1
|
Wu Z, Li J, Chen W. Biological characterization of lipoic acid- and heme-dependent Escherichia coli small colony variants isolated from sheep in Xinjiang, China. Vet Res Commun 2024; 48:3859-3872. [PMID: 39325108 DOI: 10.1007/s11259-024-10554-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Escherichia coli (E. coli) small colony variants (SCVs) have garnered attention due to their heightened antibiotic resistance and enhanced cell retention, posing significant risks to public health and food safety. However, understanding of SCVs derived from sheep remains limited. This study aimed to detect the biological characterization of sheep-derived E. coli SCVs and investigate the factors contributing to SCV development with preliminary genomic data. In this study, a lipoic acid-dependent SCV (LA-SCV) and a wild-type (WT) strain were isolated from sheep bile. Then, a heme-dependent SCV (HD-SCV) was induced from WT using amikacin. Initially, we examined factors contributing to SCV formation via comparative genomics. Subsequent comparisons between WT and two SCV strains encompassed antibiotic resistance, hemolytic activity, biofilm formation, motility, and metabolism. Genomic analyses identified a frameshift deletion mutation in the lipA gene in LA-SCV and a stopgain mutation in the hemG gene in HD-SCV, hypothesized as potential triggers for lipoic acid- and heme-dependent SCV development, respectively. Physiological, biochemical, and cultural traits exhibited notable differences between WT and SCVs, including increased antibiotic resistance, hemolytic activity, and biofilm formation, but alongside non-fermentative acetate utilization, slow growth, reduced intracellular ATP, and decreased motility (P < 0.01). The energy and amino acid metabolism were suppressed during the logarithmic phase in LA-SCV, while both logarithmic and stable phases in HD-SCV. These alterations in biological characteristics present significant challenges in managing E. coli pathogenicity and antibiotic resistance.
Collapse
Affiliation(s)
- Zihao Wu
- College of Life Sciences and Technology, State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps, Tarim University, The Ministry of Science & Technology, Alar, 86-843300, China
| | - Jing Li
- College of Animal Sciences and Technology, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Tarim University, Xinjiang Production & Construction Corps, Alar, 86-843300, China.
| | - Wei Chen
- College of Life Sciences and Technology, State Key Laboratory Breeding Base for The Protection and Utilization of Biological Resources in Tarim Basin Co-funded by Xinjiang Production & Construction Corps, Tarim University, The Ministry of Science & Technology, Alar, 86-843300, China.
- College of Animal Sciences and Technology, Engineering Laboratory of Tarim Animal Diseases Diagnosis and Control, Tarim University, Xinjiang Production & Construction Corps, Alar, 86-843300, China.
| |
Collapse
|
2
|
Matinvafa MA, Makani S, Parsasharif N, Zahed MA, Movahed E, Ghiasvand S. CRISPR-Cas technology secures sustainability through its applications: a review in green biotechnology. 3 Biotech 2023; 13:383. [PMID: 37920190 PMCID: PMC10618153 DOI: 10.1007/s13205-023-03786-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 09/09/2023] [Indexed: 11/04/2023] Open
Abstract
The CRISPR-Cas system's applications in biotechnology offer a promising avenue for addressing pressing global challenges, such as climate change, environmental pollution, the energy crisis, and the food crisis, thereby advancing sustainability. The ever-growing demand for food due to the projected population of around 9.6 billion by 2050 requires innovation in agriculture. CRISPR-Cas technology emerges as a powerful solution, enhancing crop varieties, optimizing yields, and improving resilience to stressors. It offers multiple gene editing, base editing, and prime editing, surpassing conventional methods. CRISPR-Cas introduces disease and herbicide resistance, high-yielding, drought-tolerant, and water-efficient crops to address rising water utilization and to improve the efficiency of agricultural practices which promise food sustainability and revolutionize agriculture for the benefit of future generations. The application of CRISPR-Cas technology extends beyond agriculture to address environmental challenges. With the adverse impacts of climate change and pollution endangering ecosystems, there is a growing need for sustainable solutions. The technology's potential in carbon capture and reduction through bio-sequestration is a pivotal strategy for combating climate change. Genomic advancements allow for the development of genetically modified organisms, optimizing biofuel and biomaterial production, and contributing to a renewable and sustainable energy future. This study reviews the multifaceted applications of CRISPR-Cas technology in the agricultural and environmental fields and emphasizes its potential to secure a sustainable future.
Collapse
Affiliation(s)
- Mohammad Ali Matinvafa
- Department of Biotechnology & Environment, Faculty of Chemical Engineering, Amirkabir University of Technology (Tehran Polytechnic), Tehran, Iran
| | - Shadi Makani
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Negin Parsasharif
- Faculty of Veterinary Medicine, Karaj Branch, Islamic Azad University, Karaj, Iran
| | - Mohammad Ali Zahed
- Faculty of Biological Sciences, Kharazmi University, Tehran, 14911 - 15719 Iran
| | - Elaheh Movahed
- Wadsworth Center, New York State Department of Health, Albany, NY USA
| | - Saeedeh Ghiasvand
- Department of Biology, Faculty of Basic Science, Malayer University, Malayer, Hamedan, Iran
| |
Collapse
|
3
|
Qin N, Li L, Wang Z, Shi S. Microbial production of odd-chain fatty acids. Biotechnol Bioeng 2023; 120:917-931. [PMID: 36522132 DOI: 10.1002/bit.28308] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 10/11/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Odd-chain fatty acids (OcFAs) and their derivatives have attracted much attention due to their beneficial physiological effects and their potential to be alternatives to advanced fuels. However, cells naturally produce even-chain fatty acids (EcFAs) with negligible OcFAs. In the process of biosynthesis of fatty acids (FAs), the acetyl-CoA serves as the starter unit for EcFAs, and propionyl-CoA works as the starter unit for OcFAs. The lack of sufficient propionyl-CoA, the precursor, is usually regarded as the main restriction for large-scale bioproduction of OcFAs. In recent years, synthetic biology strategies have been used to modify several microorganisms to produce more propionyl-CoA that would enable an efficient biosynthesis of OcFAs. This review discusses several reported and potential metabolic pathways for propionyl-CoA biosynthesis, followed by advances in engineering several cell factories for OcFAs production. Finally, trends and challenges of synthetic biology driven OcFAs production are discussed.
Collapse
Affiliation(s)
- Ning Qin
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Lingyun Li
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Zheng Wang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
4
|
Enhancing Acetophenone Tolerance of Anti-Prelog Short-Chain Dehydrogenase/Reductase EbSDR8 Using a Whole-Cell Catalyst by Directed Evolution. Catalysts 2022. [DOI: 10.3390/catal12091071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The short-chain dehydrogenase/reductase (SDR) from Empedobacter brevis ZJUY-1401 (EbSDR8, GenBank: ALZ42979.1) is a promising biocatalyst for the reduction of acetophenone to (R)-1-phenylethanol, but its industrial application is restricted by its insufficient tolerance to acetophenone. In this paper, we developed a chromogenic reaction-based high-throughput screening method and employed directed evolution to enhance the acetophenone tolerance of EbSDR8. The resulting variant, M190V, showed 74.8% improvement over the wild-type in specific activity when catalyzing the reduction of 200 mM acetophenone. Kinetic analysis revealed a 70% enhancement in its catalytic efficiency (kcat/Km). Molecular docking was conducted to reveal the possible mechanism behind the improved acetophenone tolerance, and the result implied that the M190V mutation is conducive to the binding and release of coenzyme. Aside from the improved catalytic performance when dealing with a high concentration of acetophenone, other features of M190V, such as a broad pH range (6.0 to 10.5), low optimal cosubstrate concentration (1% isopropanol), and a temperature optimum close to that of E. coli cells (35 °C), also contribute to its practical application as a whole-cell catalyst. In this study, we first designed a directed evolution means to engineer the enzyme and obtained the positive variant which has a high activity under high concentrations of acetophenone. After that, we optimized the catalytic performance of the variant to adapt to industrial applications.
