1
|
Zhang P, Zou P, Huang X, Zeng X, Liu S, Liu Y, Shao L. Effect of aortic smooth muscle BK channels on mediating chronic intermittent hypoxia-induced vascular dysfunction. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2024; 28:469-478. [PMID: 39198227 PMCID: PMC11361999 DOI: 10.4196/kjpp.2024.28.5.469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 03/25/2024] [Accepted: 04/02/2024] [Indexed: 09/01/2024]
Abstract
Chronic intermittent hypoxia (CIH) can lead to vascular dysfunction and increase the risk of cardiovascular diseases, cerebrovascular diseases, and arterial diseases. Nevertheless, mechanisms underlying CIH-induced vascular dysfunction remain unclear. Herein, this study analyzed the role of aortic smooth muscle calciumactivated potassium (BK) channels in CIH-induced vascular dysfunction. CIH models were established in rats and rat aortic smooth muscle cells (RASMCs). Hemodynamic parameters such as mean blood pressure (MBP), diastolic blood pressure (DBP), and systolic blood pressure (SBP) were measured in rats, along with an assessment of vascular tone. NO and ET-1 levels were detected in rat serum, and the levels of ET-1, NO, eNOS, p-eNOS, oxidative stress markers (ROS and MDA), and inflammatory factors (IL-6 and TNF-α) were tested in aortic tissues. The Ca2+ concentration in RASMCs was investigated. The activity of BK channels (BKα and BKβ) was evaluated in aortic tissues and RASMCs. SBP, DBP, and MBP were elevated in CIH-treated rats, along with endothelial dysfunction, cellular edema and partial detachment of endothelial cells. BK channel activity was decreased in CIH-treated rats and RASMCs. BK channel activation increased eNOS, p-eNOS, and NO levels while lowering ET-1, ROS, MDA, IL-6, and TNF-α levels in CIH-treated rats. Ca2+ concentration increased in RASMCs following CIH modeling, which was reversed by BK channel activation. BK channel inhibitor (Iberiotoxin) exacerbated CIH-induced vascular disorders and endothelial dysfunction. BK channel activation promoted vasorelaxation while suppressing vascular endothelial dysfunction, inflammation, and oxidative stress, thereby indirectly improving CIH-induced vascular dysfunction.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Neurology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Pengtao Zou
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Xiao Huang
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Xianghui Zeng
- Department of Cardiology, Ganzhou Hospital of Guangdong Provincial People’s Hospital, Ganzhou Municipal Hospital, Ganzhou, Jiangxi 341000, China
| | - Songtao Liu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Yuanyuan Liu
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| | - Liang Shao
- Department of Cardiology, Jiangxi Provincial People’s Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang, Jiangxi 330006, China
| |
Collapse
|
2
|
Nathani A, Attaway A, Mehra R. Hypoxic and Autonomic Mechanisms from Sleep-Disordered Breathing Leading to Cardiopulmonary Dysfunction. Sleep Med Clin 2024; 19:229-237. [PMID: 38692748 DOI: 10.1016/j.jsmc.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder. Its prevalence has increased due to increasing obesity and improved screening and diagnostic strategies. OSA overlaps with cardiopulmonary diseases to promote intermittent hypoxia and autonomic dysfunction. Intermittent hypoxia increases the risk for oxidative stress and inflammation, which promotes endothelial dysfunction and predisposes to atherosclerosis and other cardiovascular complications. OSA is associated with an increased sympathetic nervous system drive resulting in autonomic dysfunction leading to worsening of cardiopulmonary diseases. Cardiovascular diseases are observed in 40% to 80% of OSA patients. Therefore, it is essential to screen and treat cardiovascular diseases.
Collapse
Affiliation(s)
- Avantika Nathani
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA.
| | - Amy Attaway
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA
| | - Reena Mehra
- Respiratory Institute, Cleveland Clinic, 9500 Euclid Avenue A90, Cleveland, OH 44195, USA; Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH, USA; Neurological Institute, Cleveland Clinic, Cleveland, OH, USA
| |
Collapse
|
3
|
Saddouk FZ, Kuzemczak A, Saito J, Greif DM. Endothelial HIFα/PDGF-B to smooth muscle Beclin1 signaling sustains pathological muscularization in pulmonary hypertension. JCI Insight 2024; 9:e162449. [PMID: 38652543 PMCID: PMC11141934 DOI: 10.1172/jci.insight.162449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/17/2024] [Indexed: 04/25/2024] Open
Abstract
Mechanisms underlying maintenance of pathological vascular hypermuscularization are poorly delineated. Herein, we investigated retention of smooth muscle cells (SMCs) coating normally unmuscularized distal pulmonary arterioles in pulmonary hypertension (PH) mediated by chronic hypoxia with or without Sugen 5416, and reversal of this pathology. With hypoxia in mice or culture, lung endothelial cells (ECs) upregulated hypoxia-inducible factor 1α (HIF1-α) and HIF2-α, which induce platelet-derived growth factor B (PDGF-B), and these factors were reduced to normoxic levels with re-normoxia. Re-normoxia reversed hypoxia-induced pulmonary vascular remodeling, but with EC HIFα overexpression during re-normoxia, pathological changes persisted. Conversely, after establishment of distal muscularization and PH, EC-specific deletion of Hif1a, Hif2a, or Pdgfb induced reversal. In human idiopathic pulmonary artery hypertension, HIF1-α, HIF2-α, PDGF-B, and autophagy-mediating gene products, including Beclin1, were upregulated in pulmonary artery SMCs and/or lung lysates. Furthermore, in mice, hypoxia-induced EC-derived PDGF-B upregulated Beclin1 in distal arteriole SMCs, and after distal muscularization was established, re-normoxia, EC Pdgfb deletion, or treatment with STI571 (which inhibits PDGF receptors) downregulated SMC Beclin1 and other autophagy products. Finally, SMC-specific Becn1 deletion induced apoptosis, reversing distal muscularization and PH mediated by hypoxia with or without Sugen 5416. Thus, chronic hypoxia induction of the HIFα/PDGF-B axis in ECs is required for non-cell-autonomous Beclin1-mediated survival of pathological distal arteriole SMCs.
