1
|
Moore JL, Parks SJ, James ER, Aston KI, Jenkins TG. The impact of air pollution on sperm DNA methylation. Reprod Toxicol 2025; 132:108850. [PMID: 39894374 DOI: 10.1016/j.reprotox.2025.108850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 01/16/2025] [Accepted: 01/30/2025] [Indexed: 02/04/2025]
Abstract
A number of environmental factors have been shown to impact the sperm epigenome. Air pollution is one of the largest health and environmental hazards in the world today and has been implicated in many modern diseases. Recently, air pollution has been shown to alter methylation signatures in some body tissues, indicating that air pollution may also affect the sperm epigenome. The present experiment was conducted to analyze how seasonal air pollution in the Salt Lake Valley may impact DNA methylation patterns in sperm and to establish a relationship between air pollution and sperm epigenetic health as measured by DNA methylation. Sperm DNA methylation patterns were assessed in 74 individuals, who presented at the University of Utah Andrology Clinic for semen analysis, using the Illumina Human MethylationEPIC BeadChip array. Each semen sample collected, as per the fifth edition of WHO reference values for human semen characterization, was deemed normal. Two sample groups from the Salt Lake Valley, Urban Winter (UW, n = 20), Urban Summer (US, n = 21), and two sample groups east of the Wasatch mountains, Rural Winter (RW, n = 19) and Rural Summer (RS, n = 14), were compared to assess the effect of air pollution on sperm DNA methylation patterns. Due to seasonal inversions, urban winters are characterized by increased air pollution compared to summer months. Therefore, the UW sample group was designated as treatment and the three remaining groups (US, RW, RS) were designated as control. We conducted multiple differential methylation analyses using a sliding window approach which utilized the USeq software package. A sliding window analysis of UW versus US was conducted first, followed by a confirmatory analysis comparing UW versus RW and RS. Outputs from the USeq analysis were assessed using several tools including the Stanford GREAT analysis and an analysis of methylation instability at key promoter regions in sperm. The sliding window analysis identified six differentially methylated regions (DMRs) between the UW and US groups (Wilcoxon FDR ≥ 40, corresponding p-value of ∼0.0001). Three of these six regions were confirmed with the second confirmatory analysis of UW versus RS/RW (Wilcoxon FDR ≥ 20, p-value<0.01). According to a GREAT analysis, each of the identified regions exhibited multiple gene ontology associations. Air pollution subtly alters DNA methylation in sperm, indicating that certain regions of the sperm epigenome may be susceptible to air pollution-induced modification with possible implications for reproductive and offspring health.
Collapse
Affiliation(s)
- Jordan L Moore
- Brigham Young University, Department of Cell Biology and Physiology, 4005 Life Sciences Building (LSB), Provo, UT 84602, United States.
| | - Seth J Parks
- Brigham Young University, Department of Cell Biology and Physiology, 4005 Life Sciences Building (LSB), Provo, UT 84602, United States.
| | - Emma R James
- University of Utah School of Medicine, Department of Surgery, Division of Urology, 30 N Mario Capecchi Drive, Salt Lake City, UT 84112, United States
| | - Kenneth I Aston
- University of Utah School of Medicine, Department of Surgery, Division of Urology, 30 N Mario Capecchi Drive, Salt Lake City, UT 84112, United States.
| | - Timothy G Jenkins
- Brigham Young University, Department of Cell Biology and Physiology, 4005 Life Sciences Building (LSB), Provo, UT 84602, United States.
| |
Collapse
|
2
|
Zhang Y, He Z, Hu Q, Liu H, Wen R, Ru N, Yu J, Lv S, Tao R. MiR-3571 modulates traumatic brain injury by regulating the PI3K/AKT signaling pathway via Fbxo31. Cell Biochem Biophys 2024; 82:3629-3643. [PMID: 39080190 DOI: 10.1007/s12013-024-01452-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/19/2024] [Indexed: 11/20/2024]
Abstract
To investigate the effect of miR-3571 on traumatic brain injury (TBI) via the regulation of neuronal apoptosis through F-box-only protein 31/phosphoinositide 3-kinase/protein kinase B (Fbxo31/PI3K/AKT). We established TBI rat and cell models. Hematoxylin‒eosin (HE) and Nissl staining were used to observe brain injury and the number of Nissl bodies, respectively. Cell proliferation and apoptosis were assessed by 5-ethynyl-2'-deoxyuridine (EdU), terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling (TUNEL), and flow cytometry. Gene and protein expression was measured via reverse transcription quantitative polymerase chain reaction (RT‒qPCR), Western blotting, and enzyme-linked immunosorbent assay (ELISA). In this study, miR-3571 was highly expressed in TBI models. Inhibition of miR-3571 expression can suppress autophagy, reduce the expression of proinflammatory cytokines, and reduce neuronal apoptosis, thus alleviating the pathological conditions of tissue congestion, edema and structural damage after TBI. These experiments demonstrated that miR-3571 could target and regulate the level of Fbxo31. Knockdown of Fbxo31 weakened the remission effect of the miR-3571 inhibitor on TBI and promoted neurological damage; moreover, overexpression of Fbxo31 enhanced the protective effect on neural function, whereas the PI3K/AKT pathway inhibitor LY294002 increased the damage caused by miR-3571 on neural function and weakened the protective effect of Fbxo31. In conclusion, miR-3571 regulates the PI3K/AKT signaling pathway by reducing Fbxo31 expression, promotes neuronal apoptosis and exacerbates TBI.
Collapse
Affiliation(s)
- Yang Zhang
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Zongying He
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Qiongfang Hu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Huali Liu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Rongai Wen
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Na Ru
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Jinghua Yu
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Shaokun Lv
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China
| | - Rui Tao
- Department of Rehabilitation Medicine, Qujing No.1 Hospital, Qujing, 655000, Yunnan, China.
| |
Collapse
|
3
|
Clarin JD, Bouras NN, Gao WJ. Genetic Diversity in Schizophrenia: Developmental Implications of Ultra-Rare, Protein-Truncating Mutations. Genes (Basel) 2024; 15:1214. [PMID: 39336805 PMCID: PMC11431303 DOI: 10.3390/genes15091214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 09/06/2024] [Accepted: 09/10/2024] [Indexed: 09/30/2024] Open
Abstract
The genetic basis of schizophrenia (SZ) remains elusive despite its characterization as a highly heritable disorder. This incomplete understanding has led to stagnation in therapeutics and treatment, leaving many suffering with insufficient relief from symptoms. However, recent large-cohort genome- and exome-wide association studies have provided insights into the underlying genetic machinery. The scale of these studies allows for the identification of ultra-rare mutations that confer substantial disease risk, guiding clinicians and researchers toward general classes of genes that are central to SZ etiology. One such large-scale collaboration effort by the Schizophrenia Exome Sequencing Meta-Analysis consortium identified ten, high-risk, ultra-rare, protein-truncating variants, providing the clearest picture to date of the dysfunctional gene products that substantially increase risk for SZ. While genetic studies of SZ provide valuable information regarding "what" genes are linked with the disorder, it is an open question as to "when" during brain development these genetic mutations impose deleterious effects. To shed light on this unresolved aspect of SZ etiology, we queried the BrainSpan developmental mRNA expression database for these ten high-risk genes and discovered three general expression trajectories throughout pre- and postnatal brain development. The elusiveness of SZ etiology, we infer, is not only borne out of the genetic heterogeneity across clinical cases, but also in our incomplete understanding of how genetic mutations perturb neurodevelopment during multiple critical periods. We contextualize this notion within the National Institute of Mental Health's Research Domain Criteria framework and emphasize the utility of considering both genetic variables and developmental context in future studies.
Collapse
Affiliation(s)
- Jacob D Clarin
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Nadia N Bouras
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| | - Wen-Jun Gao
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, Philadelphia, PA 19129, USA
| |
Collapse
|
4
|
Zhao F, Yan L, Zhao X, Wu J, Fang Y, Xin Z, Wang H, Yang X. Aberrantly High FBXO31 Impairs Oocyte Quality in Premature Ovarian Insufficiency. Aging Dis 2024; 15:804-823. [PMID: 37611899 PMCID: PMC10917549 DOI: 10.14336/ad.2023.0809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023] Open
Abstract
Premature ovarian insufficiency (POI), which is defined as loss of ovarian function that occurs before the age of 40, causes menstrual disturbances, infertility, and diverse health problems in females. Despite the limited understanding of the molecular basis underlying POI pathology, we had previously demonstrated that the cooperation of miR-106a and FBXO31 plays a pivotal role in diminished ovarian reserve (DOR), with FBXO31 serving as a putative target of miR-106a. In this study, we found that FBXO31 is aberrantly expressed in granulosa cells of POI patients, leading to accumulated reactive oxygen species (ROS) and cell apoptosis via the p53/ROS pathway. Furthermore, our results demonstrated that high levels of FBXO31 in mouse ovaries impair oocyte quality. Our study revealed that FBXO31 may serve as a novel indicator and play a significant role in the etiology of POI.
Collapse
Affiliation(s)
- Feiyan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
- Beijing Maternal and Child Health Care Hospital, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Department of Obstetrics and Gynecology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China.
| | - Long Yan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Xuehan Zhao
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
- Beijing Maternal and Child Health Care Hospital, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Jiaqi Wu
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
- Beijing Maternal and Child Health Care Hospital, Beijing, China.
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Ying Fang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
- Beijing Maternal and Child Health Care Hospital, Beijing, China.
| | - Zhimin Xin
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
- Beijing Maternal and Child Health Care Hospital, Beijing, China.
| | - Hongmei Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China.
| | - Xiaokui Yang
- Department of Human Reproductive Medicine, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing, China.
