1
|
Jo D, Ahn SY, Choi SY, Choi Y, Lee DH, Song J. Positive Effects of Adiponectin, BDNF, and GLP-1 on Cortical Neurons Counteracting Palmitic Acid Induced Neurotoxicity. Clin Nutr Res 2024; 13:121-129. [PMID: 38784850 PMCID: PMC11109930 DOI: 10.7762/cnr.2024.13.2.121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 04/15/2024] [Accepted: 04/21/2024] [Indexed: 05/25/2024] Open
Abstract
The prevalence of metabolic syndrome caused by diets containing excessive fatty acids is increasing worldwide. Patients with metabolic syndrome exhibit abnormal lipid profiles, chronic inflammation, increased levels of saturated fatty acids, impaired insulin sensitivity, excessive fat accumulation, and neuropathological issues such as memory deficits. In particular, palmitic acid (PA) in saturated fatty acids aggravates inflammation, insulin resistance, impaired glucose tolerance, and synaptic failure. Recently, adiponectin, brain-derived neurotrophic factor (BDNF), and glucose-like peptide-1 (GLP-1) have been investigated to find therapeutic solutions for metabolic syndrome, with findings suggesting that they are involved in insulin sensitivity, enhanced lipid profiles, increased neuronal survival, and improved synaptic plasticity. We investigated the effects of adiponectin, BDNF, and GLP-1 on neurite outgrowth, length, and complexity in PA-treated primary cortical neurons using Sholl analysis. Our findings demonstrate the therapeutic potential of adiponectin, BDNF, and GLP-1 in enhancing synaptic plasticity within brains affected by metabolic imbalance. We underscore the need for additional research into the mechanisms by which adiponectin, BDNF, and GLP-1 influence neural complexity in brains with metabolic imbalances.
Collapse
Affiliation(s)
- Danbi Jo
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Seo Yeon Ahn
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Seo Yoon Choi
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| | - Yoonjoo Choi
- Department of MRC, Chonnam National University Medical School, Hwasun 58128, Korea
| | - Dong Hoon Lee
- Department of Otolaryngology-Head and Neck Surgery, Chonnam National University Medical School and Hwasun Hospital, Hwasun 58128, Korea
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Korea
- Biomedical Science Graduate Program (BMSGP), Chonnam National University, Hwasun 58128, Korea
| |
Collapse
|
2
|
Gao J, Zhao L, Li D, Li Y, Wang H. Enriched environment ameliorates postsurgery sleep deprivation-induced cognitive impairments through the AMPA receptor GluA1 subunit. Brain Behav 2023; 13:e2992. [PMID: 37095708 PMCID: PMC10275526 DOI: 10.1002/brb3.2992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 03/20/2023] [Indexed: 04/26/2023] Open
Abstract
BACKGROUND As a common postsurgery complication, sleep deprivation (SD) can severely deteriorate the cognitive function of patients. Enriched environment (EE) exposure can increase children's cognitive ability, and whether EE exposure could be utilized to alleviate postsurgery SD-induced cognitive impairments is investigated in this study. METHODS Open inguinal hernia repair surgery without skin/muscle retraction was performed on Sprague-Dawley male rats (9-week-old), which were further exposed to EE or standard environment (SE). Elevated plus maze (EPM), novel object recognition (NOR), object location memory (OLM), and Morris Water Maze assays were utilized to monitor cognitive functions. Cresyl violet acetate staining in the Cornusammonis 3 (CA3) region of rat hippocampus was used to detect neuron loss. The relative expression of brain-derived neurotrophic factor (BDNF) and synaptic glutamate receptor 1 (GluA1) subunits in the hippocampus were detected with quantitative reverse transcription polymerase chain reaction (RT-qPCR), Western blots, enzyme-linked immunosorbent assay (ELISA), and immunofluorescence. RESULTS EE restored normal levels of time spent in the center, time in distal open arms, open/total arms ratio, and total distance traveled in the EPM test; EE restored normal levels of recognition index in the NOR and OLM test; EE restored normal levels of time in the target quadrant, escape latencies, and platform site crossings in the Morris Water Maze test. EE exposure decreased neuron loss in the CA3 region of the hippocampus with increased BDNF and phosphorylated (p)-GluA1 (ser845) expression. CONCLUSION EE ameliorates postsurgery SD-induced cognitive impairments, which may be mediated by the axis of BDNF/GluA1. EE exposure could be considered as an aid in promoting cognitive function in postsurgery SD.
