1
|
Nunes MDS, McGregor AP. Developmental evolution in fast-forward: insect male genital diversification. Trends Genet 2024:S0168-9525(24)00256-7. [PMID: 39578177 DOI: 10.1016/j.tig.2024.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/24/2024]
Abstract
Insect male genitalia are among the fastest evolving structures of animals. Studying these changes among closely related species represents a powerful approach to dissect developmental processes and genetic mechanisms underlying phenotypic diversification and the underlying evolutionary drivers. Here, we review recent breakthroughs in understanding the developmental and genetic bases of the evolution of genital organs among Drosophila species and other insects. This work has helped reveal how tissue and organ size evolve and understand the appearance of morphological novelties, and how these phenotypic changes are generated through altering gene expression and redeployment of gene regulatory networks. Future studies of genital evolution in Drosophila and a wider range of insects hold great promise to help understand the specification, differentiation, and diversification of organs more generally.
Collapse
Affiliation(s)
- Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | - Alistair P McGregor
- Department of Biosciences, Durham University, South Road, Durham DH1 3LE, UK.
| |
Collapse
|
2
|
Ridgway AM, Hood EJ, Jimenez JF, Nunes MDS, McGregor AP. Sox21b underlies the rapid diversification of a novel male genital structure between Drosophila species. Curr Biol 2024; 34:1114-1121.e7. [PMID: 38309269 DOI: 10.1016/j.cub.2024.01.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 12/02/2023] [Accepted: 01/08/2024] [Indexed: 02/05/2024]
Abstract
The emergence and diversification of morphological novelties is a major feature of animal evolution.1,2,3,4,5,6,7,8,9 However, relatively little is known about the genetic basis of the evolution of novel structures and the mechanisms underlying their diversification. The epandrial posterior lobes of male genitalia are a novelty of particular Drosophila species.10,11,12,13 The lobes grasp the female ovipositor and insert between her abdominal tergites and, therefore, are important for copulation and species recognition.10,11,12,14,15,16,17 The posterior lobes likely evolved from co-option of a Hox-regulated gene network from the posterior spiracles10 and have since diversified in morphology in the D. simulans clade, in particular, over the last 240,000 years, driven by sexual selection.18,19,20,21 The genetic basis of this diversification is polygenic but, to the best of our knowledge, none of the causative genes have been identified.22,23,24,25,26,27,28,29,30 Identifying the genes underlying the diversification of these secondary sexual structures is essential to understanding the evolutionary impact on copulation and species recognition. Here, we show that Sox21b negatively regulates posterior lobe size. This is consistent with expanded Sox21b expression in D. mauritiana, which develops smaller posterior lobes than D. simulans. We tested this by generating reciprocal hemizygotes and confirmed that changes in Sox21b underlie posterior lobe evolution between these species. Furthermore, we found that posterior lobe size differences caused by the species-specific allele of Sox21b significantly affect copulation duration. Taken together, our study reveals the genetic basis for the sexual-selection-driven diversification of a novel morphological structure and its functional impact on copulatory behavior.
Collapse
Affiliation(s)
- Amber M Ridgway
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | - Emily J Hood
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK
| | | | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK.
| | | |
Collapse
|
3
|
Pennell TM, Sharma MD, Sutter A, Wilson DT, House CM, Hosken DJ. The condition-dependence of male genital size and shape. Ecol Evol 2024; 14:e11180. [PMID: 38495435 PMCID: PMC10944674 DOI: 10.1002/ece3.11180] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/12/2024] [Accepted: 03/05/2024] [Indexed: 03/19/2024] Open
Abstract
The male genitals of internal fertilisers evolve rapidly and divergently, and sexual selection is generally responsible for this. Many sexually selected traits are condition-dependent-with their expression dependent upon the resources available to be allocated to them-as revealed by genetic or environmental manipulations of condition. However, it is not clear whether male genitals are also condition-dependent. Here we manipulate condition in two ways (via inbreeding and diet) to test the condition-dependence of the genital arch of Drosophila simulans. We found that genital size but not genital shape suffered from inbreeding depression, whereas genital size and shape were affected by dietary manipulation of condition. The differential effects of these treatments likely reflect underlying genetic architecture that has been shaped by past selection: inbreeding depression is only expected when traits have a history of directional selection, while diet impacts traits regardless of historical selection. Nonetheless, our results suggest genitals can be condition-dependent like other sexually selected traits.
Collapse
Affiliation(s)
- Tanya M. Pennell
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE)University of ExeterExeterUK
| | - Manmohan D. Sharma
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE)University of ExeterExeterUK
| | - Andreas Sutter
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE)University of ExeterExeterUK
| | - Drew T. Wilson
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE)University of ExeterExeterUK
| | - Clarissa M. House
- School of ScienceWestern Sydney UniversityRichmondNew South WalesAustralia
| | - David J. Hosken
- Centre for Ecology & Conservation, Faculty of Environment, Science and Economy (ESE)University of ExeterExeterUK
| |
Collapse
|
4
|
Urum A, Rice G, Glassford W, Yanku Y, Shklyar B, Rebeiz M, Preger-Ben Noon E. A developmental atlas of male terminalia across twelve species of Drosophila. Front Cell Dev Biol 2024; 12:1349275. [PMID: 38487271 PMCID: PMC10937369 DOI: 10.3389/fcell.2024.1349275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 01/25/2024] [Indexed: 03/17/2024] Open
Abstract
How complex morphologies evolve is one of the central questions in evolutionary biology. Observing the morphogenetic events that occur during development provides a unique perspective on the origins and diversification of morphological novelty. One can trace the tissue of origin, emergence, and even regression of structures to resolve murky homology relationships between species. Here, we trace the developmental events that shape some of the most diverse organs in the animal kingdom-the male terminalia (genitalia and analia) of Drosophilids. Male genitalia are known for their rapid evolution with closely related species of the Drosophila genus demonstrating vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia development during metamorphosis in twelve related species of Drosophila. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between the Drosophila melanogaster and the Drosophila yakuba clade. Our dataset opens up many new directions of research and provides an entry point for future studies of the Drosophila male terminalia evolution and development.
Collapse
Affiliation(s)
- Anna Urum
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - William Glassford
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Yifat Yanku
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Boris Shklyar
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, United States
| | - Ella Preger-Ben Noon
- Department of Genetics and Developmental Biology, The Rappaport Faculty of Medicine and Research Institute, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
5
|
Rivas-Torres A, Di Pietro V, Cordero-Rivera A. Sex wars: a female genital spine forces male damselflies to shorten copulation duration. Evolution 2023:7142852. [PMID: 37172267 DOI: 10.1093/evolut/qpad073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 02/11/2023] [Accepted: 04/21/2023] [Indexed: 05/14/2023]
Abstract
In some species, males use weapons to harm females, increasing their short-term fitness. Here we show that females can use genital adaptations against males. Females of the damselfly Enallagma cyathigerum have a conspicuous vulvar spine on the eighth abdominal segment, which contacts with the male during copulation. We tested 3 hypotheses for its function: it (a) inflicts damage to the male during copulation; (b) facilitates endophytic oviposition; and (c) stimulates males during copulation to increase their investment. We found that males mated on average for 54 min with control females, but increased copulation to 99 min with females without spine. There was no evidence of physical harm of the spine on the male's seminal vesicle, which shows 8- to 18-folds, exactly where the spine contacts during copulation. Females with and without spine exhibited the same egg-laying rates and showed similar fecundity and fertility. Longevity was also similar in males mated to control and spineless females. In contrast to many species where females resist male harassment by behavioral responses, the morphological adaptation observed in E. cyathigerum appears to act as a sexual weapon, allowing females to control copulation duration. We suggest that the spine has evolved because of sexual conflict over mating duration.
Collapse
Affiliation(s)
- Anais Rivas-Torres
- Universidade de Vigo, ECOEVO Lab, Depto. Ecoloxía e Bioloxía Animal, E.E. Forestal, Pontevedra, Galiza, Spain
| | - Viviana Di Pietro
- Università degli Studi di Torino, Dipartimento di Scienze della Vita e Biologia dei Sistemi, Torino, Italia
| | - Adolfo Cordero-Rivera
- Universidade de Vigo, ECOEVO Lab, Depto. Ecoloxía e Bioloxía Animal, E.E. Forestal, Pontevedra, Galiza, Spain
| |
Collapse
|
6
|
Rice GR, David JR, Gompel N, Yassin A, Rebeiz M. Resolving between novelty and homology in the rapidly evolving phallus of Drosophila. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2023; 340:182-196. [PMID: 34958528 PMCID: PMC10155935 DOI: 10.1002/jez.b.23113] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 08/24/2021] [Accepted: 10/10/2021] [Indexed: 11/11/2022]
Abstract
The genitalia present some of the most rapidly evolving anatomical structures in the animal kingdom, possessing a variety of parts that can distinguish recently diverged species. In the Drosophila melanogaster group, the phallus is adorned with several processes, pointed outgrowths, that are similar in size and shape between species. However, the complex three-dimensional nature of the phallus can obscure the exact connection points of each process. Previous descriptions based upon adult morphology have primarily assigned phallic processes by their approximate positions in the phallus and have remained largely agnostic regarding their homology relationships. In the absence of clearly identified homology, it can be challenging to model when each structure first evolved. Here, we employ a comparative developmental analysis of these processes in eight members of the melanogaster species group to precisely identify the tissue from which each process forms. Our results indicate that adult phallic processes arise from three pupal primordia in all species. We found that in some cases the same primordia generate homologous structures whereas in other cases, different primordia produce phenotypically similar but remarkably non-homologous structures. This suggests that the same gene regulatory network may have been redeployed to different primordia to induce phenotypically similar traits. Our results highlight how traits diversify and can be redeployed, even at short evolutionary scales.
Collapse
Affiliation(s)
- Gavin R Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS,IRD, Univ.Paris-Sud, Université Paris-Saclay, Orsay, Cedex, France
| | - Nicolas Gompel
- Fakultät für Biologie, Biozentrum, Ludwig-Maximilians Universität München, Planegg-Martinsried, Germany
| | - Amir Yassin
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS,IRD, Univ.Paris-Sud, Université Paris-Saclay, Orsay, Cedex, France.,Institut de Systématique, Evolution et Biodiversité, UMR7205, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
7
|
Serga S, Maistrenko OM, Kovalenko PA, Tsila O, Hrubiian N, Bilokon S, Alieksieieva T, Radionov D, Betancourt AJ, Kozeretska I. Wolbachia in natural Drosophila simulans (Diptera: Drosophilidae) populations in Ukraine. Symbiosis 2023. [DOI: 10.1007/s13199-023-00899-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
8
|
Molecular divergence with major morphological consequences: development and evolution of organ size and shape. Essays Biochem 2022; 66:707-716. [PMID: 36373649 DOI: 10.1042/ebc20220118] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/18/2022] [Accepted: 10/24/2022] [Indexed: 11/16/2022]
Abstract
Understanding the causes of the morphological diversity among organisms is a topic of great interest to evolutionary developmental biologists. Although developmental biologists have had great success in identifying the developmental mechanisms and molecular processes that specify organ size and shape within species, only relatively recently have the molecular tools become available to study how variation in these mechanisms gives rise to the phenotypic differences that are observed among closely related species. In addition to these technological advances, researchers interested in understanding how molecular variation gives rise to phenotypic variation have used three primary strategies to identify the molecular differences underlying species-specific traits: the candidate gene approach, differential gene expression screens, and between-species genetic mapping experiments. In this review, we discuss how these approaches have been successful in identifying the genes and the cellular mechanisms by which they specify variation in one of the most recognizable examples of the evolution of organ size, the adaptive variation in beak morphology among Darwin's finches. We also discuss insect reproductive structures as a model with great potential to advance our understanding of the specification and evolution of organ size and shape differences among species. The results from these two examples, and those from other species, show that species-specific variation in organ size and shape typically evolves via changes in the timing, location, and amount of gene/protein expression that act on tissue growth processes.
