1
|
Fajar S, Dwi SP, Nur IS, Wahyu AP, Sukamto S M, Winda AR, Nastiti W, Andri F, Firzan N. Zebrafish as a model organism for virus disease research: Current status and future directions. Heliyon 2024; 10:e33865. [PMID: 39071624 PMCID: PMC11282986 DOI: 10.1016/j.heliyon.2024.e33865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 06/22/2024] [Accepted: 06/28/2024] [Indexed: 07/30/2024] Open
Abstract
Zebrafish (Danio rerio) have emerged as valuable models for investigating viral infections, providing insights into viral pathogenesis, host responses, and potential therapeutic interventions. This review offers a comprehensive synthesis of research on viral infections using zebrafish models, focusing on the molecular mechanisms of viral action and host-virus interactions. Zebrafish models have been instrumental in elucidating the replication dynamics, tissue tropism, and immune evasion strategies of various viruses, including Chikungunya virus, Dengue virus, Herpes Simplex Virus type 1, and Influenza A virus. Additionally, studies utilizing zebrafish have evaluated the efficacy of antiviral compounds and natural agents against emerging viruses such as SARS-CoV-2, Zika virus, and Dengue virus. The optical transparency and genetic tractability of zebrafish embryos enable real-time visualization of viral infections, facilitating the study of viral spread and immune responses. Despite challenges such as temperature compatibility and differences in host receptors, zebrafish models offer unique advantages, including cost-effectiveness, high-throughput screening capabilities, and conservation of key immune pathways. Importantly, zebrafish models complement existing animal models, providing a platform for rapid evaluation of potential therapeutics and a deeper understanding of viral pathogenesis. This review underscores the significance of zebrafish research in advancing our understanding of viral diseases and highlights future research directions to combat infectious diseases effectively.
Collapse
Affiliation(s)
- Sofyantoro Fajar
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Sendi Priyono Dwi
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | | | | | - Mamada Sukamto S
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| | | | - Wijayanti Nastiti
- Faculty of Biology, Universitas Gadjah Mada, Yogyakarta, 55281, Indonesia
| | - Frediansyah Andri
- Research Center for Food Technology and Processing (PRTPP), National Research and Innovation Agency (BRIN), Yogyakarta 55861, Indonesia
| | - Nainu Firzan
- Department of Pharmacy, Faculty of Pharmacy, Hasanuddin University, Makassar, 90245, Indonesia
| |
Collapse
|
2
|
Liu J, Yuan X, Fan C, Ma G. Application of the zebrafish model in human viral research. Virus Res 2024; 341:199327. [PMID: 38262567 PMCID: PMC10835014 DOI: 10.1016/j.virusres.2024.199327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Viruses are a leading cause of infectious diseases. Well-developed animal models are valuable for understanding the immune responses to viral infections and the pathogenesis of viral diseases. Zebrafish is a commonly used small vertebrate model organism with strong reproductive ability, a short life cycle, and rapid embryonic development. Moreover, zebrafish and human genomes are highly similar; they have approximately 70 % homology in protein-coding genes, and 84 % of genes associated with human diseases have zebrafish counterparts. Recent years, different groups have developed zebrafish models for human viral infections and diseases, offering new insights into the molecular mechanisms of human viral pathogenesis as well as the development of antiviral strategies. The zebrafish model has become a simple and effective model system for understanding host-virus interaction. This review provides a comprehensive summary of the use of zebrafish models in human viral research, particularly in SARS-CoV-2.
Collapse
Affiliation(s)
- Jie Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China
| | - Xiaoyi Yuan
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China.
| | - Chunxin Fan
- International Research Center for Marine Biosciences, Ministry of Science and Technology, Shanghai Ocean University, China
| | - Guangyong Ma
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, China.