Collapse
|
5
|
Guo Y, Liu G, Ning Y, Li X, Hu S, Zhao J, Qu Y. Production of cellulosic ethanol and value-added products from corn fiber. BIORESOUR BIOPROCESS 2022; 9:81. [PMID: 38647596 PMCID: PMC10991675 DOI: 10.1186/s40643-022-00573-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022] Open
Abstract
Corn fiber, a by-product from the corn processing industry, mainly composed of residual starch, cellulose, and hemicelluloses, is a promising raw material for producing cellulosic ethanol and value-added products due to its abundant reserves and low costs of collection and transportation. Now, several technologies for the production of cellulosic ethanol from corn fiber have been reported, such as the D3MAX process, Cellerate™ process, etc., and part of the technologies have also been used in industrial production in the United States. The ethanol yields range from 64 to 91% of the theoretical maximum, depending on different production processes. Because of the multicomponent of corn fiber and the complex structures highly substituted by a variety of side chains in hemicelluloses of corn fiber, however, there are many challenges in cellulosic ethanol production from corn fiber, such as the low conversion of hemicelluloses to fermentable sugars in enzymatic hydrolysis, high production of inhibitors during pretreatment, etc. Some technologies, including an effective pretreatment process for minimizing inhibitors production and maximizing fermentable sugars recovery, production of enzyme preparations with suitable protein compositions, and the engineering of microorganisms capable of fermenting hexose and pentose in hydrolysates and inhibitors tolerance, etc., need to be further developed. The process integration of cellulosic ethanol and value-added products also needs to be developed to improve the economic benefits of the whole process. This review summarizes the status and progresses of cellulosic ethanol production and potential value-added products from corn fiber and presents some challenges in this field at present.
Collapse
Affiliation(s)
- Yingjie Guo
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Guodong Liu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| | - Yanchun Ning
- Research Institute of Jilin Petrochemical Company, PetroChina, No. 27, Zunyidong Road, Jilin City, 132021, Jilin, China
| | - Xuezhi Li
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| | - Shiyang Hu
- Research Institute of Jilin Petrochemical Company, PetroChina, No. 27, Zunyidong Road, Jilin City, 132021, Jilin, China
| | - Jian Zhao
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China.
| | - Yinbo Qu
- State Key Laboratory of Microbial Technology, Shandong University, No. 72, Binhai Road, Qingdao, 266237, Shandong, China
| |
Collapse
|
6
|
Understanding D-xylonic acid accumulation: a cornerstone for better metabolic engineering approaches. Appl Microbiol Biotechnol 2021; 105:5309-5324. [PMID: 34215905 DOI: 10.1007/s00253-021-11410-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 06/08/2021] [Accepted: 06/10/2021] [Indexed: 01/02/2023]
Abstract
The xylose oxidative pathway (XOP) has been engineered in microorganisms for the production of a wide range of industrially relevant compounds. However, the performance of metabolically engineered XOP-utilizing microorganisms is typically hindered by D-xylonic acid accumulation. It acidifies the media and perturbs cell growth due to toxicity, thus curtailing enzymatic activity and target product formation. Fortunately, from the growing portfolio of genetic tools, several strategies that can be adapted for the generation of efficient microbial cell factories have been implemented to address D-xylonic acid accumulation. This review centers its discussion on the causes of D-xylonic acid accumulation and how to address it through different engineering and synthetic biology techniques with emphasis given on bacterial strains. In the first part of this review, the ability of certain microorganisms to produce and tolerate D-xylonic acid is also tackled as an important aspect in developing efficient microbial cell factories. Overall, this review could shed some insights and clarity to those working on XOP in bacteria and its engineering for the development of industrially applicable product-specialist strains. KEY POINTS: D-Xylonic acid accumulation is attributed to the overexpression of xylose dehydrogenase concomitant with basal or inefficient expression of enzymes involved in D-xylonic acid assimilation. Redox imbalance and insufficient cofactors contribute to D-xylonic acid accumulation. Overcoming D-xylonic acid accumulation can increase product formation among engineered strains. Engineering strategies involving enzyme engineering, evolutionary engineering, coutilization of different sugar substrates, and synergy of different pathways could potentially address D-xylonic acid accumulation.
Collapse
|
7
|
Liu R, Liang L, Freed EF, Choudhury A, Eckert CA, Gill RT. Engineering regulatory networks for complex phenotypes in E. coli. Nat Commun 2020; 11:4050. [PMID: 32792485 PMCID: PMC7426931 DOI: 10.1038/s41467-020-17721-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 07/07/2020] [Indexed: 12/11/2022] Open
Abstract
Regulatory networks describe the hierarchical relationship between transcription factors, associated proteins, and their target genes. Regulatory networks respond to environmental and genetic perturbations by reprogramming cellular metabolism. Here we design, construct, and map a comprehensive regulatory network library containing 110,120 specific mutations in 82 regulators expected to perturb metabolism. We screen the library for different targeted phenotypes, and identify mutants that confer strong resistance to various inhibitors, and/or enhanced production of target compounds. These improvements are identified in a single round of selection, showing that the regulatory network library is universally applicable and is convenient and effective for engineering targeted phenotypes. The facile construction and mapping of the regulatory network library provides a path for developing a more detailed understanding of global regulation in E. coli, with potential for adaptation and use in less-understood organisms, expanding toolkits for future strain engineering, synthetic biology, and broader efforts.
Collapse
Affiliation(s)
- Rongming Liu
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Liya Liang
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Emily F Freed
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Alaksh Choudhury
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
| | - Carrie A Eckert
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA
- National Renewable Energy Laboratory (NREL), Golden, Colorado, USA
| | - Ryan T Gill
- Renewable and Sustainable Energy Institute (RASEI), University of Colorado Boulder, Boulder, Colorado, USA.
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
8
|
Banerjee S, Mishra G, Roy A. Metabolic Engineering of Bacteria for Renewable Bioethanol Production from Cellulosic Biomass. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0134-2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
9
|
Current situation of biofuel production and its enhancement by CRISPR/Cas9-mediated genome engineering of microbial cells. Microbiol Res 2019; 219:1-11. [DOI: 10.1016/j.micres.2018.10.010] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2018] [Revised: 10/10/2018] [Accepted: 10/30/2018] [Indexed: 12/26/2022]
|
10
|
Guo XW, Zhang Y, Li LL, Guan XY, Guo J, Wu DG, Chen YF, Xiao DG. Improved xylose tolerance and 2,3-butanediol production of Klebsiella pneumoniae by directed evolution of rpoD and the mechanisms revealed by transcriptomics. BIOTECHNOLOGY FOR BIOFUELS 2018; 11:307. [PMID: 30455736 PMCID: PMC6225576 DOI: 10.1186/s13068-018-1312-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 11/01/2018] [Indexed: 06/09/2023]
Abstract
BACKGROUND The biological production of 2,3-butanediol from xylose-rich raw materials from Klebsiella pneumoniae is a low-cost process. RpoD, an encoding gene of the sigma factor, is the key element in global transcription machinery engineering and has been successfully used to improve the fermentation with Escherichia coli. However, whether it can regulate the tolerance in K. pneumoniae remains unclear. RESULTS In this study, the kpC mutant strain was constructed by altering the expression quantity and genotype of the rpoD gene, and this exhibited high xylose tolerance and 2,3-butanediol production. The xylose tolerance of kpC strain was increased from 75 to 125 g/L, and the yield of 2,3-butanediol increased by 228.5% compared with the parent strain kpG, reaching 38.6 g/L at 62 h. The RNA sequencing results showed an upregulated expression level of 500 genes and downregulated expression level of 174 genes in the kpC mutant strain. The pathway analysis further showed that the differentially expressed genes were mainly related to signal transduction, membrane transport, carbohydrate metabolism, and energy metabolism. The nine most-promising genes were selected based on transcriptome sequencing, and were evaluated for their effects on xylose tolerance. The overexpression of the tktA encoding transketolase, pntA encoding NAD(P) transhydrogenase subunit alpha, and nuoF encoding NADH dehydrogenase subunit F conferred increased xylose consumption and increased 2,3-butanediol production to K. pneumoniae. CONCLUSIONS These results suggest that the xylose tolerance and 2,3-butanediol production of K. pneumoniae can be greatly improved by the directed evolution of rpoD. By applying transcriptomic analysis, the upregulation of tktA, pntA, and nuoF that were coded are essential for the xylose consumption and 2,3-butanediol production. This study will provide reference for further research on improving the fermentation abilities by means of other organisms.