Collapse
|
9
|
van Gammeren S, Lang M, Rücklin M, Schilthuizen M. No evidence for asymmetric sperm deposition in a species with asymmetric male genitalia. PeerJ 2022; 10:e14225. [PMID: 36447515 PMCID: PMC9701498 DOI: 10.7717/peerj.14225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 09/21/2022] [Indexed: 11/25/2022] Open
Abstract
Background Asymmetric genitalia have repeatedly evolved in animals, yet the underlying causes for their evolution are mostly unknown. The fruit fly Drosophila pachea has asymmetric external genitalia and an asymmetric phallus with a right-sided phallotrema (opening for sperm release). The complex of female and male genitalia is asymmetrically twisted during copulation and males adopt a right-sided copulation posture on top of the female. We wished to investigate if asymmetric male genital morphology and a twisted gentitalia complex may be associated with differential allocation of sperm into female sperm storage organs. Methods We examined the internal complex of female and male reproductive organs by micro-computed tomography and synchrotron X-ray tomography before, during and after copulation. In addition, we monitored sperm aggregation states and timing of sperm transfer during copulation by premature interruption of copulation at different time-points. Results The asymmetric phallus is located at the most caudal end of the female abdomen during copulation. The female reproductive tract, in particular the oviduct, re-arranges during copulation. It is narrow in virgin females and forms a broad vesicle at 20 min after the start of copulation. Sperm transfer into female sperm storage organs (spermathecae) was only in a minority of examined copulation trials (13/64). Also, we found that sperm was mainly transferred early, at 2-4 min after the start of copulation. We did not detect a particular pattern of sperm allocation in the left or right spermathecae. Sperm adopted a granular or filamentous aggregation state in the female uterus and spermathecae, respectively. Discussion No evidence for asymmetric sperm deposition was identified that could be associated with asymmetric genital morphology or twisted complexing of genitalia. Male genital asymmetry may potentially have evolved as a consequence of a complex internal alignment of reproductive organs during copulation in order to optimize low sperm transfer rates.
Collapse
Affiliation(s)
| | - Michael Lang
- Université Paris Cité, CNRS - Institut Jacques Monod, Paris, France,Institut Diversité, Ecologie et Evolution du Vivant (IDEEV), Laboratoire Évolution, Génomes, Comportement et Écologie, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette, France
| | | | - Menno Schilthuizen
- Naturalis Biodiversity Center, Leiden, The Netherlands,Institute for Biology, Leiden University, Leiden, Netherlands
| |
Collapse
|
10
|
McQueen EW, Afkhami M, Atallah J, Belote JM, Gompel N, Heifetz Y, Kamimura Y, Kornhauser SC, Masly JP, O’Grady P, Peláez J, Rebeiz M, Rice G, Sánchez-Herrero E, Santos Nunes MD, Santos Rampasso A, Schnakenberg SL, Siegal ML, Takahashi A, Tanaka KM, Turetzek N, Zelinger E, Courtier-Orgogozo V, Toda MJ, Wolfner MF, Yassin A. A standardized nomenclature and atlas of the female terminalia of Drosophila melanogaster. Fly (Austin) 2022; 16:128-151. [PMID: 35575031 PMCID: PMC9116418 DOI: 10.1080/19336934.2022.2058309] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The model organism Drosophila melanogaster has become a focal system for investigations of rapidly evolving genital morphology as well as the development and functions of insect reproductive structures. To follow up on a previous paper outlining unifying terminology for the structures of the male terminalia in this species, we offer here a detailed description of the female terminalia of D. melanogaster. Informative diagrams and micrographs are presented to provide a comprehensive overview of the external and internal reproductive structures of females. We propose a collection of terms and definitions to standardize the terminology associated with the female terminalia in D. melanogaster and we provide a correspondence table with the terms previously used. Unifying terminology for both males and females in this species will help to facilitate communication between various disciplines, as well as aid in synthesizing research across publications within a discipline that has historically focused principally on male features. Our efforts to refine and standardize the terminology should expand the utility of this important model system for addressing questions related to the development and evolution of animal genitalia, and morphology in general.
Collapse
Affiliation(s)
- Eden W. McQueen
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Mehrnaz Afkhami
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Joel Atallah
- Department of Biological Sciences, University of New Orleans, New Orleans, LA, USA
| | - John M. Belote
- Department of Biology, Syracuse University, Syracuse, NY, USA
| | - Nicolas Gompel
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Yael Heifetz
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | - Shani C. Kornhauser
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
- Biozentrum, University of Basel, Basel, Switzerland
| | - John P. Masly
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Patrick O’Grady
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Julianne Peláez
- Department of Integrative Biology, University of California, Berkeley, CA, USA
| | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | | | | | - Sandra L. Schnakenberg
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
- Sema4, Stamford, CT, USA
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
- Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji, Japan
| | - Kentaro M. Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - Natascha Turetzek
- Evolutionary Ecology, Ludwig-Maximilians Universität München, Fakultät für Biologie, Biozentrum, Planegg-Martinsried, Germany
| | - Einat Zelinger
- Department of Entomology, The Hebrew University of Jerusalem, Rehovot, Israel
- Center for Scientific Imaging, The Hebrew University of Jerusalem, Rehovot, Israel
| | | | | | - Mariana F. Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
| | - Amir Yassin
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS, IRD, Université Paris-Saclay, Gif-sur-Yvette Cedex, France
| |
Collapse
|
11
|
Kettani K, Ebejer MJ, Ackland DM, Bächli G, Barraclough D, Barták M, Carles-Tolrá M, Černý M, Cerretti P, Chandler P, Dakki M, Daugeron C, Jong HD, Dils J, Disney H, Droz B, Evenhuis N, Gatt P, Graciolli G, Grichanov IY, Haenni JP, Hauser M, Himmi O, MacGowan I, Mathieu B, Mouna M, Munari L, Nartshuk EP, Negrobov OP, Oosterbroek P, Pape T, Pont AC, Popov GV, Rognes K, Skuhravá M, Skuhravý V, Speight M, Tomasovic G, Trari B, Tschorsnig HP, Vala JC, von Tschirnhaus M, Wagner R, Whitmore D, Woźnica AJ, Zatwarnicki T, Zwick P. Catalogue of the Diptera (Insecta) of Morocco- an annotated checklist, with distributions and a bibliography. Zookeys 2022; 1094:1-466. [PMID: 35836978 PMCID: PMC9018666 DOI: 10.3897/zookeys.1094.62644] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Accepted: 11/04/2021] [Indexed: 11/29/2022] Open
Abstract
The faunistic knowledge of the Diptera of Morocco recorded from 1787 to 2021 is summarized and updated in this first catalogue of Moroccan Diptera species. A total of 3057 species, classified into 948 genera and 93 families (21 Nematocera and 72 Brachycera), are listed. Taxa (superfamily, family, genus and species) have been updated according to current interpretations, based on reviews in the literature, the expertise of authors and contributors, and recently conducted fieldwork. Data to compile this catalogue were primarily gathered from the literature. In total, 1225 references were consulted and some information was also obtained from online databases. Each family was reviewed and the checklist updated by the respective taxon expert(s), including the number of species that can be expected for that family in Morocco. For each valid species, synonyms known to have been used for published records from Morocco are listed under the currently accepted name. Where available, distribution within Morocco is also included. One new combination is proposed: Assuaniamelanoleuca (Séguy, 1941), comb. nov. (Chloropidae).