Collapse
Affiliation(s)
- Jie Gao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
- Department of AnesthesiologyTianjin Haihe HospitalTianjinChina
| | - Lina Zhao
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Dedong Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Yun Li
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| | - Haiyun Wang
- Department of Anesthesiologythe Third Central Clinical College of Tianjin Medical University, Nankai University Affinity the Third Central Hospital, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, Tianjin Institute of Hepatobiliary DiseaseTianjinChina
| |
Collapse
|
3
|
Sun J, Jia K, Sun M, Zhang X, Chen J, Zhu G, Li C, Lian B, Du Z, Sun H, Sun L. The GluA1-Related BDNF Pathway Is Involved in PTSD-Induced Cognitive Flexibility Deficit in Attentional Set-Shifting Tasks of Rats. J Clin Med 2022; 11:jcm11226824. [PMID: 36431303 PMCID: PMC9694369 DOI: 10.3390/jcm11226824] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 11/07/2022] [Accepted: 11/15/2022] [Indexed: 11/22/2022] Open
Abstract
Background: Post-Traumatic Stress Disorder (PTSD) is a severe psychological disorder characterized by intrusive thoughts, heightened arousal, avoidance, and flashbacks. Cognitive flexibility dysfunction has been linked with the emergence of PTSD, including response inhibition deficits and impaired attentional switching, which results in difficulties for PTSD patients when disengaging attention from trauma-related stimuli. However, the molecular mechanisms of cognitive flexibility deficits remain unclear. Methods: The animals were exposed to a single prolonged stress and electric foot shock (SPS&S) procedure to induce PTSD-like features. Once the model was established, the changes in cognitive flexibility were assessed using an attentional set-shifting task (ASST) in order to investigate the effects of traumatic stress on cognitive flexibility. Additionally, the molecular alterations of certain proteins (AMPA Receptor 1 (GluA1), brain-derived neurotrophic factor (BDNF), and Postsynaptic density protein 95 (PSD95) in the medial prefrontal cortex (mPFC) were measured using Western blot and immunofluorescence. Results: The SPS&S model exhibited PTSD-like behaviors and induced reversal learning and set-shifting ability deficit in the ASST. These behavioral changes are accompanied by decreased GluA1, BDNF, and PSD95 protein expression in the mPFC. Further analysis showed a correlative relationship between the behavioral and molecular alterations. Conclusions: The SPS&S model induced cognitive flexibility deficits, and the potential underlying mechanism could be mediated by GluA1-related BDNF signaling in the mPFC.
Collapse
Affiliation(s)
- Jiaming Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Keli Jia
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Mingtao Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Xianqiang Zhang
- National Clinical Research Center for Mental Disorders, Peking University Sixth Hospital/Institute of Mental Health and the Key Laboratory of Mental Health, Ministry of Health (Peking University), Beijing 100191, China
| | - Jinhong Chen
- College of Extended Education, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Guohui Zhu
- Mental Health Centre of Weifang City, Weifang 261071, China
| | - Changjiang Li
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Bo Lian
- Department of Bioscience and Technology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
| | - Zhongde Du
- Cerebral Center, Sunshine Union Hospital, 9000# Yingqian Street, Weifang 261205, China
| | - Hongwei Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| | - Lin Sun
- School of Psychology, Weifang Medical University, 7166# Baotong West Street, Weifang 261053, China
- Correspondence: (H.S.); (L.S.)
