• Reference Citation Analysis
  • v
  • v
  • Find an Article
Find an Article PDF (4624651)   Today's Articles (1957)   Subscriber (49413)
For: Kim SR, Skerker JM, Kang W, Lesmana A, Wei N, Arkin AP, Jin YS. Rational and evolutionary engineering approaches uncover a small set of genetic changes efficient for rapid xylose fermentation in Saccharomyces cerevisiae. PLoS One 2013;8:e57048. [PMID: 23468911 PMCID: PMC3582614 DOI: 10.1371/journal.pone.0057048] [Citation(s) in RCA: 134] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [What about the content of this article? (0)] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/16/2013] [Indexed: 12/30/2022]  Open
Number Cited by Other Article(s)
1
Choi B, Tafur Rangel A, Kerkhoven EJ, Nygård Y. Engineering of Saccharomyces cerevisiae for enhanced metabolic robustness and L-lactic acid production from lignocellulosic biomass. Metab Eng 2024;84:23-33. [PMID: 38788894 DOI: 10.1016/j.ymben.2024.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/19/2024] [Accepted: 05/20/2024] [Indexed: 05/26/2024]
2
Wang J, Ma W, Ma W, Fang Z, Jiang Y, Jiang W, Kong X, Xin F, Zhang W, Jiang M. Strategies for the efficient biosynthesis of β-carotene through microbial fermentation. World J Microbiol Biotechnol 2024;40:160. [PMID: 38607448 DOI: 10.1007/s11274-024-03955-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 03/12/2024] [Indexed: 04/13/2024]
3
Liu J, Chen M, Gu S, Fan R, Zhao Z, Sun W, Yao Y, Li J, Tian C. Independent metabolism of oligosaccharides is the keystone of synchronous utilization of cellulose and hemicellulose in Myceliophthora. PNAS NEXUS 2024;3:pgae053. [PMID: 38380057 PMCID: PMC10877092 DOI: 10.1093/pnasnexus/pgae053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 01/29/2024] [Indexed: 02/22/2024]
4
Jeong D, Park S, Evelina G, Kim S, Park H, Lee JM, Kim SK, Kim IJ, Oh EJ, Kim SR. Bioconversion of citrus waste into mucic acid by xylose-fermenting Saccharomyces cerevisiae. BIORESOURCE TECHNOLOGY 2024;393:130158. [PMID: 38070579 DOI: 10.1016/j.biortech.2023.130158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 12/03/2023] [Accepted: 12/03/2023] [Indexed: 01/18/2024]
5
Jang YS, Yang J, Kim JK, Kim TI, Park YC, Kim IJ, Kim KH. Adaptive laboratory evolution and transcriptomics-guided engineering of Escherichia coli for increased isobutanol tolerance. Biotechnol J 2024;19:e2300270. [PMID: 37799109 DOI: 10.1002/biot.202300270] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 09/08/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
6
Vargas BDO, dos Santos JR, Pereira GAG, de Mello FDSB. An atlas of rational genetic engineering strategies for improved xylose metabolism in Saccharomyces cerevisiae. PeerJ 2023;11:e16340. [PMID: 38047029 PMCID: PMC10691383 DOI: 10.7717/peerj.16340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/03/2023] [Indexed: 12/05/2023]  Open
7
Huang ZR, Chen XR, Liu DF, Cui YZ, Li BZ, Yuan YJ. Enhanced single-base mutation diversity by the combination of cytidine deaminase with DNA-repairing enzymes in yeast. Biotechnol J 2023;18:e2300137. [PMID: 37529889 DOI: 10.1002/biot.202300137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 07/20/2023] [Accepted: 07/28/2023] [Indexed: 08/03/2023]
8
Wagner ER, Gasch AP. Advances in S. cerevisiae Engineering for Xylose Fermentation and Biofuel Production: Balancing Growth, Metabolism, and Defense. J Fungi (Basel) 2023;9:786. [PMID: 37623557 PMCID: PMC10455348 DOI: 10.3390/jof9080786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/19/2023] [Accepted: 07/24/2023] [Indexed: 08/26/2023]  Open