Collapse
Affiliation(s)
- Kawtar Kettani
- Laboratory Ecology, Systematics, and Conservation of Biodiversity (LESCB), URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, MoroccoAbdelmalek Essaadi UniversityTetouanMorocco
| | - Martin J. Ebejer
- National Museum and Galleries of Wales, Entomology Section, Department of Natural Sciences, Cathays Park, Cardiff CF1 3NP, Wales, UKNational Museum and Galleries of WalesCardiffUnited Kingdom
| | - David M. Ackland
- Laboratory Ecology, Systematics, and Conservation of Biodiversity (LESCB), URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, MoroccoAbdelmalek Essaadi UniversityTetouanMorocco
| | - Gerhard Bächli
- Zoological Museum Winterthurerstr. 190. CH-8057 Zürich, SwitzerlandZoological Museum Winterthurerstr.ZürichSwitzerland
| | - David Barraclough
- School of Life Sciences, University of Kwa Zulu-Natal, P. Bag X54001, Durban 4000, South AfricaUniversity of Kwa Zulu-NatalDurbanSouth Africa
| | - Miroslav Barták
- Department of Zoology and Fisheries, Faculty of Agrobiology, Food and Natural Resources, Czech University of Life Sciences Prague, Kamýcká 129, 165 00 Praha-Suchdol, Czech RepublicCzech University of Life Sciences PraguePraha-SuchdolCzech Republic
| | - Miguel Carles-Tolrá
- Avda. Riera de Cassoles 30, ático 1. E-08012 Barcelona. SpainUnaffiliatedBarcelonaSpain
| | - Milos Černý
- CZ–763 63 Halenkovice 1, Czech RepublicUnaffiliatedHalenkoviceCzech Republic
| | - Pierfilippo Cerretti
- Dipartimento di Biologia e Biotecnologie “Charles Darwin”, Università di Roma “La Sapienza”, Piazzale, Aldo Moro 5, 00185 Rome, ItalyUniversità di Roma “La Sapienza”RomeItaly
| | - Peter Chandler
- 606B Berryfield Lane, Melksham, Wilts SN12 6EL, England, UKUnaffiliatedMelkshamUnited Kingdom
| | - Mohamed Dakki
- Laboratoire de Géo-Biodiversité et Patrimoine naturel, Institut Scientifique, Université Mohammed V de Rabat, Rabat, MoroccoUniversité Mohammed V de RabatRabatMorocco
| | - Christophe Daugeron
- MECADEV, UMR 7179 CNRS/MNHN. Muséum national d’Histoire naturelle, CP 50 – Entomologie, 45 rue Buffon, 75005 Paris, FranceMuséum national d’Histoire naturelleParisFrance
| | - Herman De Jong
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Josef Dils
- Krekelberg, 149, 2940 Hoevenen, BelgiumUnaffiliatedHoevenenBelgium
| | - Henry Disney
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, England, UKUniversity of CambridgeCambridgeUnited Kingdom
| | - Boris Droz
- Ruelle de l’Aurore 7, CH-2300, La Chaux-de-Fonds, SwitzerlandUnaffiliatedLa Chaux-de-FondsSwitzerland
| | - Neal Evenhuis
- Linsley Gressitt Center for Research in Entomology, Bishop Museum, 1525 Bernice Street, Honolulu, Hawaii 96817-2704, USABishop MuseumHonoluluUnited States of America
| | - Paul Gatt
- 44 Monarch Close, Wickford SS11 8GF, Essex, England, UKUnaffiliatedWickfordUnited Kingdom
| | - Gustavo Graciolli
- Instituto de Biociências, Universidade Federal do Mato Grosso do Sul, Campo Grande, MS, BrasilUniversidade Federal do Mato Grosso do SulCampo GrandeBrazil
| | - Igor Y. Grichanov
- Institute of Plant Protection, Shosse Podbelskogo 3, VIZR, St. Petersburg-Pushkin 196608, RussiaInstitute of Plant ProtectionSt. Petersburg-PushkinRussia
| | - Jean-Paul Haenni
- Muséum d’histoire naturelle, Rue des Terreaux 14, CH-2000 Neuchâtel, SwitzerlandMuséum d’histoire naturelleNeuchâtelSwitzerland
| | - Martin Hauser
- Plant Pest Diagnostics Branch, California Department of Food & Agriculture 3294 Meadowview Road, Sacramento, CA 95832-1448, USACalifornia Department of Food & AgricultureSacramentoUnited States of America
| | - Oumnia Himmi
- Laboratoire de Géo-Biodiversité et Patrimoine naturel, Institut Scientifique, Université Mohammed V de Rabat, Rabat, MoroccoUniversité Mohammed V de RabatRabatMorocco
| | - Iain MacGowan
- National Museums of Scotland, Collection Centre, 242 West Granton Road, Edinburgh EH5 1JA, ScotlandNational Museums of ScotlandEdinburghUnited Kingdom
| | - Bruno Mathieu
- Institut de Parasitologie et de Pathologie Tropicale, UR7292 Dynamique des interactions hôte pathogène, Université de Strasbourg, 3 rue Koeberlé, 67000 Strasbourg, FranceUniversité de StrasbourgStrasbourgFrance
| | - Mohamed Mouna
- Laboratoire de Géo-Biodiversité et Patrimoine naturel, Institut Scientifique, Université Mohammed V de Rabat, Rabat, MoroccoUniversité Mohammed V de RabatRabatMorocco
| | - Lorenzo Munari
- Entomology Section, Natural History Museum, Fontego dei Turchi, S. Croce 1730, I-30135 Venezia, ItalyNatural History MuseumVeneziaItaly
| | - Emilia P. Nartshuk
- Zoological Institute of Russian Academy of Sciences, Universitetskaya naberezhnaya 1, 199034, St. Petersburg, RussiaZoological Institute of Russian Academy of SciencesSt. PetersburgRussia
| | - Oleg P. Negrobov
- Laboratory Ecology, Systematics, and Conservation of Biodiversity (LESCB), URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, MoroccoAbdelmalek Essaadi UniversityTetouanMorocco
| | - Pjotr Oosterbroek
- Naturalis Biodiversity Center, Postbus 9517, 2300 RA Leiden, NetherlandsNaturalis Biodiversity CenterLeidenNetherlands
| | - Thomas Pape
- Natural History Museum of Denmark, Zoological Museum, Universitetsparken 15, DK-2100 Copenhagen, DenmarkNatural History Museum of DenmarkCopenhagenDenmark
| | - Adrian C. Pont
- Oxford University Museum of Natural History, Parks Road, Oxford OX1 3PW, UKOxford University Museum of Natural HistoryOxfordUnited Kingdom
| | - Grigory V. Popov
- Section of Entomology and Collection Management, I.I.Schmalhausen Institute of Zoology, National Academy of Sciences of Ukraine, Bohdan Khmelnytsky st., 15, 01601 Kyiv, UkraineI.I.Schmalhausen Institute of Zoology, National Academy of Sciences of UkraineKyivUkraine
| | - Knut Rognes
- Laboratory Ecology, Systematics, and Conservation of Biodiversity (LESCB), URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, MoroccoAbdelmalek Essaadi UniversityTetouanMorocco
| | - Marcela Skuhravá
- Bítovská 1227, CZ–140 00 Praha 4, Czech RepublicUnaffiliatedPrahaCzech Republic
| | - Vaclav Skuhravý
- Laboratory Ecology, Systematics, and Conservation of Biodiversity (LESCB), URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, MoroccoAbdelmalek Essaadi UniversityTetouanMorocco
| | - Martin Speight
- Department of Zoology, Trinity College, Dublin, IrelandTrinity CollegeDublinIreland
| | - Guy Tomasovic
- Université de Liège, Gembloux Agro-Bio Tech, Unité d’Entomologie fonctionnelle et évolutive (Prof. E. Haubruge), Passage des Déportés, 2, 5030 Gembloux, BelgiumUniversité de LiègeGemblouxBelgium
| | - Bouchra Trari
- Laboratory Ecology, Systematics, and Conservation of Biodiversity (LESCB), URL-CNRST N°18, FS, Abdelmalek Essaadi University, Tetouan, MoroccoAbdelmalek Essaadi UniversityTetouanMorocco
| | - Hans-Peter Tschorsnig
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, GermanyStaatliches Museum für Naturkunde StuttgartStuttgartGermany
| | - Jean-Claude Vala
- Résidence Belle Fontaine, Bat B, 16 Avenue de la Trillade, 84000 Avignon, FranceUnaffiliatedAvignonFrance
| | - Michael von Tschirnhaus
- Fakultät Biologie, Universität Bielefeld, Postfach 100131, D-33501 Bielefeld, GermanyUniversität BielefeldBielefeldGermany
| | - Rüdiger Wagner
- Limnologische Fluss-Station des Max-Planck Instituts für Limnologie, P.O. Box 260, D-36105 Schlitz, GermanyLimnologische Fluss-Station des Max-Planck Instituts für LimnologieSchlitzGermany
| | - Daniel Whitmore
- Staatliches Museum für Naturkunde Stuttgart, Rosenstein 1, 70191 Stuttgart, GermanyStaatliches Museum für Naturkunde StuttgartStuttgartGermany
| | - Andrzej J. Woźnica
- Institute of Environmental Biology, Wrocław University of Environmental & Life Sciences, Kożuchowska 5b, 51-631 Wrocław, PolandWrocław University of Environmental & Life SciencesWrocławPoland
| | - Tadeusz Zatwarnicki
- Institute of Biology, Opole University, ul. Oleska 22, 45-052 Opole, PolandOpole UniversityOpolePoland
| | - Peter Zwick
- Schwarzer Stock 9, 36110 Schlitz, GermanyUnaffiliatedSchlitzGermany
| |
Collapse
|
12
|
Orbach DN. Gender Bias in the Study of Genital Evolution: Females Continue to Receive Less Attention than Males. Integr Comp Biol 2022; 62:icac012. [PMID: 35353194 DOI: 10.1093/icb/icac012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The evolution of female genitalia has historically received less attention than male reproductive organs. Several papers have underscored the disparities in research efforts, but have calls for change resonated with the scientific community and rectified the skew? A literature review was conducted of journal articles published between 2013 through 2021 that explore genital evolution to determine if gender bias (sex of research subject) and imbalance (sex of researcher) have changed. Of the 334 articles that specifically explored genital evolution, first authors of both sexes published on female genitalia less than half as often as male genitalia, although the majority of authors published on genitalia of both sexes. First authors of both sexes mentioned females after males substantially more often than females before males. Female first authors published the most about genital evolution in all taxa except for insects and arachnids. Female first authors published in high impact journals marginally less often than male first authors. Articles about genital evolution across taxa generally had high impact factors, but how impact factors and number of citations varied by the sex of the subject was not clear. Although the number of studies exploring genital co-evolution between the sexes has increased across taxa and years, female genitalia continue to be researched less often than male genitalia when only one sex is investigated. Both female and male scientists are publishing in the field of genital evolution, although research on female subjects continue to lag behind males, demonstrating continued bias within the discipline.
Collapse
Affiliation(s)
- D N Orbach
- Department of Life Sciences, Texas A&M University- Corpus Christi
| |
Collapse
|
13
|
Mendes MF, Gottschalk MS, Corrêa RC, Valente-Gaiesky VLS. Functional traits for ecological studies: a review of characteristics of Drosophilidae (Diptera). COMMUNITY ECOL 2021. [DOI: 10.1007/s42974-021-00060-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Onuma M, Kamimura Y, Sawamura K. Genital coupling and copulatory wounding in the Drosophila auraria species complex (Diptera: Drosophilidae). Biol J Linn Soc Lond 2021. [DOI: 10.1093/biolinnean/blab134] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Abstract
Animal genitalia have changed substantially and rapidly during evolution, and functionally interacting anatomical structures complementarily match between the sexes. Several hypotheses have been proposed to explain how such structure-matching evolved. A test of these hypotheses would require a detailed analysis of male and female genitalia among closely related species and a comparison of the functional aspects of the interacting structures between the sexes. Therefore, here we document genital coupling and copulatory wounds in the four species of the Drosophila auraria complex. The position of the protrusion of the median gonocoxite of males relative to the female terminalia differed among the species, which may reflect differences in protrusion morphology. Species-specific female structures were discovered on the membrane between the genitalia and analia and on the vaginal wall. The former makes contact with the protrusion, and the latter makes contact with appendages of the aedeagus. Copulatory wounds, which are produced during copulation, were seen at three locations on females: depressions near the genital orifice, the membrane between the genitalia and analia, and the vaginal wall. Some of the copulatory wounds were located at sites that could potentially make contact with the species-specific structures that we identified. We speculate that the female structures that differ between species of the D. auraria complex evolved in concert with the genitalia of male conspecifics.
Collapse
Affiliation(s)
- Moe Onuma
- Doctoral Program in Biology, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| | - Yoshitaka Kamimura
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Kita, Yokohama, Kanagawa, 223-8521, Japan
| | - Kyoichi Sawamura
- Faculty of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki, 305-8572, Japan
| |
Collapse
|
15
|
Suzuki T, Yano K, Ohba SY, Kawano K, Sekiné K, Bae YJ, Tojo K. Genome-wide molecular phylogenetic analyses and mating experiments which reveal the evolutionary history and an intermediate stage of speciation of a giant water bug. Mol Ecol 2021; 30:5179-5195. [PMID: 34390528 DOI: 10.1111/mec.16120] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Revised: 07/25/2021] [Accepted: 07/30/2021] [Indexed: 11/30/2022]
Abstract
The intermediate stages of speciation are important for understanding the processes involved in the creation of biodiversity, and also comprise a number of interesting phenomena. However, difficulties are associated with dividing clear speciation stages because speciation is a continuous process. Therefore, the elucidation of speciation is an interesting and important task in evolutionary biology. We herein present an example of a species in an intermediate stage of speciation using the giant water bug Appasus japonicus (Heteroptera, Belostomatidae) that was investigated using mating experiments and phylogenetic analyses of the mtDNA COI (658 bp) and 16S rRNA (435 bp) regions, and nDNA SSR (13 loci) and its genome-wide SNPs (11,241 SNPs). The results of our phylogenetic analyses based on their mtDNA dataset and the genome-wide SNPs dataset strongly supported the paraphyly of the Japanese populations. Therefore, it is suggested that their ancestral lineage which being distributed in the Japanese Archipelago subsequently migrated to the Eurasian Continent (i.e., "back-dispersal" occurred). Furthermore, the results of the mating experiments suggested that among A. japonicus, even between closely related lineages, pre-mating reproductive isolation has been established by the differentiation of copulatory organ morphologies. In contrast, pre-mating reproductive isolation is not established in the absence of the differentiation of copulatory organ morphologies, even if genetic differentiation is prominent. These results suggested that their phylogenetic distance does not predict pre-mating reproductive isolation. Furthermore, in the present study, we present a clear example of pre-mating reproductive isolation driving speciation between closely related lineages.