Collapse
Affiliation(s)
- Xue-Wu Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Yu Zhang
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Lu-Lu Li
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Xiang-Yu Guan
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Jian Guo
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - De-Guang Wu
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Engineering Research Center of Microbial Metabolism and Fermentation Process Control, Tianjin, 300457 China
| | - Ye-Fu Chen
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| | - Dong-Guang Xiao
- Key Laboratory of Industrial Fermentation Microbiology of Ministry of Education, Tianjin Industrial Microbiology Key Lab, College of Biotechnology of Tianjin University of Science and Technology, Tianjin, 300547 China
- Tianjin Food Safety & Low Carbon Manufacturing Collaborative Innovation Center, Tianjin, 300547 China
| |
Collapse
|
11
|
Horinouchi T, Maeda T, Furusawa C. Understanding and engineering alcohol-tolerant bacteria using OMICS technology. World J Microbiol Biotechnol 2018; 34:157. [PMID: 30341456 PMCID: PMC6208762 DOI: 10.1007/s11274-018-2542-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/13/2018] [Indexed: 12/16/2022]
Abstract
Microbes are capable of producing alcohols, making them an important source of alternative energy that can replace fossil fuels. However, these alcohols can be toxic to the microbes themselves, retaring or inhibiting cell growth and decreasing the production yield. One solution is improving the alcohol tolerance of such alcohol-producing organisms. Advances in omics technologies, including transcriptomic, proteomic, metabolomic, and genomic technologies, have helped us understand the complex mechanisms underlying alcohol toxicity, and such advances could assist in devising strategies for engineering alcohol-tolerant strains. This review highlights these advances and discusses strategies for improving alcohol tolerance using omics analyses.
Collapse
Affiliation(s)
- Takaaki Horinouchi
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
| | - Tomoya Maeda
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| | - Chikara Furusawa
- Center for Biosystems Dynamics Research (BDR), RIKEN, 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan.
- Universal Biology Institute, The University of Tokyo, 7-3-1 Hongo, Tokyo, 113-0033, Japan.
| |
Collapse
|
12
|
Zhu Z, Ji X, Wu Z, Zhang J, Du G. Improved acid-stress tolerance of Lactococcus lactis NZ9000 and Escherichia coli BL21 by overexpression of the anti-acid component recT. J Ind Microbiol Biotechnol 2018; 45:1091-1101. [PMID: 30232653 DOI: 10.1007/s10295-018-2075-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/22/2018] [Indexed: 12/01/2022]
Abstract
Acid accumulation caused by carbon metabolism severely affects the fermentation performance of microbial cells. Here, different sources of the recT gene involved in homologous recombination were functionally overexpressed in Lactococcus lactis NZ9000 and Escherichia coli BL21, and their acid-stress tolerances were investigated. Our results showed that L. lactis NZ9000 (ERecT and LRecT) strains showed 1.4- and 10.4-fold higher survival rates against lactic acid (pH 4.0), respectively, and that E. coli BL21 (ERecT) showed 16.7- and 9.4-fold higher survival rates than the control strain against lactic acid (pH 3.8) for 40 and 60 min, respectively. Additionally, we found that recT overexpression in L. lactis NZ9000 improved their growth under acid-stress conditions, as well as increased salt- and ethanol-stress tolerance and intracellular ATP concentrations in L. lactis NZ9000. These findings demonstrated the efficacy of recT overexpression for enhancing acid-stress tolerance and provided a promising strategy for insertion of anti-acid components in different hosts.
Collapse
Affiliation(s)
- Zhengming Zhu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Xiaomei Ji
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| | - Zhimeng Wu
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Juan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China. .,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.
| | - Guocheng Du
- The Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China.,School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, 214122, Jiangsu, China
| |
Collapse
|
13
|
Identification and manipulation of a novel locus to improve cell tolerance to short-chain alcohols in Escherichia coli. ACTA ACUST UNITED AC 2018; 45:589-598. [DOI: 10.1007/s10295-017-1996-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/09/2017] [Indexed: 12/30/2022]
Abstract
Abstract
Escherichia coli KO11 is a popular ethanologenic strain, but is more sensitive to ethanol than other producers. Here, an ethanol-tolerant mutant EM was isolated from ultraviolet mutagenesis library of KO11. Comparative genomic analysis added by piecewise knockout strategy and complementation assay revealed EKO11_3023 (espA) within the 36.6-kb deletion from KO11 was the only locus responsible for ethanol sensitivity. Interestingly, when espA was deleted in strain W (the parent strain of KO11), ethanol tolerance was dramatically elevated to the level of espA-free hosts [e.g., MG1655 and BL21(DE3)]. And overexpression of espA in strains MG1655 and BL21(DE3) led to significantly enhanced ethanol sensitivity. In addition to ethanol, deletion of espA also improved cell tolerance to other short-chain (C2–C4) alcohols, including methanol, isopropanol, n-butanol, isobutanol and 2-butanol. Therefore, espA was responsible for short-chain alcohol sensitivity of W-strains compared to other cells, which provides a potential engineering target for alcohols production.
Collapse
|
14
|
Evolutionary engineering of industrial microorganisms-strategies and applications. Appl Microbiol Biotechnol 2018; 102:4615-4627. [DOI: 10.1007/s00253-018-8937-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/13/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
15
|
Westphal LL, Lau J, Negro Z, Moreno IJ, Ismail Mohammed W, Lee H, Tang H, Finkel SE, Kram KE. Adaptation of Escherichia coli to long-term batch culture in various rich media. Res Microbiol 2018; 169:145-156. [PMID: 29454026 DOI: 10.1016/j.resmic.2018.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 12/22/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022]
Abstract
Experimental evolution studies have characterized the genetic strategies microbes utilize to adapt to their environments, mainly focusing on how microbes adapt to constant and/or defined environments. Using a system that incubates Escherichia coli in different complex media in long-term batch culture, we have focused on how heterogeneity and environment affects adaptive landscapes. In this system, there is no passaging of cells, and therefore genetic diversity is lost only through negative selection, without the experimentally-imposed bottlenecking common in other platforms. In contrast with other experimental evolution systems, because of cycling of nutrients and waste products, this is a heterogeneous environment, where selective pressures change over time, similar to natural environments. We determined that incubation in each environment leads to different adaptations by observing the growth advantage in stationary phase (GASP) phenotype. Re-sequencing whole genomes of populations identified both mutant alleles in a conserved set of genes and differences in evolutionary trajectories between environments. Reconstructing identified mutations in the parental strain background confirmed the adaptive advantage of some alleles, but also identified a surprising number of neutral or even deleterious mutations. This result indicates that complex epistatic interactions may be under positive selection within these heterogeneous environments.