9
Wagner ER, Nightingale NM, Jen A, Overmyer KA, McGee M, Coon JJ, Gasch AP. PKA regulatory subunit Bcy1 couples growth, lipid metabolism, and fermentation during anaerobic xylose growth in Saccharomyces cerevisiae. PLoS Genet 2023;19:e1010593. [PMID: 37410771 DOI: 10.1371/journal.pgen.1010593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 06/22/2023] [Indexed: 07/08/2023]  Open
10
Lane S, Turner TL, Jin YS. Glucose assimilation rate determines the partition of flux at pyruvate between lactic acid and ethanol in Saccharomyces cerevisiae. Biotechnol J 2023;18:e2200535. [PMID: 36723451 DOI: 10.1002/biot.202200535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/16/2022] [Accepted: 01/19/2023] [Indexed: 02/02/2023]
11
Narayanan V, Sandström AG, Gorwa-Grauslund MF. Re-evaluation of the impact of BUD21 deletion on xylose utilization by Saccharomyces cerevisiae. Metab Eng Commun 2023. [DOI: 10.1016/j.mec.2023.e00218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]  Open
12
Identification of Mutations Responsible for Improved Xylose Utilization in an Adapted Xylose Isomerase Expressing Saccharomyces cerevisiae Strain. FERMENTATION 2022. [DOI: 10.3390/fermentation8120669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]  Open
13
Lee YG, Kim C, Kuanyshev N, Kang NK, Fatma Z, Wu ZY, Cheng MH, Singh V, Yoshikuni Y, Zhao H, Jin YS. Cas9-Based Metabolic Engineering of Issatchenkia orientalis for Enhanced Utilization of Cellulosic Hydrolysates. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022;70:12085-12094. [PMID: 36103687 DOI: 10.1021/acs.jafc.2c04251] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
14
Procópio DP, Kendrick E, Goldbeck R, Damasio ARDL, Franco TT, Leak DJ, Jin YS, Basso TO. Xylo-Oligosaccharide Utilization by Engineered Saccharomyces cerevisiae to Produce Ethanol. Front Bioeng Biotechnol 2022;10:825981. [PMID: 35242749 PMCID: PMC8886126 DOI: 10.3389/fbioe.2022.825981] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 01/18/2022] [Indexed: 11/26/2022]  Open
15
Lu H, Yadav V, Zhong M, Bilal M, Taherzadeh MJ, Iqbal HMN. Bioengineered microbial platforms for biomass-derived biofuel production - A review. CHEMOSPHERE 2022;288:132528. [PMID: 34637864 DOI: 10.1016/j.chemosphere.2021.132528] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 09/22/2021] [Accepted: 10/08/2021] [Indexed: 02/08/2023]
16
Lee YG, Kim C, Sun L, Lee TH, Jin YS. Selective production of retinol by engineered Saccharomyces cerevisiae through the expression of retinol dehydrogenase. Biotechnol Bioeng 2021;119:399-410. [PMID: 34850377 DOI: 10.1002/bit.28004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/23/2021] [Accepted: 11/27/2021] [Indexed: 11/06/2022]
17
Bae JH, Kim MJ, Sung BH, Jin YS, Sohn JH. Directed evolution and secretory expression of xylose isomerase for improved utilisation of xylose in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2021;14:223. [PMID: 34823570 PMCID: PMC8613937 DOI: 10.1186/s13068-021-02073-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
18
Brink DP, Borgström C, Persson VC, Ofuji Osiro K, Gorwa-Grauslund MF. D-Xylose Sensing in Saccharomyces cerevisiae: Insights from D-Glucose Signaling and Native D-Xylose Utilizers. Int J Mol Sci 2021;22:12410. [PMID: 34830296 PMCID: PMC8625115 DOI: 10.3390/ijms222212410] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/11/2021] [Accepted: 11/12/2021] [Indexed: 11/17/2022]  Open
19
