1
|
Green JR, Mahalingaiah PKS, Gopalakrishnan SM, Liguori MJ, Mittelstadt SW, Blomme EAG, Van Vleet TR. Off-target pharmacological activity at various kinases: Potential functional and pathological side effects. J Pharmacol Toxicol Methods 2023; 123:107468. [PMID: 37553032 DOI: 10.1016/j.vascn.2023.107468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/16/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
In drug discovery, during the lead optimization and candidate characterization stages, novel small molecules are frequently evaluated in a battery of in vitro pharmacology assays to identify potential unintended, off-target interactions with various receptors, transporters, ion channels, and enzymes, including kinases. Furthermore, these screening panels may also provide utility at later stages of development to provide a mechanistic understanding of unexpected safety findings. Here, we present a compendium of the most likely functional and pathological outcomes associated with interaction(s) to a panel of 95 kinases based on an extensive curation of the scientific literature. This panel of kinases was designed by AbbVie based on safety-related data extracted from the literature, as well as from over 20 years of institutional knowledge generated from discovery efforts. For each kinase, the scientific literature was reviewed using online databases and the most often reported functional and pathological effects were summarized. This work should serve as a practical guide for small molecule drug discovery scientists and clinical investigators to predict and/or interpret adverse effects related to pharmacological interactions with these kinases.
Collapse
Affiliation(s)
- Jonathon R Green
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States.
| | | | - Sujatha M Gopalakrishnan
- Drug Discovery Science and Technology, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Michael J Liguori
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Scott W Mittelstadt
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Eric A G Blomme
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| | - Terry R Van Vleet
- Departments of Preclinical Safety, AbbVie, 1 North Waukegan Road, North Chicago, IL 60064, United States
| |
Collapse
|
2
|
Chen Y, Singh R, Lin N, Taylor V, Masuda ES, Payan DG. Discovery of 5-Aryl-2,4-diaminopyrimidine Compounds as Potent and Selective IRAK4 Inhibitors. ACS Med Chem Lett 2022; 13:714-719. [PMID: 35450353 PMCID: PMC9014513 DOI: 10.1021/acsmedchemlett.2c00056] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/29/2022] [Indexed: 12/17/2022] Open
Abstract
IRAK4 kinase plays a key role in TLR/IL-1R signaling pathways that regulate innate immune responses, and if uncontrolled, it is responsible for various inflammatory disorders. By high-throughput screening (HTS) and hit-to-lead optimization, compounds with a 5-aryl-2,4-diaminopyrimidine core structure have been identified as potent IRAK4 inhibitors. A cocrystal structure of IRAK4 protein with an early lead molecule helped with understanding the structure-activity relationship and the design of the new compounds. Initial HTS hits from this series of compounds were also found to inhibit TAK1 kinase, which would cause liver toxicity and potentially bone marrow failure. Optimization of this series resulted in improved selectivity over TAK1 kinase. The TAK1 selectivity was found to be closely associated with different sizes and types of substituents at the 5-position of the pyrimidine. The impact of other pyrimidine substituents on the potency and selectivity was also explored. A few representative compounds were evaluated in IL-1β-induced IL-6 inhibition animal model studies and showed modest efficacy.