| |
Collapse
|
4
|
Papaverine, a Phosphodiesterase 10A Inhibitor, Ameliorates Quinolinic Acid-Induced Synaptotoxicity in Human Cortical Neurons. Neurotox Res 2021; 39:1238-1250. [PMID: 33914237 DOI: 10.1007/s12640-021-00368-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/12/2021] [Accepted: 04/22/2021] [Indexed: 01/07/2023]
Abstract
Phosphodiesterase-10A (PDE10A) hydrolyse the secondary messengers cGMP and cAMP, two molecules playing important roles in neurodevelopment and brain functions. PDE10A is associated to progression of neurodegenerative diseases like Alzheimer's, Parkinson's, Huntington's diseases, and a critical role in cognitive functions. The present study was undertaken to determine the possible neuroprotective effects and the associated mechanism of papaverine (PAP), a PDE10A isoenzyme inhibitor, against quinolinic acid (QUIN)-induced excitotoxicity using human primary cortical neurons. Cytotoxicity potential of PAP was analysed using MTS assay. Reactive oxygen species (ROS) and mitochondrial membrane potential were measured by DCF-DA and JC10 staining, respectively. Caspase 3/7 and cAMP levels were measured using ELISA kits. Effect of PAP on the CREB, BNDF and synaptic proteins such as SAP-97, synaptophysin, synapsin-I, and PSD-95 expression was analysed by Western blot. Pre-treatment with PAP increased intracellular cAMP and nicotinamide adenine dinucleotide (NAD+) levels, restored mitochondrial membrane potential (ΔΨm), and decreased ROS and caspase 3/7 content in QUIN exposed neurons. PAP up-regulated CREB and BDNF, and synaptic protein expression. In summary, these data indicate that PDE10A is involved in QUIN-mediated synaptotoxicity and its inhibition elicit neuroprotection by reducing the oxidative stress and protecting synaptic proteins via up-regulation of cAMP signalling cascade.
Collapse
|
5
|
Livingstone RW, Elder MK, Singh A, Westlake CM, Tate WP, Abraham WC, Williams JM. Secreted Amyloid Precursor Protein-Alpha Enhances LTP Through the Synthesis and Trafficking of Ca 2+-Permeable AMPA Receptors. Front Mol Neurosci 2021; 14:660208. [PMID: 33867938 PMCID: PMC8047154 DOI: 10.3389/fnmol.2021.660208] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 03/10/2021] [Indexed: 11/13/2022] Open
Abstract
Regulation of AMPA receptor expression by neuronal activity and neuromodulators is critical to the expression of both long-term potentiation (LTP) and memory. In particular, Ca2+-permeable AMPARs (CP-AMPAR) play a unique role in these processes due to their transient, activity-regulated expression at synapses. Secreted amyloid precursor protein-alpha (sAPPα), a metabolite of the parent amyloid precursor protein (APP) has been previously shown to enhance hippocampal LTP as well as memory formation in both normal animals and in Alzheimer’s disease models. In earlier work we showed that sAPPα promotes trafficking of GluA1-containing AMPARs to the cell surface and specifically enhances synthesis of GluA1. To date it is not known whether de novo synthesized GluA1 form CP-AMPARs or how they contribute to sAPPα-mediated plasticity. Here, using fluorescent non-canonical amino acid tagging–proximity ligation assay (FUNCAT-PLA), we show that brief treatment of primary rat hippocampal neurons with sAPPα (1 nM, 30 min) rapidly enhanced the cell-surface expression of de novo GluA1 homomers and reduced levels of de novo GluA2, as well as extant GluA2/3-AMPARs. The de novo GluA1-containing AMPARs were localized to extrasynaptic sites and later internalized by sAPPα-driven expression of the activity-regulated cytoskeletal-associated protein, Arc. Interestingly, longer exposure to sAPPα increased synaptic levels of GluA1/2 AMPARs. Moreover, the sAPPα-mediated enhancement of LTP in area CA1 of acute hippocampal slices was dependent on CP-AMPARs. Together, these findings show that sAPPα engages mechanisms which specifically enhance the synthesis and cell-surface expression of GluA1 homomers, underpinning the sAPPα-driven enhancement of synaptic plasticity in the hippocampus.