Collapse
Affiliation(s)
- Tomoya Suzuki
- Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.,Present Address: Graduate School of Global Environmental Studies, Kyoto University, Yoshida Nihonmatsu-cho, Sakyo, Kyoto, 606-8501, Japan
| | - Koki Yano
- Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| | - Shin-Ya Ohba
- Biological Laboratory, Faculty of Education, Nagasaki University, Bunkyo 1-14, Nagasaki, 852-8521, Japan
| | - Keisuke Kawano
- The Firefly Museum of Toyota Town, Nakamura 50-3, Shimonoseki, Yamaguchi, 750-0441, Japan
| | - Kazuki Sekiné
- Faculty of Geo-environmental Science, Rissho University, Magechi 1700, Kumagaya, 360-0194, Japan.,Korean Entomological Institute, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Yeon Jae Bae
- Korean Entomological Institute, College of Life Sciences and Biotechnology, Korea University, Seoul, 136-713, Korea
| | - Koji Tojo
- Faculty of Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan.,Institute of Mountain Science, Shinshu University, Asahi 3-1-1, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
16
|
Hagen JFD, Mendes CC, Booth SR, Figueras Jimenez J, Tanaka KM, Franke FA, Baudouin-Gonzalez L, Ridgway AM, Arif S, Nunes MDS, McGregor AP. Unraveling the Genetic Basis for the Rapid Diversification of Male Genitalia between Drosophila Species. Mol Biol Evol 2021; 38:437-448. [PMID: 32931587 PMCID: PMC7826188 DOI: 10.1093/molbev/msaa232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
In the last 240,000 years, males of the Drosophila simulans species clade have evolved striking differences in the morphology of their epandrial posterior lobes and claspers (surstyli). These appendages are used for grasping the female during mating and so their divergence is most likely driven by sexual selection. Mapping studies indicate a highly polygenic and generally additive genetic basis for these morphological differences. However, we have limited understanding of the gene regulatory networks that control the development of genital structures and how they evolved to result in this rapid phenotypic diversification. Here, we used new D. simulans/D. mauritiana introgression lines on chromosome arm 3L to generate higher resolution maps of posterior lobe and clasper differences between these species. We then carried out RNA-seq on the developing genitalia of both species to identify the expressed genes and those that are differentially expressed between the two species. This allowed us to test the function of expressed positional candidates during genital development in D. melanogaster. We identified several new genes involved in the development and possibly the evolution of these genital structures, including the transcription factors Hairy and Grunge. Furthermore, we discovered that during clasper development Hairy negatively regulates tartan (trn), a gene known to contribute to divergence in clasper morphology. Taken together, our results provide new insights into the regulation of genital development and how this has evolved between species.
Collapse
Affiliation(s)
- Joanna F D Hagen
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Cláudia C Mendes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Shamma R Booth
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Javier Figueras Jimenez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Kentaro M Tanaka
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Franziska A Franke
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Luis Baudouin-Gonzalez
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Amber M Ridgway
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Saad Arif
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Centre for Functional Genomics, Oxford Brookes University, Oxford, United Kingdom
| | - Maria D S Nunes
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Centre for Functional Genomics, Oxford Brookes University, Oxford, United Kingdom
| | - Alistair P McGregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, United Kingdom.,Centre for Functional Genomics, Oxford Brookes University, Oxford, United Kingdom
| |
Collapse
|
17
|
Peluffo AE, Hamdani M, Vargas‐Valderrama A, David JR, Mallard F, Graner F, Courtier‐Orgogozo V. A morphological trait involved in reproductive isolation between Drosophila sister species is sensitive to temperature. Ecol Evol 2021; 11:7492-7506. [PMID: 34188829 PMCID: PMC8216934 DOI: 10.1002/ece3.7580] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 03/24/2021] [Accepted: 03/30/2021] [Indexed: 11/18/2022] Open
Abstract
Male genitalia are usually extremely divergent between closely related species, but relatively constant within one species. Here we examine the effect of temperature on the shape of the ventral branches, a male genital structure involved in reproductive isolation, in the sister species Drosophila santomea and Drosophila yakuba. We designed a semi-automatic measurement machine learning pipeline that can reliably identify curvatures and landmarks based on manually digitized contours of the ventral branches. With this method, we observed that temperature does not affect ventral branches in D. yakuba but that in D. santomea ventral branches tend to morph into a D. yakuba-like shape at lower temperature. We found that male genitalia structures involved in reproductive isolation can be relatively variable within one species and can resemble the shape of closely related species' genitalia through plasticity to temperature. Our results suggest that reproductive isolation mechanisms can be dependent on the environmental context.
Collapse
Affiliation(s)
| | | | | | - Jean R. David
- Institut Systématique Evolution Biodiversité (ISYEB)CNRSMNHNSorbonne UniversitéEPHEParisFrance
- Laboratoire Evolution, Génomes, Comportement, Biodiversité (EGCE)CNRSIRDUniv. Paris‐sudUniversité Paris‐SaclayGif‐sur‐YvetteFrance
| | - François Mallard
- Institut de Biologie de l’École Normale SupérieureCNRS UMR 8197PSL Research UniversityParisFrance
| | - François Graner
- Matière et Systèmes ComplexesCNRS UMR 7057Univ. de ParisParisFrance
| | | |
Collapse
|
18
|
Yatsuk AA, Safonkin AF, Triseleva TA. Trends in the Changes of Postgonite Forms during the Evolution of Grass Flies of the Genus Meromyza (Diptera, Chloropidae). BIOL BULL+ 2021. [DOI: 10.1134/s1062359021030171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
19
|
Abstract
The past 2 decades have seen fruit flies being widely adopted for research on social behavior and aggression. This fruitful research, however, has not been well tied to fruit flies' natural history. To address this knowledge gap, I conducted a field study. My goal was to inform future research conducted in artificial surroundings, and to inspire new investigations that can rely more heavily on fruit flies' actual natural behavior. My two main novel findings were first, that flies in the field showed significant sociability, as they formed social groups rather than dispersed randomly among fruits of similar quality. Second, males showed fair levels of aggression towards each other as indicated by a lunging rate of 17 per hour, and lower rates of wing threat and boxing. Courtship was the most prominent activity on fruits, with females rejecting almost all males' advances. This resulted in an estimated mating rate of 0.6 per female per day. Flies showed a striking peak of activity early in the mornings, even at cold temperatures, followed by inactivity for much of the day and night. Flies, however, handled well high temperatures approaching 40 °C by hiding away from fruit and concentrating activity in the cooler, early mornings. My field work highlights a few promising lines of future research informed by fruit flies' natural history. Most importantly, we do not understand the intriguing dynamics that generate significant sociability despite frequent aggressive interactions on fruits. Males' responses to female rejection signals varied widely, perhaps because the signals differed in information content perceived by flies but not humans. Finally, flies tolerated cold early mornings perhaps owing to fitness benefits associated with increased mating and feeding opportunities at this time. Flies were adept at handling very high temperatures under the natural daily temperature fluctuations and availability of shelters, and this can inform more realistic research on the effects of global warming on animals in their natural settings.
Collapse
Affiliation(s)
- Reuven Dukas
- Animal Behaviour Group, Department of Psychology, Neuroscience and Behaviour, McMaster University, 1280 Main Street West, Hamilton, ON, L8S 4K1, Canada.
| |
Collapse
|
20
|
McDonald JA, Tomoyasu Y. Sculpting new structures. eLife 2020; 9:57668. [PMID: 32463359 PMCID: PMC7255797 DOI: 10.7554/elife.57668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/03/2022] Open
Abstract
The origins of the posterior lobe, a recently evolved structure in some species of Drosophila, have become clearer.
Collapse
|
21
|
An Atlas of Transcription Factors Expressed in Male Pupal Terminalia of Drosophila melanogaster. G3-GENES GENOMES GENETICS 2019; 9:3961-3972. [PMID: 31619460 PMCID: PMC6893207 DOI: 10.1534/g3.119.400788] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
During development, transcription factors and signaling molecules govern gene regulatory networks to direct the formation of unique morphologies. As changes in gene regulatory networks are often implicated in morphological evolution, mapping transcription factor landscapes is important, especially in tissues that undergo rapid evolutionary change. The terminalia (genital and anal structures) of Drosophila melanogaster and its close relatives exhibit dramatic changes in morphology between species. While previous studies have identified network components important for patterning the larval genital disc, the networks governing adult structures during pupal development have remained uncharted. Here, we performed RNA-seq in whole Drosophila melanogaster male terminalia followed by in situ hybridization for 100 highly expressed transcription factors during pupal development. We find that the male terminalia are highly patterned during pupal stages and that specific transcription factors mark separate structures and substructures. Our results are housed online in a searchable database (https://flyterminalia.pitt.edu/) as a resource for the community. This work lays a foundation for future investigations into the gene regulatory networks governing the development and evolution of Drosophila terminalia.
Collapse
|
22
|
K-mer-Based Motif Analysis in Insect Species across Anopheles, Drosophila, and Glossina Genera and Its Application to Species Classification. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2019; 2019:4259479. [PMID: 31827584 PMCID: PMC6881769 DOI: 10.1155/2019/4259479] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2019] [Revised: 09/18/2019] [Accepted: 09/28/2019] [Indexed: 11/17/2022]
Abstract
Short k-mer sequences from DNA are both conserved and diverged across species owing to their functional significance in speciation, which enables their use in many species classification algorithms. In the present study, we developed a methodology to analyze the DNA k-mers of whole genome, 5' UTR, intron, and 3' UTR regions from 58 insect species belonging to three genera of Diptera that include Anopheles, Drosophila, and Glossina. We developed an improved algorithm to predict and score k-mers based on a scheme that normalizes k-mer scores in different genomic subregions. This algorithm takes advantage of the information content of the whole genome as opposed to other algorithms or studies that analyze only a small group of genes. Our algorithm uses k-mers of lengths 7-9 bp for the whole genome, 5' and 3' UTR regions as well as the intronic regions. Taxonomical relationships based on the whole-genome k-mer signatures showed that species of the three genera clustered together quite visibly. We also improved the scoring and filtering of these k-mers for accurate species identification. The whole-genome k-mer content correlation algorithm showed that species within a single genus correlated tightly with each other as compared to other genera. The genomes of two Aedes and one Culex species were also analyzed to demonstrate how newly sequenced species can be classified using the algorithm. Furthermore, working with several dozen species has enabled us to assign a whole-genome k-mer signature for each of the 58 Dipteran species by making all-to-all pairwise comparison of the k-mer content. These signatures were used to compare the similarity between species and to identify clusters of species displaying similar signatures.