- Beijing Maternal and Child Health Care Hospital, Beijing, China.
| |
Collapse
|
5
|
Zhu Z, Zheng Y, He H, Yang L, Yang J, Li M, Dai W, Huang H. FBXO31 sensitizes cancer stem cells-like cells to cisplatin by promoting ferroptosis and facilitating proteasomal degradation of GPX4 in cholangiocarcinoma. Liver Int 2022; 42:2871-2888. [PMID: 36269678 DOI: 10.1111/liv.15462] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 12/12/2022]
Abstract
BACKGROUND & AIMS Cholangiocarcinoma (CCA) is a malignant tumour originating from the biliary epithelium that easily infiltrates, metastasizes and recurs. The deficiency of FBXO31 facilitates the initiation and progression of several types of cancer. However, the involvement of FBXO31 in CCA progression has remained unclear. METHODS qRT-PCR was used to detect the expression of FBXO31 in CCA. The biological functions of FBXO31 were confirmed in vivo and in vitro. Sphere formation and flow cytometry were used to identify the stem cell properties of CCA. RESULTS FBXO31 is downregulated in CCA and that deficiency of FBXO31 is associated with the TNM stage of CCA. Functional studies showed FBXO31 inhibits cell growth, migration, invasion, cancer stem cell (CSC) properties and epithelial-mesenchymal transition (EMT) in vitro and impedes tumour growth in vivo. In addition, overexpression of FBXO31 increases the cisplatin (CDDP) sensitivity of CCA cells. RNA-sequencing analysis revealed that FBXO31 is involved in redox biology and metal ion metabolism in CCA cells during CDDP treatment. Further studies revealed that FBXO31 enhances ferroptosis induced by CDDP in CCA and CSC-like cells. FBXO31 enhances ubiquitination of glutathione peroxidase 4 (GPX4), which leads to proteasomal degradation of GPX4. Moreover, overexpression of GPX4 compromises the promoting effects of FBXO31 on CDDP-induced ferroptosis in CCA and CSC-like cells. CONCLUSIONS Our studies indicate that FBXO31 functions as a tumour suppressor in CCA and sensitizes CSC-like cells to CDDP by promoting ferroptosis and facilitating the proteasomal degradation of GPX4.
Collapse
Affiliation(s)
- Zhiwen Zhu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Yang Zheng
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Huijuan He
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Liangfang Yang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jiaqi Yang
- Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Mingyi Li
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Dai
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Haili Huang
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Institution of Plastic Surgery, The Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
6
|
Michelson M, Lidzbarsky G, Nishri D, Israel-Elgali I, Berger R, Gafner M, Shomron N, Lev D, Goldberg Y. Microdeletion of 16q24.1-q24.2-A unique etiology of Lymphedema-Distichiasis syndrome and neurodevelopmental disorder. Am J Med Genet A 2022; 188:1990-1996. [PMID: 35312147 PMCID: PMC9314700 DOI: 10.1002/ajmg.a.62730] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 12/09/2021] [Accepted: 01/28/2022] [Indexed: 01/15/2023]
Abstract
Interstitial deletions of 16q24.1–q24.2 are associated with alveolar capillary dysplasia, congenital renal malformations, neurodevelopmental disorders, and congenital abnormalities. Lymphedema–Distichiasis syndrome (LDS; OMIM # 153400) is a dominant condition caused by heterozygous pathogenic variants in FOXC2. Usually, lymphedema and distichiasis occur in puberty or later on, and affected individuals typically achieve normal developmental milestones. Here, we describe a boy with congenital lymphedema, distichiasis, bilateral hydronephrosis, and global developmental delay, with a de novo microdeletion of 894 kb at 16q24.1–q24.2. This report extends the phenotype of both 16q24.1–q24.2 microdeletion syndrome and of LDS. Interestingly, the deletion involves only the 3′‐UTR part of FOXC2.
Collapse
Affiliation(s)
- Marina Michelson
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Gabriel Lidzbarsky
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| | - Daniella Nishri
- Child Developmental Center of Maccabi Health Medicinal Organization, Tel-Aviv, Israel
| | - Ifat Israel-Elgali
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Rachel Berger
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel
| | - Michal Gafner
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Noam Shomron
- Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Dorit Lev
- Institute of Medical Genetics, Wolfson Medical Center, Holon, Israel.,The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Yael Goldberg
- The Genetic Institute of Maccabi Health Medicinal Organization, Tel-Aviv, Israel.,Sackler School of Medicine, Tel-Aviv University, Tel-Aviv, Israel.,Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petach Tikva, Israel
| |
Collapse
|
7
|
Moudi M, Vahidi Mehrjardi MY, Hozhabri H, Metanat Z, Kalantar SM, Taheri M, Ghasemi N, Dehghani M. Novel variants underlying autosomal recessive neurodevelopmental disorders with intellectual disability in Iranian consanguineous families. J Clin Lab Anal 2022; 36:e24241. [PMID: 35019165 PMCID: PMC8842163 DOI: 10.1002/jcla.24241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 12/25/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
Background Intellectual disability (ID) is a heterogeneous group of neurodevelopmental disorders that is characterized by significant impairment in intellectual and adaptive functioning with onset during the developmental period. Whole‐exome sequencing (WES)‐based studies in the consanguineous families with individuals affected with ID have shown a high burden of relevant variants. So far, over 700 genes have been reported in syndromic and non‐syndromic ID. However, genetic causes in more than 50% of ID patients still remain unclear. Methods Whole‐exome sequencing was applied for investigation of various variants of ID, then Sanger sequencing and in silico analysis in ten patients from five Iranian consanguineous families diagnosed with autosomal recessive neurodevelopmental disorders, intellectual disability, performed for confirming the causative mutation within the probands. The most patients presented moderate‐to‐severe intellectual disability, developmental delay, seizure, speech problem, high level of lactate, and onset before 10 years. Results Filtering the data identified by WES, two novel homozygous missense variants in FBXO31 and TIMM50 genes and one previously reported mutation in the CEP290 gene in the probands were found. Sanger sequencing confirmed the homozygote variant's presence of TIMM50 and FBXO31 genes in six patients and two affected siblings in their respective families. Our computational results predicted that the variants are located in the conserved regions across different species and have the impacts on the protein stability. Conclusion Hence, we provide evidence for the pathogenicity of two novel variants in the patients which will expand our knowledge about potential mutation involved in the heterogeneous disease.
Collapse
Affiliation(s)
- Mahdiyeh Moudi
- Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.,Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | | | | | - Zahra Metanat
- Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Seyed Mehdi Kalantar
- Department of Genetics, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohsen Taheri
- Genetics of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.,Department of Genetics, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Nasrin Ghasemi
- Abortion Research Centre, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mohammadreza Dehghani
- Medical Genetics Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
8
|
Hale CR, Sawicka K, Mora K, Fak JJ, Kang JJ, Cutrim P, Cialowicz K, Carroll TS, Darnell RB. FMRP regulates mRNAs encoding distinct functions in the cell body and dendrites of CA1 pyramidal neurons. eLife 2021; 10:e71892. [PMID: 34939924 PMCID: PMC8820740 DOI: 10.7554/elife.71892] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 12/13/2021] [Indexed: 12/02/2022] Open
Abstract
Neurons rely on translation of synaptic mRNAs in order to generate activity-dependent changes in plasticity. Here, we develop a strategy combining compartment-specific crosslinking immunoprecipitation (CLIP) and translating ribosome affinity purification (TRAP) in conditionally tagged mice to precisely define the ribosome-bound dendritic transcriptome of CA1 pyramidal neurons. We identify CA1 dendritic transcripts with differentially localized mRNA isoforms generated by alternative polyadenylation and alternative splicing, including many that have altered protein-coding capacity. Among dendritic mRNAs, FMRP targets were found to be overrepresented. Cell-type-specific FMRP-CLIP and TRAP in microdissected CA1 neuropil revealed 383 dendritic FMRP targets and suggests that FMRP differentially regulates functionally distinct modules in CA1 dendrites and cell bodies. FMRP regulates ~15-20% of mRNAs encoding synaptic functions and 10% of chromatin modulators, in the dendrite and cell body, respectively. In the absence of FMRP, dendritic FMRP targets had increased ribosome association, consistent with a function for FMRP in synaptic translational repression. Conversely, downregulation of FMRP targets involved in chromatin regulation in cell bodies suggests a role for FMRP in stabilizing mRNAs containing stalled ribosomes in this compartment. Together, the data support a model in which FMRP regulates the translation and expression of synaptic and nuclear proteins within different compartments of a single neuronal cell type.
Collapse
Affiliation(s)
- Caryn R Hale
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kirsty Sawicka
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Kevin Mora
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - John J Fak
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Jin Joo Kang
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Paula Cutrim
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
| | - Katarzyna Cialowicz
- Bio-Imaging Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Thomas S Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Robert B Darnell
- Laboratory of Molecular Neuro-Oncology, Rockefeller UniversityNew YorkUnited States
- Howard Hughes Medical Institute, Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
9
|
Dzinovic I, Škorvánek M, Pavelekova P, Zhao C, Keren B, Whalen S, Bakhtiari S, Chih Jin S, Kruer MC, Jech R, Winkelmann J, Zech M. Variant recurrence confirms the existence of a FBXO31-related spastic-dystonic cerebral palsy syndrome. Ann Clin Transl Neurol 2021; 8:951-955. [PMID: 33675180 PMCID: PMC8045898 DOI: 10.1002/acn3.51335] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/20/2021] [Accepted: 02/22/2021] [Indexed: 11/10/2022] Open
Abstract
The role of genetics in the causation of cerebral palsy has become the focus of many studies aiming to unravel the heterogeneous etiology behind this frequent neurodevelopmental disorder. A recent paper reported two unrelated children with a clinical diagnosis of cerebral palsy, who carried the same de novo c.1000G > A (p.Asp334Asn) variant in FBXO31, encoding a widely studied tumor suppressor not previously implicated in monogenic disease. We now identified a third individual with the recurrent FBXO31 de novo missense variant, featuring a spastic-dystonic phenotype. Our data confirm a link between variant FBXO31 and an autosomal dominant neurodevelopmental disorder characterized by prominent motor dysfunction.