Collapse
Affiliation(s)
- Rhys W Livingstone
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Megan K Elder
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Anurag Singh
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Courteney M Westlake
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Warren P Tate
- Department of Biochemistry, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| | - Joanna M Williams
- Department of Anatomy, Brain Health Research Centre, Brain Research New Zealand - Rangahau Roro Aotearoa, University of Otago, Dunedin, New Zealand
| |
Collapse
|
6
|
Krick MV, Desmarais E, Samaras A, Guéret E, Dimitroglou A, Pavlidis M, Tsigenopoulos C, Guinand B. Family-effects in the epigenomic response of red blood cells to a challenge test in the European sea bass (Dicentrarchus labrax, L.). BMC Genomics 2021; 22:111. [PMID: 33563212 PMCID: PMC7871408 DOI: 10.1186/s12864-021-07420-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 01/31/2021] [Indexed: 12/13/2022] Open
Abstract
Abstract Background In fish, minimally invasive blood sampling is widely used to monitor physiological stress with blood plasma biomarkers. As fish blood cells are nucleated, they might be a source a potential new markers derived from ‘omics technologies. We modified the epiGBS (epiGenotyping By Sequencing) technique to explore changes in genome-wide cytosine methylation in the red blood cells (RBCs) of challenged European sea bass (Dicentrarchus labrax), a species widely studied in both natural and farmed environments. Results We retrieved 501,108,033 sequencing reads after trimming, with a mean mapping efficiency of 73.0% (unique best hits). Minor changes in RBC methylome appeared to manifest after the challenge test and a family-effect was detected. Only fifty-seven differentially methylated cytosines (DMCs) close to 51 distinct genes distributed on 17 of 24 linkage groups (LGs) were detected between RBCs of pre- and post-challenge individuals. Thirty-seven of these genes were previously reported as differentially expressed in the brain of zebrafish, most of them involved in stress coping differences. While further investigation remains necessary, few DMC-related genes associated to the Brain Derived Neurotrophic Factor, a protein that favors stress adaptation and fear memory, appear relevant to integrate a centrally produced stress response in RBCs. Conclusion Our modified epiGBS protocol was powerful to analyze patterns of cytosine methylation in RBCs of D. labrax and to evaluate the impact of a challenge using minimally invasive blood samples. This study is the first approximation to identify epigenetic biomarkers of exposure to stress in fish. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07420-9.
Collapse
Affiliation(s)
- Madoka Vera Krick
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France
| | - Erick Desmarais
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France
| | | | - Elise Guéret
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France.,Univ. Montpellier, CNRS, INSERM, Montpellier, France.,Montpellier GenomiX, France Génomique, Montpellier, France
| | | | - Michalis Pavlidis
- Department of Biology, University of Crete, 70013, Heraklion, Greece
| | - Costas Tsigenopoulos
- Hellenic Centre for Marine Research (HCMR), Institute of Marine Biology, Biotechnology and Aquaculture (IMBBC), 715 00, Heraklion, Greece
| | - Bruno Guinand
- UMR UM CNRS IRD EPHE ISEM- Institut des Sciences de l'Evolution de Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Morris-Blanco KC, Kim T, Bertogliat MJ, Mehta SL, Chokkalla AK, Vemuganti R. Inhibition of the Epigenetic Regulator REST Ameliorates Ischemic Brain Injury. Mol Neurobiol 2019; 56:2542-2550. [PMID: 30039336 PMCID: PMC6344325 DOI: 10.1007/s12035-018-1254-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 07/17/2018] [Indexed: 01/03/2023]
Abstract
Cerebral ischemia is known to activate the repressor element-1 (RE1)-silencing transcription factor (REST) which silences neural genes via epigenetic remodeling and promotes neurodegeneration. We presently determined if REST inhibition derepresses target genes involved in synaptic plasticity and promotes functional outcome after experimental stroke. Following transient focal ischemia induced by middle cerebral artery occlusion (MCAO) in adult rats, REST expression was upregulated significantly from 12 h to 1 day of reperfusion compared to sham control. At 1 day of reperfusion, REST protein levels were increased and observed in the nuclei of neurons in the peri-infarct cortex. REST knockdown by intracerebral REST siRNA injection significantly reduced the post-ischemic expression of REST and increased the expression of several REST target genes, compared to control siRNA group. REST inhibition also decreased post-ischemic markers of apoptosis, reduced cortical infarct volume, and improved post-ischemic functional recovery on days 5 and 7 of reperfusion compared to the control siRNA group. REST knockdown resulted in a global increase in synaptic plasticity gene expression at 1 day of reperfusion compared to the control siRNA group and significantly increased several synaptic plasticity genes containing RE-1 sequences in their regulatory regions. These results demonstrate that direct inhibition of the epigenetic remodeler REST prevents secondary brain damage in the cortex and improves functional outcome potentially via de-repression of plasticity-related genes after stroke.
Collapse
Affiliation(s)
- Kahlilia C Morris-Blanco
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - TaeHee Kim
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Mario J Bertogliat
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
| | - Suresh L Mehta
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA
| | - Anil K Chokkalla
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin-Madison, Mail Code CSC-8660, 600 Highland Ave., Madison, WI, 53792, USA.
- William S. Middleton Veterans Administration Hospital, Madison, WI, USA.
