resveratrol-induced cell death and caspase 3 activity in human ovarian cancer cells. We also demonstrated that targeting ATG5 by siRNA also suppressed resveratrol-induced apoptotic cell death. Thus, we concluded that a common pathway between autophagy and apoptosis exists in resveratrol-induced cell death in OVCAR-3 human ovarian cancer cells.
Collapse
Affiliation(s)
- Fangfang Lang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Zhaoyang Qin
- Department of General Surgery, Rizhao People’s Hospital, Rizhao, China
| | - Fang Li
- Department of Health, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Huilin Zhang
- Central Laboratory, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Zhenghui Fang
- Department of Obstetrics and Gynecology, Jinan Central Hospital, Affiliated with Shandong University, Jinan, China
| | - Enkui Hao
- Department of Cardiology, Qianfoshan Hospital, Affiliated with Shandong University, Jinan, China
- * E-mail:
| |
Collapse
|
9
|
Glory A, Bettaieb A, Averill-Bates DA. Mild thermotolerance induced at 40 °C protects cells against hyperthermia-induced pro-apoptotic changes in Bcl-2 family proteins. Int J Hyperthermia 2014; 30:502-12. [DOI: 10.3109/02656736.2014.968641] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Mariño G, Niso-Santano M, Baehrecke EH, Kroemer G. Self-consumption: the interplay of autophagy and apoptosis. Nat Rev Mol Cell Biol 2014; 15:81-94. [PMID: 24401948 DOI: 10.1038/nrm3735q10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to 'autophagic cell death'. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences.
Collapse
Affiliation(s)
- Guillermo Mariño
- 1] Institut national de la santé et de la recherche médicale (INSERM), U1138, F-94805 Villejuif, France. [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France
| | - Mireia Niso-Santano
- 1] Institut national de la santé et de la recherche médicale (INSERM), U1138, F-94805 Villejuif, France. [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France
| | - Eric H Baehrecke
- Department of Cancer Biology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA
| | - Guido Kroemer
- 1] Institut national de la santé et de la recherche médicale (INSERM), U1138, F-94805 Villejuif, France. [2] Université Paris Descartes/Paris V, Sorbonne Paris Cité, F-75006 Paris, France. [3] Equipe 11 labellisée par la Ligue Nationale contre le Cancer, Centre de Recherche des Cordeliers, F-75006 Paris, France. [4] Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, F-75015 Paris. [5] Metabolomics and Cell Biology Platforms, Institut Gustave Roussy, F-94805 Villejuif, France
| |
Collapse
|
11
|
Altered mitochondria morphology and cell metabolism in Apaf1-deficient cells. PLoS One 2014; 9:e84666. [PMID: 24416260 PMCID: PMC3886985 DOI: 10.1371/journal.pone.0084666] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2013] [Accepted: 11/18/2013] [Indexed: 11/21/2022] Open
Abstract
Background Apaf1 (apoptotic protease activating factor 1) is the central component of the apoptosome, a multiprotein complex that activates procaspase-9 after cytochrome c release from the mitochondria in the intrinsic pathway of apoptosis. Other cellular roles, including a pro-survival role, have also been described for Apaf1, while the relative contribution of each function to cell death, but also to cell homeostatic conditions, remain to be clarified. Methodology and Principal Findings Here we examined the response to apoptosis induction of available embryonic fibroblasts from Apaf1 knockout mice (MEFS KO Apaf1). In the absence of Apaf1, cells showed mitochondria with an altered morphology that affects cytochrome c release and basal metabolic status. Conclusions We analysed mitochondrial features and cell death response to etoposide and ABT-737 in two different Apaf1-deficient MEFS, which differ in the immortalisation protocol. Unexpectedly, MEFS KO Apaf1 immortalised with the SV40 antigen (SV40IM-MEFS Apaf1) and those which spontaneously immortalised (SIM-MEFS Apaf1) respond differently to apoptotic stimuli, but both presented relevant differences at the mitochondria when compared to MEFS WT, indicating a role for Apaf1 at the mitochondria.
Collapse
|
12
|
Abstract
Autophagy and apoptosis control the turnover of organelles and proteins within cells, and of cells within organisms, respectively, and many stress pathways sequentially elicit autophagy, and apoptosis within the same cell. Generally autophagy blocks the induction of apoptosis, and apoptosis-associated caspase activation shuts off the autophagic process. However, in special cases, autophagy or autophagy-relevant proteins may help to induce apoptosis or necrosis, and autophagy has been shown to degrade the cytoplasm excessively, leading to 'autophagic cell death'. The dialogue between autophagy and cell death pathways influences the normal clearance of dying cells, as well as immune recognition of dead cell antigens. Therefore, the disruption of the relationship between autophagy and apoptosis has important pathophysiological consequences.
Collapse
|
13
|
Fais F, Tenca C, Ghiotto F, Bruno S. Targeting the Bcl-2 family in B-cell chronic lymphocytic leukemia. Int J Hematol Oncol 2013. [DOI: 10.2217/ijh.13.43] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
SUMMARY B-cell chronic lymphocytic leukemia (CLL) is the most common leukemia in human adults of the western world and no definitive cure is yet available. One key factor in CLL pathogenesis and disease progression is misbalanced Bcl-2 cell death machinery that is shifted towards protection from apoptosis. Thus, strategies to counteract the antiapoptotic action of the Bcl-2 family in CLL cells are being explored. The Bcl-2 family is composed of a growing number of proteins related to Bcl-2 by sequence homology and their interactions regulate the cell’s decision to die. The features of one particular subclass, the BH3-only proteins, are being studied and exploited for the development of therapeutic anticancer approaches that specifically target antiapoptotic Bcl-2 proteins overexpressed in tumors, including CLL. Preclinical and clinical efficacy and toxicity of the most effective among these ‘BH3 mimetics’ are presented, together with a model that accounts for the differential sensitivity of CLL and normal cells to Bcl-2 neutralization.
Collapse
Affiliation(s)
- Franco Fais
- Department of Experimental Medicine (DIMES), University of Genoa, Human Anatomy Section, Via De Toni 14, Genoa 16132, Italy
| | - Claudya Tenca
- Department of Experimental Medicine (DIMES), University of Genoa, Human Anatomy Section, Via De Toni 14, Genoa 16132, Italy
| | - Fabio Ghiotto
- Department of Experimental Medicine (DIMES), University of Genoa, Human Anatomy Section, Via De Toni 14, Genoa 16132, Italy
| | - Silvia Bruno
- Department of Experimental Medicine (DIMES), University of Genoa, Human Anatomy Section, Via De Toni 14, Genoa 16132, Italy
| |
Collapse
|