Collapse
Affiliation(s)
- Ivana Dzinovic
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Matej Škorvánek
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Petra Pavelekova
- Department of Neurology, P.J. Safarik University, Kosice, Slovak Republic.,Department of Neurology, University Hospital of L. Pasteur, Kosice, Slovak Republic
| | - Chen Zhao
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany
| | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, APHP.Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St Louis, Missouri, USA
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, Arizona, USA.,Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, Arizona, USA
| | - Robert Jech
- Department of Neurology, Charles University, 1st Faculty of Medicine, General University Hospital, Prague, Czech Republic
| | - Juliane Winkelmann
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany.,Lehrstuhl für Neurogenetik, Technische Universität München, Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, Munich, Germany
| | - Michael Zech
- Institute of Neurogenomics, Helmholtz Zentrum München, Munich, Germany.,Institute of Human Genetics, Technical University of Munich, Munich, Germany
| |
Collapse
|
10
|
Yamashita M, Owa T, Shiraishi R, Adachi T, Ichijo K, Taya S, Miyashita S, Hoshino M. The role of SCF Skp2 and SCF β-TrCP1/2 in the cerebellar granule cell precursors. Genes Cells 2020; 25:796-810. [PMID: 33020978 DOI: 10.1111/gtc.12813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 09/25/2020] [Accepted: 09/28/2020] [Indexed: 12/01/2022]
Abstract
A proper balance between proliferation and differentiation of cerebellar granule cell precursors (GCPs) is required for appropriate cerebellar morphogenesis. The Skp1-Cullin1-F-box (SCF) complex, an E3 ubiquitin ligase complex, is involved in polyubiquitination and subsequent degradation of various cell cycle regulators and transcription factors. However, it remains unknown how the SCF complex affects proliferation and differentiation of GCPs. In this study, we found that the scaffold protein Cullin1, and F-box proteins Skp2, β-TrCP1 and β-TrCP2 are expressed in the external granule layer (EGL). Knockdown of these molecules in the EGL showed that Cullin1, Skp2 and β-TrCP2 enhanced differentiation of GCPs. We also observed accumulation of cyclin-dependent kinase inhibitor p27 in GCPs when treated with a Cullin1 inhibitor or proteasome inhibitor. Furthermore, knockdown of p27 rescued enhancement of differentiation by Cullin1 knockdown. These results suggest that the SCF complex is involved in the maintenance of the proliferative state of GCPs through p27 degradation. In addition, inhibition of Cullin1 activity also prevented cell proliferation and enhanced accumulation of p27 in Daoy cells, a cell line derived from the sonic hedgehog subtype of medulloblastoma. This suggested that excess degradation of p27 through the SCF complex causes overproliferation of medulloblastoma cells.
Collapse
Affiliation(s)
- Mariko Yamashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Tomoo Owa
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Ryo Shiraishi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of NCNP Brain Function and Pathology, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, TMDU, Tokyo, Japan
| | - Toma Adachi
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Life Science and Medical Bioscience, Graduate School of Advance Science and Engineering, TWIns, Waseda University, Tokyo, Japan
| | - Kentaro Ichijo
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan.,Department of Otolaryngology and Head and Neck Surgery, Faculty of Medicine, The University of Tokyo, Tokyo, Japan
| | - Shinichiro Taya
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Satoshi Miyashita
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| | - Mikio Hoshino
- Department of Biochemistry and Cellular Biology, National Institute of Neuroscience, NCNP, Tokyo, Japan
| |
Collapse
|
11
|
Jin SC, Lewis SA, Bakhtiari S, Zeng X, Sierant MC, Shetty S, Nordlie SM, Elie A, Corbett MA, Norton BY, van Eyk CL, Haider S, Guida BS, Magee H, Liu J, Pastore S, Vincent JB, Brunstrom-Hernandez J, Papavasileiou A, Fahey MC, Berry JG, Harper K, Zhou C, Zhang J, Li B, Zhao H, Heim J, Webber DL, Frank MSB, Xia L, Xu Y, Zhu D, Zhang B, Sheth AH, Knight JR, Castaldi C, Tikhonova IR, López-Giráldez F, Keren B, Whalen S, Buratti J, Doummar D, Cho M, Retterer K, Millan F, Wang Y, Waugh JL, Rodan L, Cohen JS, Fatemi A, Lin AE, Phillips JP, Feyma T, MacLennan SC, Vaughan S, Crompton KE, Reid SM, Reddihough DS, Shang Q, Gao C, Novak I, Badawi N, Wilson YA, McIntyre SJ, Mane SM, Wang X, Amor DJ, Zarnescu DC, Lu Q, Xing Q, Zhu C, Bilguvar K, Padilla-Lopez S, Lifton RP, Gecz J, MacLennan AH, Kruer MC. Mutations disrupting neuritogenesis genes confer risk for cerebral palsy. Nat Genet 2020; 52:1046-1056. [PMID: 32989326 PMCID: PMC9148538 DOI: 10.1038/s41588-020-0695-1] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/20/2020] [Indexed: 01/28/2023]
Abstract
In addition to commonly associated environmental factors, genomic factors may cause cerebral palsy. We performed whole-exome sequencing of 250 parent-offspring trios, and observed enrichment of damaging de novo mutations in cerebral palsy cases. Eight genes had multiple damaging de novo mutations; of these, two (TUBA1A and CTNNB1) met genome-wide significance. We identified two novel monogenic etiologies, FBXO31 and RHOB, and showed that the RHOB mutation enhances active-state Rho effector binding while the FBXO31 mutation diminishes cyclin D levels. Candidate cerebral palsy risk genes overlapped with neurodevelopmental disorder genes. Network analyses identified enrichment of Rho GTPase, extracellular matrix, focal adhesion and cytoskeleton pathways. Cerebral palsy risk genes in enriched pathways were shown to regulate neuromotor function in a Drosophila reverse genetics screen. We estimate that 14% of cases could be attributed to an excess of damaging de novo or recessive variants. These findings provide evidence for genetically mediated dysregulation of early neuronal connectivity in cerebral palsy.
Collapse
Affiliation(s)
- Sheng Chih Jin
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
- Department of Genetics, Washington University School of Medicine, St Louis, MO, USA
| | - Sara A Lewis
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Somayeh Bakhtiari
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Xue Zeng
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Michael C Sierant
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Sheetal Shetty
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Sandra M Nordlie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Aureliane Elie
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Mark A Corbett
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Bethany Y Norton
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Clare L van Eyk
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Shozeb Haider
- Department of Pharmaceutical and Biological Chemistry, UCL School of Pharmacy, London, UK
| | - Brandon S Guida
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Helen Magee
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - James Liu
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Stephen Pastore
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - John B Vincent
- Molecular Brain Sciences, Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | | | | | - Michael C Fahey
- Department of Pediatrics, Monash University, Melbourne, Victoria, Australia
| | - Jesia G Berry
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Kelly Harper
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Chongchen Zhou
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Junhui Zhang
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Hongyu Zhao
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Jennifer Heim
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
| | - Dani L Webber
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Mahalia S B Frank
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Lei Xia
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yiran Xu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Dengna Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bohao Zhang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Amar H Sheth
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
| | - James R Knight
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Irina R Tikhonova
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | | | - Boris Keren
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Sandra Whalen
- UF de Génétique Clinique et Centre de Référence Anomalies du Développement et Syndromes Malformatifs, APHP.Sorbonne Université, Hôpital Armand Trousseau, Paris, France
| | - Julien Buratti
- Department of Genetics, Pitié-Salpêtrière Hospital, APHP.Sorbonne Université, Paris, France
| | - Diane Doummar
- Sorbonne Université, APHP, Service de Neurologie Pédiatrique et Centre de Référence Neurogénétique, Hôpital Armand Trousseau, Paris, France
| | | | | | | | - Yangong Wang
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Jeff L Waugh
- Departments of Pediatrics & Neurology, University of Texas Southwestern and Children's Medical Center of Dallas, Dallas, TX, USA
| | - Lance Rodan
- Departments of Genetics & Genomics and Neurology, Boston Children's Hospital, Boston, MA, USA
| | - Julie S Cohen
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Ali Fatemi
- Division of Neurogenetics and Hugo W. Moser Research Institute, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Angela E Lin
- Medical Genetics, Department of Pediatrics, MassGeneral Hospital for Children, Boston, MA, USA
| | - John P Phillips
- Departments of Pediatrics and Neurology, University of New Mexico, Albuquerque, NM, USA
| | - Timothy Feyma
- Division of Pediatric Neurology, Gillette Children's Hospital, St Paul, MN, USA
| | - Suzanna C MacLennan
- Department of Paediatric Neurology, Women's & Children's Hospital, Adelaide, South Australia, Australia
| | - Spencer Vaughan
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Kylie E Crompton
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Susan M Reid
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Dinah S Reddihough
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Qing Shang
- Henan Key Laboratory of Child Genetics and Metabolism, Rehabilitation Department, Children's Hospital of Zhengzhou University, Zhengzhou, China
| | - Chao Gao
- Rehabilitation Department, Children's Hospital of Zhengzhou University/Henan Children's Hospital, Zhengzhou, China
| | - Iona Novak
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Nadia Badawi
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Yana A Wilson
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Sarah J McIntyre
- Cerebral Palsy Alliance Research Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Shrikant M Mane
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Xiaoyang Wang
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - David J Amor
- Murdoch Children's Research Institute and University of Melbourne Department of Paediatrics, Royal Children's Hospital, Melbourne, Victoria, Australia
| | - Daniela C Zarnescu
- Departments of Molecular & Cellular Biology and Neuroscience, University of Arizona, Tucson, AZ, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Qinghe Xing
- Institute of Biomedical Science and Children's Hospital, and Key Laboratory of Reproduction Regulation of the National Population and Family Planning Commission (NPFPC), Shanghai Institute of Planned Parenthood Research (SIPPR), IRD, Fudan University, Shanghai, China
| | - Changlian Zhu
- Henan Key Laboratory of Child Brain Injury, Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Institute of Neuroscience and Physiology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Kaya Bilguvar
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Yale Center for Genome Analysis, Yale University, New Haven, CT, USA
| | - Sergio Padilla-Lopez
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA
| | - Richard P Lifton
- Department of Genetics, Yale University School of Medicine, New Haven, CT, USA
- Laboratory of Human Genetics and Genomics, Rockefeller University, New York, NY, USA
| | - Jozef Gecz
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Alastair H MacLennan
- Robinson Research Institute, The University of Adelaide, Adelaide, South Australia, Australia
| | - Michael C Kruer
- Pediatric Movement Disorders Program, Division of Pediatric Neurology, Barrow Neurological Institute, Phoenix Children's Hospital, Phoenix, AZ, USA.