| |
Collapse
|
3
|
Kinaneh S, Hijaze W, Mansour-Wattad L, Hammoud R, Zaidani H, Kabala A, Hamoud S. Heparanase Inhibition Prevents Liver Steatosis in E 0 Mice. J Clin Med 2022; 11:jcm11061672. [PMID: 35329997 PMCID: PMC8954723 DOI: 10.3390/jcm11061672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/10/2022] [Accepted: 03/15/2022] [Indexed: 12/22/2022] Open
Abstract
Background: Non-alcoholic fatty liver disease affects up to 30% of adults in the USA, and is associated with a higher incidence of chronic liver morbidity and mortality. Several molecular pathways are involved in the pathology of liver steatosis, including lipid uptake, lipogenesis, lipolysis, and beta-oxidation. The enzyme heparanase has been implicated in liver steatosis. Herein, we investigated the effect of heparanase inhibition on liver steatosis in E0 mice. Methods: In vivo experiments: Male wild-type mice fed with either chow diet (n = 4) or high-fat diet (n = 6), and male E0 mice fed with chow diet (n = 8) or high-fat diet (n = 33) were included. Mice on a high-fat diet were treated for 12 weeks with PG545 at low dose (6.4 mg/kg/week, ip, n = 6) or high dose (13.3 mg/kg/week, ip, n = 7), SST0001 (1.2 mg/mouse/day, ip, n = 6), or normal saline (control, n = 14). Animals were sacrificed two days after inducing peritonitis. Serum was analyzed for biochemical parameters. Mouse peritoneal macrophages (MPMs) were harvested and analyzed for lipid content. Livers were harvested for histopathological analysis of steatosis, lipid content, and the expression of steatosis-related factors at the mRNA level. In vitro experiments: MPMs were isolated from untreated E0 mice aged 8–10 weeks and were cultured and treated with either PG545 or SST0001, both at 50 µg/mL for 24 h, followed by assessment of mRNA expression of steatosis related factors. Results: Heparanase inhibition significantly attenuated the development of liver steatosis, as was evident by liver histology and lipid content. Serum analysis indicated lowering of cholesterol and triglycerides levels in mice treated with heparanase inhibitors. In liver tissue, assessment of mRNA expression of key factors in lipid uptake, lipolysis, lipogenesis, and beta-oxidation exhibited significant downregulation following PG545 treatment and to a lesser extent when SST0001 was applied. However, in vitro treatment of MPMs with PG545, but not SST0001, resulted in increased lipid content in these cells, which is opposed to their effect on MPMs of treated mice. This may indicate distinct regulatory pathways in the system or isolated macrophages following heparanase inhibition. Conclusion: Heparanase inhibition significantly attenuates the development of liver steatosis by decreasing tissue lipid content and by affecting the mRNA expression of key lipid metabolism regulators.
Collapse
Affiliation(s)
- Safa Kinaneh
- Department of Physiology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (S.K.); (A.K.)
| | - Walaa Hijaze
- Department of Emergency Medicine, Rambam Health Care Campus, Haifa 3109601, Israel; (W.H.); (H.Z.)
| | - Lana Mansour-Wattad
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel;
| | - Rawan Hammoud
- Faculty of Biotechnology, Hadassah Academic College, Jerusalem 9101001, Israel;
| | - Hisam Zaidani
- Department of Emergency Medicine, Rambam Health Care Campus, Haifa 3109601, Israel; (W.H.); (H.Z.)
| | - Aviva Kabala
- Department of Physiology, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel; (S.K.); (A.K.)
| | - Shadi Hamoud
- Department of Internal Medicine E, Rambam Health Care Campus, Haifa 3109601, Israel;
- Lipid Research Laboratory, Rappaport Faculty of Medicine, Technion—Israel Institute of Technology, Haifa 3200003, Israel
- Correspondence: ; Tel.: +972-4-7772300; Fax: +972-4-7771691
| |
Collapse
|
4
|
Wrighton PJ, Oderberg IM, Goessling W. There Is Something Fishy About Liver Cancer: Zebrafish Models of Hepatocellular Carcinoma. Cell Mol Gastroenterol Hepatol 2019; 8:347-363. [PMID: 31108233 PMCID: PMC6713889 DOI: 10.1016/j.jcmgh.2019.05.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Revised: 05/03/2019] [Accepted: 05/03/2019] [Indexed: 12/16/2022]
Abstract
The incidence of hepatocellular carcinoma (HCC) and the mortality resulting from HCC are both increasing. Most patients with HCC are diagnosed at advanced stages when curative treatments are impossible. Current drug therapy extends mean overall survival by only a short period of time. Genetic mutations associated with HCC vary widely. Therefore, transgenic and mutant animal models are needed to investigate the molecular effects of specific mutations, classify them as drivers or passengers, and develop targeted treatments. Cirrhosis, however, is the premalignant state common to 90% of HCC patients. Currently, no specific therapies are available to halt or reverse the progression of cirrhosis to HCC. Understanding the genetic drivers of HCC as well as the biochemical, mechanical, hormonal, and metabolic changes associated with cirrhosis could lead to novel treatments and cancer prevention strategies. Although additional therapies recently received Food and Drug Administration approval, significant clinical breakthroughs have not emerged since the introduction of the multikinase inhibitor sorafenib, necessitating alternate research strategies. Zebrafish (Danio rerio) are effective for disease modeling because of their high degree of gene and organ architecture conservation with human beings, ease of transgenesis and mutagenesis, high fecundity, and low housing cost. Here, we review zebrafish models of HCC and identify areas on which to focus future research efforts to maximize the advantages of the zebrafish model system.