Collapse
Affiliation(s)
- Yan Chen
- Rigel Pharmaceuticals Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Rajinder Singh
- Rigel Pharmaceuticals Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Nan Lin
- Rigel Pharmaceuticals Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Vanessa Taylor
- Rigel Pharmaceuticals Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Esteban S. Masuda
- Rigel Pharmaceuticals Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, United States
| | - Donald G. Payan
- Rigel Pharmaceuticals Inc., 1180 Veterans Boulevard, South San Francisco, California 94080, United States
| |
Collapse
|
3
|
Lee Y, Wessel AW, Xu J, Reinke JG, Lee E, Kim SM, Hsu AP, Zilberman-Rudenko J, Cao S, Enos C, Brooks SR, Deng Z, Lin B, de Jesus AA, Hupalo DN, Piotto DG, Terreri MT, Dimitriades VR, Dalgard CL, Holland SM, Goldbach-Mansky R, Siegel RM, Hanson EP. Genetically programmed alternative splicing of NEMO mediates an autoinflammatory disease phenotype. J Clin Invest 2022; 132:128808. [PMID: 35289316 PMCID: PMC8920334 DOI: 10.1172/jci128808] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Host defense and inflammation are regulated by the NF-κB essential modulator (NEMO), a scaffolding protein with a broad immune cell and tissue expression profile. Hypomorphic mutations in inhibitor of NF-κB kinase regulatory subunit gamma (IKBKG) encoding NEMO typically present with immunodeficiency. Here, we characterized a pediatric autoinflammatory syndrome in 3 unrelated male patients with distinct X-linked IKBKG germline mutations that led to overexpression of a NEMO protein isoform lacking the domain encoded by exon 5 (NEMO-Δex5). This isoform failed to associate with TANK binding kinase 1 (TBK1), and dermal fibroblasts from affected patients activated NF-κB in response to TNF but not TLR3 or RIG-I–like receptor (RLR) stimulation when isoform levels were high. By contrast, T cells, monocytes, and macrophages that expressed NEMO-Δex5 exhibited increased NF-κB activation and IFN production, and blood cells from these patients expressed a strong IFN and NF-κB transcriptional signature. Immune cells and TNF-stimulated dermal fibroblasts upregulated the inducible IKK protein (IKKi) that was stabilized by NEMO-Δex5, promoting type I IFN induction and antiviral responses. These data revealed how IKBKG mutations that lead to alternative splicing of skipping exon 5 cause a clinical phenotype we have named NEMO deleted exon 5 autoinflammatory syndrome (NDAS), distinct from the immune deficiency syndrome resulting from loss-of-function IKBKG mutations.
Collapse
Affiliation(s)
- Younglang Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Alex W Wessel
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Jiazhi Xu
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Julia G Reinke
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| | - Eries Lee
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Somin M Kim
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Amy P Hsu
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Jevgenia Zilberman-Rudenko
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Sha Cao
- Department of Biostatistics, Indiana University, School of Medicine, Indianapolis, Indiana, USA
| | - Clinton Enos
- Immunodeficiency and Inflammatory Disease Unit and.,Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA
| | - Stephen R Brooks
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Zuoming Deng
- Biodata Mining and Discovery Section, Office of Science and Technology, NIAMS and
| | - Bin Lin
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Adriana A de Jesus
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Daniel N Hupalo
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Daniela Gp Piotto
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Maria T Terreri
- Escola Paulista de Medicina/Universidade Federal de São Paulo, São Paulo, Brazil
| | - Victoria R Dimitriades
- Division of Infectious Diseases, Immunology & Allergy University of California Davis Health, Sacramento, California, USA
| | - Clifton L Dalgard
- The American Genome Center, Collaborative Health Initiative Research Program, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA.,Department of Anatomy, Physiology & Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland, USA
| | - Steven M Holland
- Immunopathogenesis Section, Laboratory of Clinical Immunology and Microbiology (LCIM), National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Raphaela Goldbach-Mansky
- Translational Autoinflammatory Diseases Section (TADS), LCIM, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, Maryland, USA
| | - Richard M Siegel
- Immunoregulation Section, Autoimmunity Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases (NIAMS), NIH, Bethesda, Maryland, USA.,Novartis Institutes for BioMedical Research WSJ, Basel, Switzerland