Jang BK, Ju Y, Jeong D, Jung SK, Kim CK, Chung YS, Kim SR. l-Lactic Acid Production Using Engineered Saccharomyces cerevisiae with Improved Organic Acid Tolerance. J Fungi (Basel) 2021;7:jof7110928. [PMID: 34829217 PMCID: PMC8624227 DOI: 10.3390/jof7110928] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/29/2021] [Accepted: 10/30/2021] [Indexed: 11/16/2022]  Open
20
Kuanyshev N, Deewan A, Jagtap SS, Liu J, Selvam B, Chen LQ, Shukla D, Rao CV, Jin YS. Identification and analysis of sugar transporters capable of co-transporting glucose and xylose simultaneously. Biotechnol J 2021;16:e2100238. [PMID: 34418308 DOI: 10.1002/biot.202100238] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/04/2021] [Accepted: 08/18/2021] [Indexed: 11/09/2022]
21
Complete and efficient conversion of plant cell wall hemicellulose into high-value bioproducts by engineered yeast. Nat Commun 2021;12:4975. [PMID: 34404791 PMCID: PMC8371099 DOI: 10.1038/s41467-021-25241-y] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 07/27/2021] [Indexed: 11/26/2022]  Open
22
Dissanayake L, Jayakody LN. Engineering Microbes to Bio-Upcycle Polyethylene Terephthalate. Front Bioeng Biotechnol 2021;9:656465. [PMID: 34124018 PMCID: PMC8193722 DOI: 10.3389/fbioe.2021.656465] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 04/12/2021] [Indexed: 11/21/2022]  Open
23
Podolsky IA, Seppälä S, Xu H, Jin YS, O'Malley MA. A SWEET surprise: Anaerobic fungal sugar transporters and chimeras enhance sugar uptake in yeast. Metab Eng 2021;66:137-147. [PMID: 33887459 DOI: 10.1016/j.ymben.2021.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 03/23/2021] [Accepted: 04/12/2021] [Indexed: 01/08/2023]
24
Shin M, Park H, Kim S, Oh EJ, Jeong D, Florencia C, Kim KH, Jin YS, Kim SR. Transcriptomic Changes Induced by Deletion of Transcriptional Regulator GCR2 on Pentose Sugar Metabolism in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2021;9:654177. [PMID: 33842449 PMCID: PMC8027353 DOI: 10.3389/fbioe.2021.654177] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/08/2021] [Indexed: 11/13/2022]  Open
25
Jayakody LN, Jin YS. In-depth understanding of molecular mechanisms of aldehyde toxicity to engineer robust Saccharomyces cerevisiae. Appl Microbiol Biotechnol 2021;105:2675-2692. [PMID: 33743026 DOI: 10.1007/s00253-021-11213-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/17/2021] [Accepted: 02/28/2021] [Indexed: 11/25/2022]
26
Adegboye MF, Ojuederie OB, Talia PM, Babalola OO. Bioprospecting of microbial strains for biofuel production: metabolic engineering, applications, and challenges. BIOTECHNOLOGY FOR BIOFUELS 2021;14:5. [PMID: 33407786 PMCID: PMC7788794 DOI: 10.1186/s13068-020-01853-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 12/09/2020] [Indexed: 05/17/2023]
27
Biorefinery: The Production of Isobutanol from Biomass Feedstocks. APPLIED SCIENCES-BASEL 2020. [DOI: 10.3390/app10228222] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
28
Sun L, Jin YS. Xylose Assimilation for the Efficient Production of Biofuels and Chemicals by Engineered Saccharomyces cerevisiae. Biotechnol J 2020;16:e2000142. [PMID: 33135317 DOI: 10.1002/biot.202000142] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 10/15/2020] [Indexed: 11/09/2022]
29
Evaluating the Engineered Saccharomyces cerevisiae With High Spermidine Contents for Increased Tolerance to Lactic, Succinic, and Malic Acids and Increased Xylose Fermentation. BIOTECHNOL BIOPROC E 2020. [DOI: 10.1007/s12257-020-0020-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
30