Collapse
|
23
|
Ribeiro JRI, Stefanello F, Bugs C, Stenert C, Maltchik L, Guilbert E. Coevolution between male and female genitalia in Belostoma angustum Lauck, 1964 (Insecta, Heteroptera, Belostomatidae): disentangling size and shape. ZOOLOGY 2019; 137:125711. [PMID: 31634693 DOI: 10.1016/j.zool.2019.125711] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 08/03/2019] [Accepted: 09/22/2019] [Indexed: 11/26/2022]
Abstract
Sexual and natural selection mechanisms might drive variation in the genitalia of male animals. All aforementioned mechanisms are known to predict the coevolution of male and female genital morphology. Belostoma angustum is known to have subtle variation in the male and female genitalia of its members. In this species, phallosoma with dorsal arms and ventral diverticulum are assumed to be intromittent male genital traits that interact with the female genital chamber. We thus evaluated the existence of variation after disentangling the size from the shape of male genitalia in B. angustum. Body and genitalia dimensions and photographs of phallosoma with dorsal arms, ventral diverticulum and lateral views of the right paramere (the non-intromittent part) were obtained. Semi-landmarks and landmarks were used to capture phenotypic variation, by eliminating all non-shape variation with a Procrustes superimposition. Male and female specimens collected from the same location or immediate vicinity were grouped, and 12 groups originating from 12 locations were used to conduct two block-Partial Least Squares analyses (PLS). Group structures were also taken into account by adopting a multilevel approach. The male and female genital traits had similarly shallow static allometry slopes, as well as the dispersion values around the mean (i.e. coefficient of variation) and the standard error of the estimate. The correlation between the pooled within-locality covariance matrix of the symmetric component of phallosoma with dorsal arms and the female genital chamber was significant (r-PLS=0.37), as well as that with male body dimensions (r-PLS=0.36), even after controlling for allometry. Specimens with lower PLS shape scores had narrower phallosoma with dorsal arms, with poorly curved outer margins of the dorsal arms, whereas specimens with higher PLS shape scores had slightly shorter dorsal arms, with strongly curved outer margins. Lower shape scores were associated with narrower and especially shorter and narrower female genital chambers. Similar shallow allometric curves among sexes and the correlation between intromittent male parts and the female genital chamber, as well as male dimensions, suggest the coevolution of these contact structures in size and in shape.
Collapse
Affiliation(s)
- José Ricardo Inacio Ribeiro
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, Campus São Gabriel, 97307-020, São Gabriel, Rio Grande do Sul State, Brazil.
| | - Fabiano Stefanello
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, Campus São Gabriel, 97307-020, São Gabriel, Rio Grande do Sul State, Brazil.
| | - Cristhian Bugs
- Laboratório de Estudos da Biodiversidade do Pampa (LEBIP), Universidade Federal do Pampa, Campus São Gabriel, 97307-020, São Gabriel, Rio Grande do Sul State, Brazil.
| | - Cristina Stenert
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, 93022-000, Cristo Rei, São Leopoldo, Rio Grande do Sul State, Brazil.
| | - Leonardo Maltchik
- Laboratório de Ecologia e Conservação de Ecossistemas Aquáticos, Universidade do Vale do Rio dos Sinos, Av. Unisinos, 950, 93022-000, Cristo Rei, São Leopoldo, Rio Grande do Sul State, Brazil.
| | - Eric Guilbert
- Muséum national d'Histoire naturelle, MECADEV - UMR 7179 MNHN/CNRS, CP50-57, rue Cuvier, 75005, Paris, France.
| |
Collapse
|
24
|
Rodriguez‐Exposito E, Garcia‐Gonzalez F, Polak M. Individual and synergistic effects of male external genital traits in sexual selection. J Evol Biol 2019; 33:67-79. [DOI: 10.1111/jeb.13546] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 09/15/2019] [Accepted: 09/19/2019] [Indexed: 01/22/2023]
Affiliation(s)
| | - Francisco Garcia‐Gonzalez
- Doñana Biological Station (CSIC) Sevilla Spain
- Centre for Evolutionary Biology School of Biological Sciences The University of Western Australia Crawley WA Australia
| | - Michal Polak
- Department of Biological Sciences University of Cincinnati Cincinnati OH USA
| |
Collapse
|
25
|
Abstract
The morphology of male genitalia evolves rapidly, probably driven by sexual selection. However, little is known about the genes underlying genitalia differences between species. Identifying these genes is key to understanding how sexual selection acts to produce rapid phenotypic change. We have found that the gene tartan underlies differences between male Drosophila mauritiana and Drosophila simulans in the size and bristle number of the claspers—genital projections that grasp the female during copulation. Moreover, since tartan encodes a protein that is involved in cell interactions, this may represent an alternative developmental mechanism for morphological change. Therefore, our study provides insights into the genetic and developmental bases for the rapid evolution of male genitalia and organ size more generally. Male genital structures are among the most rapidly evolving morphological traits and are often the only features that can distinguish closely related species. This process is thought to be driven by sexual selection and may reinforce species separation. However, while the genetic bases of many phenotypic differences have been identified, we still lack knowledge about the genes underlying evolutionary differences in male genital organs and organ size more generally. The claspers (surstyli) are periphallic structures that play an important role in copulation in insects. Here, we show that divergence in clasper size and bristle number between Drosophila mauritiana and Drosophila simulans is caused by evolutionary changes in tartan (trn), which encodes a transmembrane leucine-rich repeat domain protein that mediates cell–cell interactions and affinity. There are no fixed amino acid differences in trn between D. mauritiana and D. simulans, but differences in the expression of this gene in developing genitalia suggest that cis-regulatory changes in trn underlie the evolution of clasper morphology in these species. Finally, analyses of reciprocal hemizygotes that are genetically identical, except for the species from which the functional allele of trn originates, determined that the trn allele of D. mauritiana specifies larger claspers with more bristles than the allele of D. simulans. Therefore, we have identified a gene underlying evolutionary change in the size of a male genital organ, which will help to better understand not only the rapid diversification of these structures, but also the regulation and evolution of organ size more broadly.
Collapse
|
26
|
Cury KM, Prud'homme B, Gompel N. A short guide to insect oviposition: when, where and how to lay an egg. J Neurogenet 2019; 33:75-89. [PMID: 31164023 DOI: 10.1080/01677063.2019.1586898] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Egg-laying behavior is one of the most important aspects of female behavior, and has a profound impact on the fitness of a species. As such, it is controlled by several layers of regulation. Here, we review recent advances in our understanding of insect neural circuits that control when, where and how to lay an egg. We also outline outstanding open questions about the control of egg-laying decisions, and speculate on the possible neural underpinnings that can drive the diversification of oviposition behaviors through evolution.
Collapse
Affiliation(s)
- Kevin M Cury
- a Department of Neuroscience and the Mortimer B. Zuckerman Mind Brain Behavior Institute , Columbia University , New York , NY , USA
| | - Benjamin Prud'homme
- b Aix Marseille Université, CNRS , Institut de Biologie du Développement de Marseille (IBDM) , Marseille , France
| | - Nicolas Gompel
- c Fakultät für Biologie, Biozentrum , Ludwig-Maximilians Universität München , Munich , Germany
| |
Collapse
|
27
|
Al Sayad S, Yassin A. Quantifying the extent of morphological homoplasy: A phylogenetic analysis of 490 characters in Drosophila. Evol Lett 2019; 3:286-298. [PMID: 31171984 PMCID: PMC6546384 DOI: 10.1002/evl3.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 03/28/2019] [Accepted: 04/05/2019] [Indexed: 12/31/2022] Open
Abstract
Homoplasy is a fundamental phenomenon in evolutionary biology but an appraisal of its extent at the morphological level is still lacking. Here, we analyzed the evolution of 490 morphological characters conceptualized among 56 drosophilid species. We found that two thirds of morphological changes were homoplastic and that the level of homoplasy depended on the stage of development and the type of the organ, with the adult terminalia being the least homoplastic. In spite of its predominance at the character change level, homoplasy accounts for only ∼13% of between species similarities in pairwise comparisons. These results provide empirical insights on the limits of morphological changes and the frequency of recurrent evolution.
Collapse
Affiliation(s)
- Sinan Al Sayad
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| | - Amir Yassin
- Institut Systématique Evolution Biodiversité (ISYEB)Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE57 rue Cuvier, CP 50,75005ParisFrance
| |
Collapse
|
28
|
Simmons LW, Fitzpatrick JL. Female genitalia can evolve more rapidly and divergently than male genitalia. Nat Commun 2019; 10:1312. [PMID: 30899023 PMCID: PMC6428859 DOI: 10.1038/s41467-019-09353-0] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 03/07/2019] [Indexed: 01/02/2023] Open
Abstract
Male genitalia exhibit patterns of divergent evolution driven by sexual selection. In contrast, for many taxonomic groups, female genitalia are relatively uniform and their patterns of evolution remain largely unexplored. Here we quantify variation in the shape of female genitalia across onthophagine dung beetles, and use new comparative methods to contrast their rates of divergence with those of male genitalia. As expected, male genital shape has diverged more rapidly than a naturally selected trait, the foretibia. Remarkably, female genital shape has diverged nearly three times as fast as male genital shape. Our results dispel the notion that female genitalia do not show the same patterns of divergent evolution as male genitalia, and suggest that female genitalia are under sexual selection through their role in female choice. Although male genital shape is known to evolve rapidly in response to sexual selection, relatively little is known about the evolution of female genital shape. Here, the authors show that across onthophagine dung beetles, female genital shape has diverged much more rapidly than male genital shape.
Collapse
Affiliation(s)
- Leigh W Simmons
- Centre for Evolutionary Biology, School of Biological Sciences (M092), The University of Western Australia, Crawley, WA, 6009, Australia.
| | - John L Fitzpatrick
- Department of Zoology/Ethology, Stockholm University, Svante Arrhenius väg 18B, SE-10691, Stockholm, Sweden
| |
Collapse
|
29
|
McNamara KB, Dougherty LR, Wedell N, Simmons LW. Experimental evolution reveals divergence in female genital teeth morphology in response to sexual conflict intensity in a moth. J Evol Biol 2019; 32:519-524. [DOI: 10.1111/jeb.13428] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 01/31/2019] [Accepted: 02/11/2019] [Indexed: 01/01/2023]
Affiliation(s)
- Kathryn B. McNamara
- Centre for Evolutionary Biology School of Biological Sciences (M092) the University of Western Australia Crawley Australia
| | - Liam R. Dougherty
- Institute of Integrative Biology University of Liverpool Liverpool UK
| | - Nina Wedell
- Centre for Ecology and Conservation University of Exeter Penryn UK
| | - Leigh W. Simmons
- Centre for Evolutionary Biology School of Biological Sciences (M092) the University of Western Australia Crawley Australia
| |
Collapse
|
30
|
Rice G, David JR, Kamimura Y, Masly JP, Mcgregor AP, Nagy O, Noselli S, Nunes MDS, O’Grady P, Sánchez-Herrero E, Siegal ML, Toda MJ, Rebeiz M, Courtier-Orgogozo V, Yassin A. A standardized nomenclature and atlas of the male terminalia of Drosophila melanogaster. Fly (Austin) 2019; 13:51-64. [PMID: 31401934 PMCID: PMC6988887 DOI: 10.1080/19336934.2019.1653733] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/26/2019] [Accepted: 08/04/2019] [Indexed: 10/26/2022] Open
Abstract
Animal terminalia represent some of the most diverse and rapidly evolving structures in the animal kingdom, and for this reason have been a mainstay in the taxonomic description of species. The terminalia of Drosophila melanogaster, with its wide range of experimental tools, have recently become the focus of increased interest in the fields of development, evolution, and behavior. However, studies from different disciplines have often used discrepant terminologies for the same anatomical structures. Consequently, the terminology of genital parts has become a barrier to integrating results from different fields, rendering it difficult to determine what parts are being referenced. We formed a consortium of researchers studying the genitalia of D. melanogaster to help establish a set of naming conventions. Here, we present a detailed visual anatomy of male genital parts, including a list of synonymous terms, and suggest practices to avoid confusion when referring to anatomical parts in future studies. The goal of this effort is to facilitate interdisciplinary communication and help newcomers orient themselves within the exciting field of Drosophila genitalia.