Collapse
Affiliation(s)
- Paul J Wrighton
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Isaac M Oderberg
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Wolfram Goessling
- Division of Genetics, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts; Harvard Stem Cell Institute, Cambridge, Massachusetts; Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts; Broad Institute, Massachusetts Institute of Technology and Harvard, Cambridge, Massachusetts; Division of Health Sciences and Technology, Harvard and Massachusetts Institute of Technology, Boston, Massachusetts; Division of Gastroenterology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts.
| |
Collapse
|
5
|
Li YC, Zhang MQ, Zhang JP. Opposite Effects of Two Human ATG10 Isoforms on Replication of a HCV Sub-genomic Replicon Are Mediated via Regulating Autophagy Flux in Zebrafish. Front Cell Infect Microbiol 2018; 8:109. [PMID: 29670865 PMCID: PMC5893791 DOI: 10.3389/fcimb.2018.00109] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 03/19/2018] [Indexed: 12/15/2022] Open
Abstract
Autophagy is a host mechanism for cellular homeostatic control. Intracellular stresses are symptoms of, and responses to, dysregulation of the physiological environment of the cell. Alternative gene transcription splicing is a mechanism potentially used by a host to respond to physiological or pathological challenges. Here, we aimed to confirm opposite effects of two isoforms of the human autophagy-related protein ATG10 on an HCV subgenomic replicon in zebrafish. A liver-specific HCV subreplicon model was established and exhibited several changes in gene expression typically induced by HCV infection, including overexpression of several HCV-dependent genes (argsyn, leugpcr, rasgbd, and scaf-2), as well as overexpression of several ER stress related genes (atf4, chop, atf6, and bip). Autophagy flux was blocked in the HCV model. Our results indicated that the replication of the HCV subreplicon was suppressed via a decrease in autophagosome formation caused by the autophagy inhibitor 3MA, but enhanced via dysfunction in the lysosomal degradation caused by another autophagy inhibitor CQ. Human ATG10, a canonical isoform in autophagy, facilitated the amplification of the HCV-subgenomic replicon via promoting autophagosome formation. ATG10S, a non-canonical short isoform of the ATG10 protein, promoted autophagy flux, leading to lysosomal degradation of the HCV-subgenomic replicon. Human ATG10S may therefore inhibit HCV replication, and may be an appropriate target for future antiviral drug screening.
Collapse
Affiliation(s)
- Yu-Chen Li
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Miao-Qing Zhang
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing-Pu Zhang
- Laboratory of Pharmacology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Ermakova YG, Lanin AA, Fedotov IV, Roshchin M, Kelmanson IV, Kulik D, Bogdanova YA, Shokhina AG, Bilan DS, Staroverov DB, Balaban PM, Fedotov AB, Sidorov-Biryukov DA, Nikitin ES, Zheltikov AM, Belousov VV. Thermogenetic neurostimulation with single-cell resolution. Nat Commun 2017; 8:15362. [PMID: 28530239 PMCID: PMC5493594 DOI: 10.1038/ncomms15362] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 03/22/2017] [Indexed: 02/04/2023] Open
Abstract
Thermogenetics is a promising innovative neurostimulation technique, which enables robust activation of neurons using thermosensitive transient receptor potential (TRP) cation channels. Broader application of this approach in neuroscience is, however, hindered by a limited variety of suitable ion channels, and by low spatial and temporal resolution of neuronal activation when TRP channels are activated by ambient temperature variations or chemical agonists. Here, we demonstrate rapid, robust and reproducible repeated activation of snake TRPA1 channels heterologously expressed in non-neuronal cells, mouse neurons and zebrafish neurons in vivo by infrared (IR) laser radiation. A fibre-optic probe that integrates a nitrogen-vacancy (NV) diamond quantum sensor with optical and microwave waveguide delivery enables thermometry with single-cell resolution, allowing neurons to be activated by exceptionally mild heating, thus preventing the damaging effects of excessive heat. The neuronal responses to the activation by IR laser radiation are fully characterized using Ca2+ imaging and electrophysiology, providing, for the first time, a complete framework for a thermogenetic manipulation of individual neurons using IR light.