Collapse
MESH Headings
- Animals
- Humans
- Male
- Mice
- Arterioles/metabolism
- Arterioles/pathology
- Autophagy
- Basic Helix-Loop-Helix Transcription Factors/metabolism
- Basic Helix-Loop-Helix Transcription Factors/genetics
- Beclin-1/metabolism
- Beclin-1/genetics
- Disease Models, Animal
- Endothelial Cells/metabolism
- Hypertension, Pulmonary/metabolism
- Hypertension, Pulmonary/pathology
- Hypertension, Pulmonary/genetics
- Hypoxia/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Hypoxia-Inducible Factor 1, alpha Subunit/genetics
- Indoles
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Proto-Oncogene Proteins c-sis/metabolism
- Proto-Oncogene Proteins c-sis/genetics
- Pulmonary Artery/metabolism
- Pulmonary Artery/pathology
- Pyrroles
- Signal Transduction
- Vascular Remodeling
Collapse
Affiliation(s)
- Fatima Z. Saddouk
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| | - Andrew Kuzemczak
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| | - Junichi Saito
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| | - Daniel M. Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, and
- Department of Genetics, Yale University, New Haven, Connecticut, USA
| |
Collapse
|
4
|
Song R, Yadav P, Dangudubiyyam SV, Hofmann A, Mishra JS, Kumar S. Gestational intermittent hypoxia induces endothelial dysfunction and hypertension in pregnant rats: role of endothelin type B receptor†. Biol Reprod 2024; 110:185-197. [PMID: 37823770 PMCID: PMC11484499 DOI: 10.1093/biolre/ioad139] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/29/2023] [Accepted: 10/09/2023] [Indexed: 10/13/2023] Open
Abstract
Obstructive sleep apnea is a recognized risk factor for gestational hypertension, yet the exact mechanism behind this association remains unclear. Here, we tested the hypothesis that intermittent hypoxia, a hallmark of obstructive sleep apnea, induces gestational hypertension through perturbed endothelin-1 signaling. Pregnant Sprague-Dawley rats were subjected to normoxia (control), mild intermittent hypoxia (10.5% O2), or severe intermittent hypoxia (6.5% O2) from gestational days 10-21. Blood pressure was monitored. Plasma was collected and mesenteric arteries were isolated for myograph and protein analyses. The mild and severe intermittent hypoxia groups demonstrated elevated blood pressure, reduced plasma nitrate/nitrite, and unchanged endothelin-1 levels compared to the control group. Western blot analysis revealed decreased expression of endothelin type B receptor and phosphorylated endothelial nitric oxide synthase, while the levels of endothelin type A receptor and total endothelial nitric oxide synthase remained unchanged following intermittent hypoxia exposure. The contractile responses to potassium chloride, phenylephrine, and endothelin-1 were unaffected in endothelium-denuded arteries from mild and severe intermittent hypoxia rats. However, mild and severe intermittent hypoxia rats exhibited impaired endothelium-dependent vasorelaxation responses to endothelin type B receptor agonist IRL-1620 and acetylcholine compared to controls. Endothelium denudation abolished IRL-1620-induced vasorelaxation, supporting the involvement of endothelium in endothelin type B receptor-mediated relaxation. Treatment with IRL-1620 during intermittent hypoxia exposure significantly attenuated intermittent hypoxia-induced hypertension in pregnant rats. This was associated with elevated circulating nitrate/nitrite levels, enhanced endothelin type B receptor expression, increased endothelial nitric oxide synthase activation, and improved vasodilation responses. Our data suggested that intermittent hypoxia exposure during gestation increases blood pressure in pregnant rats by suppressing endothelin type B receptor-mediated signaling, providing a molecular mechanism linking intermittent hypoxia and gestational hypertension.
Collapse
Affiliation(s)
- Ruolin Song
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Pankaj Yadav
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sri Vidya Dangudubiyyam
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alissa Hofmann
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jay S Mishra
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Sathish Kumar
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Obstetrics and Gynecology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
5
|
Yan J, Duan Y, Cheng M. Clinical Diagnostic Value of Serum GABA, NE, ET-1, and VEGF in Chronic Obstructive Pulmonary Disease with Pulmonary Hypertension. Int J Chron Obstruct Pulmon Dis 2023; 18:1803-1813. [PMID: 37621655 PMCID: PMC10445639 DOI: 10.2147/copd.s418478] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Background Pulmonary hypertension (PH) is the one of the most common complications of chronic obstructive pulmonary disease (COPD). Whereas, the associated diagnostic factors are uncertain. The present study aims to investigate useful diagnostic factors in patients with COPD and PH (COPD-PH). Patients and Methods A total of 111 patients with COPD in Shanxi Bethune Hospital from December 2019 to December 2020 were divided into COPD (PASP≤50 mmHg) and COPD-PH groups (PASP>50 mmHg). Pulmonary function and chest CT results were collected. Routine blood, biochemical, and blood coagulation function indices were examined for all patients. Arterial blood gas analysis and serum cytokines were also measured. Differences in the distribution of the above indicators between the two groups were analyzed using binary logistic regression analysis to identify the risk factors of COPD-PH, and multiple linear regression analysis to determine the factors affecting PASP. The influencing factors and joint predictive factors of the above linear regression analysis were analyzed using the ROC curve. The area under the curve and the best cut-off value were calculated, and their predictive value and clinical significance in disease diagnosis were discussed. Results A total of 27 indexes with statistically significant differences between the two groups were identified (P < 0.05). Binary Logistic regression analysis showed that the factors influencing the diagnosis of pulmonary hypertension were serum GABA, NE, VEGF, BUN, and LYM% levels (P < 0.05). Multiple linear regression showed that the factors influencing PASP were serum NE, ET-1, GABA, and VEGF levels, and the goodness of fit of the model was 0.748 (P < 0.001). ROC curve showed that the AUC of the combined diagnosis of serum NE, ET-1, GABA, and VEGF levels was 0.966 (sensitivity, 87.5%; specificity, 93.65%). Conclusion Serum NE and ET-1 are risk factors for COPD-PH, whereas serum GABA and VEGF are protective factors against COPD-PH. The combined diagnostic value of serum NE, ET-1, GABA, and VEGF levels was the highest.
Collapse
Affiliation(s)
- Jing Yan
- Department of Respiratory and Critical Care Medicine, Lvliang People’s Hospital Affiliated to Shanxi Medical University, Lvliang City, Shanxi Province, 033000, People’s Republic of China
| | - Yajing Duan
- Department of Intensive Care Unit, Key Laboratory for Critical Care Medicine of the Ministry of Health, Emergency Medicine Research Institute, Tianjin First Center Hospital, Nankai University, Tianjin, 300192, People’s Republic of China
| | - Mengyu Cheng
- Department of Respiratory and Critical Care Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Third Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030032, People’s Republic of China
- Department of Respiratory and Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, People’s Republic of China
| |
Collapse
|
6
|
The Association between Idiopathic Pulmonary Fibrosis and Obstructive Sleep Apnea: A Systematic Review and Meta-Analysis. J Clin Med 2022; 11:jcm11175008. [PMID: 36078938 PMCID: PMC9457448 DOI: 10.3390/jcm11175008] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/19/2022] [Accepted: 08/21/2022] [Indexed: 11/25/2022] Open
Abstract
The prevalence of obstructive sleep apnea (OSA) has greatly increased in recent years. Recent data suggest that severe and moderate forms of OSA affect between 6 and 17% of adults in the general population. Many papers are reporting the significantly increased prevalence of OSA in patients suffering from fibrotic diseases, including idiopathic pulmonary fibrosis (IPF). Therefore, we performed a systematic review and meta-analysis regarding the dependency between IPF and OSA. Due to the lack of papers focusing on IPF among OSA patients, we focused on the prevalence of OSA among IPF patients. In the search strategy, a total of 684 abstracts were identified, 496 after the removal of duplicates. After the screening of titles and abstracts, 31 studies were qualified for further full-text analysis for eligibility criteria. The final analysis was performed on 614 IPF patients from 18 studies, which met inclusion criteria. There were 469 (76.38%) IPF patients with OSA and 145 (23.62%) without. The mean age varied from 60.9 ± 8.1 up to 70.3 ± 7.9. The obtained prevalence was 76.4 (95% CI: 72.9–79.7) and 75.7 (95% CI: 70.1–80.9) for fixed and random effects, respectively. The median prevalence of OSA among non-IPF patients for all the ethnics groups included in this study was 16,4% (IQR: 3.4%–26.8%). The study provides strong evidence for the increased prevalence of OSA in IPF patients when comparing with the general OSA prevalence.