- Departments of Child Health, Neurology, and Cellular & Molecular Medicine, and Program in Genetics, University of Arizona College of Medicine-Phoenix, Phoenix, AZ, USA.
| |
Collapse
|
12
|
Whole-genome analysis of noncoding genetic variations identifies multiscale regulatory element perturbations associated with Hirschsprung disease. Genome Res 2020; 30:1618-1632. [PMID: 32948616 PMCID: PMC7605255 DOI: 10.1101/gr.264473.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 09/14/2020] [Indexed: 12/16/2022]
Abstract
It is widely recognized that noncoding genetic variants play important roles in many human diseases, but there are multiple challenges that hinder the identification of functional disease-associated noncoding variants. The number of noncoding variants can be many times that of coding variants; many of them are not functional but in linkage disequilibrium with the functional ones; different variants can have epistatic effects; different variants can affect the same genes or pathways in different individuals; and some variants are related to each other not by affecting the same gene but by affecting the binding of the same upstream regulator. To overcome these difficulties, we propose a novel analysis framework that considers convergent impacts of different genetic variants on protein binding, which provides multiscale information about disease-associated perturbations of regulatory elements, genes, and pathways. Applying it to our whole-genome sequencing data of 918 short-segment Hirschsprung disease patients and matched controls, we identify various novel genes not detected by standard single-variant and region-based tests, functionally centering on neural crest migration and development. Our framework also identifies upstream regulators whose binding is influenced by the noncoding variants. Using human neural crest cells, we confirm cell stage-specific regulatory roles of three top novel regulatory elements on our list, respectively in the RET, RASGEF1A, and PIK3C2B loci. In the PIK3C2B regulatory element, we further show that a noncoding variant found only in the patients affects the binding of the gliogenesis regulator NFIA, with a corresponding up-regulation of multiple genes in the same topologically associating domain.
Collapse
|
13
|
Brosig A, Fuchs J, Ipek F, Kroon C, Schrötter S, Vadhvani M, Polyzou A, Ledderose J, van Diepen M, Holzhütter HG, Trimbuch T, Gimber N, Schmoranzer J, Lieberam I, Rosenmund C, Spahn C, Scheerer P, Szczepek M, Leondaritis G, Eickholt BJ. The Axonal Membrane Protein PRG2 Inhibits PTEN and Directs Growth to Branches. Cell Rep 2020; 29:2028-2040.e8. [PMID: 31722215 PMCID: PMC6856728 DOI: 10.1016/j.celrep.2019.10.039] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 08/09/2019] [Accepted: 10/09/2019] [Indexed: 01/03/2023] Open
Abstract
In developing neurons, phosphoinositide 3-kinases (PI3Ks) control axon growth and branching by positively regulating PI3K/PI(3,4,5)P3, but how neurons are able to generate sufficient PI(3,4,5)P3 in the presence of high levels of the antagonizing phosphatase PTEN is difficult to reconcile. We find that normal axon morphogenesis involves homeostasis of elongation and branch growth controlled by accumulation of PI(3,4,5)P3 through PTEN inhibition. We identify a plasma membrane-localized protein-protein interaction of PTEN with plasticity-related gene 2 (PRG2). PRG2 stabilizes membrane PI(3,4,5)P3 by inhibiting PTEN and localizes in nanoclusters along axon membranes when neurons initiate their complex branching behavior. We demonstrate that PRG2 is both sufficient and necessary to account for the ability of neurons to generate axon filopodia and branches in dependence on PI3K/PI(3,4,5)P3 and PTEN. Our data indicate that PRG2 is part of a neuronal growth program that induces collateral branch growth in axons by conferring local inhibition of PTEN. Neuronal axon growth and branching is globally regulated by PI3K/PTEN signaling PRG2 inhibits PTEN and stabilizes PIP3 and F-actin PRG2 localizes to nanoclusters on the axonal membrane and coincides with branching PRG2 promotes axonal filopodia and branching dependent on PI3K/PTEN
Collapse
Affiliation(s)
- Annika Brosig
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Joachim Fuchs
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Fatih Ipek
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Cristina Kroon
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Sandra Schrötter
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Department of Genetics and Complex Diseases, T.H. Chan Harvard School of Public Health, Boston, MA 02120, USA
| | - Mayur Vadhvani
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Alexandra Polyzou
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Julia Ledderose
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michiel van Diepen
- Institute of Infectious Disease and Molecular Medicine, Faculty of Health Science, University of Cape Town, Cape Town, South Africa
| | - Hermann-Georg Holzhütter
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Thorsten Trimbuch
- Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Niclas Gimber
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jan Schmoranzer
- Advanced Medical Bioimaging Core Facility (AMBIO), Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Ivo Lieberam
- Centre for Stem Cells and Regenerative Medicine and Centre for Developmental Neurobiology, MRC Centre for Neurodevelopmental Disorders, King's College, London, UK
| | - Christian Rosenmund
- NeuroCure-Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Neurophysiology, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Christian Spahn
- NeuroCure-Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Michal Szczepek
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - George Leondaritis
- Department of Pharmacology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece.
| | - Britta J Eickholt
- Institute of Biochemistry, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; NeuroCure-Cluster of Excellence, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany.
| |
Collapse
|
14
|
Liu K, Xue B, Bai G, Zhang W. F-box protein FBXO31 modulates apoptosis and epithelial-mesenchymal transition of cervical cancer via inactivation of the PI3K/AKT-mediated MDM2/p53 axis. Life Sci 2020; 259:118277. [PMID: 32800832 DOI: 10.1016/j.lfs.2020.118277] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 08/09/2020] [Accepted: 08/10/2020] [Indexed: 12/14/2022]
Abstract
AIMS Cervical cancer (CC) is one of the most common malignant tumours in the world and a serious threat to women's health. The dysregulation of protein degradation mediated by F-box proteins is involved in tumorigenesis, and F-box protein FBXO31 has been reported to play an important role in various human cancers. However, the role of FBXO31 in CC remains unclear. This study aimed to investigate the function and underlying regulatory mechanism of FBXO31 in CC. MAIN METHODS In this study, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to measure target gene expression; the Cell Counting Kit-8, cell death ELISA, Transwell invasion assay, wound-healing assay and western blot were applied to assess cell viability, apoptosis, invasion, migration and epithelial-mesenchymal transition (EMT), respectively. KEY FINDINGS FBXO31 was expressed at a low level in 37 pairs of CC tissues and three types of CC cell lines. Overexpression of FBXO31 inhibited cell viability, invasion, migration, EMT and induced apoptosis in SiHa cells. FBXO31 promoted p53 activity through suppression of murine double minute 2 (MDM2) expression. Overexpression of MDM2 ameliorated the inhibitory effect of FBXO31 on SiHa cells, while the MDM2/p53 axis-specific inhibitor Nutlin-3a facilitated this inhibitory effect. Further, we confirmed that FBXO31 inactivated MDM2/p53 axis dependence on the phospholipid inositol 3-kinase (PI3K)/protein kinase B (AKT) signalling pathway. SIGNIFICANCE Collectively, our results reveal that FBXO31 down-regulates CC progression by blocking the PI3K/AKT-mediated MDM2/p53 axis, suggesting that FBXO31 may serve as a promising therapeutic target for CC treatment.
Collapse
Affiliation(s)
- Keying Liu
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China; North Hospital Affiliated to Xi'an Medical College of Xi'an, Xi'an, Shaanxi 710043, China
| | - Biyun Xue
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Guiqin Bai
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| | - Wentao Zhang
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| |
Collapse
|
15
|
He H, Dai J, Feng J, He Q, Chen X, Dai W, Xu A, Huang H. FBXO31 modulates activation of hepatic stellate cells and liver fibrogenesis by promoting ubiquitination of Smad7. J Cell Biochem 2020; 121:3711-3719. [PMID: 31680332 DOI: 10.1002/jcb.29528] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/10/2019] [Indexed: 01/24/2023]
Abstract
Liver fibrosis is a critical pathological process in the early stage of many liver diseases, including hepatic cirrhosis and liver cancer. However, the molecular mechanism is not fully revealed. In this study, we investigated the role of F-box protein 31 (FBXO31) in liver fibrosis. We found FBXO31 upregulated in carbon tetrachloride (CCl4 ) induced liver fibrosis and in activated hepatic stellate cells, induced by transforming growth factor-β (TGF-β). The enforced expression of FBXO31 caused enhanced proliferation and increased expression of α-smooth muscle actin (α-SMA) and Col-1 in HSC-T6 cells. Conversely, suppression of FBXO31 resulted in inhibition of proliferation and decreased accumulation of α-SMA and Col-1 in HSC-T6 cells. In addition, upregulation of FBXO31 in HSC-T6 cells decreased accumulation of Smad7, the negative regulator of the TGF-β/smad signaling pathway, and suppression of the FBXO31 increased accumulation of Smad7. Immunofluorescence staining showed FBXO31 colocalized with Smad7 in HSC-T6 cells and in liver tissues of BALB/c mice treated with CCl4 . Immunoprecipitation demonstrated FBXO31 interacted with Smad7. Moreover, FBXO31 enhanced ubiquitination of Smad7. In conclusion, FBXO31 modulates activation of HSCs and liver fibrogenesis by promoting ubiquitination of Smad7.
Collapse
Affiliation(s)
- Huijuan He
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jialiang Dai
- Department of Hepatological Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Jialing Feng
- The Tumor Branch of Zhongshan People's Hospital, Zhongshan, China
| | - Qiang He
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Xuling Chen
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Wei Dai
- Department of Hepatological Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| | - Aizhong Xu
- Department of General Surgery, Anqing Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Haili Huang
- Clinical Research Center, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China.,Department of Hepatological Surgery, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
| |
Collapse
|
16
|
Rodrigue AL, Alexander-Bloch AF, Knowles EEM, Mathias SR, Mollon J, Koenis MMG, Perrone-Bizzozero NI, Almasy L, Turner JA, Calhoun VD, Glahn DC. Genetic Contributions to Multivariate Data-Driven Brain Networks Constructed via Source-Based Morphometry. Cereb Cortex 2020; 30:4899-4913. [PMID: 32318716 DOI: 10.1093/cercor/bhaa082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 02/12/2020] [Accepted: 03/17/2020] [Indexed: 11/14/2022] Open
Abstract
Identifying genetic factors underlying neuroanatomical variation has been difficult. Traditional methods have used brain regions from predetermined parcellation schemes as phenotypes for genetic analyses, although these parcellations often do not reflect brain function and/or do not account for covariance between regions. We proposed that network-based phenotypes derived via source-based morphometry (SBM) may provide additional insight into the genetic architecture of neuroanatomy given its data-driven approach and consideration of covariance between voxels. We found that anatomical SBM networks constructed on ~ 20 000 individuals from the UK Biobank were heritable and shared functionally meaningful genetic overlap with each other. We additionally identified 27 unique genetic loci that contributed to one or more SBM networks. Both GWA and genetic correlation results indicated complex patterns of pleiotropy and polygenicity similar to other complex traits. Lastly, we found genetic overlap between a network related to the default mode and schizophrenia, a disorder commonly associated with neuroanatomic alterations.