Collapse
Affiliation(s)
- Yulia G. Ermakova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Aleksandr A. Lanin
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
| | - Ilya V. Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
- Kurchatov Institute National Research Center, Moscow 123182, Russia
| | - Matvey Roshchin
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Ilya V. Kelmanson
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry Kulik
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Present address: Zaporizhya State Engineering Academy, 69006 Zaporizhzhya, Ukraine
| | - Yulia A. Bogdanova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Arina G. Shokhina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry S. Bilan
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - Dmitry B. Staroverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Pavel M. Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Andrei B. Fedotov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
| | - Dmitry A. Sidorov-Biryukov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
| | - Evgeny S. Nikitin
- Institute of Higher Nervous Activity and Neurophysiology, Moscow 117485, Russia
| | - Aleksei M. Zheltikov
- Physics Department, International Laser Center, M.V. Lomonosov Moscow State University, Moscow 119992, Russia
- Department of Physics and Astronomy, Texas A&M University, College Station, Texas 77843, USA
- Russian Quantum Center, ul. Novaya 100, Skolkovo, Moscow Region 143025, Russia
- Kazan Quantum Center, A.N. Tupolev Kazan National Research Technical University, 420126 Kazan, Russia
- Kurchatov Institute National Research Center, Moscow 123182, Russia
| | - Vsevolod V. Belousov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
- Pirogov Russian National Research Medical University, Moscow 117997, Russia
- Institute for Cardiovascular Physiology, Georg August University Göttingen, D-37075 Göttingen, Germany
| |
Collapse
|
7
|
Terenin IM, Smirnova VV, Andreev DE, Dmitriev SE, Shatsky IN. A researcher's guide to the galaxy of IRESs. Cell Mol Life Sci 2017; 74:1431-1455. [PMID: 27853833 PMCID: PMC11107752 DOI: 10.1007/s00018-016-2409-5] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/01/2016] [Accepted: 11/02/2016] [Indexed: 12/25/2022]
Abstract
The idea of internal initiation is frequently exploited to explain the peculiar translation properties or unusual features of some eukaryotic mRNAs. In this review, we summarize the methods and arguments most commonly used to address cases of translation governed by internal ribosome entry sites (IRESs). Frequent mistakes are revealed. We explain why "cap-independent" does not readily mean "IRES-dependent" and why the presence of a long and highly structured 5' untranslated region (5'UTR) or translation under stress conditions cannot be regarded as an argument for appealing to internal initiation. We carefully describe the known pitfalls and limitations of the bicistronic assay and artefacts of some commercially available in vitro translation systems. We explain why plasmid DNA transfection should not be used in IRES studies and which control experiments are unavoidable if someone decides to use it anyway. Finally, we propose a workflow for the validation of IRES activity, including fast and simple experiments based on a single genetic construct with a sequence of interest.
Collapse
Affiliation(s)
- Ilya M Terenin
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia.
| | - Victoria V Smirnova
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Department of Bioengineering and Bioinformatics, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Dmitri E Andreev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Sergey E Dmitriev
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119334, Russia
- Department of Biochemistry, Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Ivan N Shatsky
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119234, Russia.
| |
Collapse
|
8
|
Lu JW, Ho YJ, Yang YJ, Liao HA, Ciou SC, Lin LI, Ou DL. Zebrafish as a disease model for studying human hepatocellular carcinoma. World J Gastroenterol 2015; 21:12042-12058. [PMID: 26576090 PMCID: PMC4641123 DOI: 10.3748/wjg.v21.i42.12042] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 05/28/2015] [Accepted: 08/31/2015] [Indexed: 02/07/2023] Open
Abstract
Liver cancer is one of the world’s most common cancers and the second leading cause of cancer deaths. Hepatocellular carcinoma (HCC), a primary hepatic cancer, accounts for 90%-95% of liver cancer cases. The pathogenesis of HCC consists of a stepwise process of liver damage that extends over decades, due to hepatitis, fatty liver, fibrosis, and cirrhosis before developing fully into HCC. Multiple risk factors are highly correlated with HCC, including infection with the hepatitis B or C viruses, alcohol abuse, aflatoxin exposure, and metabolic diseases. Over the last decade, genetic alterations, which include the regulation of multiple oncogenes or tumor suppressor genes and the activation of tumorigenesis-related pathways, have also been identified as important factors in HCC. Recently, zebrafish have become an important living vertebrate model organism, especially for translational medical research. In studies focusing on the biology of cancer, carcinogen induced tumors in zebrafish were found to have many similarities to human tumors. Several zebrafish models have therefore been developed to provide insight into the pathogenesis of liver cancer and the related drug discovery and toxicology, and to enable the evaluation of novel small-molecule inhibitors. This review will focus on illustrative examples involving the application of zebrafish models to the study of human liver disease and HCC, through transgenesis, genome editing technology, xenografts, drug discovery, and drug-induced toxic liver injury.