- Cellular and Molecular Pathology Program, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
8
|
PKMζ Inhibition Disrupts Reconsolidation and Erases Object Recognition Memory. J Neurosci 2019; 39:1828-1841. [PMID: 30622166 DOI: 10.1523/jneurosci.2270-18.2018] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/09/2018] [Accepted: 12/27/2018] [Indexed: 11/21/2022] Open
Abstract
Object recognition memory (ORM) confers the ability to discriminate the familiarity of previously encountered items. Reconsolidation is the process by which reactivated memories become labile and susceptible to modifications. The hippocampus is specifically engaged in reconsolidation to integrate new information into the original ORM through a mechanism involving activation of brain-derived neurotrophic factor (BDNF) signaling and induction of LTP. It is known that BDNF can control LTP maintenance through protein kinase Mζ (PKMζ), an atypical protein kinase C isoform that is thought to sustain memory storage by modulating glutamatergic neurotransmission. However, the potential involvement of PKMζ in ORM reconsolidation has never been studied. Using a novel ORM task combined with pharmacological, biochemical, and electrophysiological tools, we found that hippocampal PKMζ is essential to update ORM through reconsolidation, but not to maintain the inactive recognition memory trace stored over time, in adult male Wistar rats. Our results also indicate that hippocampal PKMζ acts downstream of BDNF and controls AMPAR synaptic insertion to elicit reconsolidation and suggest that blocking PKMζ activity during this process deletes active ORM.SIGNIFICANCE STATEMENT Object recognition memory (ORM) is essential to remember facts and events. Reconsolidation integrates new information into ORM through changes in hippocampal plasticity and brain-derived neurotrophic factor (BDNF) signaling. In turn, BDNF enhances synaptic efficacy through protein kinase Mζ (PKMζ), which might preserve memory. Here, we present evidence that hippocampal PKMζ acts downstream of BDNF to regulate AMPAR recycling during ORM reconsolidation and show that this kinase is essential to update the reactivated recognition memory trace, but not to consolidate or maintain an inactive ORM. We also demonstrate that the amnesia provoked by disrupting ORM reconsolidation through PKMζ inhibition is due to memory erasure and not to retrieval failure.
Collapse
|
9
|
Maltese M, Stanic J, Tassone A, Sciamanna G, Ponterio G, Vanni V, Martella G, Imbriani P, Bonsi P, Mercuri NB, Gardoni F, Pisani A. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum. eLife 2018; 7:33331. [PMID: 29504938 PMCID: PMC5849413 DOI: 10.7554/elife.33331] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, although it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a+/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a+/Δgag neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a+/Δgag mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers.
Collapse
Affiliation(s)
- Marta Maltese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jennifer Stanic
- Department of Pharmacology, University of Milan, Milan, Italy
| | - Annalisa Tassone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Antonio Pisani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
10
|
Gao L, Tian M, Zhao HY, Xu QQ, Huang YM, Si QC, Tian Q, Wu QM, Hu XM, Sun LB, McClintock SM, Zeng Y. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease. J Neurochem 2015; 136:620-36. [DOI: 10.1111/jnc.13432] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 11/06/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Gao
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Mi Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Hong-Yun Zhao
- The Fifth Ward of Neurology Rehabilitation Center; Hangzhou Armed Police Hospital; Hangzhou China
| | - Qian-Qian Xu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Yu-Ming Huang
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qun-Cao Si
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing-Ming Wu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Xia-Min Hu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Li-Bo Sun
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Shawn M. McClintock
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
- Division of Brain Stimulation and Neurophysiology; Department of Psychiatry and Behavioral Sciences; Duke University School of Medicine; Durham North Carolina USA
- Department of Psychiatry; UT Southwestern Medical Center; Dallas Texas USA
| | - Yan Zeng
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| |
Collapse
|
11
|
Meade ML, Hoffmann A, Makley MK, Snider TH, Schlager JJ, Gearhart JM. Quantitative proteomic analysis of the brainstem following lethal sarin exposure. Brain Res 2015; 1611:101-13. [PMID: 25842371 DOI: 10.1016/j.brainres.2015.03.041] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 03/11/2015] [Accepted: 03/24/2015] [Indexed: 11/15/2022]
Abstract