Collapse
Affiliation(s)
- Amanda L Rodrigue
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | | | - Emma E M Knowles
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Samuel R Mathias
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Josephine Mollon
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Marinka M G Koenis
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
| | - Nora I Perrone-Bizzozero
- Department of Neurosciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA.,Department of Psychiatry and Behavioral Sciences, University of New Mexico School of Medicine, Albuquerque, NM 87131, USA
| | - Laura Almasy
- Department of Genetics, Perelman School of Medicine, and the Penn-CHOP Lifespan Brain Institute, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jessica A Turner
- Psychology Department, Neurosciences Institute, Georgia State University, Atlanta, GA 30303, USA.,The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA
| | - Vince D Calhoun
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06511, USA.,Psychology Department, Neurosciences Institute, Georgia State University, Atlanta, GA 30303, USA.,The Tri-Institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, and Emory University, Atlanta, GA 30303, USA.,Mind Research Network, Department of Psychiatry and Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico 87131, USA
| | - David C Glahn
- Department of Psychiatry, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.,Olin Neuropsychiatry Research Center, Institute of Living, Hartford, CT 06106, USA
| |
Collapse
|
17
|
Mir YR, Kuchay RAH. Advances in identification of genes involved in autosomal recessive intellectual disability: a brief review. J Med Genet 2019; 56:567-573. [PMID: 30842223 DOI: 10.1136/jmedgenet-2018-105821] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Revised: 02/01/2019] [Accepted: 02/11/2019] [Indexed: 12/28/2022]
Abstract
Intellectual disability (ID) is a clinically and genetically heterogeneous disorder, affecting 1%-3% of the general population. The number of ID-causing genes is high. Many X-linked genes have been implicated in ID. Autosomal dominant genes have recently been the focus of several large-scale studies. The total number of autosomal recessive ID (ARID) genes is estimated to be very high, and most are still unknown. Although research into the genetic causes of ID has recently gained momentum, identification of pathogenic mutations that cause ARID has lagged behind, predominantly due to non-availability of sizeable families. A commonly used approach to identify genetic loci for recessive disorders in consanguineous families is autozygosity mapping and whole-exome sequencing. Combination of these two approaches has recently led to identification of many genes involved in ID. These genes have diverse function and control various biological processes. In this review, we will present an update regarding genes that have been recently implicated in ID with focus on ARID.
Collapse
Affiliation(s)
- Yaser Rafiq Mir
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| | - Raja Amir Hassan Kuchay
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, India
| |
Collapse
|
18
|
Choppara S, Ganga S, Manne R, Dutta P, Singh S, Santra MK. The SCF FBXO46 ubiquitin ligase complex mediates degradation of the tumor suppressor FBXO31 and thereby prevents premature cellular senescence. J Biol Chem 2018; 293:16291-16306. [PMID: 30171069 DOI: 10.1074/jbc.ra118.005354] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Indexed: 01/10/2023] Open
Abstract
The tumor suppressor F-box protein 31 (FBXO31) is indispensable for maintaining genomic stability. Its levels drastically increase following DNA damage, leading to cyclin D1 and MDM2 degradation and G1 and G2/M arrest. Prolonged arrest in these phases leads to cellular senescence. Accordingly, FBXO31 needs to be kept at low basal levels in unstressed conditions for normal cell cycle progression during growth and development. However, the molecular mechanism maintaining these basal FBXO31 levels has remained unclear. Here, we identified the F-box family SCF-E3 ubiquitin ligase FBXO46 (SCFFBXO46) as an important proteasomal regulator of FBXO31 and found that FBXO46 helps maintain basal FBXO31 levels under unstressed conditions and thereby prevents premature senescence. Using molecular docking and mutational studies, we showed that FBXO46 recognizes an RXXR motif located at the FBXO31 C terminus to direct its polyubiquitination and thereby proteasomal degradation. Furthermore, FBXO46 depletion enhanced the basal levels of FBXO31, resulting in senescence induction. In response to genotoxic stress, ATM (ataxia telangiectasia-mutated) Ser/Thr kinase-mediated phosphorylation of FBXO31 at Ser-278 maintained FBXO31 levels. In contrast, activated ATM phosphorylated FBXO46 at Ser-21/Ser-67, leading to its degradation via FBXO31. Thus, ATM-catalyzed phosphorylation after DNA damage governs FBXO31 levels and FBXO46 degradation via a negative feedback loop. Collectively, our findings reveal that FBXO46 is a crucial proteasomal regulator of FBXO31 and thereby prevents senescence in normal growth conditions. They further indicate that FBXO46-mediated regulation of FBXO31 is abrogated following genotoxic stress to promote increased FBXO31 levels for maintenance of genomic stability.
Collapse
Affiliation(s)
- Srinadh Choppara
- From the National Centre for Cell Science, NCCS Complex and.,the Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Sankaran Ganga
- From the National Centre for Cell Science, NCCS Complex and
| | - Rajeshkumar Manne
- From the National Centre for Cell Science, NCCS Complex and.,the Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Parul Dutta
- From the National Centre for Cell Science, NCCS Complex and.,the Department of Biotechnology, Savitribai Phule Pune University, Ganeshkhind Road, Pune, Maharashtra 411007, India
| | - Shailza Singh
- From the National Centre for Cell Science, NCCS Complex and
| | | |
Collapse
|
19
|
Abernathy DG, Kim WK, McCoy MJ, Lake AM, Ouwenga R, Lee SW, Xing X, Li D, Lee HJ, Heuckeroth RO, Dougherty JD, Wang T, Yoo AS. MicroRNAs Induce a Permissive Chromatin Environment that Enables Neuronal Subtype-Specific Reprogramming of Adult Human Fibroblasts. Cell Stem Cell 2018; 21:332-348.e9. [PMID: 28886366 DOI: 10.1016/j.stem.2017.08.002] [Citation(s) in RCA: 102] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 06/26/2017] [Accepted: 08/09/2017] [Indexed: 12/19/2022]
Abstract
Directed reprogramming of human fibroblasts into fully differentiated neurons requires massive changes in epigenetic and transcriptional states. Induction of a chromatin environment permissive for acquiring neuronal subtype identity is therefore a major barrier to fate conversion. Here we show that the brain-enriched miRNAs miR-9/9∗ and miR-124 (miR-9/9∗-124) trigger reconfiguration of chromatin accessibility, DNA methylation, and mRNA expression to induce a default neuronal state. miR-9/9∗-124-induced neurons (miNs) are functionally excitable and uncommitted toward specific subtypes but possess open chromatin at neuronal subtype-specific loci, suggesting that such identity can be imparted by additional lineage-specific transcription factors. Consistently, we show that ISL1 and LHX3 selectively drive conversion to a highly homogeneous population of human spinal cord motor neurons. This study shows that modular synergism between miRNAs and neuronal subtype-specific transcription factors can drive lineage-specific neuronal reprogramming, providing a general platform for high-efficiency generation of distinct subtypes of human neurons.
Collapse
Affiliation(s)
- Daniel G Abernathy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Developmental, Regenerative, and Stem Cell Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Woo Kyung Kim
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Matthew J McCoy
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Program in Molecular Genetics & Genomics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Allison M Lake
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Rebecca Ouwenga
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Seong Won Lee
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Xiaoyun Xing
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daofeng Li
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Hyung Joo Lee
- Program in Molecular Genetics & Genomics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Robert O Heuckeroth
- Department of Pediatrics, The Perelman School of Medicine at the University of Pennsylvania, and The Children's Hospital of Philadelphia Research Institute, Philadelphia, PA 19104, USA
| | - Joseph D Dougherty
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrew S Yoo
- Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
20
|
Cheng X, Zheng J, Li G, Göbel V, Zhang H. Degradation for better survival? Role of ubiquitination in epithelial morphogenesis. Biol Rev Camb Philos Soc 2018; 93:1438-1460. [PMID: 29493067 DOI: 10.1111/brv.12404] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 01/31/2018] [Accepted: 02/05/2018] [Indexed: 02/06/2023]
Abstract
As a prevalent post-translational modification, ubiquitination is essential for many developmental processes. Once covalently attached to the small and conserved polypeptide ubiquitin (Ub), a substrate protein can be directed to perform specific biological functions via its Ub-modified form. Three sequential catalytic reactions contribute to this process, among which E3 ligases serve to identify target substrates and promote the activated Ub to conjugate to substrate proteins. Ubiquitination has great plasticity, with diverse numbers, topologies and modifications of Ub chains conjugated at different substrate residues adding a layer of complexity that facilitates a huge range of cellular functions. Herein, we highlight key advances in the understanding of ubiquitination in epithelial morphogenesis, with an emphasis on the latest insights into its roles in cellular events involved in polarized epithelial tissue, including cell adhesion, asymmetric localization of polarity determinants and cytoskeletal organization. In addition, the physiological roles of ubiquitination are discussed for typical examples of epithelial morphogenesis, such as lung branching, vascular development and synaptic formation and plasticity. Our increased understanding of ubiquitination in epithelial morphogenesis may provide novel insights into the molecular mechanisms underlying epithelial regeneration and maintenance.
Collapse
Affiliation(s)
- Xiaoxiang Cheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Jun Zheng
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| | - Verena Göbel
- Department of Pediatrics, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114,, U.S.A
| | - Hongjie Zhang
- Faculty of Health Sciences, University of Macau, Avenida da Universidade, Taipa, Macau 999078, China
| |
Collapse
|
21
|
Tan Y, Liu D, Gong J, Liu J, Huo J. The role of F-box only protein 31 in cancer. Oncol Lett 2018; 15:4047-4052. [PMID: 29556284 PMCID: PMC5844145 DOI: 10.3892/ol.2018.7816] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 10/20/2017] [Indexed: 12/14/2022] Open
Abstract
F-box only protein 31 (FBXO31), initially identified in 2005, is a novel subunit of the S-phase kinase associated protein 1-Cullin 1-F-box ubiquitin ligase. As with other F-box proteins, FBXO31 may interact with several proteins to promote their ubquitination and subsequent degradation in an F-box-dependent manner. It has been revealed that FBXO31 serves a crucial role in DNA damage response and tumorigenesis. However, the expression and function of FBXO31 varies in different types of human cancer. To the best of our knowledge, the present review is the first to summarize the role of FBXO31 in different types of human cancer and determine its underlying mechanisms, thereby paving the road for the design of FBXO31-targeted anticancer therapies.