Collapse
Affiliation(s)
- Lacey L Westphal
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, RRI 303, 1050 Child's Way, Los Angeles, CA, 90089-2910, USA.
| | - Jasmine Lau
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Zuly Negro
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Ivan J Moreno
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| | - Wazim Ismail Mohammed
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN, 47405, USA.
| | - Heewook Lee
- Computational Biology Department, School of Computer Science, Carnegie Mellon University, GHC 7719, 5000 Forbes Ave., Pittsburgh, PA, 15213, USA.
| | - Haixu Tang
- School of Informatics and Computing, Indiana University, 150 S. Woodlawn Avenue, Bloomington, IN, 47405, USA.
| | - Steven E Finkel
- Molecular and Computational Biology Section, Department of Biological Sciences, University of Southern California, RRI 303, 1050 Child's Way, Los Angeles, CA, 90089-2910, USA.
| | - Karin E Kram
- Department of Biology, California State University, Dominguez Hills, NSM A-137, 1000 E. Victoria Street, Carson, CA, 90747, USA.
| |
Collapse
|
16
|
Díez L, Solopova A, Fernández-Pérez R, González M, Tenorio C, Kuipers OP, Ruiz-Larrea F. Transcriptome analysis shows activation of the arginine deiminase pathway in Lactococcus lactis as a response to ethanol stress. Int J Food Microbiol 2017. [DOI: 10.1016/j.ijfoodmicro.2017.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
17
|
Arai S, Hayashihara K, Kanamoto Y, Shimizu K, Hirokawa Y, Hanai T, Murakami A, Honda H. Alcohol‐tolerant mutants of cyanobacterium
Synechococcus elongatus
PCC 7942 obtained by single‐cell mutant screening system. Biotechnol Bioeng 2017; 114:1771-1778. [DOI: 10.1002/bit.26307] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/02/2017] [Accepted: 04/04/2017] [Indexed: 11/10/2022]
Affiliation(s)
- Sayuri Arai
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| | | | - Yuki Kanamoto
- Kobe University Research Center for Inland SeasAwajiHyogoJapan
| | - Kazunori Shimizu
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| | - Yasutaka Hirokawa
- Laboratory for BioinformaticsGraduate School of Systems Life SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Taizo Hanai
- Laboratory for BioinformaticsGraduate School of Systems Life SciencesKyushu UniversityHigashi‐kuFukuokaJapan
| | - Akio Murakami
- Kobe University Research Center for Inland SeasAwajiHyogoJapan
| | - Hiroyuki Honda
- Department of BiotechnologyGraduate School of EngineeringNagoya UniversityFuro‐choChikusa‐kuNagoyaAichi464‐8603Japan
| |
Collapse
|
18
|
Qiu Z, Jiang R. Improving Saccharomyces cerevisiae ethanol production and tolerance via RNA polymerase II subunit Rpb7. BIOTECHNOLOGY FOR BIOFUELS 2017; 10:125. [PMID: 28515784 PMCID: PMC5433082 DOI: 10.1186/s13068-017-0806-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 04/27/2017] [Indexed: 05/31/2023]
Abstract
BACKGROUND Classical strain engineering methods often have limitations in altering multigenetic cellular phenotypes. Here we try to improve Saccharomyces cerevisiae ethanol tolerance and productivity by reprogramming its transcription profile through rewiring its key transcription component RNA polymerase II (RNAP II), which plays a central role in synthesizing mRNAs. This is the first report on using directed evolution method to engineer RNAP II to alter S. cerevisiae strain phenotypes. RESULTS Error-prone PCR was employed to engineer the subunit Rpb7 of RNAP II to improve yeast ethanol tolerance and production. Based on previous studies and the presumption that improved ethanol resistance would lead to enhanced ethanol production, we first isolated variant M1 with much improved resistance towards 8 and 10% ethanol. The ethanol titers of M1 was ~122 g/L (96.58% of the theoretical yield) under laboratory very high gravity (VHG) fermentation, 40% increase as compared to the control. DNA microarray assay showed that 369 genes had differential expression in M1 after 12 h VHG fermentation, which are involved in glycolysis, alcoholic fermentation, oxidative stress response, etc. CONCLUSIONS This is the first study to demonstrate the possibility of engineering eukaryotic RNAP to alter global transcription profile and improve strain phenotypes. Targeting subunit Rpb7 of RNAP II was able to bring differential expression in hundreds of genes in S. cerevisiae, which finally led to improvement in yeast ethanol tolerance and production.
Collapse
Affiliation(s)
- Zilong Qiu
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| | - Rongrong Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore, 637459 Singapore
| |
Collapse
|
19
|
Cao H, Wei D, Yang Y, Shang Y, Li G, Zhou Y, Ma Q, Xu Y. Systems-level understanding of ethanol-induced stresses and adaptation in E. coli. Sci Rep 2017; 7:44150. [PMID: 28300180 PMCID: PMC5353561 DOI: 10.1038/srep44150] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2016] [Accepted: 02/02/2017] [Indexed: 01/10/2023] Open
Abstract
Understanding ethanol-induced stresses and responses in biofuel-producing bacteria at systems level has significant implications in engineering more efficient biofuel producers. We present a computational study of transcriptomic and genomic data of both ethanol-stressed and ethanol-adapted E. coli cells with computationally predicated ethanol-binding proteins and experimentally identified ethanol tolerance genes. Our analysis suggests: (1) ethanol damages cell wall and membrane integrity, causing increased stresses, particularly reactive oxygen species, which damages DNA and reduces the O2 level; (2) decreased cross-membrane proton gradient from membrane damage, coupled with hypoxia, leads to reduced ATP production by aerobic respiration, driving cells to rely more on fatty acid oxidation, anaerobic respiration and fermentation for ATP production; (3) the reduced ATP generation results in substantially decreased synthesis of macromolecules; (4) ethanol can directly bind 213 proteins including transcription factors, altering their functions; (5) all these changes together induce multiple stress responses, reduced biosynthesis, cell viability and growth; and (6) ethanol-adapted E. coli cells restore the majority of these reduced activities through selection of specific genomic mutations and alteration of stress responses, ultimately restoring normal ATP production, macromolecule biosynthesis, and growth. These new insights into the energy and mass balance will inform design of more ethanol-tolerant strains.