| | - Eric P Hanson
- Indiana University School of Medicine, Wells Center for Pediatric Research, Indianapolis, Indiana, USA
| |
Collapse
|
4
|
Wang X, Guo D, Li W, Zhang Q, Jiang Y, Wang Q, Li C, Qiu Q, Wang Y. Danshen (Salvia miltiorrhiza) restricts MD2/TLR4-MyD88 complex formation and signalling in acute myocardial infarction-induced heart failure. J Cell Mol Med 2020; 24:10677-10692. [PMID: 32757377 PMCID: PMC7521313 DOI: 10.1111/jcmm.15688] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/17/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022] Open
Abstract
Heart failure (HF) represents a major public health burden. Inflammation has been shown to be a critical factor in the progression of HF, regardless of the aetiology. Disappointingly, the majority of clinical trials targeting aspects of inflammation in patients with HF have been largely negative. Many clinical researches demonstrate that danshen has a good efficacy on HF, and however, whether danshen exerts anti‐inflammatory effects against HF remains unclear. In our study, the employment of a water extracted and alcohol precipitated of danshen extract attenuated cardiac dysfunction and inflammation response in acute myocardial infarction‐induced HF rats. Transcriptome technique and validation results revealed that TLR4 signalling pathway was involved in the anti‐inflammation effects of danshen. In vitro, danshen reduced the release of inflammatory mediators in LPS‐stimulated RAW264.7 macrophage cells. Besides, the LPS‐stimulated macrophage conditioned media was applied to induce cardiac H9C2 cells injury, which could be attenuated by danshen. Furtherly, knock‐down and overexpression of TLR4 were utilized to confirm that danshen ameliorated inflammatory injury via MyD88‐dependent TLR4‐TRAF6‐NF‐κB signalling pathway in cardiomyocytes. Furthermore, by utilizing co‐immunoprecipitation, danshen was proved to suppress MD2/TLR4 complex formation and MyD88 recruitment. In conclusion, our results demonstrated that danshen ameliorates inflammatory injury by controlling MD2/TLR4‐MyD88 complex formation and TLR4‐TRAF6‐NF‐κB signalling pathway in acute myocardial infarction‐induced HF.
Collapse
Affiliation(s)
- Xiaoping Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Dongqing Guo
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Weili Li
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qian Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yanyan Jiang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Qiyan Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China
| | - Chun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qi Qiu
- Department of Pharmacy, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Yong Wang
- School of Life Science, Beijing University of Chinese Medicine, Beijing, China.,School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
5
|
Watson CJF, Maguire ARR, Rouillard MM, Crozier RWE, Yousef M, Bruton KM, Fajardo VA, MacNeil AJ. TAK1 signaling activity links the mast cell cytokine response and degranulation in allergic inflammation. J Leukoc Biol 2020; 107:649-661. [PMID: 32108376 DOI: 10.1002/jlb.2a0220-401rrr] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 12/23/2022] Open
Abstract
Mast cells drive the inappropriate immune response characteristic of allergic inflammatory disorders via release of pro-inflammatory mediators in response to environmental cues detected by the IgE-FcεRI complex. The role of TGF-β-activated kinase 1 (TAK1), a participant in related signaling in other contexts, remains unknown in allergy. We detect novel activation of TAK1 at Ser412 in response to IgE-mediated activation under SCF-c-kit potentiation in a mast cell-driven response characteristic of allergic inflammation, which is potently blocked by TAK1 inhibitor 5Z-7-oxozeaenol (OZ). We, therefore, interrogated the role of TAK1 in a series of mast cell-mediated responses using IgE-sensitized murine bone marrow-derived mast cells, stimulated with allergen under several TAK1 inhibition strategies. TAK1 inhibition by OZ resulted in significant impairment in the phosphorylation of MAPKs p38, ERK, and JNK; and mediation of the NF-κB pathway via IκBα. Impaired gene expression and near abrogation in release of pro-inflammatory cytokines TNF, IL-6, IL-13, and chemokines CCL1, and CCL2 was detected. Finally, a significant inhibition of mast cell degranulation, accompanied by an impairment in calcium mobilization, was observed in TAK1-inhibited cells. These results suggest that TAK1 acts as a signaling node, not only linking the MAPK and NF-κB pathways in driving the late-phase response, but also initiation of the degranulation mechanism of the mast cell early-phase response following allergen recognition and may warrant consideration in future therapeutic development.