Shin M, Kim SR. Metabolic Changes Induced by Deletion of Transcriptional Regulator GCR2 in Xylose-Fermenting Saccharomyces cerevisiae. Microorganisms 2020;8:E1499. [PMID: 33003408 PMCID: PMC7599485 DOI: 10.3390/microorganisms8101499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 09/22/2020] [Accepted: 09/25/2020] [Indexed: 12/19/2022]  Open
31
Construction of industrial xylose-fermenting Saccharomyces cerevisiae strains through combined approaches. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.05.022] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
32
Cunha JT, Soares PO, Baptista SL, Costa CE, Domingues L. Engineered Saccharomyces cerevisiae for lignocellulosic valorization: a review and perspectives on bioethanol production. Bioengineered 2020;11:883-903. [PMID: 32799606 PMCID: PMC8291843 DOI: 10.1080/21655979.2020.1801178] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]  Open
33
Sharma S, Arora A. Tracking strategic developments for conferring xylose utilization/fermentation by Saccharomyces cerevisiae. ANN MICROBIOL 2020. [DOI: 10.1186/s13213-020-01590-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]  Open
34
Sun L, Atkinson CA, Lee YG, Jin YS. High-level β-carotene production from xylose by engineered Saccharomyces cerevisiae without overexpression of a truncated HMG1 (tHMG1). Biotechnol Bioeng 2020;117:3522-3532. [PMID: 33616900 DOI: 10.1002/bit.27508] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 06/30/2020] [Accepted: 07/15/2020] [Indexed: 01/18/2023]
35
Jeong D, Oh EJ, Ko JK, Nam JO, Park HS, Jin YS, Lee EJ, Kim SR. Metabolic engineering considerations for the heterologous expression of xylose-catabolic pathways in Saccharomyces cerevisiae. PLoS One 2020;15:e0236294. [PMID: 32716960 PMCID: PMC7384654 DOI: 10.1371/journal.pone.0236294] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 07/01/2020] [Indexed: 11/18/2022]  Open
36
Improving Xylose Fermentation in Saccharomyces cerevisiae by Expressing Nuclear-Localized Hexokinase 2. Microorganisms 2020;8:microorganisms8060856. [PMID: 32517148 PMCID: PMC7356972 DOI: 10.3390/microorganisms8060856] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 06/03/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]  Open
37
Su B, Song D, Zhu H. Metabolic Engineering of Saccharomyces cerevisiae for Enhanced Carotenoid Production From Xylose-Glucose Mixtures. Front Bioeng Biotechnol 2020;8:435. [PMID: 32478054 PMCID: PMC7240070 DOI: 10.3389/fbioe.2020.00435] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 04/15/2020] [Indexed: 01/31/2023]  Open
38
Dzanaeva L, Kruk B, Ruchala J, Nielsen J, Sibirny A, Dmytruk K. The role of peroxisomes in xylose alcoholic fermentation in the engineered Saccharomyces cerevisiae. Cell Biol Int 2020;44:1606-1615. [DOI: 10.1002/cbin.11353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/02/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
39
Xylose utilization in Saccharomyces cerevisiae during conversion of hydrothermally pretreated lignocellulosic biomass to ethanol. Appl Microbiol Biotechnol 2020;104:3245-3252. [DOI: 10.1007/s00253-020-10427-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/21/2020] [Accepted: 02/03/2020] [Indexed: 10/25/2022]
40
Lee M, Rozeboom HJ, Keuning E, de Waal P, Janssen DB. Structure-based directed evolution improves S. cerevisiae growth on xylose by influencing in vivo enzyme performance. BIOTECHNOLOGY FOR BIOFUELS 2020;13:5. [PMID: 31938040 PMCID: PMC6954610 DOI: 10.1186/s13068-019-1643-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 12/22/2019] [Indexed: 06/10/2023]
41