Collapse
Affiliation(s)
- Huansheng Cao
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Du Wei
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yuedong Yang
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr., Southport, QLD 4222, Australia
| | - Yu Shang
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Gaoyang Li
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| | - Yaoqi Zhou
- Institute for Glycomics and School of Information and Communication Technology, Griffith University, Parklands Dr., Southport, QLD 4222, Australia
| | - Qin Ma
- Department of Agronomy, Horticulture and Plant Science, South Dakota State University, Brookings, SD 57007, USA
- BioSNTR, Brookings, SD, 57007, USA
| | - Ying Xu
- Computational Systems Biology Laboratory, Department of Biochemistry and Molecular Biology, and Institute of Bioinformatics, the University of Georgia, Athens, GA 30602, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- College of Computer Science and Technology, Jilin University, Changchun, 130012, China
| |
Collapse
|
20
|
Forget A, Arya N, Randriantsilefisoa R, Miessmer F, Buck M, Ahmadi V, Jonas D, Blencowe A, Shastri VP. Nonwoven Carboxylated Agarose-Based Fiber Meshes with Antimicrobial Properties. Biomacromolecules 2016; 17:4021-4026. [DOI: 10.1021/acs.biomac.6b01401] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Aurelien Forget
- Future
Industries Institute, University of South Australia, Mawson
Lakes 5095, South Australia, Australia
- Institute
for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Neha Arya
- Institute
for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
- Helmholtz Virtual
Institute on Multifunctional Biomaterials for Medicine, Kantstraße 5514513, Teltow, Germany
| | | | - Florian Miessmer
- Institute
for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Marion Buck
- Department
of Environmental Health Science, Universitätklinikum Freiburg, Freiburg 79106, Germany
| | - Vincent Ahmadi
- Institute
for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
| | - Daniel Jonas
- Department
of Environmental Health Science, Universitätklinikum Freiburg, Freiburg 79106, Germany
| | - Anton Blencowe
- School
of Pharmacy and Medical Sciences, University of South Australia, Mawson
Lakes 5095, South Australia, Australia
| | - V. Prasad Shastri
- Institute
for Macromolecular Chemistry, University of Freiburg, 79104, Freiburg, Germany
- Helmholtz Virtual
Institute on Multifunctional Biomaterials for Medicine, Kantstraße 5514513, Teltow, Germany
- BIOSS−Centre
for Biological Signaling Studies, University of Freiburg, 79104, Freiburg, Germany
| |
Collapse
|
21
|
Fu Y, Chen L, Zhang W. Regulatory mechanisms related to biofuel tolerance in producing microbes. J Appl Microbiol 2016; 121:320-32. [PMID: 27123568 DOI: 10.1111/jam.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/20/2016] [Indexed: 11/28/2022]
Affiliation(s)
- Y. Fu
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - L. Chen
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| | - W. Zhang
- Laboratory of Synthetic Microbiology; School of Chemical Engineering & Technology; Tianjin University; Tianjin China
- Key Laboratory of Systems Bioengineering (Ministry of Education); Tianjin University; Tianjin China
- SynBio Research Platform; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin China
| |
Collapse
|
22
|
Tan F, Wu B, Dai L, Qin H, Shui Z, Wang J, Zhu Q, Hu G, He M. Using global transcription machinery engineering (gTME) to improve ethanol tolerance of Zymomonas mobilis. Microb Cell Fact 2016; 15:4. [PMID: 26758018 PMCID: PMC4711062 DOI: 10.1186/s12934-015-0398-y] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 12/15/2015] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND With the increasing global crude oil crisis and resulting environmental concerns, the production of biofuels from renewable resources has become increasingly important. One of the major challenges faced during the process of biofuel production is the low tolerance of the microbial host towards increasing biofuel concentrations. RESULTS Here, we demonstrate that the ethanol tolerance of Zymomonas mobilis can be greatly enhanced through the random mutagenesis of global transcription factor RpoD protein, (σ(70)). Using an enrichment screening, four mutants with elevated ethanol tolerance were isolated from error-prone PCR libraries. All mutants showed significant growth improvement in the presence of ethanol stress when compared to the control strain. After an ethanol (9 %) stress exposure lasting 22 h, the rate of glucose consumption was approximately 1.77, 1.78 and 1.39 g L(-1) h(-1) in the best ethanol-tolerant strain ZM4-mrpoD4, its rebuilt mutant strain ZM4-imrpoD and the control strain, respectively. Our results indicated that both ZM4-mrpoD4 and ZM4-imrpoD consumed glucose at a faster rate after the initial 9 % (v/v) ethanol stress, as nearly 0.64 % of the initial glucose remained after 54 h incubation versus approximately 5.43 % for the control strain. At 9 % ethanol stress, the net ethanol productions by ZM4-mrpoD4 and ZM4-imrpoD during the 30-54 h were 13.0-14.1 g/l versus only 6.6-7.7 g/l for the control strain. The pyruvate decarboxylase activity of ZM4-mrpoD4 was 62.23 and 68.42 U/g at 24 and 48 h, respectively, which were 2.6 and 1.6 times higher than the control strain. After 24 and 48 h of 9 % ethanol stress, the alcohol dehydrogenase activities of ZM4-mrpoD4 were also augmented, showing an approximate 1.4 and 1.3 times increase, respectively, when compared to the control strain. Subsequent quantitative real-time PCR analysis under these stress conditions revealed that the relative expression of pdc in cultured (6 and 24 h) ZM4-mrpoD4 increased by 9.0- and 12.7-fold when compared to control strain. CONCLUSIONS Collectively, these results demonstrate that the RpoD mutation can enhance ethanol tolerance in Z. mobilis. Our results also suggested that RpoD may play an important role in resisting high ethanol concentration in Z. mobilis and manipulating RpoD via global transcription machinery engineering (gTME) can provide an alternative and useful approach for strain improvement for complex phenotypes.
Collapse
Affiliation(s)
- Furong Tan
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renmin Nanlu, Chengdu, 610041, China.
| | - Bo Wu
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renmin Nanlu, Chengdu, 610041, China.
| | - Lichun Dai
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renmin Nanlu, Chengdu, 610041, China.
| | - Han Qin
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renmin Nanlu, Chengdu, 610041, China.
| | - Zongxia Shui
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renmin Nanlu, Chengdu, 610041, China.
| | - Jingli Wang
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renmin Nanlu, Chengdu, 610041, China.
| | - Qili Zhu
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renmin Nanlu, Chengdu, 610041, China.
| | - Guoquan Hu
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renmin Nanlu, Chengdu, 610041, China.
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu, 610041, China.
| | - Mingxiong He
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renmin Nanlu, Chengdu, 610041, China.
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Chengdu, 610041, China.
| |
Collapse
|
23
|
Akinosho H, Rydzak T, Borole A, Ragauskas A, Close D. Toxicological challenges to microbial bioethanol production and strategies for improved tolerance. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:2156-2174. [PMID: 26423392 DOI: 10.1007/s10646-015-1543-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 09/16/2015] [Indexed: 06/05/2023]
Abstract
Bioethanol production output has increased steadily over the last two decades and is now beginning to become competitive with traditional liquid transportation fuels due to advances in engineering, the identification of new production host organisms, and the development of novel biodesign strategies. A significant portion of these efforts has been dedicated to mitigating the toxicological challenges encountered across the bioethanol production process. From the release of potentially cytotoxic or inhibitory compounds from input feedstocks, through the metabolic co-synthesis of ethanol and potentially detrimental byproducts, and to the potential cytotoxicity of ethanol itself, each stage of bioethanol production requires the application of genetic or engineering controls that ensure the host organisms remain healthy and productive to meet the necessary economies required for large scale production. In addition, as production levels continue to increase, there is an escalating focus on the detoxification of the resulting waste streams to minimize their environmental impact. This review will present the major toxicological challenges encountered throughout each stage of the bioethanol production process and the commonly employed strategies for reducing or eliminating potential toxic effects.
Collapse
Affiliation(s)
- Hannah Akinosho
- Renewable BioProducts Institute, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
| | - Thomas Rydzak
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6342, Oak Ridge, TN, 37831-6342, USA
| | - Abhijeet Borole
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6342, Oak Ridge, TN, 37831-6342, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
- Bredesen Center for Interdisciplinary Research and Education, University of Tennessee, Knoxville, TN, USA
| | - Arthur Ragauskas
- Renewable BioProducts Institute, Georgia Institute of Technology, Atlanta, GA, USA
- BioEnergy Science Center, Oak Ridge National Laboratory, P.O. Box 2008, Oak Ridge, TN, 37831, USA
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN, USA
| | - Dan Close
- Biosciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS6342, Oak Ridge, TN, 37831-6342, USA.
| |
Collapse
|
24
|
Lennon CW, Thamsen M, Friman ET, Cacciaglia A, Sachsenhauser V, Sorgenfrei FA, Wasik MA, Bardwell JCA. Folding Optimization In Vivo Uncovers New Chaperones. J Mol Biol 2015; 427:2983-94. [PMID: 26003922 PMCID: PMC4569523 DOI: 10.1016/j.jmb.2015.05.013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 04/22/2015] [Accepted: 05/10/2015] [Indexed: 01/08/2023]
Abstract
By employing a genetic selection that forces the cell to fold an unstable, aggregation-prone test protein in order to survive, we have generated bacterial strains with enhanced periplasmic folding capacity. These strains enhance the soluble steady-state level of the test protein. Most of the bacterial variants we isolated were found to overexpress one or more periplasmic proteins including OsmY, Ivy, DppA, OppA, and HdeB. Of these proteins, only HdeB has convincingly been previously shown to function as chaperone in vivo. By giving bacteria the stark choice between death and stabilizing a poorly folded protein, we have now generated designer bacteria selected for their ability to stabilize specific proteins.