The brainstem represents a major tissue area affected by sarin organophosphate poisoning due to its function in respiratory and cardiovascular control. While the acute toxic effects of sarin on brainstem-related responses are relatively unknown, other brain areas e.g., cortex or cerebellum, have been studied more extensively. The study objective was to analyze the guinea pig brainstem toxicology response following sarin (2×LD50) exposure by proteome pathway analysis to gain insight into the complex regulatory mechanisms that lead to impairment of respiratory and cardiovascular control. Guinea pig exposure to sarin resulted in the typical acute behavior/physiology outcomes with death between 15 and 25min. In addition, brain and blood acetylcholinesterase activity was significantly reduced in the presence of sarin to 95%, and 89%, respectively, of control values. Isobaric-tagged (iTRAQ) liquid chromatography tandem mass spectrometry (LC-MS/MS) identified 198 total proteins of which 23% were upregulated, and 18% were downregulated following sarin exposure. Direct gene ontology (GO) analysis revealed a sarin-specific broad-spectrum proteomic profile including glutamate-mediated excitotoxicity, calcium overload, energy depletion responses, and compensatory carbohydrate metabolism, increases in ROS defense, DNA damage and chromatin remodeling, HSP response, targeted protein degradation (ubiquitination) and cell death response. With regards to the sarin-dependent effect on respiration, our study supports the potential interference of sarin with CO2/H(+) sensitive chemoreceptor neurons of the brainstem retrotrapezoid nucleus (RTN) that send excitatory glutamergic projections to the respiratory centers. In conclusion, this study gives insight into the brainstem broad-spectrum proteome following acute sarin exposure and the gained information will assist in the development of novel countermeasures.
Collapse
Affiliation(s)
- Mitchell L Meade
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA; Molecular Bioeffects Branch, Bioeffects Division, 711 Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (711 HPW/RHDJ), WPAFB, Dayton, OH 45433, USA.
| | - Andrea Hoffmann
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA.
| | - Meghan K Makley
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA.
| | - Thomas H Snider
- Battelle Biomedical Research Center, 1425 Plain City Georgesville Road, West Jefferson, OH 43162, USA.
| | - John J Schlager
- Molecular Bioeffects Branch, Bioeffects Division, 711 Human Performance Wing, Human Effectiveness Directorate, Air Force Research Laboratory (711 HPW/RHDJ), WPAFB, Dayton, OH 45433, USA.
| | - Jeffery M Gearhart
- Henry M. Jackson Foundation for the Advancement of Military Medicine, 2729 R Street, Wright Patterson AFB, Dayton, OH 45433, USA; BoonShoft School of Medicine, Wright State University, 3640 Col. Glenn Highway, Dayton, OH 45433, USA.
| |
Collapse
|
12
|
Tian M, Zeng Y, Hu Y, Yuan X, Liu S, Li J, Lu P, Sun Y, Gao L, Fu D, Li Y, Wang S, McClintock SM. 7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome. Neuropharmacology 2015; 89:43-53. [DOI: 10.1016/j.neuropharm.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 01/20/2023]
|
13
|
Sekio M, Seki K. Lipopolysaccharide-induced depressive-like behavior is associated with α₁-adrenoceptor dependent downregulation of the membrane GluR1 subunit in the mouse medial prefrontal cortex and ventral tegmental area. Int J Neuropsychopharmacol 2014; 18:pyu005. [PMID: 25539502 PMCID: PMC4368860 DOI: 10.1093/ijnp/pyu005] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Chronic stress-induced depressive-like behavior is relevant to inflammatory immune activation. However, the neurobiological alterations in the brain following the central inflammatory immune activation remain elusive. METHODS Therefore, we investigated the neurobiological alterations during depressive-like behavior induced in mice by systemic administration of lipopolysaccharide (LPS; 1.2 mg/kg administered twice at a 30-min interval via intraperitoneal injection). RESULTS At 24 h after the second administration of LPS, an increased immobility time in the tail suspension test and the forced swimming test were observed, as well as reduced sucrose preference. Protein levels of the AMPA receptor GluR1 were significantly decreased at the plasma membrane in the medial prefrontal cortex (mPFC) and ventral tegmental area (VTA), while levels of the GluR2 were increased at the plasma membrane in the nucleus accumbens (NAc) at 24h after LPS. However, total GluR1 and GluR2 protein levels in the mPFC, VTA, and NAc were not affected by LPS. Moreover, LPS facilitated release of noradrenaline in the mPFC and VTA, but not in the NAc. Consistently, systemic administration of prazosin, an α1-adrenoceptor antagonist, blocked the LPS-induced downregulation of the membrane GluR1 subunit in both the mPFC and VTA and also blocked the upregulation of the membrane GluR2 subunit in the NAc. Intracerebroventricular administration of prazosin 30 min before LPS injection abrogated the LPS-induced depressive-like behaviors. In opposition, administration of propranolol, a β-adrenoceptor antagonist, did not affect the LPS-induced downregulation of GluR1, the upregulation of GluR2, or the depressive-like behavior. CONCLUSIONS These results suggest that LPS-activated α1-adrenoceptor-induced downregulation of membrane GluR1 in the mPFC and VTA is associated with inflammation-induced depressive-like behavior.