Collapse
|
7
|
Barnes LA, Mesarwi OA, Sanchez-Azofra A. The Cardiovascular and Metabolic Effects of Chronic Hypoxia in Animal Models: A Mini-Review. Front Physiol 2022; 13:873522. [PMID: 35432002 PMCID: PMC9008331 DOI: 10.3389/fphys.2022.873522] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models are useful to understand the myriad physiological effects of hypoxia. Such models attempt to recapitulate the hypoxemia of human disease in various ways. In this mini-review, we consider the various animal models which have been deployed to understand the effects of chronic hypoxia on pulmonary and systemic blood pressure, glucose and lipid metabolism, atherosclerosis, and stroke. Chronic sustained hypoxia (CSH)-a model of chronic lung or heart diseases in which hypoxemia may be longstanding and persistent, or of high altitude, in which effective atmospheric oxygen concentration is low-reliably induces pulmonary hypertension in rodents, and appears to have protective effects on glucose metabolism. Chronic intermittent hypoxia (CIH) has long been used as a model of obstructive sleep apnea (OSA), in which recurrent airway occlusion results in intermittent reductions in oxyhemoglobin saturations throughout the night. CIH was first shown to increase systemic blood pressure, but has also been associated with other maladaptive physiological changes, including glucose dysregulation, atherosclerosis, progression of nonalcoholic fatty liver disease, and endothelial dysfunction. However, models of CIH have generally been implemented so as to mimic severe human OSA, with comparatively less focus on milder hypoxic regimens. Here we discuss CSH and CIH conceptually, the effects of these stimuli, and limitations of the available data.
Collapse
Affiliation(s)
- Laura A. Barnes
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Ana Sanchez-Azofra
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Servicio de Neumología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
8
|
Maladaptive Pulmonary Vascular Responses to Chronic Sustained and Chronic Intermittent Hypoxia in Rat. Antioxidants (Basel) 2021; 11:antiox11010054. [PMID: 35052557 PMCID: PMC8773044 DOI: 10.3390/antiox11010054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/21/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic sustained hypoxia (CSH), as found in individuals living at a high altitude or in patients suffering respiratory disorders, initiates physiological adaptations such as carotid body stimulation to maintain oxygen levels, but has deleterious effects such as pulmonary hypertension (PH). Obstructive sleep apnea (OSA), a respiratory disorder of increasing prevalence, is characterized by a situation of chronic intermittent hypoxia (CIH). OSA is associated with the development of systemic hypertension and cardiovascular pathologies, due to carotid body and sympathetic overactivation. There is growing evidence that CIH can also compromise the pulmonary circulation, causing pulmonary hypertension in OSA patients and animal models. The aim of this work was to compare hemodynamics, vascular contractility, and L-arginine-NO metabolism in two models of PH in rats, associated with CSH and CIH exposure. We demonstrate that whereas CSH and CIH cause several common effects such as an increased hematocrit, weight loss, and an increase in pulmonary artery pressure (PAP), compared to CIH, CSH seems to have more of an effect on the pulmonary circulation, whereas the effects of CIH are apparently more targeted on the systemic circulation. The results suggest that the endothelial dysfunction evident in pulmonary arteries with both hypoxia protocols are not due to an increase in methylated arginines in these arteries, although an increase in plasma SDMA could contribute to the apparent loss of basal NO-dependent vasodilation and, therefore, the increase in PAP that results from CIH.
Collapse
|
9
|
Sheikh AQ, Saddouk FZ, Ntokou A, Mazurek R, Greif DM. Cell Autonomous and Non-cell Autonomous Regulation of SMC Progenitors in Pulmonary Hypertension. Cell Rep 2019; 23:1152-1165. [PMID: 29694892 PMCID: PMC5959296 DOI: 10.1016/j.celrep.2018.03.043] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2017] [Revised: 02/26/2018] [Accepted: 03/11/2018] [Indexed: 02/08/2023] Open
Abstract
Pulmonary hypertension is a devastating disease characterized by excessive vascular muscularization. We previously demonstrated primed platelet-derived growth factor receptor β+ (PDGFR-β+)/smooth muscle cell (SMC) marker+ progenitors at the muscular-unmuscular arteriole border in the normal lung, and in hypoxia-induced pulmonary hypertension, a single primed cell migrates distally and expands clonally, giving rise to most of the pathological smooth muscle coating of small arterioles. Little is known regarding the molecular mechanisms underlying this process. Herein, we show that primed cell expression of Kruppel-like factor 4 and hypoxia-inducible factor 1-α(HIF1-α) are required, respectively, for distal migration and smooth muscle expansion in a sequential manner. In addition, the HIF1-α/PDGF-B axis in endothelial cells non-cell autonomously regulates primed cell induction, proliferation, and differentiation. Finally, myeloid cells transdifferentiate into or fuse with distal arteriole SMCs during hypoxia, and Pdgfb deletion in myeloid cells attenuates pathological muscularization. Thus, primed cell autonomous and non-cell autonomous pathways are attractive therapeutic targets for pulmonary hypertension.
Collapse
Affiliation(s)
- Abdul Q Sheikh
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Fatima Zahra Saddouk
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Aglaia Ntokou
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Renata Mazurek
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA
| | - Daniel M Greif
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06511, USA; Department of Genetics, Yale University School of Medicine, New Haven, CT 06511, USA.
| |
Collapse
|
10
|
Carvalho CG, Yadollahi A, Granton J, Ryan CM. Temporal shifts in fluid in pulmonary hypertension with and without sleep apnea. J Sleep Res 2019; 28:e12863. [PMID: 31099115 DOI: 10.1111/jsr.12863] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/04/2019] [Accepted: 03/21/2019] [Indexed: 12/30/2022]
Abstract
Overnight extracellular rostral fluid shifts have been shown to be of importance in patients with fluid-retaining states and are associated with a higher prevalence of sleep apnea. Pulmonary hypertension is frequently associated with right ventricular dysfunction and progressive right ventricular failure, and an increased prevalence of sleep apnea has been described. In light of the importance of fluid shifts in the pathophysiology of sleep apnea, we aimed to explore temporal fluid shifts in patients with pulmonary hypertension with and without sleep apnea. Patients with pulmonary hypertension (WHO Group 1 or 4) had overnight extracellular rostral fluid shift assessment before and a minimum of 3 months after initiation of pulmonary hypertension-specific therapy. Fluid shift measurements of extracellular leg, abdominal, thoracic and neck fluid volumes were performed simultaneously. Twenty-nine patients with pulmonary hypertension (age 55 ± 16 years, 69% female) participated. Sleep apnea was diagnosed in 15 subjects (apnea-hypopnea index 14 [8-27] per hr). There were no significant differences in baseline or overnight leg extracellular rostral fluid, abdominal extracellular rostral fluid, thoracic extracellular rostral fluid or neck extracellular rostral fluid between those with and without sleep apnea. There was a significant inverse correlation between the sleep apnea severity and the overnight change in leg extracellular rostral fluid (r = -0.375, p = 0.049). There were no significant differences detected in overnight extracellular rostral fluid shifts from baseline to follow-up. Treatment-naïve patients with pulmonary hypertension both with and without sleep apnea demonstrate overnight extracellular rostral fluid shifts from the legs into the thorax and neck. Pulmonary hypertension-specific treatment, while significantly improving cardiac haemodynamics, had little impact on nocturnal extracellular rostral fluid shifts or the presence of sleep apnea.