Collapse
Affiliation(s)
- Christopher W Lennon
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Maike Thamsen
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Elias T Friman
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Austin Cacciaglia
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Veronika Sachsenhauser
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Frieda A Sorgenfrei
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Milena A Wasik
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - James C A Bardwell
- Howard Hughes Medical Institute, Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Hemmati H, Basu C. Transcriptional analyses of an ethanol inducible promoter inEscherichia coliand tobacco for production of cellulase and green fluorescent protein. BIOTECHNOL BIOTEC EQ 2015. [DOI: 10.1080/13102818.2015.1065711] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
26
|
cAMP receptor protein (CRP)-mediated resistance/tolerance in bacteria: mechanism and utilization in biotechnology. Appl Microbiol Biotechnol 2015; 99:4533-43. [DOI: 10.1007/s00253-015-6587-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2015] [Revised: 03/31/2015] [Accepted: 04/03/2015] [Indexed: 02/05/2023]
|
27
|
Tan FR, Dai LC, Wu B, Qin H, Shui ZX, Wang JL, Zhu QL, Hu QC, Ruan ZY, He MX. Improving furfural tolerance of Zymomonas mobilis by rewiring a sigma factor RpoD protein. Appl Microbiol Biotechnol 2015; 99:5363-71. [PMID: 25895089 DOI: 10.1007/s00253-015-6577-2] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/23/2015] [Accepted: 03/25/2015] [Indexed: 01/21/2023]
Abstract
Furfural from lignocellulosic hydrolysates is the key inhibitor for bio-ethanol fermentation. In this study, we report a strategy of improving the furfural tolerance in Zymomonas mobilis on the transcriptional level by engineering its global transcription sigma factor (σ(70), RpoD) protein. Three furfural tolerance RpoD mutants (ZM4-MF1, ZM4-MF2, and ZM4-MF3) were identified from error-prone PCR libraries. The best furfural-tolerance strain ZM4-MF2 reached to the maximal cell density (OD600) about 2.0 after approximately 30 h, while control strain ZM4-rpoD reached its highest cell density of about 1.3 under the same conditions. ZM4-MF2 also consumed glucose faster and yield higher ethanol; expression levels and key Entner-Doudoroff (ED) pathway enzymatic activities were also compared to control strain under furfural stress condition. Our results suggest that global transcription machinery engineering could potentially be used to improve stress tolerance and ethanol production in Z. mobilis.
Collapse
Affiliation(s)
- Fu-Rong Tan
- Biogas Institute of Ministry of Agriculture, Biomass Energy Technology Research Centre, Section 4-13, Renming Nanlu, Chengdu, 610041, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Huang L, Pu Y, Yang X, Zhu X, Cai J, Xu Z. Engineering of global regulator cAMP receptor protein (CRP) in Escherichia coli for improved lycopene production. J Biotechnol 2015; 199:55-61. [PMID: 25687103 DOI: 10.1016/j.jbiotec.2015.02.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Revised: 02/05/2015] [Accepted: 02/05/2015] [Indexed: 01/23/2023]
Abstract
Transcriptional engineering has received significant attention for improving strains by modulating the behavior of transcription factors, which could be used to reprogram a series of gene transcriptions and enable multiple simultaneous modifications at the genomic level. In this study, engineering of the cAMP receptor protein (CRP) was explored with the aim of subtly balancing entire pathway networks and potentially improving lycopene production without significant genetic intervention in other pathways. Amino acid mutations were introduced to CRP by error-prone PCR, and three variants (mcrp26, mcrp159 and mcrp424) with increased lycopene productivity were screened. Combinations of three point mutations were then created via site-directed mutagenesis. The best mutant gene (mcrp26) was integrated into the genome of E. coli BW25113-BIE to replace the wild-type crp gene (MT-1), which resulted in a higher lycopene production (18.49mg/g DCW) compared to the original strain (WT). The mutant strain MT-1 was further investigated in a 10-L bench-top fermentor with a lycopene yield of 128mg/l at 20h, approximately 25% higher than WT. DNA microarray analyses showed that 396 genes (229 up-regulated and 167 down-regulated) were differentially expressed in the mutant MT-1 compared to WT. Finally, the introduction of the mutant crp gene (mcrp26) increased β-carotene production in E. coli. This is the first report of improving the phenotype for metabolite overproduction in E. coli using a CRP engineering strategy.
Collapse
Affiliation(s)
- Lei Huang
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Yue Pu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Xiuliang Yang
- Shangdong Jincheng Biopharmaceutical Corporation Limited, Zibo, China
| | - Xiangcheng Zhu
- Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, China
| | - Jin Cai
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Zhinan Xu
- Institute of Bioengineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China.
| |
Collapse
|
29
|
Ando H, Kurata A, Kishimoto N. Antimicrobial properties and mechanism of volatile isoamyl acetate, a main flavour component of Japanese sake (Ginjo-shu). J Appl Microbiol 2015; 118:873-80. [PMID: 25626919 DOI: 10.1111/jam.12764] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Revised: 12/21/2014] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
AIMS To evaluate the antimicrobial properties of the main Ginjo-flavour components of sake, volatile isoamyl acetate and isoamyl alcohol. METHODS AND RESULTS Volatile isoamyl acetate and isoamyl alcohol both inhibited growth of the five yeast and 10 bacterial test strains. The minimum inhibitory dose and minimum bactericidal (fungicidal) dose of isoamyl acetate were higher than those of isoamyl alcohol. Escherichia coli and Acetobacter aceti were markedly sensitive to isoamyl acetate and isoamyl alcohol. In E. coli exposed to isoamyl acetate for 5 h, changes in expression were noted in proteins involved in sugar metabolism (MalE, MglB, TalB and PtsI), tricarboxylic acid cycle (AceA, Pfl and AcnB) and protein synthesis (EF-Tu, EF-G, and GlyS). Expression of acid and alcohol stress-response proteins was altered in E. coli exposed to isoamyl acetate. Esterase activity was detected in E. coli, suggesting that isoamyl acetate was hydrolyzed to acetic acid and isoamyl alcohol. Acetic acid and isoamyl alcohol damaged E. coli cell membranes and inactivated membrane proteins, impairing respiration. CONCLUSIONS Volatile isoamyl acetate and isoamyl alcohol were effective in inactivating various micro-organisms, and antimicrobial mechanism of volatile isoamyl acetate against E. coli was clarified based on proteome analysis. SIGNIFICANCE AND IMPACT OF THE STUDY To the best of our knowledge, this is the first report to examine the antimicrobial mechanism of volatile organic compound using proteome analysis combining two-dimensional difference gel electrophoresis with peptide mass fingerprinting.