Collapse
|
9
|
Antoine TE, Jones KS, Dale RM, Shukla D, Tiwari V. Zebrafish: modeling for herpes simplex virus infections. Zebrafish 2013; 11:17-25. [PMID: 24266790 DOI: 10.1089/zeb.2013.0920] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
For many years, zebrafish have been the prototypical model for studies in developmental biology. In recent years, zebrafish has emerged as a powerful model system to study infectious diseases, including viral infections. Experiments conducted with herpes simplex virus type-1 in adult zebrafish or in embryo models are encouraging as they establish proof of concept with viral-host tropism and possible screening of antiviral compounds. In addition, the presence of human homologs of viral entry receptors in zebrafish such as 3-O sulfated heparan sulfate, nectins, and tumor necrosis factor receptor superfamily member 14-like receptor bring strong rationale for virologists to test their in vivo significance in viral entry in a zebrafish model and compare the structure-function basis of virus zebrafish receptor interaction for viral entry. On the other end, a zebrafish model is already being used for studying inflammation and angiogenesis, with or without genetic manipulations, and therefore can be exploited to study viral infection-associated pathologies. The major advantage with zebrafish is low cost, easy breeding and maintenance, rapid lifecycle, and a transparent nature, which allows visualizing dissemination of fluorescently labeled virus infection in real time either at a localized region or the whole body. Further, the availability of multiple transgenic lines that express fluorescently tagged immune cells for in vivo imaging of virus infected animals is extremely attractive. In addition, a fully developed immune system and potential for receptor-specific knockouts further advocate the use of zebrafish as a new tool to study viral infections. In this review, we focus on expanding the potential of zebrafish model system in understanding human infectious diseases and future benefits.
Collapse
Affiliation(s)
- Thessicar Evadney Antoine
- 1 Departments of Ophthalmology and Visual Sciences & Microbiology/Immunology, University of Illinois at Chicago , Chicago, Illinois
| | | | | | | | | |
Collapse
|
10
|
Hildick-Smith GJ, Cooney JD, Garone C, Kremer LS, Haack TB, Thon JN, Miyata N, Lieber DS, Calvo SE, Akman HO, Yien YY, Huston NC, Branco DS, Shah DI, Freedman ML, Koehler CM, Italiano JE, Merkenschlager A, Beblo S, Strom TM, Meitinger T, Freisinger P, Donati MA, Prokisch H, Mootha VK, DiMauro S, Paw BH. Macrocytic anemia and mitochondriopathy resulting from a defect in sideroflexin 4. Am J Hum Genet 2013; 93:906-14. [PMID: 24119684 DOI: 10.1016/j.ajhg.2013.09.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2013] [Revised: 09/11/2013] [Accepted: 09/18/2013] [Indexed: 01/19/2023] Open
Abstract
We used exome sequencing to identify mutations in sideroflexin 4 (SFXN4) in two children with mitochondrial disease (the more severe case also presented with macrocytic anemia). SFXN4 is an uncharacterized mitochondrial protein that localizes to the mitochondrial inner membrane. sfxn4 knockdown in zebrafish recapitulated the mitochondrial respiratory defect observed in both individuals and the macrocytic anemia with megaloblastic features of the more severe case. In vitro and in vivo complementation studies with fibroblasts from the affected individuals and zebrafish demonstrated the requirement of SFXN4 for mitochondrial respiratory homeostasis and erythropoiesis. Our findings establish mutations in SFXN4 as a cause of mitochondriopathy and macrocytic anemia.
Collapse
Affiliation(s)
- Gordon J Hildick-Smith
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|