Collapse
Affiliation(s)
- Yuyong Tan
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Deliang Liu
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jian Gong
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jia Liu
- Center of Medical Research, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Jirong Huo
- Department of Gastroenterology, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
22
|
Li Y, Jin K, Bunker E, Zhang X, Luo X, Liu X, Hao B. Structural basis of the phosphorylation-independent recognition of cyclin D1 by the SCF FBXO31 ubiquitin ligase. Proc Natl Acad Sci U S A 2018; 115:319-324. [PMID: 29279382 PMCID: PMC5777030 DOI: 10.1073/pnas.1708677115] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Ubiquitin-dependent proteolysis of cyclin D1 is associated with normal and tumor cell proliferation and survival. The SCFFBXO31 (Skp1-Cul1-Rbx1-FBXO31) ubiquitin ligase complex mediates genotoxic stress-induced cyclin D1 degradation. Previous studies have suggested that cyclin D1 levels are maintained at steady state by phosphorylation-dependent nuclear export and subsequent proteolysis in the cytoplasm. Here we present the crystal structures of the Skp1-FBXO31 complex alone and bound to a phosphorylated cyclin D1 C-terminal peptide. FBXO31 possesses a unique substrate-binding domain consisting of two β-barrel motifs, whereas cyclin D1 binds to FBXO31 by tucking its free C-terminal carboxylate tail into an open cavity of the C-terminal FBXO31 β-barrel. Biophysical and functional studies demonstrate that SCFFBXO31 is capable of recruiting and ubiquitinating cyclin D1 in a phosphorylation-independent manner. Our findings provide a conceptual framework for understanding the substrate specificity of the F-box protein FBXO31 and the mechanism of FBXO31-regulated cyclin D1 protein turnover.
Collapse
Affiliation(s)
- Yunfeng Li
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030
| | - Kai Jin
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030
| | - Eric Bunker
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Xiaojuan Zhang
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Xuemei Luo
- Biomolecular Resource Facility, University of Texas Medical Branch, Galveston, TX 77555
| | - Xuedong Liu
- Department of Chemistry and Biochemistry, University of Colorado, Boulder, CO 80309
| | - Bing Hao
- Department of Molecular Biology and Biophysics, University of Connecticut Health Center, Farmington, CT 06030;
| |
Collapse
|
23
|
Upadhyay A, Joshi V, Amanullah A, Mishra R, Arora N, Prasad A, Mishra A. E3 Ubiquitin Ligases Neurobiological Mechanisms: Development to Degeneration. Front Mol Neurosci 2017; 10:151. [PMID: 28579943 PMCID: PMC5437216 DOI: 10.3389/fnmol.2017.00151] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 05/04/2017] [Indexed: 01/08/2023] Open
Abstract
Cells regularly synthesize new proteins to replace old or damaged proteins. Deposition of various aberrant proteins in specific brain regions leads to neurodegeneration and aging. The cellular protein quality control system develop various defense mechanisms against the accumulation of misfolded and aggregated proteins. The mechanisms underlying the selective recognition of specific crucial protein or misfolded proteins are majorly governed by quality control E3 ubiquitin ligases mediated through ubiquitin-proteasome system. Few known E3 ubiquitin ligases have shown prominent neurodevelopmental functions, but their interactions with different developmental proteins play critical roles in neurodevelopmental disorders. Several questions are yet to be understood properly. How E3 ubiquitin ligases determine the specificity and regulate degradation of a particular substrate involved in neuronal proliferation and differentiation is certainly the one, which needs detailed investigations. Another important question is how neurodevelopmental E3 ubiquitin ligases specifically differentiate between their versatile range of substrates and timing of their functional modulations during different phases of development. The premise of this article is to understand how few E3 ubiquitin ligases sense major molecular events, which are crucial for human brain development from its early embryonic stages to throughout adolescence period. A better understanding of these few E3 ubiquitin ligases and their interactions with other potential proteins will provide invaluable insight into disease mechanisms to approach toward therapeutic interventions.
Collapse
Affiliation(s)
- Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Vibhuti Joshi
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ayeman Amanullah
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Ribhav Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| | - Naina Arora
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology MandiMandi, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology JodhpurJodhpur, India
| |
Collapse
|
24
|
A MicroRNA/Ubiquitin Ligase Feedback Loop Regulates Slug-Mediated Invasion in Breast Cancer. Neoplasia 2017; 19:483-495. [PMID: 28500896 PMCID: PMC5429244 DOI: 10.1016/j.neo.2017.02.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/23/2017] [Accepted: 02/28/2017] [Indexed: 12/22/2022] Open
Abstract
The transformation of a normal cell to cancer requires the derail of multiple pathways. Normal signaling in a cell is regulated at multiple stages by the presence of feedback loops, calibration of levels of proteins by their regulated turnover, and posttranscriptional regulation, to name a few. The tumor suppressor protein FBXO31 is a component of the SCF E3 ubiquitin ligase and is required to arrest cells at G1 following genotoxic stresses. Due to its growth-suppression activity, it is underexpressed in many cancers. However, the molecular mechanism underlying the translational regulation of FBXO31 remains unclear. Here we show that the oncogenic microRNAs miR-93 and miR-106a repress FBXO31, resulting in the upregulation of Slug, which is involved in epithelial-mesenchymal transition and cell invasion. FBXO31 targets and ubiquitylates Slug for proteasomal degradation. However, this mechanism is repressed in breast tumors where miR-93 and miR-106a are overexpressed. Our study further unravels an interesting mechanism whereby Slug drives the expression of miR-93 and miR-106a, thus establishing a positive feedback loop to maintain an invasive phenotype. Together, these results establish the presence of interplay between microRNAs and the ubiquitination machinery, which together regulate cancer cell invasion.
Collapse
|
25
|
FBXO31 protects against genomic instability by capping FOXM1 levels at the G2/M transition. Oncogene 2016; 36:1012-1022. [PMID: 27568981 DOI: 10.1038/onc.2016.268] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 06/05/2016] [Accepted: 06/13/2016] [Indexed: 12/16/2022]
Abstract
F-box proteins in conjunction with Skp1, Cul1 and Rbx1 generate SCF complexes that are responsible for the ubiquitination of proteins, leading to their activation or degradation. Here we show that the F-box protein FBXO31 is required for normal mitotic progression and genome stability due to its role in regulating FOXM1 levels during the G2/M transition. FBXO31-depleted cells undergo a transient delay in mitosis due to an activated spindle checkpoint concomitant with an increase in lagging chromosomes and anaphase bridges. FBXO31 regulates mitosis in part by controlling the levels of FOXM1, a transcription factor and master regulator of mitosis. FBXO31 specifically interacts with FOXM1 during the G2/M transition, resulting in FOXM1 ubiquitination and degradation. FBXO31 depletion results in increased expression of FOXM1 transcriptional targets and mimics the FOXM1 overexpression. In contrast, co-depletion of FBXO31 and FOXM1 restores the genomic instability phenotype but not the delay in mitosis, indicating that FBXO31 probably has additional mitotic substrates. Thus, FBXO31 is the first described negative regulator of FOXM1 during the G2/M transition.
Collapse
|
26
|
Essential Roles for ARID1B in Dendritic Arborization and Spine Morphology of Developing Pyramidal Neurons. J Neurosci 2016; 36:2723-42. [PMID: 26937011 DOI: 10.1523/jneurosci.2321-15.2016] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED De novo truncating mutations in ARID1B, a chromatin-remodeling gene, cause Coffin-Siris syndrome, a developmental disorder characterized by intellectual disability and speech impairment; however, how the genetic elimination leads to cognitive dysfunction remains unknown. Thus, we investigated the neural functions of ARID1B during brain development. Here, we show that ARID1B regulates dendritic differentiation in the developing mouse brain. We knocked down ARID1B expression in mouse pyramidal neurons using in utero gene delivery methodologies. ARID1B knockdown suppressed dendritic arborization of cortical and hippocampal pyramidal neurons in mice. The abnormal development of dendrites accompanied a decrease in dendritic outgrowth into layer I. Furthermore, knockdown of ARID1B resulted in aberrant dendritic spines and synaptic transmission. Finally, ARID1B deficiency led to altered expression of c-Fos and Arc, and overexpression of these factors rescued abnormal differentiation induced by ARID1B knockdown. Our results demonstrate a novel role for ARID1B in neuronal differentiation and provide new insights into the origin of cognitive dysfunction associated with developmental intellectual disability. SIGNIFICANCE STATEMENT Haploinsufficiency of ARID1B, a component of chromatin remodeling complex, causes intellectual disability. However, the role of ARID1B in brain development is unknown. Here, we demonstrate that ARID1B is required for neuronal differentiation in the developing brain, such as in dendritic arborization and synapse formation. Our findings suggest that ARID1B plays a critical role in the establishment of cognitive circuitry by regulating dendritic complexity. Thus, ARID1B deficiency may cause intellectual disability via abnormal brain wiring induced by the defective differentiation of cortical neurons.
Collapse
|
27
|
Sánchez A, Urrego D, Pardo LA. Cyclic expression of the voltage-gated potassium channel KV10.1 promotes disassembly of the primary cilium. EMBO Rep 2016; 17:708-23. [PMID: 27113750 PMCID: PMC5341513 DOI: 10.15252/embr.201541082] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Revised: 03/03/2016] [Accepted: 03/09/2016] [Indexed: 12/19/2022] Open
Abstract
The primary cilium, critical for morphogenic and growth factor signaling, is assembled upon cell cycle exit, but the links between ciliogenesis and cell cycle progression are unclear. KV10.1 is a voltage-gated potassium channel frequently overexpressed in tumors. We have previously reported that expression of KV10.1 is temporally restricted to a time period immediately prior to mitosis in healthy cells. Here, we provide microscopical and biochemical evidence that KV10.1 localizes to the centrosome and the primary cilium and promotes ciliary disassembly. Interference with KV10.1 ciliary localization abolishes not only the effects on ciliary disassembly, but also KV10.1-induced tumor progression in vivo Conversely, upon knockdown of KV10.1, ciliary disassembly is impaired, proliferation is delayed, and proliferating cells show prominent primary cilia. Thus, modulation of ciliogenesis by KV10.1 can explain the influence of KV10.1 expression on the proliferation of normal cells and is likely to be a major mechanism underlying its tumorigenic effects.