Collapse
Affiliation(s)
| | - Kenjiro Seki
- Department of Pharmacology, School of Pharmaceutical Science, Ohu University, 31-1 Misumido, Tomitamachi, Koriyama, Fukushima 963-8611, Japan.
| |
Collapse
|
14
|
Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res 2014; 279:240-54. [PMID: 25449839 DOI: 10.1016/j.bbr.2014.11.018] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 01/04/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here, we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the "addiction phase" examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF's potential relevance to treating cocaine addiction.
Collapse
Affiliation(s)
- Xuan Li
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD, USA.
| | - Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
15
|
Leal G, Afonso PM, Salazar IL, Duarte CB. Regulation of hippocampal synaptic plasticity by BDNF. Brain Res 2014; 1621:82-101. [PMID: 25451089 DOI: 10.1016/j.brainres.2014.10.019] [Citation(s) in RCA: 286] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Revised: 10/10/2014] [Accepted: 10/13/2014] [Indexed: 01/01/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) has emerged as a major regulator of activity-dependent plasticity at excitatory synapses in the mammalian central nervous system. In particular, much attention has been given to the role of the neurotrophin in the regulation of hippocampal long-term potentiation (LTP), a sustained enhancement of excitatory synaptic strength believed to underlie learning and memory processes. In this review we summarize the evidence pointing to a role for BDNF in generating functional and structural changes at synapses required for both early- and late phases of LTP in the hippocampus. The available information regarding the pre- and/or postsynaptic release of BDNF and action of the neurotrophin during LTP will be also reviewed. Finally, we discuss the effects of BDNF on the synaptic proteome, either by acting on the protein synthesis machinery and/or by regulating protein degradation by calpains and possibly by the ubiquitin-proteasome system (UPS). This fine-tuned control of the synaptic proteome rather than a simple upregulation of the protein synthesis may play a key role in BDNF-mediated synaptic potentiation. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Graciano Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Pedro M Afonso
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Faculty of Pharmacy, University of Coimbra, 3000-548 Coimbra, Portugal
| | - Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; PhD Programme in Experimental Biology and Biomedicine (PDBEB) and Institute for Interdisciplinary Research, University of Coimbra (IIIUC), 3030-789 Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|
16
|
Exendin-4 promotes the membrane trafficking of the AMPA receptor GluR1 subunit and ADAM10 in the mouse neocortex. ACTA ACUST UNITED AC 2014; 190-191:1-11. [DOI: 10.1016/j.regpep.2014.04.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 04/06/2014] [Accepted: 04/12/2014] [Indexed: 11/19/2022]
|
17
|
Ray MT, Shannon Weickert C, Webster MJ. Decreased BDNF and TrkB mRNA expression in multiple cortical areas of patients with schizophrenia and mood disorders. Transl Psychiatry 2014; 4:e389. [PMID: 24802307 PMCID: PMC4035720 DOI: 10.1038/tp.2014.26] [Citation(s) in RCA: 119] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 03/09/2014] [Indexed: 02/07/2023] Open
Abstract
Abnormalities in brain-derived neurotrophic factor (BDNF)/trkB signaling have been implicated in the etiology of schizophrenia and mood disorders. Patients with schizophrenia, bipolar disorder (BPD) and major depression (MDD) have reduced levels of neurotrophins in their brains when compared with normal unaffected individuals; however, only a few brain areas have been examined to date. Owing to the broad range of symptoms manifested in these disorders, we hypothesized that multiple associative areas of the neocortex may be implicated and that the degree of change in BDNF and trkB-TK+ mRNA expression and the cortical region or layers involved may vary according to Diagnostic and Statistical Manual of Mental Disorders (DSM) diagnosis. We compared BDNF and trkB-TK+ mRNA levels across all layers of the prefrontal cortex (dorsolateral prefrontal cortex, DLPFC), orbital frontal cortex (OFC), anterior cingulate cortex (ACC), inferior temporal gyrus (ITG) and superior temporal gyrus (STG) in four groups: schizophrenia, BPD, MDD and unaffected controls (n=60). BDNF mRNA levels were significantly decreased in layers IV and V of DLPFC in schizophrenia patients, in layer VI of ACC in schizophrenia and MDD and in layer VI of ITG in schizophrenia, BPD and MDD. BDNF mRNA levels were also significantly decreased in layer V and/or VI of STG in schizophrenia, BPD and MDD. TrkB-TK+ mRNA levels were only significantly decreased in the cortical layer VI of OFC in BPD. The shared and distinct patterns of neurotrophin transcript reductions, with some specific to each group, may compromise the function and plasticity of distinct cortical areas to various degrees in the different groups and contribute to the range and overlap of symptoms manifested across the diagnoses.