Collapse
Affiliation(s)
- Carolina Gonzaga Carvalho
- Sleep Research Laboratory, University Health Network, Toronto Rehabilitation Institute, Toronto, ON, Canada.,Sleep Laboratory, Hypertension and Nephrology Department, Dante Pazzanese Institute of Cardiology, Sao Paulo, SP, Brazil
| | - Azadeh Yadollahi
- Sleep Research Laboratory, University Health Network, Toronto Rehabilitation Institute, Toronto, ON, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - John Granton
- Pulmonary Hypertension Program, University Health Network, Toronto General Hospital, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Clodagh M Ryan
- Sleep Research Laboratory, University Health Network, Toronto Rehabilitation Institute, Toronto, ON, Canada.,Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
11
|
Pulmonary Arterial Hypertension and Endothelial Dysfunction Is Linked to NADPH Oxidase-Derived Superoxide Formation in Venous Thrombosis and Pulmonary Embolism in Mice. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2018; 2018:1860513. [PMID: 29983855 PMCID: PMC6015670 DOI: 10.1155/2018/1860513] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 02/11/2018] [Accepted: 02/28/2018] [Indexed: 12/30/2022]
Abstract
Pulmonary embolism (PE) results from deep vein thrombosis (DVT) and can lead to chronic thromboembolic pulmonary hypertension (CTEPH) involving vascular dysfunction. Mechanisms are incompletely understood, in part due to lack of mouse models. We induced PE in C57BL/6 mice by intravenous injection of thrombin (166 U/kg BW), confirmed by a sudden bradycardia, bradypnea, and an increase in pulmonary artery (PA) pressure observed by high-frequency ultrasound. While symptoms resolved rapidly after single thrombin application, repeated PEs resulted in sustained PA-pressure increase, increased PA superoxide formation assessed by oxidative fluorescent microtopography, increased PA gp91phox expression, and endothelial dysfunction assessed by isometric tension studies of isolated PA segments after 24 hours. DVT was modeled in C57BL/6 mice by ligation of the inferior vena cava (IVC). Importantly, small pulmonary emboli could be detected along with a mild phenotype of PA endothelial dysfunction and oxidative stress in the absence of PA-pressure elevation. mRNA expression of plasminogen activator inhibitor-1 was increased in PAs of mice with recurrent PE after repetitive thrombin injections and to a lesser extent in DVT mice. In summary, our data suggest that PA endothelial dysfunction, induced by gp91phox-derived ROS, is an early event upon repetitive PE. This phenomenon might help to elucidate the mechanisms of PA dysfunction in the pathogenesis of CTEPH.
Collapse
|
12
|
HONDA J, KIMURA T, SAKAI S, MARUYAMA H, TAJIRI K, MURAKOSHI N, HOMMA S, MIYAUCHI T, AONUMA K. The Glucagon-Like Peptide-1 Receptor Agonist Liraglutide Improves Hypoxia-Induced Pulmonary Hypertension in Mice Partly via Normalization of Reduced ETB Receptor Expression. Physiol Res 2018; 67:S175-S184. [DOI: 10.33549/physiolres.933822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The glucagon-like peptide-1 receptor (GLP-1R) agonist liraglutide is an incretin hormone mimetic used in the treatment of diabetes. However, the effects of liraglutide on pulmonary hypertension (PH) and pulmonary endothelin (ET) system are unknown. Eight-week-old C57BL6/J mice were injected liraglutide or vehicle for 5 weeks. One week after injection, the mice were exposed to either room air (normoxia) or chronic hypoxia (10 % O2) for 4 weeks. The right ventricular systolic pressure (RVSP) was significantly higher in hypoxia + vehicle group than in normoxia + vehicle group. ET-1 mRNA expression in the lungs was comparable among all the groups. ETB mRNA and protein expression in the lungs was significantly lower in hypoxia + vehicle group than in normoxia + vehicle group. The above changes were normalized by liraglutide treatment. The expression of phospho-eNOS and phospho-AMPK proteins in the lungs was significantly higher in hypoxia + liraglutide group than in normoxia + vehicle group. We demonstrated for the first time that liraglutide effectively improved RVSP and RV hypertrophy in hypoxia-induced PH mice by activating eNOS through normalization of impaired ETB pathway and augmentation of AMPK pathway. Therefore, GLP-1R agonists can be promising therapeutic agents for PH.
Collapse
Affiliation(s)
| | - T. KIMURA
- Department of Cardiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Does the Medical Comorbidity Profile of Obstructive Sleep Apnea Patients Treated With Maxillomandibular Advancement Differ From That of Obstructive Sleep Apnea Patients Managed Nonsurgically? J Oral Maxillofac Surg 2018; 76:1999.e1-1999.e8. [PMID: 29425754 DOI: 10.1016/j.joms.2018.01.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/28/2017] [Accepted: 01/06/2018] [Indexed: 12/31/2022]
Abstract
PURPOSE Obstructive sleep apnea (OSA) patients with retrognathia and measurable anatomic airway determinants may represent a subset of OSA patients and have distinct comorbidity profiles. Our aim was to compare the medical comorbidities of OSA patients managed surgically with maxillomandibular advancement with those of nonsurgical patients. PATIENTS AND METHODS In this cross-sectional retrospective study, patients for both cohorts were identified through the Massachusetts General Hospital oral and maxillofacial surgery data registry and the Massachusetts General Hospital Research Patient Data Registry. The inclusion criteria consisted of clinical records documenting body mass index (BMI), apnea-hypopnea index, respiratory disturbance index, and/or oxygen nadir. The primary predictor variable was the treatment modality chosen: surgical (maxillomandibular advancement) or nonsurgical. Demographic information and OSA parameters were evaluated. The primary outcome variable was the number of documented comorbidities in each group. Two-sample t tests were used for continuous variables, whereas χ2 or Fisher exact tests were used for categorical variables. RESULTS The nonsurgical cohort consisted of 71 patients (67.6% men), and the surgical cohort consisted of 51 patients (84.3% men). Comparison of descriptive characteristics showed that the nonsurgical cohort had a higher average age (49 ± 9.4 years) than the surgical cohort (41 ± 10.7 years, P < .001). In addition, a higher average BMI was present in the nonsurgical group (42.3 ± 11.9 in nonsurgical group vs 29.7 ± 5.5 in surgical group, P < .001). Polysomnogram parameters were comparable with the exception of a higher Epworth Sleepiness Scale score in the surgical cohort (15.5 ± 5.30 in surgical group vs 9.90 ± 6.80 in nonsurgical group, P = .005). The nonsurgical cohort had a higher total number of comorbidities (7 ± 4 in nonsurgical group vs 4 ± 3 in surgical group, P < .001). Hypertension, cardiovascular disease, hyperlipidemia, pulmonary hypertension, obstructive pulmonary disease, and type 2 diabetes mellitus had higher prevalences within the nonsurgical group. CONCLUSIONS The results of this study suggest that nonsurgically managed OSA patients tend to have more complex medical comorbidity profiles than those managed surgically. Obesity (BMI >30) was more prevalent in the nonsurgical cohort, which may be contributory. The additive contribution of OSA needs to be further elucidated.
Collapse
|
14
|
Wang JW, Li AY, Guo QH, Guo YJ, Weiss JW, Ji ES. Endothelin-1 and ET receptors impair left ventricular function by mediated coronary arteries dysfunction in chronic intermittent hypoxia rats. Physiol Rep 2017; 5:5/1/e13050. [PMID: 28057852 PMCID: PMC5256153 DOI: 10.14814/phy2.13050] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 12/18/2022] Open
Abstract
Obstructive sleep apnea (OSA) results in cardiac dysfunction and vascular endothelium injury. Chronic intermittent hypoxia (CIH), the main characteristic of OSAS, is considered to be mainly responsible for cardiovascular system impairment. This study is aimed to evaluate the role of endothelin‐1(ET‐1) system in coronary injury and cardiac dysfunction in CIH rats. In our study, Sprague–Dawley rats were exposed to CIH (FiO2 9% for 1.5 min, repeated every 3 min for 8 h/d, 7 days/week for 3 weeks). After 3 weeks, the left ventricular developed pressure (LVDP) and coronary resistance (CR) were measured with the langendorff mode in isolated hearts. Meanwhile, expressions of ET‐1 and ET receptors were detected by immunohistochemical and western blot, histological changes were also observed to determine effects of CIH on coronary endothelial cells. Results suggested that decreased LVDP level combined with augmented coronary resistance was exist in CIH rats. CIH could induce endothelial injury and endothelium‐dependent vasodilatation dysfunction in the coronary arteries. Furthermore, ET‐1 and ETA receptor expressions in coronary vessels were increased after CIH exposure, whereas ETB receptors expression was decreased. Coronary contractile response to ET‐1 in both normoxia and CIH rats was inhibited by ETA receptor antagonist BQ123. However, ETB receptor antagonist BQ788 enhanced ET‐1‐induced contractile in normoxia group, but had no significant effects on CIH group. These results indicate that CIH‐induced cardiac dysfunction may be associated with coronary injury. ET‐1 plays an important role in coronary pathogenesis of CIH through ETA receptor by mediating a potent vasoconstrictor response. Moreover, decreased ETB receptor expression that leads to endothelium‐dependent vasodilatation decline, might be also participated in coronary and cardiac dysfunction.