Collapse
Affiliation(s)
- Gavin Rice
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jean R. David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), UMR 9191, CNRS,IRD, Univ.Paris-Sud, Université Paris-Saclay, cedex, France
| | | | - John P. Masly
- Department of Biology, University of Oklahoma, Norman, OK, USA
| | - Alistair P. Mcgregor
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford, UK
| | - Olga Nagy
- CNRS UMR7592, Institut Jacques Monod, Université de Paris, Paris, France
| | | | | | - Patrick O’Grady
- Department of Entomology, Cornell University, Ithaca, NY, USA
| | - Ernesto Sánchez-Herrero
- Centro de Biología Molecular Severo Ochoa (C.S.I.C.-U.A.M.), Universidad Autónoma de Madrid, Cantoblanco, Spain
| | - Mark L. Siegal
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, USA
| | | | - Mark Rebeiz
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Amir Yassin
- Institut de Systématique, Evolution et Biodiversité, UMR7205, Centre National de la Recherche Scientifique, MNHN, Sorbonne Université, EPHE, Université des Antilles, Paris, France
| |
Collapse
|
31
|
Orbach D, Rattan S, Hogan M, Crosby A, Brennan P. Biomechanical properties of female dolphin reproductive tissue. Acta Biomater 2019; 86:117-124. [PMID: 30641290 DOI: 10.1016/j.actbio.2019.01.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2018] [Revised: 01/02/2019] [Accepted: 01/10/2019] [Indexed: 01/08/2023]
Abstract
Whales, dolphins, and porpoises have unusual vaginal folds of unknown function(s) that are hypothesized to play an important role in sexual selection. The potential function of vaginal folds was assessed by testing the mechanical properties of common bottlenose dolphin (Tursiops truncatus) reproductive tract tissues in 6 different regions and across age classes in post-mortem specimens. We assessed the regional (local) and overall effective elastic modulus of tissues using indentation and tensile tests, respectively. We explore the non-linear mechanical response of biological tissues, which are not often quantified. Indentation tests demonstrated that sexual maturity state, tissue region, force history, and force magnitude values significantly affected the measured effective elastic modulus. Tissue was stiffest in the vaginal fold region and overall stiffer in sexually immature compared to mature animals, likely reflecting biomechanical adaptations associated with copulation and parturition. Tensile tests showed that only tissue region significantly affected the effective modulus. Our data support the hypothesis that vaginal folds function as mechanical barriers to the penis and may provide females with mechanisms to reduce copulatory forces on other reproductive tissue. STATEMENT OF SIGNIFICANCE: Cetaceans have unusual folds of vaginal wall tissue that appear to evolve under sexual selection mechanisms and present physical barriers to the penis during copulation. We explore the biomaterial properties of vaginal fold tissue, how it varies from other reproductive tract tissues, and ontogenetic patterns. We demonstrate that vaginal folds can withstand higher mechanical forces and respond in a manner conducive to dissipating copulatory forces to other reproductive tissues. This study yields exciting insights on how female genital tissue may function during copulation, and is the first to do so in any vertebrate species. Additionally, we provide an example for testing biological tissues, non-linear properties, and materials with uneven surface structure and uneven thickness.
Collapse
|
32
|
Barnard AA, Masly JP. Divergence in female damselfly sensory structures is consistent with a species recognition function but shows no evidence of reproductive character displacement. Ecol Evol 2018; 8:12101-12114. [PMID: 30598803 PMCID: PMC6303706 DOI: 10.1002/ece3.4669] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 09/25/2018] [Accepted: 09/27/2018] [Indexed: 12/24/2022] Open
Abstract
Males and females transmit and receive signals prior to mating that convey information such as sex, species identity, or individual condition. In some animals, tactile signals relayed during physical contact between males and females before and during mating appear to be important for mate choice or reproductive isolation. This is common among odonates, when a male grasps a female's thorax with his terminal appendages prior to copulation, and the female subsequently controls whether copulation occurs by bending her abdomen to complete intromission. It has been hypothesized that mechanosensory sensilla on the female thoracic plates mediate mating decisions, but is has been difficult to test this idea. Here, we use North American damselflies in the genus Enallagma (Odonata: Coenagrionidae) to test the hypothesis that variation in female sensilla traits is important for species recognition. Enallagma anna and E. carunculatum hybridize in nature, but experience strong reproductive isolation as a consequence of divergence in male terminal appendage morphology. We quantified several mechanosensory sensilla phenotypes on the female thorax among multiple populations of both species and compared divergence in these traits in sympatry versus allopatry. Although these species differed in features of sensilla distribution within the thoracic plates, we found no strong evidence of reproductive character displacement among the sensilla traits we measured in regions of sympatry. Our results suggest that species-specific placement of female mechanoreceptors may be sufficient for species recognition, although other female sensory phenotypes might have diverged in sympatry to reduce interspecific hybridization.
Collapse
Affiliation(s)
- Alexandra A. Barnard
- Ecology and Evolutionary Biology Program, Department of BiologyUniversity of OklahomaNormanOklahoma
| | - John P. Masly
- Ecology and Evolutionary Biology Program, Department of BiologyUniversity of OklahomaNormanOklahoma
| |
Collapse
|
33
|
Muto L, Kamimura Y, Tanaka KM, Takahashi A. An innovative ovipositor for niche exploitation impacts genital coevolution between sexes in a fruit-damaging Drosophila. Proc Biol Sci 2018; 285:rspb.2018.1635. [PMID: 30257912 DOI: 10.1098/rspb.2018.1635] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 08/31/2018] [Indexed: 11/12/2022] Open
Abstract
Limited attention has been given to ecological factors influencing the coevolution of male and female genitalia. The innovative ovipositor of Drosophila suzukii, an invading fruit pest, represents an appealing case to document this phenomenon. The serrated saw-like ovipositor is used to pierce the hard skin of ripening fruits that are not used by other fruit flies that prefer soft decaying fruits. Here, we highlight another function of the ovipositor related to its involvement in genital coupling during copulation. We compared the morphology and coupling of male and female genitalia in this species to its sibling species, Drosophila subpulchrella, and to an outgroup species, Drosophila biarmipes These comparisons and a surgical manipulation indicated that the shape of male genitalia in D. suzukii has had to be adjusted to ensure tight coupling, despite having to abandon the use of a hook-like structure, paramere, because of the more linearly elongated ovipositor. This phenomenon demonstrates that ecological niche exploitation can directly affect the mechanics of genital coupling and potentially cause incompatibility among divergent forms. This model case provides new insights towards elucidating the importance of the dual functions of ovipositors in other insect species that potentially induce genital coevolution and ecological speciation.
Collapse
Affiliation(s)
- Leona Muto
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | | | - Kentaro M Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji 192-0397, Japan .,Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, Hachioji 192-0397, Japan
| |
Collapse
|
34
|
Tanaka KM, Kamimura Y, Takahashi A. Mechanical incompatibility caused by modifications of multiple male genital structures using genomic introgression in Drosophila. Evolution 2018; 72:2406-2418. [PMID: 30198555 DOI: 10.1111/evo.13592] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 08/06/2018] [Accepted: 08/20/2018] [Indexed: 01/21/2023]
Abstract
Mechanical incompatibility of male and female genitalia is common in animals with internal fertilization. However, our knowledge regarding the precise mechanisms is limited. One key question regards the susceptibility of the match between male and female genitalia to morphological modification. To address this issue, we generated six different second-chromosome introgression lines possessing partially Drosophila mauritiana-like genital morphology in multiple structures in D. simulans background. Three of the six introgression males showed elevated mobility at some stages during copulation with D. simulans females; this was assumed to be an indication of genital mismatch. Notably, one of the introgression males with D. mauritiana-like enlarged anal plates showed occasional leakage of adhesive ejaculate on the body surface when mated with pure D. simulans females, suggesting apparent structural incompatibility in genital coupling. These observations suggested that both sexual and natural selection shape the anal plate morphology, highlighting the role of this structure as an important component of mechanical isolation. Partial replacement (introgression) by a sibling species genome can induce perturbations in genital coupling mechanics, suggesting that genital compatibility can be susceptible to subtle genomic changes at the early stages of divergence in these species.
Collapse
Affiliation(s)
- Kentaro M Tanaka
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| | - Yoshitaka Kamimura
- Department of Biology, Keio University, 4-1-1 Hiyoshi, Yokohama, 233-8521, Japan
| | - Aya Takahashi
- Department of Biological Sciences, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan.,Research Center for Genomics and Bioinformatics, Tokyo Metropolitan University, 1-1 Minamiosawa, Hachioji, 192-0397, Japan
| |
Collapse
|
35
|
Orbach DN, Kelly DA, Solano M, Brennan PLR. Genital interactions during simulated copulation among marine mammals. Proc Biol Sci 2018; 284:rspb.2017.1265. [PMID: 29021172 DOI: 10.1098/rspb.2017.1265] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/04/2017] [Indexed: 11/12/2022] Open
Abstract
Genitalia are morphologically variable across many taxa and in physical contact during intromission, but little is known about how variation in form correlates with function during copulation. Marine mammals offer important insights into the evolutionary forces that act on genital morphology because they have diverse genitalia and are adapted to aquatic living and mating. Cetaceans have a fibroelastic penis and muscular vaginal folds, while pinnipeds have a baculum and lack vaginal folds. We examined copulatory fit in naturally deceased marine mammals to identify anatomical landmarks in contact during copulation and the potential depth of penile penetration into the vagina. Excised penises were artificially inflated to erection with pressurized saline and compared with silicone vaginal endocasts and within excised vaginas in simulated copulation using high-resolution, diffusible iodine-based, contrast-enhanced computed tomography. We found evidence suggestive of both congruent and antagonistic genital coevolution, depending on the species. We suggest that sexual selection influences morphological shape. This study improves our understanding of how mechanical interactions during copulation influence the shape of genitalia and affect fertility, and has broad applications to other taxa and species conservation.
Collapse
Affiliation(s)
- Dara N Orbach
- Department of Biology, Life Science Center, Dalhousie University, 1355 Oxford Street, Halifax, Nova Scotia, B3H 4R2, Canada .,Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| | - Diane A Kelly
- Department of Psychological and Brain Sciences, University of Massachusetts, 135 Hicks Way, Amherst, MA 01003, USA
| | - Mauricio Solano
- Clinical Sciences Department, Tufts University Cummings School of Veterinary Medicine, 200 Westboro Road, North Grafton, MA 01536, USA
| | - Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, 50 College Street, South Hadley, MA 01075, USA
| |
Collapse
|
36
|
Moving Speciation Genetics Forward: Modern Techniques Build on Foundational Studies in Drosophila. Genetics 2018; 207:825-842. [PMID: 29097397 DOI: 10.1534/genetics.116.187120] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 06/23/2017] [Indexed: 12/12/2022] Open
Abstract
The question of how new species evolve has been examined at every level, from macroevolutionary patterns of diversification to molecular population genetic analyses of specific genomic regions between species pairs. Drosophila has been at the center of many of these research efforts. Though our understanding of the speciation process has grown considerably over the past few decades, very few genes have been identified that contribute to barriers to reproduction. The development of advanced molecular genetic and genomic methods provides promising avenues for the rapid discovery of more genes that contribute to speciation, particularly those involving prezygotic isolation. The continued expansion of tools and resources, especially for species other than Drosophila melanogaster, will be most effective when coupled with comparative approaches that reveal the genetic basis of reproductive isolation across a range of divergence times. Future research programs in Drosophila have high potential to answer long-standing questions in speciation. These include identifying the selective forces that contribute to divergence between populations and the genetic basis of traits that cause reproductive isolation. The latter can be expanded upon to understand how the genetic basis of reproductive isolation changes over time and whether certain pathways and genes are more commonly involved.