François JM, Lachaux C, Morin N. Synthetic Biology Applied to Carbon Conservative and Carbon Dioxide Recycling Pathways. Front Bioeng Biotechnol 2020;7:446. [PMID: 31998710 PMCID: PMC6966089 DOI: 10.3389/fbioe.2019.00446] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/11/2019] [Indexed: 11/24/2022]  Open
42
Lane S, Zhang Y, Yun EJ, Ziolkowski L, Zhang G, Jin YS, Avalos JL. Xylose assimilation enhances the production of isobutanol in engineered Saccharomyces cerevisiae. Biotechnol Bioeng 2019;117:372-381. [PMID: 31631318 DOI: 10.1002/bit.27202] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 09/17/2019] [Accepted: 10/14/2019] [Indexed: 12/30/2022]
43
Ruchala J, Kurylenko OO, Dmytruk KV, Sibirny AA. Construction of advanced producers of first- and second-generation ethanol in Saccharomyces cerevisiae and selected species of non-conventional yeasts (Scheffersomyces stipitis, Ogataea polymorpha). J Ind Microbiol Biotechnol 2019;47:109-132. [PMID: 31637550 PMCID: PMC6970964 DOI: 10.1007/s10295-019-02242-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Accepted: 10/01/2019] [Indexed: 12/20/2022]
44
Promdonkoy P, Siripong W, Downes JJ, Tanapongpipat S, Runguphan W. Systematic improvement of isobutanol production from D-xylose in engineered Saccharomyces cerevisiae. AMB Express 2019;9:160. [PMID: 31599368 PMCID: PMC6787123 DOI: 10.1186/s13568-019-0885-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/24/2019] [Indexed: 11/11/2022]  Open
45
Zhang Y, Lane S, Chen JM, Hammer SK, Luttinger J, Yang L, Jin YS, Avalos‬ JL. Xylose utilization stimulates mitochondrial production of isobutanol and 2-methyl-1-butanol in Saccharomyces cerevisiae. BIOTECHNOLOGY FOR BIOFUELS 2019;12:223. [PMID: 31548865 PMCID: PMC6753614 DOI: 10.1186/s13068-019-1560-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Accepted: 08/31/2019] [Indexed: 05/12/2023]
46
Sun L, Kwak S, Jin YS. Vitamin A Production by Engineered Saccharomyces cerevisiae from Xylose via Two-Phase in Situ Extraction. ACS Synth Biol 2019;8:2131-2140. [PMID: 31374167 DOI: 10.1021/acssynbio.9b00217] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
47
Patiño MA, Ortiz JP, Velásquez M, Stambuk BU. d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: A review. Yeast 2019;36:541-556. [PMID: 31254359 DOI: 10.1002/yea.3429] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 01/24/2023]  Open
48
Turner TL, Lane S, Jayakody LN, Zhang GC, Kim H, Cho W, Jin YS. Deletion of JEN1 and ADY2 reduces lactic acid yield from an engineered Saccharomyces cerevisiae, in xylose medium, expressing a heterologous lactate dehydrogenase. FEMS Yeast Res 2019;19:5556531. [DOI: 10.1093/femsyr/foz050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 08/27/2019] [Indexed: 11/14/2022]  Open
49
MIG1 as a positive regulator for the histidine biosynthesis pathway and as a global regulator in thermotolerant yeast Kluyveromyces marxianus. Sci Rep 2019;9:9926. [PMID: 31289320 PMCID: PMC6617469 DOI: 10.1038/s41598-019-46411-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2019] [Accepted: 06/27/2019] [Indexed: 11/08/2022]  Open
50
Wagner ER, Myers KS, Riley NM, Coon JJ, Gasch AP. PKA and HOG signaling contribute separable roles to anaerobic xylose fermentation in yeast engineered for biofuel production. PLoS One 2019;14:e0212389. [PMID: 31112537 PMCID: PMC6528989 DOI: 10.1371/journal.pone.0212389] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 04/29/2019] [Indexed: 12/25/2022]  Open
PrevPage 1 of 3 123Next
© 2004-2024 Baishideng Publishing Group Inc. All rights reserved. 7041 Koll Center Parkway, Suite 160, Pleasanton, CA 94566, USA