Collapse
Affiliation(s)
- Jin-Wei Wang
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ai-Ying Li
- Department of Biochemistry, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Qiu-Hong Guo
- Department of Pharmacology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Ya-Jing Guo
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - James W Weiss
- Division of Pulmonary, Critical Care and Sleep Medicine, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| | - En-Sheng Ji
- Department of Physiology, Hebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| |
Collapse
|
15
|
Silpanisong J, Kim D, Williams JM, Adeoye OO, Thorpe RB, Pearce WJ. Chronic hypoxia alters fetal cerebrovascular responses to endothelin-1. Am J Physiol Cell Physiol 2017; 313:C207-C218. [PMID: 28566491 DOI: 10.1152/ajpcell.00241.2016] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 05/16/2017] [Accepted: 05/29/2017] [Indexed: 01/30/2023]
Abstract
In utero hypoxia influences the structure and function of most fetal arteries, including those of the developing cerebral circulation. Whereas the signals that initiate this hypoxic remodeling remain uncertain, these appear to be distinct from the mechanisms that maintain the remodeled vascular state. The present study explores the hypothesis that chronic hypoxia elicits sustained changes in fetal cerebrovascular reactivity to endothelin-1 (ET-1), a potent vascular contractant and mitogen. In fetal lambs, chronic hypoxia (3,820-m altitude for the last 110 days of gestation) had no significant effect on plasma ET-1 levels or ETA receptor density in cerebral arteries but enhanced contractile responses to ET-1 in an ETA-dependent manner. In organ culture (24 h), 10 nM ET-1 increased medial thicknesses less in hypoxic than in normoxic arteries, and these increases were ablated by inhibition of PKC (chelerythrine) in both normoxic and hypoxic arteries but were attenuated by inhibition of CaMKII (KN93) and p38 (SB203580) in normoxic but not hypoxic arteries. As indicated by Ki-67 immunostaining, ET-1 increased medial thicknesses via hypertrophy. Measurements of colocalization between MLCK and SMαA revealed that organ culture with ET-1 also promoted contractile dedifferentiation in normoxic, but not hypoxic, arteries through mechanisms attenuated by inhibitors of PKC, CaMKII, and p38. These results support the hypothesis that chronic hypoxia elicits sustained changes in fetal cerebrovascular reactivity to ET-1 through pathways dependent upon PKC, CaMKII, and p38 that cause increased ET-1-mediated contractility, decreased ET-1-mediated smooth muscle hypertrophy, and a depressed ability of ET-1 to promote contractile dedifferentiation.
Collapse
Affiliation(s)
- Jinjutha Silpanisong
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Dahlim Kim
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| | - James M Williams
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| | - Olayemi O Adeoye
- Department of Pharmaceutical and Administrative Sciences, Loma Linda University School of Pharmacy, Loma Linda, California
| | - Richard B Thorpe
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| | - William J Pearce
- Divisions of Physiology and Biochemistry, Center for Perinatal Biology, Loma Linda University School of Medicine, Loma Linda, California; and
| |
Collapse
|
16
|
Targeting the ROS-HIF-1-endothelin axis as a therapeutic approach for the treatment of obstructive sleep apnea-related cardiovascular complications. Pharmacol Ther 2016; 168:1-11. [PMID: 27492897 DOI: 10.1016/j.pharmthera.2016.07.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Accepted: 07/08/2016] [Indexed: 12/12/2022]
Abstract
Obstructive sleep apnea (OSA) is now recognized as an independent and important risk factor for cardiovascular diseases such as hypertension, coronary heart disease, heart failure and stroke. Clinical and experimental data have confirmed that intermittent hypoxia is a major contributor to these deleterious consequences. The repetitive occurrence of hypoxia-reoxygenation sequences generates significant amounts of free radicals, particularly in moderate to severe OSA patients. Moreover, in addition to hypoxia, reactive oxygen species (ROS) are potential inducers of the hypoxia inducible transcription factor-1 (HIF-1) that promotes the transcription of numerous adaptive genes some of which being deleterious for the cardiovascular system, such as the endothelin-1 gene. This review will focus on the involvement of the ROS-HIF-1-endothelin signaling pathway in OSA and intermittent hypoxia and discuss current and potential therapeutic approaches targeting this pathway to treat or prevent cardiovascular disease in moderate to severe OSA patients.
Collapse
|
17
|
Chen YC, Inagaki T, Fujii Y, Schwenke DO, Tsuchimochi H, Edgley AJ, Umetani K, Zhang Y, Kelly DJ, Yoshimoto M, Nagai H, Evans RG, Kuwahira I, Shirai M, Pearson JT. Chronic intermittent hypoxia accelerates coronary microcirculatory dysfunction in insulin-resistant Goto-Kakizaki rats. Am J Physiol Regul Integr Comp Physiol 2016; 311:R426-39. [DOI: 10.1152/ajpregu.00112.2016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 05/30/2016] [Indexed: 12/20/2022]
Abstract
Chronic intermittent hypoxia (IH) induces oxidative stress and inflammation, which impair vascular endothelial function. Long-term insulin resistance also leads to endothelial dysfunction. We determined, in vivo, whether the effects of chronic IH and insulin resistance on endothelial function augment each other. Male 12-wk-old Goto-Kakizaki (GK) and Wistar control rats were subjected to normoxia or chronic IH (90-s N2, 5% O2 at nadir, 90-s air, 20 cycles/h, 8 h/day) for 4 wk. Coronary endothelial function was assessed using microangiography with synchrotron radiation. Imaging was performed at baseline, during infusion of acetylcholine (ACh, 5 μg·kg−1·min−1) and then sodium nitroprusside (SNP, 5 μg·kg−1·min−1), after blockade of both nitric oxide (NO) synthase (NOS) with Nω-nitro-l-arginine methyl ester (l-NAME, 50 mg/kg) and cyclooxygenase (COX, meclofenamate, 3 mg/kg), and during subsequent ACh. In GK rats, coronary vasodilatation in response to ACh and SNP was blunted compared with Wistar rats, and responses to ACh were abolished after blockade. In Wistar rats, IH blunted the ability of ACh or SNP to increase the number of visible vessels. In GK rats exposed to IH, neither ACh nor SNP were able to increase visible vessel number or caliber, and blockade resulted in marked vasoconstriction. Our findings indicate that IH augments the deleterious effects of insulin resistance on coronary endothelial function. They appear to increase the dependence of the coronary microcirculation on NO and/or vasodilator prostanoids, and greatly blunt the residual vasodilation in response to ACh after blockade of NOS/COX, presumably mediated by endothelium-derived hyperpolarizing factors.