Collapse
Affiliation(s)
- Colton J F Watson
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Aindriu R R Maguire
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Melissa M Rouillard
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Robert W E Crozier
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Michael Yousef
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Kelly M Bruton
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Val A Fajardo
- Department of Kinesiology, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| | - Adam J MacNeil
- Department of Health Sciences, Faculty of Applied Health Sciences, Cairns Family Health and Bioscience Research Complex, Brock University, Niagara Region, Ontario, Canada
| |
Collapse
|
6
|
Lee SCW, North K, Kim E, Jang E, Obeng E, Lu SX, Liu B, Inoue D, Yoshimi A, Ki M, Yeo M, Zhang XJ, Kim MK, Cho H, Chung YR, Taylor J, Durham BH, Kim YJ, Pastore A, Monette S, Palacino J, Seiler M, Buonamici S, Smith PG, Ebert BL, Bradley RK, Abdel-Wahab O. Synthetic Lethal and Convergent Biological Effects of Cancer-Associated Spliceosomal Gene Mutations. Cancer Cell 2018; 34:225-241.e8. [PMID: 30107174 PMCID: PMC6373472 DOI: 10.1016/j.ccell.2018.07.003] [Citation(s) in RCA: 142] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Revised: 04/25/2018] [Accepted: 07/12/2018] [Indexed: 02/07/2023]
Abstract
Mutations affecting RNA splicing factors are the most common genetic alterations in myelodysplastic syndrome (MDS) patients and occur in a mutually exclusive manner. The basis for the mutual exclusivity of these mutations and how they contribute to MDS is not well understood. Here we report that although different spliceosome gene mutations impart distinct effects on splicing, they are negatively selected for when co-expressed due to aberrant splicing and downregulation of regulators of hematopoietic stem cell survival and quiescence. In addition to this synthetic lethal interaction, mutations in the splicing factors SF3B1 and SRSF2 share convergent effects on aberrant splicing of mRNAs that promote nuclear factor κB signaling. These data identify shared consequences of splicing-factor mutations and the basis for their mutual exclusivity.
Collapse
Affiliation(s)
- Stanley Chun-Wei Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Khrystyna North
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop: M1-B514, Seattle, WA 98109-1024, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Eunhee Kim
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Eunjung Jang
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Esther Obeng
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Sydney X Lu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Bo Liu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Daichi Inoue
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Akihide Yoshimi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Michelle Ki
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Mirae Yeo
- School of Life Sciences, Ulsan National Institute of Science and Technology, Ulsan, Republic of Korea
| | - Xiao Jing Zhang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Min Kyung Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Hana Cho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Young Rock Chung
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Justin Taylor
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Benjamin H Durham
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Young Joon Kim
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Alessandro Pastore
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA
| | - Sebastien Monette
- Laboratory of Comparative Pathology, Memorial Sloan Kettering Cancer Center, Weill Cornell Medicine, The Rockefeller University, New York, NY, USA
| | | | | | | | | | - Benjamin L Ebert
- Division of Hematology, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Robert K Bradley
- Computational Biology Program, Public Health Sciences Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop: M1-B514, Seattle, WA 98109-1024, USA; Basic Sciences Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA; Department of Genome Sciences, University of Washington, Seattle, WA, USA.