Collapse
Affiliation(s)
- M T Ray
- Stanley Medical Research Institute, Laboratory of Brain Research, Rockville, MD, USA,Trinity Washington University, NE Washington, DC, USA
| | - C Shannon Weickert
- Schizophrenia Research Institute, Sydney, NSW, Australia,Neuroscience Research Australia, Randwick, NSW, Australia,School of Psychiatry, University of New South Wales, Sydney, NSW, Australia
| | - M J Webster
- Stanley Medical Research Institute, Laboratory of Brain Research, Rockville, MD, USA,Stanley Laboratory of Brain Research, 9800 Medical Center Drive, Rockville, MD 20850, USA. E-mail:
| |
Collapse
|
18
|
Wall AM, Corcoran AE, O'Halloran KD, O'Connor JJ. Effects of prolyl-hydroxylase inhibition and chronic intermittent hypoxia on synaptic transmission and plasticity in the rat CA1 and dentate gyrus. Neurobiol Dis 2013; 62:8-17. [PMID: 24055213 DOI: 10.1016/j.nbd.2013.08.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 08/07/2013] [Accepted: 08/14/2013] [Indexed: 01/11/2023] Open
Abstract
Chronic intermittent hypoxia (CIH) is an underlying component of obstructive sleep apnoea and has been shown to have deleterious and damaging effects on central neurons and to impair synaptic plasticity in the CA1 region of the rat hippocampus. CIH has previously been shown to impair synaptic plasticity and working memory. CIH is a potent inducer of hypoxia inducible factor (HIF), a key regulator in a cell's adaptation to hypoxia that plays an important role in the fate of neurons during ischemia. Levels of HIF-1α are regulated by the activity of a group of enzymes called HIF-prolyl 4-hydroxylases (PHDs) and these have become potential pharmacological targets for preconditioning against ischemia. However little is known about the effects of prolyl hydroxylase inhibition and CIH on synaptic transmission and plasticity in sub-regions of the hippocampus. Male Wistar rats were treated for 7-days with either saline, CIH or PHD inhibition (dimethyloxaloylglycine, DMOG; 50mg/kg, i.p.). At the end of treatment all three groups showed no change in synaptic excitability using paired pulse paradigms. However long-term potentiation (LTP) was impaired in the CA1 region of the hippocampus in both CIH and DMOG treated animals. LTP induced in the dentate gyrus was not significantly affected by either CIH or DMOG treatment. We also investigated the effect of 7-day CIH and DMOG treatment on the recovery of synaptic transmission following an acute 30min hypoxic insult. CIH treated animals showed an improved rate of recovery of synaptic transmission following re-oxygenation in both the CA1 and the dentate gyrus. These results suggest that LTP induction in the CA1 region is more sensitive to both CIH and DMOG treatments than the dentate gyrus.
Collapse
Affiliation(s)
- Audrey M Wall
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Alan E Corcoran
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, University College Cork, Cork, Ireland
| | - John J O'Connor
- UCD School of Biomolecular and Biomedical Science, UCD Conway Institute of Biomolecular & Biomedical Research, University College Dublin, Belfield, Dublin 4, Ireland.
| |
Collapse
|