Collapse
Affiliation(s)
- Yi Ching Chen
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Tadakatsu Inagaki
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Yutaka Fujii
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Daryl O. Schwenke
- Department of Physiology-Heart Otago, University of Otago, Dunedin, New Zealand
| | - Hirotsugu Tsuchimochi
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Amanda J. Edgley
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
- St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Keiji Umetani
- Japan Synchrotron Radiation Research Institute, Harima, Japan
| | - Yuan Zhang
- St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Darren J. Kelly
- St Vincent's Hospital, University of Melbourne, Melbourne, Australia
| | - Misa Yoshimoto
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - Hisashi Nagai
- Departments of Clinical Laboratory Medicine and Forensic Medicine, University of Tokyo, Tokyo, Japan
| | - Roger G. Evans
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
| | - Ichiro Kuwahira
- Department of Pulmonary Medicine, Tokai University Tokyo Hospital, Tokai University, Tokyo, Japan
| | - Mikiyasu Shirai
- Department of Cardiac Physiology, National Cerebral and Cardiovascular Center Research Institute, Suita, Japan
| | - James T. Pearson
- Cardiovascular Disease Program, Biosciences Discovery Institute and Department of Physiology, Monash University, Melbourne, Australia
- Monash Biomedical Imaging Facility, Melbourne, Australia; and
- Australian Synchrotron, Melbourne, Australia
| |
Collapse
|
18
|
CTRP9 Ameliorates Pulmonary Arterial Hypertension Through Attenuating Inflammation and Improving Endothelial Cell Survival and Function. J Cardiovasc Pharmacol 2016; 67:394-401. [DOI: 10.1097/fjc.0000000000000364] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
19
|
Abstract
PURPOSE OF REVIEW The purpose of this review was to evaluate the consequence of obstructive sleep apnea (OSA) in pulmonary hypertension by reviewing the current literature and understanding potential pathophysiological mechanisms. RECENT FINDINGS Small studies have suggested a high prevalence of comorbid OSA in those with known pulmonary hypertension. Pathophysiological mechanisms are highly suggestive of potential deleterious effect of OSA on pulmonary hemodynamics. SUMMARY Clearly, current research work on comorbid OSA and pulmonary hypertension is still in its infancy and the field is ripe for future investigation. The significance of OSA in this population has yet to be fully determined.
Collapse
|
20
|
Siemsen DW, Dobrinen E, Han S, Chiocchi K, Meissner N, Swain SD. Vascular Dysfunction in Pneumocystis-Associated Pulmonary Hypertension Is Related to Endothelin Response and Adrenomedullin Concentration. THE AMERICAN JOURNAL OF PATHOLOGY 2015; 186:259-69. [PMID: 26687815 DOI: 10.1016/j.ajpath.2015.10.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 09/29/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
Pulmonary hypertension subsequent to an infectious disease can be due to vascular structural remodeling or to functional alterations within various vascular cell types. In our previous mouse model of Pneumocystis-associated pulmonary hypertension, we found that vascular remodeling was not responsible for observed increases in right ventricular pressures. Here, we report that the vascular dysfunction we observed could be explained by an enhanced response to endothelin-1 (20% greater reduction in lumen diameter, P ≤ 0.05), corresponding to an up-regulation of similar magnitude (P ≤ 0.05) of the endothelin A receptor in the lung tissue. This effect was potentially augmented by a decrease in production of the pulmonary vasodilator adrenomedullin of almost 70% (P ≤ 0.05). These changes did not occur in interferon-γ knockout mice similarly treated, which do not develop pulmonary hypertension under these circumstances. Surprisingly, we did not observe any relevant changes in the vascular endothelial nitric oxide synthase vasodilatory response, which is a common potential site of inflammatory alterations to pulmonary vascular function. Our results indicate the diverse mechanisms by which inflammatory responses to prior infections can cause functionally relevant changes in vascular responses in the lung, promoting the development of pulmonary hypertension.
Collapse
Affiliation(s)
- Dan W Siemsen
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Erin Dobrinen
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Soo Han
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Kari Chiocchi
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Nicole Meissner
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana
| | - Steve D Swain
- Department of Microbiology and Immunology, Montana State University, Bozeman, Montana.
| |
Collapse
|
21
|
Harnod T, Wang YC, Kao CH. Association of Migraine and Sleep-Related Breathing Disorder: A Population-Based Cohort Study. Medicine (Baltimore) 2015; 94:e1506. [PMID: 26356720 PMCID: PMC4616656 DOI: 10.1097/md.0000000000001506] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
In this nationwide population-based cohort study, we aimed to evaluate the effects of sleep-related breathing disorders (SBD) on migraine development.Patients ages 20 years or more and diagnosed with SBD between 2000 and 2009 were evaluated as the SBD cohort (n = 3411), and compared with comparison cohort (n = 13,644). The adjusted hazard ratio (aHR) for developing migraine was calculated in both cohorts by multivariate Cox proportional hazards model.The cumulative incidence of migraine was significantly higher in the SBD cohort than in the comparison cohort. In the SBD cohort, the overall aHR for developing migraine was 2.43 (95% confidence interval [CI] = 1.72-3.44). The risk of developing migraine was higher in men (aHR 2.71) than in women (aHR 2.29) with SBD. When stratifying by age, we observed increased incidence of migraine in patients ages 20 to 44 years and 45 to 64 years, with a higher aHR of 2.51 (95% CI = 1.47-4.30) and 2.68 (95% CI = 1.63-4.43), respectively. The risk of developing migraine in the patients with SBD with or without comorbidity exhibited nonsignificant differences. After stratifying by the use of hypnotics, the aHR for developing migraine was 2.39 in the patients with hypnotics use and 3.58 in the patients without hypnotics use.Our findings indicate increased risk of developing migraine in adults, but not elderly ones, with SBD.
Collapse
Affiliation(s)
- Tomor Harnod
- From the Department of Neurosurgery, Hualien Tzu Chi General Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan (TH); College of Medicine, Tzu Chi University, Hualien, Taiwan (TH); Management Office for Health Data, China Medical University Hospital, Taichung, Taiwan (YCW); College of Medicine, China Medical University, Taichung, Taiwan (YCW); Graduate Institute of Clinical Medical Science and School of Medicine, College of Medicine, China Medical University, Taichung, Taiwan (CHK); and Department of Nuclear Medicine and PET Center, China Medical University Hospital, Taichung, Taiwan (CHK)
| | | | | |
Collapse
|
22
|
Kholdani C, Fares WH, Mohsenin V. Pulmonary hypertension in obstructive sleep apnea: is it clinically significant? A critical analysis of the association and pathophysiology. Pulm Circ 2015; 5:220-7. [PMID: 26064448 DOI: 10.1086/679995] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Accepted: 09/02/2014] [Indexed: 12/15/2022] Open
Abstract
The development of pulmonary hypertension is a poor prognostic sign in patients with obstructive sleep apnea (OSA) and affects both mortality and quality of life. Although pulmonary hypertension in OSA is traditionally viewed as a result of apneas and intermittent hypoxia during sleep, recent studies indicate that neither of these factors correlates very well with pulmonary artery pressure. Human data show that pulmonary hypertension in the setting of OSA is, in large part, due to left heart dysfunction with either preserved or diminished ejection fraction. Longstanding increased left heart filling pressures eventually lead to pulmonary venous hypertension. The combination of hypoxic pulmonary vasoconstriction and pulmonary venous hypertension with abnormal production of mediators will result in vascular cell proliferation and aberrant vascular remodeling leading to pulmonary hypertension. These changes are in many ways similar to those seen in other forms of pulmonary hypertension and suggest shared mechanisms. The majority of patients with OSA do not receive a diagnosis and are undertreated. Appreciating the high prevalence and understanding the mechanisms of pulmonary hypertension in OSA would lead to better recognition and management of the condition.