Collapse
|
37
|
Orbach DN, Hedrick B, Würsig B, Mesnick SL, Brennan PLR. The evolution of genital shape variation in female cetaceans. Evolution 2017; 72:261-273. [PMID: 29134627 DOI: 10.1111/evo.13395] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2017] [Accepted: 11/05/2017] [Indexed: 12/31/2022]
Abstract
Male genital diversification is likely the result of sexual selection. Female genital diversification may also result from sexual selection, although it is less well studied and understood. Female genitalia are complex among whales, dolphins, and porpoises, especially compared to other vertebrates. The evolutionary factors affecting the diversity of vaginal complexity could include ontogeny, allometry, phylogeny, sexual selection, and natural selection. We quantified shape variation in female genitalia using 2D geometric morphometric analysis, and validated the application of this method to study soft tissues. We explored patterns of variation in the shape of the cervix and vagina of 24 cetacean species (n = 61 specimens), and found that genital shape varies primarily in the relative vaginal length and overall aspect ratio of the reproductive tract. Extensive genital shape variation was partly explained by ontogenetic changes and evolutionary allometry among sexually mature cetaceans, whereas phylogenetic signal, relative testis size, and neonate size were not significantly associated with genital shape. Female genital shape is diverse and evolves rapidly even among closely related species, consistent with predictions of sexual selection models and with findings in invertebrate and vertebrate taxa. Future research exploring genital shape variation in 3D will offer new insights into evolutionary mechanisms because internal vaginal structures are variable and can form complex spirals.
Collapse
Affiliation(s)
- Dara N Orbach
- Department of Biology, Dalhousie University, Life Science Center, 1355 Oxford Street, Halifax, NS B3H 4R2, Canada.,Department of Biological Sciences, Mount Holyoke College, Amherst, Massachusetts
| | - Brandon Hedrick
- Department of Biological Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts
| | - Bernd Würsig
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas
| | - Sarah L Mesnick
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California
| | - Patricia L R Brennan
- Department of Biological Sciences, Mount Holyoke College, Amherst, Massachusetts.,Department of Biological Sciences, University of Massachusetts-Amherst, Amherst, Massachusetts
| |
Collapse
|
38
|
Male genital titillators and the intensity of post-copulatory sexual selection across bushcrickets. Behav Ecol 2017. [DOI: 10.1093/beheco/arx094] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
39
|
Kaiser L, Fernandez-Triana J, Capdevielle-Dulac C, Chantre C, Bodet M, Kaoula F, Benoist R, Calatayud PA, Dupas S, Herniou EA, Jeannette R, Obonyo J, Silvain JF, Ru BL. Systematics and biology of Cotesia typhae sp. n. (Hymenoptera, Braconidae, Microgastrinae), a potential biological control agent against the noctuid Mediterranean corn borer, Sesamia nonagrioides. Zookeys 2017:105-136. [PMID: 28769725 PMCID: PMC5523161 DOI: 10.3897/zookeys.682.13016] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Accepted: 05/25/2017] [Indexed: 11/27/2022] Open
Abstract
Many parasitoid species are subjected to strong selective pressures from their host, and their adaptive response may result in the formation of genetically differentiated populations, called host races. When environmental factors and reproduction traits prevent gene flow, host races become distinct species. Such a process has recently been documented within the Cotesiaflavipes species complex, all of which are larval parasitoids of moth species whose larvae are stem borers of Poales. A previous study on the African species C.sesamiae, incorporating molecular, ecological and biological data on various samples, showed that a particular population could be considered as a distinct species, because it was specialized at both host (Sesamianonagrioides) and plant (Typhadomingensis) levels, and reproductively isolated from other C.sesamiae. Due to its potential for the biological control of S.nonagrioides, a serious corn pest in Mediterranean countries and even in Iran, we describe here Cotesiatyphae Fernandez-Triana sp. n. The new species is characterized on the basis of morphological, molecular, ecological and geographical data, which proved to be useful for future collection and rapid identification of the species within the species complex. Fecundity traits and parasitism success on African and European S.nonagrioides populations, estimated by laboratory studies, are also included.
Collapse
Affiliation(s)
- Laure Kaiser
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | | | - Claire Capdevielle-Dulac
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Célina Chantre
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Matthieu Bodet
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Ferial Kaoula
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Romain Benoist
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Paul-André Calatayud
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France.,icipe: African Insect Science for Food and Health, Duduville Campus, Kasarani, P.O. Box 30772-00100, Nairobi, Kenya
| | - Stéphane Dupas
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Elisabeth A Herniou
- Institut de Recherche sur la Biologie de l'Insecte, UMR CNRS 7261, Université François-Rabelais de Tours, Faculté des Sciences, Parc Grandmont, 37200 Tours, France
| | - Rémi Jeannette
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Julius Obonyo
- icipe: African Insect Science for Food and Health, Duduville Campus, Kasarani, P.O. Box 30772-00100, Nairobi, Kenya
| | - Jean-François Silvain
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France
| | - Bruno Le Ru
- Laboratoire Evolution, Génomes, Comportement et Ecologie, UMR CNRS 9191, IRD 247, Université. Paris-Sud, Université Paris-Saclay, 1 Avenue de la Terrasse, 91198 Gif sur Yvette, France.,icipe: African Insect Science for Food and Health, Duduville Campus, Kasarani, P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
40
|
Comeault AA, Serrato-Capuchina A, Turissini DA, McLaughlin PJ, David JR, Matute DR. A nonrandom subset of olfactory genes is associated with host preference in the fruit fly Drosophila orena. Evol Lett 2017; 1:73-85. [PMID: 30283640 PMCID: PMC6121841 DOI: 10.1002/evl3.7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Accepted: 03/27/2017] [Indexed: 12/18/2022] Open
Abstract
Specialization onto different host plants has been hypothesized to be a major driver of diversification in insects, and traits controlling olfaction have been shown to play a fundamental role in host preferences. A diverse set of olfactory genes control olfactory traits in insects, and it remains unclear whether specialization onto different hosts is likely to involve a nonrandom subset of these genes. Here, we test the role of olfactory genes in a novel case of specialization in Drosophila orena. We report the first population‐level sample of D. orena on the West African island of Bioko, since its initial collection in Cameroon in 1975, and use field experiments and behavioral assays to show that D. orena has evolved a strong preference for waterberry (Syzygium staudtii). We then show that a nonrandom subset of genes controlling olfaction‐–those controlling odorant‐binding and chemosensory proteins–‐have an enriched signature of positive selection relative to the rest of the D. orena genome. By comparing signatures of positive selection on olfactory genes between D. orena and its sister species, D. erecta we show that odorant‐binding and chemosensory have evidence of positive selection in both species; however, overlap in the specific genes with evidence of selection in these two classes is not greater than expected by chance. Finally, we use quantitative complementation tests to confirm a role for seven olfactory loci in D. orena’s preference for waterberry fruit. Together, our results suggest that D. orena and D. erecta have specialized onto different host plants through convergent evolution at the level of olfactory gene family, but not at specific olfactory genes.
Collapse
Affiliation(s)
- Aaron A Comeault
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| | | | - David A Turissini
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| | - Patrick J McLaughlin
- Department of Biology Drexel University Philadelphia Pennsylvania 19104.,Bioko Biodiversity Protection Program Bioko Island Equatorial Guinea
| | - Jean R David
- Laboratoire Evolution, Genomes, Speciation (LEGS) CNRS Gif sur Yvette Cedex France.,Université Paris-Sud Orsay Cedex France.,Département Systématique et Evolution Museum National d'Histoire Naturelle (MNHN) UMR 7205 (OSEB) Paris France
| | - Daniel R Matute
- Department of Biology University of North Carolina Chapel Hill North Carolina 27599
| |
Collapse
|
41
|
Orbach DN, Marshall CD, Mesnick SL, Würsig B. Patterns of cetacean vaginal folds yield insights into functionality. PLoS One 2017; 12:e0175037. [PMID: 28362830 PMCID: PMC5376333 DOI: 10.1371/journal.pone.0175037] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 03/20/2017] [Indexed: 11/18/2022] Open
Abstract
Complex foldings of the vaginal wall are unique to some cetaceans and artiodactyls and are of unknown function(s). The patterns of vaginal length and cumulative vaginal fold length were assessed in relation to body length and to each other in a phylogenetic context to derive insights into functionality. The reproductive tracts of 59 female cetaceans (20 species, 6 families) were dissected. Phylogenetically-controlled reduced major axis regressions were used to establish a scaling trend for the female genitalia of cetaceans. An unparalleled level of vaginal diversity within a mammalian order was found. Vaginal folds varied in number and size across species, and vaginal fold length was positively allometric with body length. Vaginal length was not a significant predictor of vaginal fold length. Functional hypotheses regarding the role of vaginal folds and the potential selection pressures that could lead to evolution of these structures are discussed. Vaginal folds may present physical barriers, which obscure the pathway of seawater and/or sperm travelling through the vagina. This study contributes broad insights to the evolution of reproductive morphology and aquatic adaptations and lays the foundation for future functional morphology analyses.
Collapse
Affiliation(s)
- Dara N. Orbach
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, Canada
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- * E-mail:
| | - Christopher D. Marshall
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America
| | - Sarah L. Mesnick
- Southwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, La Jolla, California, United States of America
| | - Bernd Würsig
- Department of Marine Biology, Texas A&M University at Galveston, Galveston, Texas, United States of America
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, Texas, United States of America
| |
Collapse
|
42
|
Yassin A. Drosophila yakuba mayottensis, a new model for the study of incipient ecological speciation. Fly (Austin) 2017; 11:37-45. [PMID: 27560369 DOI: 10.1080/19336934.2016.1221550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022] Open
Abstract
A full understanding of how ecological factors drive the fixation of genetic changes during speciation is obscured by the lack of appropriate models with clear natural history and powerful genetic toolkits. In a recent study, we described an early stage of ecological speciation in a population of the generalist species Drosophila yakuba (melanogaster subgroup) on the island of Mayotte (Indian Ocean). On this island, flies are strongly associated with the toxic fruits of noni (Morinda citrifolia) and show a partial degree of pre-zygotic reproductive isolation. Here, I mine the nuclear and mitochondrial genomes and provide a full morphological description of this population. Only 29 nuclear sites (< 4 × 10-7 of the genome) are fixed in this population and absent from 3 mainland populations and the closest relative D. santomea, but no mitochondrial or morphological character distinguish Mayotte flies from the mainland. This result indicates that physiological and behavioral traits may evolve faster than morphology at the early stages of speciation. Based on these differences, the Mayotte population is designated as a new subspecies, Drosophila yakuba mayottensis subsp. nov., and its strong potential in understanding the genetics of speciation and plant-insect interactions is discussed.