| | - Omar Abdel-Wahab
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, Zuckerman 701, 408 East 69(th) Street, New York, NY 10065, USA; Leukemia Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
7
|
Hsieh CS, Chuang JH, Chou MH, Kao YH. Dexamethasone restores transforming growth factor-β activated kinase 1 expression and phagocytosis activity of Kupffer cells in cholestatic liver injury. Int Immunopharmacol 2018; 56:310-319. [PMID: 29414666 DOI: 10.1016/j.intimp.2018.01.047] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 01/10/2018] [Accepted: 01/30/2018] [Indexed: 12/13/2022]
Abstract
The role of transforming growth factor-β activated kinase 1 (TAK1) in modulating the function of Kupffer cells (KCs) within cholestatic livers remains unclear. This study examined the immunopharmacological action of dexamethasone (DEX) in modulating hepatic TAK1 expression and related signaling activity in a rat model of bile duct ligation-mimicked obstructive jaundice. The in vitro effects of DEX on porcine biliary extract (PBE)-modulated gene expression and phagocytosis of KCs were examined using a rat alveolar macrophage cell line (NR8383 cells). Although DEX therapy did not restore the downregulated TAK1 expression and phosphorylation, it significantly attenuated the upregulation of high-mobility group box 1 expression and caspase-3 activation in whole liver extracts of cholestatic rats, possibly via enhancing extracellular signal-regulated kinase-mediated signaling. Dual immunofluorescence staining of cholestatic livers and western detection on primary KCs isolated from cholestatic livers identified that DEX treatment indeed increased both the expression and phosphorylation levels of TAK1 in the KCs of cholestatic livers. In vitro studies using alveolar NR8383 macrophages with KC-characteristic gene expression further demonstrated that DEX not only repressed the pro-inflammatory cytokine production including with respect to interleukin (IL)-1β and IL-6, but also enhanced gene expression of TAK1 and a phagocytic marker, natural-resistance-associated macrophage protein 1, under PBE-mimicked cholestatic conditions. However, WST-1 assay showed that DEX did not protect NR8383 macrophages against the PBE-induced cytotoxicity. Immunofluorescence visualization of cellular F-actin by phalloidin suggested that DEX sustained the PBE-induced phagocytosis morphology of NR8383 macrophages. In conclusion, DEX treatment may pharmacologically restore the expression and activity of TAK1 in KCs, and sustain the phagocytic phenotype of KCs in cholestatic livers.
Collapse
Affiliation(s)
- Chih-Sung Hsieh
- Department of Pediatric Surgery and Department of Teaching & Research, Pu-Li Christian Hospital, Nantou, Taiwan; Department of Applied Chemistry, National Chi-Nan University, Nantou, Taiwan
| | - Jiin-Haur Chuang
- Department of Surgery, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Ming-Huei Chou
- Graduate Institute of Clinical Medical Sciences, Chang Gung University College of Medicine, Kaohsiung, Taiwan; Center for General Education, Cheng-Shiu University, Kaohsiung, Taiwan.
| | - Ying-Hsien Kao
- Department of Medical Research, E-Da Hospital, Kaohsiung, Taiwan.
| |
Collapse
|
8
|
Zandian A, Forsström B, Häggmark-Månberg A, Schwenk JM, Uhlén M, Nilsson P, Ayoglu B. Whole-Proteome Peptide Microarrays for Profiling Autoantibody Repertoires within Multiple Sclerosis and Narcolepsy. J Proteome Res 2017; 16:1300-1314. [DOI: 10.1021/acs.jproteome.6b00916] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Arash Zandian
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Björn Forsström
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Anna Häggmark-Månberg
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Jochen M. Schwenk
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Mathias Uhlén
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Peter Nilsson
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| | - Burcu Ayoglu
- Affinity Proteomics, SciLifeLab,
School of Biotechnology, KTH - Royal Institute of Technology, SE-171 21 Solna, Sweden
| |
Collapse
|
9
|
Abstract
The mitogen activated protein kinase kinase kinase transforming growth factor-β-activated kinase 1 (TAK1) has emerged as an interesting therapeutic target for inflammatory diseases and cancer. TAK1 is a tightly regulated kinase that represents a key signaling node in cellular responses to inflammatory stimuli, modulating both expression of inflammatory mediators and cell death. The first inhibitors described for TAK1 exploit the active site cysteine residue found in this kinase, but more recently both type I ATP hinge-binding inhibitors and type II DFG-out inhibitors have been described. This article will review the emerging role of TAK1 kinase in inflammation, the current state of the art for small molecule inhibitor development and opportunities for chemical biology approaches.
Collapse
|