Collapse
Affiliation(s)
- Cyrus Kholdani
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Wassim H Fares
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| | - Vahid Mohsenin
- Section of Pulmonary, Critical Care and Sleep Medicine, Yale School of Medicine, New Haven, Connecticut, USA
| |
Collapse
|
23
|
Schiza S, Mermigkis C, Margaritopoulos GA, Daniil Z, Harari S, Poletti V, Renzoni EA, Torre O, Visca D, Bouloukaki I, Sourvinos G, Antoniou KM. Idiopathic pulmonary fibrosis and sleep disorders: no longer strangers in the night. Eur Respir Rev 2015; 24:327-39. [PMID: 26028644 PMCID: PMC9487812 DOI: 10.1183/16000617.00009114] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The prevalence of obstructive sleep apnoea (OSA) is continuously increasing in patients with idiopathic pulmonary fibrosis (IPF) and, for the first time, the recent IPF guidelines recognise OSA as an important associated comorbidity that can affect patient's survival. Thus, it becomes conceivable that clinicians should refer patients with newly diagnosed IPF to sleep centres for the diagnosis and treatment of OSA as well as for addressing issues regarding the reduced compliance of patients with continuous positive airway pressure therapy. The discovery of biomarkers common to both disorders may help early diagnosis, institution of the most appropriate treatment and follow-up of patients. Better understanding of epigenetic changes may provide useful information about pathogenesis and, possibly, development of new drugs for a dismal disease like IPF. It is now believed that IPF and sleep disorders can coexist in the same patienthttp://ow.ly/LXPSL
Collapse
|
24
|
Chu A, Gozal D, Cortese R, Wang Y. Cardiovascular dysfunction in adult mice following postnatal intermittent hypoxia. Pediatr Res 2015; 77:425-33. [PMID: 25518007 DOI: 10.1038/pr.2014.197] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 09/16/2014] [Indexed: 01/13/2023]
Abstract
BACKGROUND Ex-premature infants are at higher risk for hypertension and cardiovascular disease as adults, although the mechanisms underlying such increased risks are unknown. We hypothesize that postnatal exposure to intermittent hypoxia (IH) leads to cardiovascular dysfunction in adulthood with alterations of the renin-angiotensin pathway. METHODS Neonatal mice were exposed to IH for 4 wk. At the age of 3 mo, various cardiovascular measurements were obtained. RESULTS IH-exposed mice exhibited higher systolic blood pressure, impaired baroreflex responses, and decreased heart rate variability. Furthermore, IH-exposed mice manifested evidence of endothelial dysfunction, as shown by reduced reperfusion indices after tail vessel occlusion and impaired vasodilatory responses to acetylcholine. CD31(+) endothelial cells isolated from mesenteric arteries of IH-exposed mice expressed higher levels of angiotensin-converting enzyme and reactive oxygen species; plasma angiotensin-II levels were also significantly higher in these animals. In addition, DNA methylation patterns of the Ace1 and the Agt genes in these cells were congruent with their expression patterns. CONCLUSION Our results suggest that exposures to postnatal IH alter the normal development of the renin-angiotensin system and promote the occurrence of cardiovascular dysfunction during adulthood in mice.
Collapse
Affiliation(s)
- Alison Chu
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - David Gozal
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Rene Cortese
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| | - Yang Wang
- Department of Pediatrics, University of Chicago, Chicago, Illinois
| |
Collapse
|
25
|
Pulmonary hypertension and right heart dysfunction in chronic lung disease. BIOMED RESEARCH INTERNATIONAL 2014; 2014:739674. [PMID: 25165714 PMCID: PMC4140123 DOI: 10.1155/2014/739674] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/24/2014] [Accepted: 06/29/2014] [Indexed: 11/30/2022]
Abstract
Group 3 pulmonary hypertension (PH) is a common complication of chronic lung disease (CLD), including chronic obstructive pulmonary disease (COPD), interstitial lung disease, and sleep-disordered breathing. Development of PH is associated with poor prognosis and may progress to right heart failure, however, in the majority of the patients with CLD, PH is mild to moderate and only a small number of patients develop severe PH. The pathophysiology of PH in CLD is multifactorial and includes hypoxic pulmonary vasoconstriction, pulmonary vascular remodeling, small vessel destruction, and fibrosis. The effects of PH on the right ventricle (RV) range between early RV remodeling, hypertrophy, dilatation, and eventual failure with associated increased mortality. The golden standard for diagnosis of PH is right heart catheterization, however, evidence of PH can be appreciated on clinical examination, serology, radiological imaging, and Doppler echocardiography. Treatment of PH in CLD focuses on management of the underlying lung disorder and hypoxia. There is, however, limited evidence to suggest that PH-specific vasodilators such as phosphodiesterase-type 5 inhibitors, endothelin receptor antagonists, and prostanoids may have a role in the treatment of patients with CLD and moderate-to-severe PH.
Collapse
|
26
|
Shujaat A, Bellardini J, Girdhar A, Bajwa AA. Use of pulmonary arterial hypertension-specific therapy in overweight or obese patients with obstructive sleep apnea and pulmonary hypertension. Pulm Circ 2014; 4:244-9. [PMID: 25006443 DOI: 10.1086/675987] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Accepted: 01/07/2014] [Indexed: 11/03/2022] Open
Abstract
Pulmonary hypertension (PH) in overweight or obese patients with obstructive sleep apnea (OSA) may be multifactorial. The effect of pulmonary artery hypertension (PAH)-specific drugs on PH and exercise capacity in such patients is unknown. We performed a retrospective review of overweight or obese patients with OSA and PH who were treated with PAH-specific therapy in our PH clinic. We identified 9 female and 2 male patients. The mean age ± SD was 54.9 ± 9.3 years. The mean pulmonary artery pressure at the time of diagnosis of PH was 39.8 ± 16.1 mmHg. The right atrial pressure was 11.1 ± 4.5 mmHg, the pulmonary artery wedge pressure was 14.1 ± 2.9 mmHg, the cardiac index was 2.6 ± 0.5 L/min/m(2), and the pulmonary vascular resistance index was 10.6 ± 7.1 Wood units/m(2). The indications for use of PAH-specific therapy were dyspnea in association with right heart failure (n = 4), persistent PH despite compliance with nocturnal positive airway pressure (PAP) therapy (n = 4), or inability to tolerate PAP therapy (n = 3). PH was treated with an endothelin receptor antagonist (n = 8) or a phosphodiesterase-5 inhibitor (n = 3). The 6-minute walk distance (6MWD) improved significantly, from 234 ± 49.7 to 258 ± 54.6 m (24 m [95% confidence interval (CI): 6.5-341.5 m]; P = 0.014) over a period of 4.4 ± 1.8 months (n = 8) and from 241.7 ± 48.5 to 289.9 ± 91 m (48 m [95% CI: 5.5-90.8 m]; P = 0.033) in those with a longer follow-up period of 12.1 ± 6.4 months (n = 7). The systolic pulmonary artery pressure dropped significantly, from 64 ± 25.2 to 42 ± 10.4 mmHg (22 mmHg [95% CI: 4-40 mmHg]; P = 0.024) over a period of 6.1 ± 4.1 months (n = 7). In conclusion, PAH-specific therapy resulted in significant improvement in both PH and 6MWD.