Collapse
Affiliation(s)
- Araceli Sánchez
- Oncophysiology Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Diana Urrego
- Oncophysiology Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| | - Luis A Pardo
- Oncophysiology Group, Max-Planck-Institute of Experimental Medicine, Göttingen, Germany
| |
Collapse
|
28
|
Zhang X, Kong Y, Xu X, Xing H, Zhang Y, Han F, Li W, Yang Q, Zeng J, Jia J, Liu Z. F-box protein FBXO31 is down-regulated in gastric cancer and negatively regulated by miR-17 and miR-20a. Oncotarget 2015; 5:6178-90. [PMID: 25115392 PMCID: PMC4171621 DOI: 10.18632/oncotarget.2183] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
FBXO31, a subunit of the SCF ubiquitin ligase, played a crucial role in neuronal development, DNA damage response and tumorigenesis. Here, we investigated the expression and prognosis value of FBXO31 in human primary gastric cancer (GC) samples. Meanwhile, the biological role and the regulation mechanism of FBXO31 were evaluated. We found that FBXO31 mRNA and protein was decreased dramatically in the GC tissue compared with the adjacent non-cancerous tissues. FBXO31 expression was significantly associated with tumor size, tumor infiltration, clinical grade and patients' prognosis. FBXO31 overexpression significantly decreased colony formation and induced a G1-phase arrest and inhibited the expression of CyclinD1 protein in GC cells. Further evidence was obtained from knockdown of FBXO31. Ectopic expression of FBXO31 dramatically inhibited xenograft tumor growth in nude mice. miR-20a and miR-17 mimics inhibited, whereas the inhibitor of miR-20a and miR-17 increased, the expression of FBXO31, respectively. miR-20a and miR-17 directly bind to the 3'-UTR of FBXO31. The level of miR-20a and miR-17 in GC tissue was significantly higher than that in surrounding normal mucosa. Moreover, a highly significant negative correlation between miR-20a (miR-17) and FBXO31 was observed in these GC samples. Therefore, effective therapy targeting the miR-20a (miR-17)-FBXO31-CyclinD1 pathway may help control GC progression.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, P. R. China
| | - Ye Kong
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, P. R. China
| | - Xia Xu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, P. R. China
| | - Huaixin Xing
- Department of Anesthesiology, Shandong Cancer Hospital, Jinan, P.R. China
| | - Yingjie Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital; Jinan, P.R. China
| | - Fengjuan Han
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, P. R. China
| | - Wenjuan Li
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, P. R. China
| | - Qing Yang
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, P. R. China
| | - Jiping Zeng
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, P. R. China
| | - Jihui Jia
- Department of Microbiology, Key Laboratory for Experimental Teratology of Chinese Ministry of Education, School of Medicine, Shandong University, Jinan, P. R. China
| | - Zhifang Liu
- Department of Biochemistry and Molecular Biology, School of Medicine, Shandong University, Jinan, P. R. China
| |
Collapse
|
29
|
Chandra Dantu S, Nathubhai Kachariya N, Kumar A. Molecular dynamics simulations elucidate the mode of protein recognition by Skp1 and the F-box domain in the SCF complex. Proteins 2015; 84:159-71. [PMID: 26573739 DOI: 10.1002/prot.24963] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 11/07/2015] [Accepted: 11/09/2015] [Indexed: 11/09/2022]
Abstract
Polyubiquitination of the target protein by a ubiquitin transferring machinery is key to various cellular processes. E3 ligase Skp1-Cul1-F-box (SCF) is one such complex which plays crucial role in substrate recognition and transfer of the ubiquitin molecule. Previous computational studies have focused on S-phase kinase-associated protein 2 (Skp2), cullin, and RING-finger proteins of this complex, but the roles of the adapter protein Skp1 and F-box domain of Skp2 have not been determined. Using sub-microsecond molecular dynamics simulations of full-length Skp1, unbound Skp2, Skp2-Cks1 (Cks1: Cyclin-dependent kinases regulatory subunit 1), Skp1-Skp2, and Skp1-Skp2-Cks1 complexes, we have elucidated the function of Skp1 and the F-box domain of Skp2. We found that the L16 loop of Skp1, which was deleted in previous X-ray crystallography studies, can offer additional stability to the ternary complex via its interactions with the C-terminal tail of Skp2. Moreover, Skp1 helices H6, H7, and H8 display vivid conformational flexibility when not bound to Skp2, suggesting that these helices can recognize and lock the F-box proteins. Furthermore, we observed that the F-box domain could rotate (5°-129°), and that the binding partner determined the degree of conformational flexibility. Finally, Skp1 and Skp2 were found to execute a domain motion in Skp1-Skp2 and Skp1-Skp2-Cks1 complexes that could decrease the distance between ubiquitination site of the substrate and the ubiquitin molecule by 3 nm. Thus, we propose that both the F-box domain of Skp2 and Skp1-Skp2 domain motions displaying preferential conformational control can together facilitate polyubiquitination of a wide variety of substrates.
Collapse
Affiliation(s)
- Sarath Chandra Dantu
- Cactus Communications Pvt. Ltd, Andheri (W), Mumbai, 400053, India.,Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Nitin Nathubhai Kachariya
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Ashutosh Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| |
Collapse
|
30
|
Heo J, Eki R, Abbas T. Deregulation of F-box proteins and its consequence on cancer development, progression and metastasis. Semin Cancer Biol 2015; 36:33-51. [PMID: 26432751 DOI: 10.1016/j.semcancer.2015.09.015] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 09/25/2015] [Accepted: 09/25/2015] [Indexed: 01/28/2023]
Abstract
F-box proteins are substrate receptors of the SCF (SKP1-Cullin 1-F-box protein) E3 ubiquitin ligase that play important roles in a number of physiological processes and activities. Through their ability to assemble distinct E3 ubiquitin ligases and target key regulators of cellular activities for ubiquitylation and degradation, this versatile group of proteins is able to regulate the abundance of cellular proteins whose deregulated expression or activity contributes to disease. In this review, we describe the important roles of select F-box proteins in regulating cellular activities, the perturbation of which contributes to the initiation and progression of a number of human malignancies.
Collapse
Affiliation(s)
- Jinho Heo
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA
| | - Rebeka Eki
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA
| | - Tarek Abbas
- Department of Radiation Oncology, University of Virginia, Charlottesville, VA, USA; Department of Biochemistry and Molecular Genetics, University of Virginia, Charlottesville, VA, USA; Center for Cell Signaling, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
31
|
Loss of the neuron-specific F-box protein FBXO41 models an ataxia-like phenotype in mice with neuronal migration defects and degeneration in the cerebellum. J Neurosci 2015; 35:8701-17. [PMID: 26063905 DOI: 10.1523/jneurosci.2133-14.2015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The cerebellum is crucial for sensorimotor coordination. The cerebellar architecture not only requires proper development but also long-term integrity to ensure accurate functioning. Developmental defects such as impaired neuronal migration or neurodegeneration are thus detrimental to the cerebellum and can result in movement disorders including ataxias. In this study, we identify FBXO41 as a novel CNS-specific F-box protein that localizes to the centrosome and the cytoplasm of neurons and demonstrate that cytoplasmic FBXO41 promotes neuronal migration. Interestingly, deletion of the FBXO41 gene results in a severely ataxic gait in mice, which show delayed neuronal migration of granule neurons in the developing cerebellum in addition to deformities and degeneration of the mature cerebellum. We show that FBXO41 is a critical factor, not only for neuronal migration in the cerebellum, but also for its long-term integrity.
Collapse
|
32
|
Garbarino VR, Orr ME, Rodriguez KA, Buffenstein R. Mechanisms of oxidative stress resistance in the brain: Lessons learned from hypoxia tolerant extremophilic vertebrates. Arch Biochem Biophys 2015; 576:8-16. [PMID: 25841340 PMCID: PMC4843805 DOI: 10.1016/j.abb.2015.01.029] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2014] [Accepted: 01/31/2015] [Indexed: 01/09/2023]
Abstract
The Oxidative Stress Theory of Aging has had tremendous impact in research involving aging and age-associated diseases including those that affect the nervous system. With over half a century of accrued data showing both strong support for and against this theory, there is a need to critically evaluate the data acquired from common biomedical research models, and to also diversify the species used in studies involving this proximate theory. One approach is to follow Orgel's second axiom that "evolution is smarter than we are" and judiciously choose species that may have evolved to live with chronic or seasonal oxidative stressors. Vertebrates that have naturally evolved to live under extreme conditions (e.g., anoxia or hypoxia), as well as those that undergo daily or seasonal torpor encounter both decreased oxygen availability and subsequent reoxygenation, with concomitant increased oxidative stress. Due to its high metabolic activity, the brain may be particularly vulnerable to oxidative stress. Here, we focus on oxidative stress responses in the brains of certain mouse models as well as extremophilic vertebrates. Exploring the naturally evolved biological tools utilized to cope with seasonal or environmentally variable oxygen availability may yield key information pertinent for how to deal with oxidative stress and thereby mitigate its propagation of age-associated diseases.
Collapse
Affiliation(s)
- Valentina R Garbarino
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Miranda E Orr
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Karl A Rodriguez
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| | - Rochelle Buffenstein
- Department of Physiology, Sam and Ann Barshop Institute for Aging and Longevity Studies, University of Texas Health Science Center at San Antonio, USA.
| |
Collapse
|
33
|
GONG JIAN, CAO JUAN, LIU GUINAN, HUO JIRONG. Function and mechanism of F-box proteins in gastric cancer (Review). Int J Oncol 2015; 47:43-50. [DOI: 10.3892/ijo.2015.2983] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 04/24/2015] [Indexed: 11/06/2022] Open
|
34
|
Huang HL, Jiang Y, Wang YH, Chen T, He HJ, Liu T, Yang T, Yang LW, Chen J, Song ZQ, Yao W, Wu B, Liu G. FBXO31 promotes cell proliferation, metastasis and invasion in lung cancer. Am J Cancer Res 2015; 5:1814-1822. [PMID: 26175949 PMCID: PMC4497447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Accepted: 04/12/2015] [Indexed: 06/04/2023] Open
Abstract
FBXO31 is a member of F-box family which is involved in diverse biological functions and development of disease. Recent reports in breast cancer, hepatocellular carcinoma and ovarian cancer demonstrated inhibitory effect of FBXO31 on proliferation and tumorigenesis. However, the function of FBXO31 is not analyzed in lung cancer so far. In this study, we reported that expression of FBXO31 was higher in lung cancer tissues compared with non-cancerous lung tissues, and that higher expression of FBXO31 was significantly associated with tumor size, tumor infiltration, clinical stages and lymph node metastasis. In addition, exogenous expression of FBXO31 promoted cell growth, metastasis and invasion in A549 cells. Conversely, silencing FBXO31 by specific siRNA caused inhibitory effect on cell growth, metastasis and invasion. Moreover, tumorigenicity assays in nude mice showed FBXO31 promoted tumor growth in vivo. In conclusion, our data suggest FBXO31 promotes cell proliferation, metastasis and invasion in lung cancer.