Collapse
Affiliation(s)
- H Ando
- Health Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Ikeda City, Osaka, Japan
| | | | | |
Collapse
|
30
|
Liu W, Jiang R. Combinatorial and high-throughput screening approaches for strain engineering. Appl Microbiol Biotechnol 2015; 99:2093-104. [DOI: 10.1007/s00253-015-6400-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2014] [Revised: 01/09/2015] [Accepted: 01/10/2015] [Indexed: 12/31/2022]
|
31
|
Shimizu K. Metabolic Regulation and Coordination of the Metabolism in Bacteria in Response to a Variety of Growth Conditions. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2015; 155:1-54. [PMID: 25712586 DOI: 10.1007/10_2015_320] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Living organisms have sophisticated but well-organized regulation system. It is important to understand the metabolic regulation mechanisms in relation to growth environment for the efficient design of cell factories for biofuels and biochemicals production. Here, an overview is given for carbon catabolite regulation, nitrogen regulation, ion, sulfur, and phosphate regulations, stringent response under nutrient starvation as well as oxidative stress regulation, redox state regulation, acid-shock, heat- and cold-shock regulations, solvent stress regulation, osmoregulation, and biofilm formation, and quorum sensing focusing on Escherichia coli metabolism and others. The coordinated regulation mechanisms are of particular interest in getting insight into the principle which governs the cell metabolism. The metabolism is controlled by both enzyme-level regulation and transcriptional regulation via transcription factors such as cAMP-Crp, Cra, Csr, Fis, P(II)(GlnB), NtrBC, CysB, PhoR/B, SoxR/S, Fur, MarR, ArcA/B, Fnr, NarX/L, RpoS, and (p)ppGpp for stringent response, where the timescales for enzyme-level and gene-level regulations are different. Moreover, multiple regulations are coordinated by the intracellular metabolites, where fructose 1,6-bisphosphate (FBP), phosphoenolpyruvate (PEP), and acetyl-CoA (AcCoA) play important roles for enzyme-level regulation as well as transcriptional control, while α-ketoacids such as α-ketoglutaric acid (αKG), pyruvate (PYR), and oxaloacetate (OAA) play important roles for the coordinated regulation between carbon source uptake rate and other nutrient uptake rate such as nitrogen or sulfur uptake rate by modulation of cAMP via Cya.
Collapse
Affiliation(s)
- Kazuyuki Shimizu
- Kyushu Institute of Technology, Iizuka, Fukuoka, 820-8502, Japan. .,Institute of Advanced Biosciences, Keio University, Tsuruoka, Yamagata, 997-0017, Japan.
| |
Collapse
|
32
|
Jia H, Fan Y, Feng X, Li C. Enhancing stress-resistance for efficient microbial biotransformations by synthetic biology. Front Bioeng Biotechnol 2014; 2:44. [PMID: 25368869 PMCID: PMC4202804 DOI: 10.3389/fbioe.2014.00044] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Accepted: 10/04/2014] [Indexed: 12/23/2022] Open
Abstract
Chemical conversions mediated by microorganisms, otherwise known as microbial biotransformations, are playing an increasingly important role within the biotechnology industry. Unfortunately, the growth and production of microorganisms are often hampered by a number of stressful conditions emanating from environment fluctuations and/or metabolic imbalances such as high temperature, high salt condition, strongly acidic solution, and presence of toxic metabolites. Therefore, exploring methods to improve the stress tolerance of host organisms could significantly improve the biotransformation process. With the help of synthetic biology, it is now becoming feasible to implement strategies to improve the stress-resistance of the existing hosts. This review summarizes synthetic biology efforts to enhance the efficiency of biotransformations by improving the robustness of microbes. Particular attention will be given to strategies at the cellular and the microbial community levels.
Collapse
Affiliation(s)
- Haiyang Jia
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Yanshuang Fan
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Xudong Feng
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| | - Chun Li
- Department of Biological Engineering, School of Life Science, Beijing Institute of Technology , Beijing , China
| |
Collapse
|
33
|
Microbial tolerance engineering toward biochemical production: from lignocellulose to products. Curr Opin Biotechnol 2014; 29:99-106. [DOI: 10.1016/j.copbio.2014.03.005] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2013] [Revised: 03/01/2014] [Accepted: 03/18/2014] [Indexed: 11/19/2022]
|
34
|
Song Z, Chen L, Wang J, Lu Y, Jiang W, Zhang W. A transcriptional regulator Sll0794 regulates tolerance to biofuel ethanol in photosynthetic Synechocystis sp. PCC 6803. Mol Cell Proteomics 2014; 13:3519-32. [PMID: 25239498 DOI: 10.1074/mcp.m113.035675] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
To improve ethanol production directly from CO2 in photosynthetic cyanobacterial systems, one key issue that needs to be addressed is the low ethanol tolerance of cyanobacterial cells. Our previous proteomic and transcriptomic analyses found that several regulatory proteins were up-regulated by exogenous ethanol in Synechocystis sp. PCC6803. In this study, through tolerance analysis of the gene disruption mutants of the up-regulated regulatory genes, we uncovered that one transcriptional regulator, Sll0794, was related directly to ethanol tolerance in Synechocystis. Using a quantitative iTRAQ-LC-MS/MS proteomics approach coupled with quantitative real-time reverse transcription-PCR (RT-qPCR), we further determined the possible regulatory network of Sll0794. The proteomic analysis showed that in the Δsll0794 mutant grown under ethanol stress a total of 54 and 87 unique proteins were down- and up-regulated, respectively. In addition, electrophoretic mobility shift assays demonstrated that the Sll0794 transcriptional regulator was able to bind directly to the upstream regions of sll1514, slr1512, and slr1838, which encode a 16.6 kDa small heat shock protein, a putative sodium-dependent bicarbonate transporter and a carbon dioxide concentrating mechanism protein CcmK, respectively. The study provided a proteomic description of the putative ethanol-tolerance network regulated by the sll0794 gene, and revealed new insights on the ethanol-tolerance regulatory mechanism in Synechocystis. As the first regulatory protein discovered related to ethanol tolerance, the gene may serve as a valuable target for transcription machinery engineering to further improve ethanol tolerance in Synechocystis. All MS data have been deposited in the ProteomeXchange with identifier PXD001266 (http://proteomecentral.proteomexchange.org/dataset/PXD001266).
Collapse
Affiliation(s)
- Zhongdi Song
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China
| | - Lei Chen
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China;
| | - Jiangxin Wang
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China
| | - Yinhua Lu
- ‖Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Weihong Jiang
- ‖Key Laboratory of Synthetic Biology, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai 200032, P.R. China
| | - Weiwen Zhang
- From the ‡Laboratory of Synthetic Microbiology, School of Chemical Engineering & Technology, Tianjin University, Tianjin 300072, P.R. China; §Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, P.R. China; ¶Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, P.R. China;
| |
Collapse
|
35
|
Correcting direct effects of ethanol on translation and transcription machinery confers ethanol tolerance in bacteria. Proc Natl Acad Sci U S A 2014; 111:E2576-85. [PMID: 24927582 DOI: 10.1073/pnas.1401853111] [Citation(s) in RCA: 103] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The molecular mechanisms of ethanol toxicity and tolerance in bacteria, although important for biotechnology and bioenergy applications, remain incompletely understood. Genetic studies have identified potential cellular targets for ethanol and have revealed multiple mechanisms of tolerance, but it remains difficult to separate the direct and indirect effects of ethanol. We used adaptive evolution to generate spontaneous ethanol-tolerant strains of Escherichia coli, and then characterized mechanisms of toxicity and resistance using genome-scale DNAseq, RNAseq, and ribosome profiling coupled with specific assays of ribosome and RNA polymerase function. Evolved alleles of metJ, rho, and rpsQ recapitulated most of the observed ethanol tolerance, implicating translation and transcription as key processes affected by ethanol. Ethanol induced miscoding errors during protein synthesis, from which the evolved rpsQ allele protected cells by increasing ribosome accuracy. Ribosome profiling and RNAseq analyses established that ethanol negatively affects transcriptional and translational processivity. Ethanol-stressed cells exhibited ribosomal stalling at internal AUG codons, which may be ameliorated by the adaptive inactivation of the MetJ repressor of methionine biosynthesis genes. Ethanol also caused aberrant intragenic transcription termination for mRNAs with low ribosome density, which was reduced in a strain with the adaptive rho mutation. Furthermore, ethanol inhibited transcript elongation by RNA polymerase in vitro. We propose that ethanol-induced inhibition and uncoupling of mRNA and protein synthesis through direct effects on ribosomes and RNA polymerase conformations are major contributors to ethanol toxicity in E. coli, and that adaptive mutations in metJ, rho, and rpsQ help protect these central dogma processes in the presence of ethanol.