Collapse
Affiliation(s)
- Amir Yassin
- a Laboratory of Genetics , University of Wisconsin-Madison , Madison , WI , USA
| |
Collapse
|
43
|
Rhebergen FT, Courtier-Orgogozo V, Dumont J, Schilthuizen M, Lang M. Drosophila pachea asymmetric lobes are part of a grasping device and stabilize one-sided mating. BMC Evol Biol 2016; 16:176. [PMID: 27586247 PMCID: PMC5009675 DOI: 10.1186/s12862-016-0747-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/17/2016] [Indexed: 11/28/2022] Open
Abstract
Background Multiple animal species exhibit morphological asymmetries in male genitalia. In insects, left-right genital asymmetries evolved many times independently and have been proposed to appear in response to changes in mating position. However, little is known about the relationship between mating position and the interaction of male and female genitalia during mating, and functional analyses of asymmetric morphologies in genitalia are virtually non-existent. We investigated the relationship between mating position, asymmetric genital morphology and genital coupling in the fruit fly Drosophila pachea, in which males possess an asymmetric pair of external genital lobes and mate in an unusual right-sided position on top of the female. Results We examined D. pachea copulation by video recording and by scanning electron microscopy of genital complexes. We observed that the interlocking of male and female genital organs in D. pachea is remarkably different from genital coupling in the well-studied D. melanogaster. In D. pachea, the female oviscapt valves are asymmetrically twisted during copulation. The male’s asymmetric lobes tightly grasp the female’s abdomen in an asymmetric ‘locking’ position, with the left and right lobes contacting different female structures. The male anal plates, which grasp the female genitalia in D. melanogaster, do not contact the female in D. pachea. Experimental lobe amputation by micro-surgery and laser-ablation of lobe bristles led to aberrant coupling of genitalia and variable mating positions, in which the male was tilted towards the right side of the female. Conclusion We describe, for the first time, how the mating position depends on coupling of male and female genitalia in a species with asymmetric genitalia and one-sided mating position. Our results show that D. pachea asymmetric epandrial lobes do not act as a compensatory mechanism for the change from symmetric to one-sided mating position that occurred during evolution of D. pachea’s ancestors, but as holding devices with distinct specialized functions on the left and right sides. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0747-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Flor T Rhebergen
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands. .,Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, The Netherlands. .,Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands.
| | - Virginie Courtier-Orgogozo
- Team "Évolution des drosophiles", Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75013, Paris, France
| | - Julien Dumont
- Team "Division cellulaire et reproduction", Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75013, Paris, France
| | - Menno Schilthuizen
- Naturalis Biodiversity Center, Darwinweg 2, 2333 CR, Leiden, The Netherlands.,Institute Biology Leiden, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | - Michael Lang
- Team "Évolution des drosophiles", Institut Jacques Monod, CNRS, UMR 7592, Université Paris Diderot, Sorbonne Paris Cité, 15 rue Hélène Brion, 75013, Paris, France.
| |
Collapse
|
44
|
Richmond MP, Park J, Henry CS. The function and evolution of male and female genitalia in
Phyllophaga
Harris scarab beetles (Coleoptera: Scarabaeidae). J Evol Biol 2016; 29:2276-2288. [DOI: 10.1111/jeb.12955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 06/23/2016] [Accepted: 07/13/2016] [Indexed: 12/01/2022]
Affiliation(s)
- M. P. Richmond
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
- Division of Biological Sciences UC San Diego La Jolla New York CA USA
| | - J. Park
- Division of Biological Sciences UC San Diego La Jolla New York CA USA
- Institute for Genomic Medicine Columbia University New York NY USA
| | - C. S. Henry
- Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
| |
Collapse
|
45
|
Yassin A, Delaney EK, Reddiex AJ, Seher TD, Bastide H, Appleton NC, Lack JB, David JR, Chenoweth SF, Pool JE, Kopp A. The pdm3 Locus Is a Hotspot for Recurrent Evolution of Female-Limited Color Dimorphism in Drosophila. Curr Biol 2016; 26:2412-2422. [PMID: 27546577 DOI: 10.1016/j.cub.2016.07.016] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 06/24/2016] [Accepted: 07/08/2016] [Indexed: 12/30/2022]
Abstract
Sex-limited polymorphisms are an intriguing form of sexual dimorphism that offer unique opportunities to reconstruct the evolutionary changes that decouple male and female traits encoded by a shared genome. We investigated the genetic basis of a Mendelian female-limited color dimorphism (FLCD) that segregates in natural populations of more than 20 species of the Drosophila montium subgroup. In these species, females have alternative abdominal color morphs, light and dark, whereas males have only one color morph in each species. A comprehensive molecular phylogeny of the montium subgroup supports multiple origins of FLCD. Despite this, we mapped FLCD to the same locus in four distantly related species-the transcription factor POU domain motif 3 (pdm3), which acts as a repressor of abdominal pigmentation in D. melanogaster. In D. serrata, FLCD maps to a structural variant in the first intron of pdm3; however, this variant is not found in the three other species-D. kikkawai, D. leontia, and D. burlai-and sequence analysis strongly suggests the pdm3 alleles responsible for FLCD originated independently at least three times. We propose that cis-regulatory changes in pdm3 form sexually dimorphic and monomorphic alleles that segregate within species and are preserved, at least in one species, by structural variation. Surprisingly, pdm3 has not been implicated in the evolution of sex-specific pigmentation outside the montium subgroup, suggesting that the genetic paths to sexual dimorphism may be constrained within a clade but variable across clades.
Collapse
Affiliation(s)
- Amir Yassin
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53705, USA
| | - Emily K Delaney
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA
| | - Adam J Reddiex
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Thaddeus D Seher
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA; Department of Quantitative and Systems Biology, University of California, Merced, 5200 North Lake Road, Merced, CA 95343, USA
| | - Héloïse Bastide
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53705, USA
| | - Nicholas C Appleton
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - Justin B Lack
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53705, USA
| | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), CNRS, IRD, Université Paris Sud, Université Paris-Saclay, 91198 Gif-sur-Yvette, France
| | - Stephen F Chenoweth
- School of Biological Sciences, University of Queensland, St. Lucia, Brisbane 4072, Australia
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, 425-G Henry Mall, Madison, WI 53705, USA.
| | - Artyom Kopp
- Department of Evolution and Ecology, University of California, Davis, 1 Shields Avenue, Davis, CA 95616, USA.
| |
Collapse
|
46
|
Studying Genital Coevolution to Understand Intromittent Organ Morphology. Integr Comp Biol 2016; 56:669-81. [DOI: 10.1093/icb/icw018] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
47
|
Kamimura Y. Significance of constraints on genital coevolution: Why do femaleDrosophilaappear to cooperate with males by accepting harmful matings? Evolution 2016; 70:1674-83. [DOI: 10.1111/evo.12955] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2015] [Revised: 04/28/2016] [Accepted: 05/07/2016] [Indexed: 02/05/2023]
|
48
|
Yassin A. Unresolved questions in genitalia coevolution: bridging taxonomy, speciation, and developmental genetics. ORG DIVERS EVOL 2016. [DOI: 10.1007/s13127-016-0286-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
49
|
Hopwood PE, Head ML, Jordan EJ, Carter MJ, Davey E, Moore AJ, Royle NJ. Selection on an antagonistic behavioral trait can drive rapid genital coevolution in the burying beetle, Nicrophorus vespilloides. Evolution 2016; 70:1180-8. [PMID: 27144373 PMCID: PMC5089618 DOI: 10.1111/evo.12938] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2015] [Revised: 03/21/2016] [Accepted: 04/12/2016] [Indexed: 01/14/2023]
Abstract
Male and female genital morphology varies widely across many taxa, and even among populations. Disentangling potential sources of selection on genital morphology is problematic because each sex is predicted to respond to adaptations in the other due to reproductive conflicts of interest. To test how variation in this sexual conflict trait relates to variation in genital morphology we used our previously developed artificial selection lines for high and low repeated mating rates. We selected for high and low repeated mating rates using monogamous pairings to eliminate contemporaneous female choice and male-male competition. Male and female genital shape responded rapidly to selection on repeated mating rate. High and low mating rate lines diverged from control lines after only 10 generations of selection. We also detected significant patterns of male and female genital shape coevolution among selection regimes. We argue that because our selection lines differ in sexual conflict, these results support the hypothesis that sexually antagonistic coevolution can drive the rapid divergence of genital morphology. The greatest divergence in morphology corresponded with lines in which the resolution of sexual conflict over mating rate was biased in favor of male interests.
Collapse
Affiliation(s)
- Paul E Hopwood
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom
| | - Megan L Head
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom.,Division of Evolution, Ecology and Genetics, Research School of Biology, Australian National University, Acton, ACT, 0200, Australia
| | - Eleanor J Jordan
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom
| | - Mauricio J Carter
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom.,Centro Nacional del Medio Ambiente. Fundación de la Universidad de Chile, Av. Larrain 9975, La Reina, Santiago, Chile
| | - Emma Davey
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom
| | - Allen J Moore
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom.,Department of Genetics, University of Georgia, Athens, Georgia, 30602
| | - Nick J Royle
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, TR10 9FE, United Kingdom.
| |
Collapse
|
50
|
Yassin A, Bastide H, Chung H, Veuille M, David JR, Pool JE. Ancient balancing selection at tan underlies female colour dimorphism in Drosophila erecta. Nat Commun 2016; 7:10400. [PMID: 26778363 PMCID: PMC4735637 DOI: 10.1038/ncomms10400] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2015] [Accepted: 12/08/2015] [Indexed: 12/30/2022] Open
Abstract
Dimorphic traits are ubiquitous in nature, but the evolutionary factors leading to dimorphism are largely unclear. We investigate a potential case of sexual mimicry in Drosophila erecta, in which females show contrasting resemblance to males. We map the genetic basis of this sex-limited colour dimorphism to a region containing the gene tan. We find a striking signal of ancient balancing selection at the ‘male-specific enhancer' of tan, with exceptionally high sequence divergence between light and dark alleles, suggesting that this dimorphism has been adaptively maintained for millions of years. Using transgenic reporter assays, we confirm that these enhancer alleles encode expression differences that are predicted to generate this pigmentation dimorphism. These results are compatible with the theoretical prediction that divergent phenotypes maintained by selection can evolve simple genetic architectures. Sexual dimorphism is common in nature. Here, the authors combine population genetics and functional experiments to show that a region containing the gene tan contributes to sex-limited colour dimorphism in Drosophila erecta and that this dimorphism has likely been adaptively maintained for millions of years.
Collapse
Affiliation(s)
- Amir Yassin
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Héloïse Bastide
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Henry Chung
- Howard Hughes Medical Institute and Laboratory of Molecular Biology, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Michel Veuille
- Institut Systématique Evolution Biodiversité ISYEB-UMR 7205-CNRS-MNHN-UPMC-EPHE, Ecole Pratique des Hautes Etudes, Paris-Sciences-Lettres, Paris 75005, France
| | - Jean R David
- Laboratoire Evolution, Génomes, Comportement, Ecologie (EGCE), CNRS, IRD, University of Paris-Sud, Université Paris-Saclay, Gif-sur-Yvette 91198, France
| | - John E Pool
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|