Collapse
Affiliation(s)
- Hai-Li Huang
- Clinical Research Center, Guangdong Medical CollegeZhanjiang 524001, China
| | - Yun Jiang
- Clinical Research Center, Guangdong Medical CollegeZhanjiang 524001, China
- Department of Respiratory Medicine, Affiliated hospital of Guangdong Medical CollegeZhanjiang 524001, China
| | - Ya-Hong Wang
- Clinical Research Center, Guangdong Medical CollegeZhanjiang 524001, China
| | - Ting Chen
- Clinical Research Center, Guangdong Medical CollegeZhanjiang 524001, China
| | - Hui-Juan He
- Clinical Research Center, Guangdong Medical CollegeZhanjiang 524001, China
| | - Tie Liu
- The First Affiliated Hospital, Medical School of Xi’an Jiaotong UniversityChina
- Clinical Research Center, The Affiliated Hospital of Guangdong Medical CollegeZhanjiang 524001, China
| | - Teng Yang
- Clinical Research Center, Guangdong Medical CollegeZhanjiang 524001, China
| | - La-Wei Yang
- Clinical Research Center, Guangdong Medical CollegeZhanjiang 524001, China
| | - Jie Chen
- Department of Cardiothoracic Surgery, Affiliated Hospital of Guangdong Medical CollegeZhanjiang 524001, China
| | - Ze-Qing Song
- Department of Respiratory Medicine, Affiliated hospital of Guangdong Medical CollegeZhanjiang 524001, China
| | - Weimin Yao
- Department of Respiratory Medicine, Affiliated hospital of Guangdong Medical CollegeZhanjiang 524001, China
| | - Bin Wu
- Department of Respiratory Medicine, Affiliated hospital of Guangdong Medical CollegeZhanjiang 524001, China
| | - Gang Liu
- Clinical Research Center, Guangdong Medical CollegeZhanjiang 524001, China
- Department of Respiratory Medicine, Affiliated hospital of Guangdong Medical CollegeZhanjiang 524001, China
| |
Collapse
|
35
|
Johansson P, Jeffery J, Al-Ejeh F, Schulz RB, Callen DF, Kumar R, Khanna KK. SCF-FBXO31 E3 ligase targets DNA replication factor Cdt1 for proteolysis in the G2 phase of cell cycle to prevent re-replication. J Biol Chem 2014; 289:18514-25. [PMID: 24828503 DOI: 10.1074/jbc.m114.559930] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
FBXO31 was originally identified as a putative tumor suppressor gene in breast, ovarian, hepatocellular, and prostate cancers. By screening a set of cell cycle-regulated proteins as potential FBXO31 interaction partners, we have now identified Cdt1 as a novel substrate. Cdt1 DNA replication licensing factor is part of the pre-replication complex and essential for the maintenance of genomic integrity. We show that FBXO31 specifically interacts with Cdt1 and regulates its abundance by ubiquitylation leading to subsequent degradation. We also show that Cdt1 regulation by FBXO31 is limited to the G2 phase of the cell cycle and is independent of the pathways previously described for Cdt1 proteolysis in S and G2 phase. FBXO31 targeting of Cdt1 is mediated through the N terminus of Cdt1, a region previously shown to be responsible for its cell cycle regulation. Finally, we show that Cdt1 stabilization due to FBXO31 depletion results in re-replication. Our data present an additional pathway that contributes to the FBXO31 function as a tumor suppressor.
Collapse
Affiliation(s)
- Pegah Johansson
- From the Sahlgrenska University Hospital, Department of Clinical Chemistry, Bruna Stråket 16, 41345 Gothenburg, Sweden
| | - Jessie Jeffery
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Fares Al-Ejeh
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| | - Renèe B Schulz
- Centre for Personalised Cancer Medicine and Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - David F Callen
- Centre for Personalised Cancer Medicine and Discipline of Medicine, University of Adelaide, Adelaide, South Australia 5000, Australia
| | - Raman Kumar
- School of Paediatrics and Reproductive Health and Discipline of Medicine, University of Adelaide, Adelaide and Women's and Children's Health Research Institute, North Adelaide, South Australia 5006, Australia, and
| | - Kum Kum Khanna
- Signal Transduction Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, Queensland 4006, Australia
| |
Collapse
|
36
|
Seeley AH, Durham MA, Micale MA, Wesolowski J, Foerster BR, Martin DM. Macrocerebellum, epilepsy, intellectual disability, and gut malrotation in a child with a 16q24.1-q24.2 contiguous gene deletion. Am J Med Genet A 2014; 164A:2062-8. [PMID: 24719385 DOI: 10.1002/ajmg.a.36569] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 03/17/2014] [Indexed: 01/08/2023]
Abstract
Macrocerebellum is a rare condition characterized by enlargement of the cerebellum with conservation of the overall shape and cytoarchitecture. Here, we report on a child with a distinctive constellation of clinical features including macrocerebellum, epilepsy, apparent intellectual disability, dysautonomia, gut malrotation, and poor gut motility. Oligonucleotide chromosome microarray analysis identified a 16q24.1-q24.2 deletion that included four OMIM genes (FBXO31, MAP1LC3B, JPH3, and SLC7A5). Review of prior studies describing individuals with similar or overlapping16q24.1-q24.2 deletions identified no other reports of macrocerebellum. These observations highlight a potential genetic cause of this rare disorder and raise the possibility that one or more gene(s) in the 16q24.1-q24.2 interval regulate cerebellar development.
Collapse
Affiliation(s)
- Andrea H Seeley
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan
| | | | | | | | | | | |
Collapse
|
37
|
Holubowska A, Mukherjee C, Vadhvani M, Stegmüller J. Genetic manipulation of cerebellar granule neurons in vitro and in vivo to study neuronal morphology and migration. J Vis Exp 2014. [PMID: 24686379 DOI: 10.3791/51070] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Developmental events in the brain including neuronal morphogenesis and migration are highly orchestrated processes. In vitro and in vivo analyses allow for an in-depth characterization to identify pathways involved in these events. Cerebellar granule neurons (CGNs) that are derived from the developing cerebellum are an ideal model system that allows for morphological analyses. Here, we describe a method of how to genetically manipulate CGNs and how to study axono- and dendritogenesis of individual neurons. With this method the effects of RNA interference, overexpression or small molecules can be compared to control neurons. In addition, the rodent cerebellar cortex is an easily accessible in vivo system owing to its predominant postnatal development. We also present an in vivo electroporation technique to genetically manipulate the developing cerebella and describe subsequent cerebellar analyses to assess neuronal morphology and migration.
Collapse
Affiliation(s)
- Anna Holubowska
- Cellular and Molelcular Neurobiology, Max Planck Institute of Experimental Medicine; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)
| | - Chaitali Mukherjee
- Cellular and Molelcular Neurobiology, Max Planck Institute of Experimental Medicine; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)
| | - Mayur Vadhvani
- Cellular and Molelcular Neurobiology, Max Planck Institute of Experimental Medicine; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB)
| | - Judith Stegmüller
- Cellular and Molelcular Neurobiology, Max Planck Institute of Experimental Medicine; Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB);
| |
Collapse
|
38
|
Mir A, Sritharan K, Mittal K, Vasli N, Araujo C, Jamil T, Rafiq MA, Anwar Z, Mikhailov A, Rauf S, Mahmood H, Shakoor A, Ali S, So J, Naeem F, Ayub M, Vincent JB. Truncation of the E3 ubiquitin ligase component FBXO31 causes non-syndromic autosomal recessive intellectual disability in a Pakistani family. Hum Genet 2014; 133:975-84. [DOI: 10.1007/s00439-014-1438-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 03/04/2014] [Indexed: 12/24/2022]
|
39
|
Caldeira MV, Salazar IL, Curcio M, Canzoniero LMT, Duarte CB. Role of the ubiquitin-proteasome system in brain ischemia: friend or foe? Prog Neurobiol 2013; 112:50-69. [PMID: 24157661 DOI: 10.1016/j.pneurobio.2013.10.003] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 10/08/2013] [Accepted: 10/15/2013] [Indexed: 11/26/2022]
Abstract
The ubiquitin-proteasome system (UPS) is a catalytic machinery that targets numerous cellular proteins for degradation, thus being essential to control a wide range of basic cellular processes and cell survival. Degradation of intracellular proteins via the UPS is a tightly regulated process initiated by tagging a target protein with a specific ubiquitin chain. Neurons are particularly vulnerable to any change in protein composition, and therefore the UPS is a key regulator of neuronal physiology. Alterations in UPS activity may induce pathological responses, ultimately leading to neuronal cell death. Brain ischemia triggers a complex series of biochemical and molecular mechanisms, such as an inflammatory response, an exacerbated production of misfolded and oxidized proteins, due to oxidative stress, and the breakdown of cellular integrity mainly mediated by excitotoxic glutamatergic signaling. Brain ischemia also damages protein degradation pathways which, together with the overproduction of damaged proteins and consequent upregulation of ubiquitin-conjugated proteins, contribute to the accumulation of ubiquitin-containing proteinaceous deposits. Despite recent advances, the factors leading to deposition of such aggregates after cerebral ischemic injury remain poorly understood. This review discusses the current knowledge on the role of the UPS in brain function and the molecular mechanisms contributing to UPS dysfunction in brain ischemia with consequent accumulation of ubiquitin-containing proteins. Chemical inhibitors of the proteasome and small molecule inhibitors of deubiquitinating enzymes, which promote the degradation of proteins by the proteasome, were both shown to provide neuroprotection in brain ischemia, and this apparent contradiction is also discussed in this review.
Collapse
Affiliation(s)
- Margarida V Caldeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Ivan L Salazar
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Doctoral Programme in Experimental Biology and Biomedicine, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; Institute for Interdisciplinary Research, University of Coimbra (IIIUC), Portugal
| | - Michele Curcio
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Science and Technology, University of Sannio, Benevento, Italy
| | | | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Largo Marquês de Pombal, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal.
| |
Collapse
|