Collapse
Affiliation(s)
- Adil Shujaat
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Jacksonville, Florida, USA
| | - Jason Bellardini
- Department of Medicine, University of Florida, Jacksonville, Florida, USA
| | - Ankur Girdhar
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Jacksonville, Florida, USA
| | - Abubakr A Bajwa
- Division of Pulmonary, Critical Care and Sleep Medicine, University of Florida, Jacksonville, Florida, USA
| |
Collapse
|
27
|
Mangat GS, Jaggi AS, Singh N. Ameliorative Effect of a Selective Endothelin ETA Receptor Antagonist in Rat Model of L-Methionine-induced Vascular Dementia. THE KOREAN JOURNAL OF PHYSIOLOGY & PHARMACOLOGY : OFFICIAL JOURNAL OF THE KOREAN PHYSIOLOGICAL SOCIETY AND THE KOREAN SOCIETY OF PHARMACOLOGY 2014; 18:201-9. [PMID: 24976759 PMCID: PMC4071172 DOI: 10.4196/kjpp.2014.18.3.201] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Revised: 03/17/2014] [Accepted: 04/12/2014] [Indexed: 11/26/2022]
Abstract
The present study was designed to investigate the efficacy of selective ETA receptor antagonist, ambrisentan on hyperhomocysteinemia-induced experimental vascular dementia. L-methionine was administered for 8 weeks to induce hyperhomocysteinemia and associated vascular dementia in male rats. Ambrisentan was administered to L-methionine-treated effect rats for 4 weeks (starting from 5th to 8th week of L-methionine treatment). On 52nd day onward, the animals were exposed to the Morris water maze (MWM) for testing their learning and memory abilities. Vascular endothelial function, serum nitrite/nitrate levels, brain thiobarbituric acid reactive species (TBARS), brain reduced glutathione (GSH) levels, and brain acetylcholinesterase (AChE) activity were also measured. L-methionine-treated animals showed significant learning and memory impairment, endothelial dysfunction, decrease in/serum nitrite/nitrate and brain GSH levels along with an increase in brain TBARS levels and AChE activity. Ambrisentan significantly improved hyperhomocysteinemia-induced impairment of learning, memory, endothelial dysfunction, and changes in various biochemical parameters. These effects were comparable to that of donepezil serving as positive control. It is concluded that ambrisentan, a selective ETA receptor antagonist may be considered as a potential pharmacological agent for the management of hyperhomocysteinemia-induced vascular dementia.
Collapse
Affiliation(s)
- Gautamjeet S Mangat
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala (Punjab) 147002, India
| | - Amteshwar S Jaggi
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala (Punjab) 147002, India
| | - Nirmal Singh
- Pharmacology Division, Department of Pharmaceutical Sciences and Drug Research, Faculty of Medicine, Punjabi University, Patiala (Punjab) 147002, India
| |
Collapse
|
28
|
Almendros I, Wang Y, Gozal D. The polymorphic and contradictory aspects of intermittent hypoxia. Am J Physiol Lung Cell Mol Physiol 2014; 307:L129-40. [PMID: 24838748 DOI: 10.1152/ajplung.00089.2014] [Citation(s) in RCA: 129] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Intermittent hypoxia (IH) has been extensively studied during the last decade, primarily as a surrogate model of sleep apnea. However, IH is a much more pervasive phenomenon in human disease, is viewed as a potential therapeutic approach, and has also been used in other disciplines, such as in competitive sports. In this context, adverse outcomes involving cardiovascular, cognitive, metabolic, and cancer problems have emerged in obstructive sleep apnea-based studies, whereas beneficial effects of IH have also been identified. Those a priori contradictory findings may not be as contradictory as initially thought. Indeed, the opposite outcomes triggered by IH can be explained by the specific characteristics of the large diversity of IH patterns applied in each study. The balance between benefits and injury appears to primarily depend on the ability of the organism to respond and activate adaptive mechanisms to IH. In this context, the adaptive or maladaptive responses can be generally predicted by the frequency, severity, and duration of IH. However, the presence of underlying conditions such as hypertension or obesity, as well as age, sex, or genotypic variance, may be important factors tilting the balance between an appropriate homeostatic response and decompensation. Here, the two possible facets of IH as derived from human and experimental animal settings will be reviewed.
Collapse
Affiliation(s)
- Isaac Almendros
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - Yang Wang
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| | - David Gozal
- Department of Pediatrics, Comer Children's Hospital, Pritzker School of Medicine, The University of Chicago, Chicago, Illinois
| |
Collapse
|
29
|
Nitric oxide and superoxide anion balance in rats exposed to chronic and long term intermittent hypoxia. BIOMED RESEARCH INTERNATIONAL 2014; 2014:610474. [PMID: 24719876 PMCID: PMC3955675 DOI: 10.1155/2014/610474] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Accepted: 01/15/2014] [Indexed: 11/18/2022]
Abstract
Work at high altitude in shifts exposes humans to a new form of chronic intermittent hypoxia, with still unknown health consequences. We have established a rat model resembling this situation, which develops a milder form of right ventricular hypertrophy and pulmonary artery remodelling compared to continuous chronic exposure. We aimed to compare the alterations in pulmonary artery nitric oxide (NO) availability induced by these forms of hypoxia and the mechanisms implicated. Rats were exposed for 46 days to normoxia or hypobaric hypoxia, either continuous (CH) or intermittent (2 day shifts, CIH2x2), and assessed: NO and superoxide anion availability (fluorescent indicators and confocal microscopy); expression of phosphorylated endothelial NO synthase (eNOS), NADPH-oxidase (p22phox), and 3-nitrotyrosine (western blotting); and NADPH-oxidase location (immunohistochemistry). Compared to normoxia, (1) NO availability was reduced and superoxide anion was increased in both hypoxic groups, with a larger effect in CH, (2) eNOS expression was only reduced in CH, (3) NADPH-oxidase was similarly increased in both hypoxic groups, and (4) 3-nitrotyrosine was increased to a larger extent in CH. In conclusion, intermittent hypoxia reduces NO availability through superoxide anion destruction, without reducing its synthesis, while continuous hypoxia affects both, producing larger nitrosative damage which could be related to the more severe cardiovascular alterations.
Collapse
|
30
|
Tual-Chalot S, Gagnadoux F, Trzepizur W, Priou P, Andriantsitohaina R, Martinez MC. Circulating microparticles from obstructive sleep apnea syndrome patients induce endothelin-mediated angiogenesis. Biochim Biophys Acta Mol Basis Dis 2013; 1842:202-7. [PMID: 24275556 DOI: 10.1016/j.bbadis.2013.11.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/31/2013] [Accepted: 11/15/2013] [Indexed: 10/26/2022]
Abstract
Microparticles are deemed true biomarkers and vectors of biological information between cells. Depending on their origin, the composition of microparticles varies and the subsequent message transported by them, such as proteins, mRNA, or miRNA, can differ. In obstructive sleep apnea syndrome (OSAS), circulating microparticles are associated with endothelial dysfunction by reducing endothelial-derived nitric oxide production. Here, we have analyzed the potential role of circulating microparticles from OSAS patients on the regulation of angiogenesis and the involved pathway. VEGF content carried by circulating microparticles from OSAS patients was increased when compared with microparticles from non-OSAS patients. Circulating microparticles from OSAS patients induced an increase of angiogenesis that was abolished in the presence of the antagonist of endothelin-1 receptor type B. In addition, endothelin-1 secretion was increased in human endothelial cells treated by OSAS microparticles. We highlight that circulating microparticles from OSAS patients can modify the secretome of endothelial cells leading to angiogenesis.
Collapse
Affiliation(s)
| | - Frédéric Gagnadoux
- LUNAM Université, Angers, France; INSERM U1063, Angers, France; Département de Pneumologie, CHU d'Angers, France
| | - Wojciech Trzepizur
- LUNAM Université, Angers, France; INSERM U1063, Angers, France; Département de Pneumologie, CHU d'Angers, France
| | - Pascaline Priou
- LUNAM Université, Angers, France; INSERM U1063, Angers, France; Département de Pneumologie, CHU d'Angers, France
| | | | | |
Collapse
|