Collapse
|
36
|
Engineering biofuel tolerance in non-native producing microorganisms. Biotechnol Adv 2014; 32:541-8. [PMID: 24530635 DOI: 10.1016/j.biotechadv.2014.02.001] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 01/19/2014] [Accepted: 02/08/2014] [Indexed: 01/17/2023]
Abstract
Large-scale production of renewable biofuels through microbiological processes has drawn significant attention in recent years, mostly due to the increasing concerns on the petroleum fuel shortages and the environmental consequences of the over-utilization of petroleum-based fuels. In addition to native biofuel-producing microbes that have been employed for biofuel production for decades, recent advances in metabolic engineering and synthetic biology have made it possible to produce biofuels in several non-native biofuel-producing microorganisms. Compared to native producers, these non-native systems carry the advantages of fast growth, simple nutrient requirements, readiness for genetic modifications, and even the capability to assimilate CO2 and solar energy, making them competitive alternative systems to further decrease the biofuel production cost. However, the tolerance of these non-native microorganisms to toxic biofuels is naturally low, which has restricted the potentials of their application for high-efficiency biofuel production. To address the issues, researches have been recently conducted to explore the biofuel tolerance mechanisms and to construct robust high-tolerance strains for non-native biofuel-producing microorganisms. In this review, we critically summarize the recent progress in this area, focusing on three popular non-native biofuel-producing systems, i.e. Escherichia coli, Lactobacillus and photosynthetic cyanobacteria.
Collapse
|
37
|
Basak S, Geng H, Jiang R. Rewiring global regulator cAMP receptor protein (CRP) to improve E. coli tolerance towards low pH. J Biotechnol 2014; 173:68-75. [PMID: 24452100 DOI: 10.1016/j.jbiotec.2014.01.015] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 01/07/2014] [Accepted: 01/11/2014] [Indexed: 11/19/2022]
Abstract
Bioprocesses such as production of organic acids or acid hydrolysis of bioresources during biofuel production often suffer limitations due to microbial sensitivity under acidic conditions. Approaches for improving the acid tolerance of these microbes have mainly focused on using metabolic engineering tools. Here, we tried to improve strain acidic tolerance from its transcription level, i.e. we adopted error-prone PCR method to engineer global regulator cAMP receptor protein (CRP) of Escherichia coli to improve its performance at low pH. The best mutant AcM1 was identified from random mutagenesis libraries based on its growth performance. AcM1 almost doubled (0.113h(-1)) the growth rate of the control (0.062h(-1)) at pH 4.24. It also demonstrated better thermotolerance than the control at 48°C, whose growth was completely inhibited at this temperature. Quantitative real time reverse transcription PCR results revealed a stress response overlap among low pH stress-, oxidative stress- and osmotic stress-related genes. The chief enzyme responsible for cell acid tolerance, glutamate decarboxylase, demonstrated over twofold activity in AcM1 compared to the control. Differential binding properties of AcM1 mutant CRP with Class-I, II, and III CRP-dependent promoters suggested that modifications to native CRP may lead to transcription profile changes. Hence, we believe that transcriptional engineering of global regulator CRP can provide a new strain engineering alternative for E. coli.
Collapse
Affiliation(s)
- Souvik Basak
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Hefang Geng
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering, Nanyang Technological University, 62 Nanyang Drive, Singapore 637459, Singapore.
| |
Collapse
|
38
|
Chong H, Geng H, Zhang H, Song H, Huang L, Jiang R. EnhancingE. coliisobutanol tolerance through engineering its global transcription factor cAMP receptor protein (CRP). Biotechnol Bioeng 2013; 111:700-8. [DOI: 10.1002/bit.25134] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Revised: 09/16/2013] [Accepted: 10/10/2013] [Indexed: 11/11/2022]
Affiliation(s)
- Huiqing Chong
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Hefang Geng
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Hongfang Zhang
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Hao Song
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| | - Lei Huang
- Institute of Biological Engineering, Department of Chemical and Biological Engineering; Zhejiang University; Hangzhou Zhejiang P. R. China
| | - Rongrong Jiang
- School of Chemical & Biomedical Engineering; Nanyang Technological University; 62 Nanyang Drive Singapore 637459 Singapore
| |
Collapse
|
39
|
Zingaro KA, Nicolaou SA, Papoutsakis ET. Dissecting the assays to assess microbial tolerance to toxic chemicals in bioprocessing. Trends Biotechnol 2013; 31:643-53. [DOI: 10.1016/j.tibtech.2013.08.005] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2013] [Revised: 08/14/2013] [Accepted: 08/19/2013] [Indexed: 11/15/2022]
|
40
|
Chong H, Yeow J, Wang I, Song H, Jiang R. Improving acetate tolerance of Escherichia coli by rewiring its global regulator cAMP receptor protein (CRP). PLoS One 2013; 8:e77422. [PMID: 24124618 PMCID: PMC3790751 DOI: 10.1371/journal.pone.0077422] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Accepted: 09/10/2013] [Indexed: 11/18/2022] Open
Abstract
The presence of acetate exceeding 5 g/L is a major concern during E. coli fermentation due to its inhibitory effect on cell growth, thereby limiting high-density cell culture and recombinant protein production. Hence, engineered E. coli strains with enhanced acetate tolerance would be valuable for these bioprocesses. In this work, the acetate tolerance of E. coli was much improved by rewiring its global regulator cAMP receptor protein (CRP), which is reported to regulate 444 genes. Error-prone PCR method was employed to modify crp and the mutagenesis libraries (~3×10(6)) were subjected to M9 minimal medium supplemented with 5-10 g/L sodium acetate for selection. Mutant A2 (D138Y) was isolated and its growth rate in 15 g/L sodium acetate was found to be 0.083 h(-1), much higher than that of the control (0.016 h(-1)). Real-time PCR analysis via OpenArray(®) system revealed that over 400 CRP-regulated genes were differentially expressed in A2 with or without acetate stress, including those involved in the TCA cycle, phosphotransferase system, etc. Eight genes were chosen for overexpression and the overexpression of uxaB was found to lead to E. coli acetate sensitivity.
Collapse
Affiliation(s)
- Huiqing Chong
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | | | - Ivy Wang
- Life Technologies R&D, Singapore, Singapore
| | - Hao Song
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
| | - Rongrong Jiang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, Singapore
- * E-mail:
| |
Collapse
|
41
|
Tee KL, Wong TS. Polishing the craft of genetic diversity creation in directed evolution. Biotechnol Adv 2013; 31:1707-21. [PMID: 24012599 DOI: 10.1016/j.biotechadv.2013.08.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/31/2013] [Accepted: 08/31/2013] [Indexed: 12/25/2022]
Abstract
Genetic diversity creation is a core technology in directed evolution where a high quality mutant library is crucial to its success. Owing to its importance, the technology in genetic diversity creation has seen rapid development over the years and its application has diversified into other fields of scientific research. The advances in molecular cloning and mutagenesis since 2008 were reviewed. Specifically, new cloning techniques were classified based on their principles of complementary overhangs, homologous sequences, overlapping PCR and megaprimers and the advantages, drawbacks and performances of these methods were highlighted. New mutagenesis methods developed for random mutagenesis, focused mutagenesis and DNA recombination were surveyed. The technical requirements of these methods and the mutational spectra were compared and discussed with references to commonly used techniques. The trends of mutant library preparation were summarised. Challenges in genetic diversity creation were discussed with emphases on creating "smart" libraries, controlling the mutagenesis spectrum and specific challenges in each group of mutagenesis methods. An outline of the wider applications of genetic diversity creation includes genome engineering, viral evolution, metagenomics and a study of protein functions. The review ends with an outlook for genetic diversity creation and the prospective developments that can have future impact in this field.
Collapse
Affiliation(s)
- Kang Lan Tee
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester M1 7DN, England, United Kingdom
| | | |
Collapse
|