1
|
Kim KH, Lee SJ, Kim J, Moon Y. Leveraging Xenobiotic-Responsive Cancer Stemness in Cell Line-Based Tumoroids for Evaluating Chemoresistance: A Proof-of-Concept Study on Environmental Susceptibility. Int J Mol Sci 2024; 25:11383. [PMID: 39518936 PMCID: PMC11545740 DOI: 10.3390/ijms252111383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/16/2024] [Accepted: 10/20/2024] [Indexed: 11/16/2024] Open
Abstract
Emerging evidence suggests that cancer stemness plays a crucial role in tumor progression, metastasis, and chemoresistance. Upon exposure to internal or external stress, ribosomes stand sentinel and facilitate diverse biological processes, including oncological responses. In the present study, ribosome-inactivating stress (RIS) was evaluated for its modulation of cancer cell stemness as a pivotal factor of tumor cell reprogramming. Based on the concept of stress-responsive cancer cell stemness, we addressed human intestinal cancer cell line-based off-the-shelf spheroid cultures. Intestinal cancer cell line-based spheroids exhibited heightened levels of CD44+CD133+ cancer stemness, which was improved by chemical-induced RIS. Further evaluations revealed the potential of these stress-imprinted spheroids as a platform for chemoresistance screening. Compared to adherent cells, stemness-improved spheroid cultures displayed reduced apoptosis in response to 5-fluorouracil (5-FU), a frontline chemotherapeutic agent against colorectal cancer. Moreover, serial subcultures with repeated RIS exposure maintained and even enhanced cancer stemness and chemoresistance patterns. In particular, isolated CD44+CD133+ cancer stem cells exhibited higher chemoresistance compared to unsorted cells. To elucidate the mechanisms underlying RIS-induced stemness, RNA-seq analysis identified Wnt signaling pathways and stemness-associated signals as notable features in spheroids exposed to RIS. Loss-of-function studies targeting connective tissue growth factor (CTGF), a negative regulator of Wnt signaling, revealed that CTGF-deficient spheroids exhibited improved cancer stemness and resistance to 5-FU, with RIS further enhancing these effects. In conclusion, this proof-of-concept study demonstrates the feasibility of leveraging stress-responsive cancer stemness for the development of spheroid-based platforms for chemoresistance evaluation and elucidation of pathophysiological processes of colorectal tumorigenesis under environmental stress.
Collapse
Affiliation(s)
- Ki-Hyung Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan 50612, Republic of Korea; (K.-H.K.); (S.J.L.); (J.K.)
- Department of Obstetrics and Gynecology, College of Medicine, Pusan National University, Busan 49241, Republic of Korea
- Biomedical Research Institute, Pusan National University, Busan 49241, Republic of Korea
| | - Seung Joon Lee
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan 50612, Republic of Korea; (K.-H.K.); (S.J.L.); (J.K.)
| | - Juil Kim
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan 50612, Republic of Korea; (K.-H.K.); (S.J.L.); (J.K.)
| | - Yuseok Moon
- Laboratory of Mucosal Exposome and Biomodulation, Department of Integrative Biomedical Sciences, Pusan National University, Yangsan 50612, Republic of Korea; (K.-H.K.); (S.J.L.); (J.K.)
- Biomedical Research Institute, Pusan National University, Busan 49241, Republic of Korea
- Graduate Program of Genomic Data Sciences, Pusan National University, Yangsan 50612, Republic of Korea
| |
Collapse
|
2
|
Li X, Huang L, Liu B, Zhang Z, Zhou G, Guo Z, Song J, Wang X. Cyclic negative pressure promotes chondrocyte growth: Association of IGF-2 with EGR-1. BIOMOLECULES & BIOMEDICINE 2024; 24:1761-1775. [PMID: 38912889 PMCID: PMC11496872 DOI: 10.17305/bb.2024.10487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/14/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Knee osteoarthritis (KOA) is one of the most common degenerative joint diseases in the elderly worldwide. The primary lesion in patients with KOA is the degeneration of articular cartilage. This study aimed to observe the biological effects of cyclic negative pressure on C28/I2 chondrocytes and to elucidate the underlying molecular mechanisms. We designed a bi-directional intelligent micro-pressure control device for cyclic negative pressure intervention on C28/I2 chondrocytes. Chondrocyte vitality and proliferation were assessed using Cell Counting Kit-8 (CCK-8) and 5-ethynyl-2'-deoxyuridine (EdU) assays. The extracellular matrix was analyzed using real-time fluorescence quantitative polymerase chain reaction (PCR) and western blot, while the molecular mechanism of the chondrocyte response to cyclic negative pressure was explored through mRNA sequencing. Experimental data demonstrated that cyclic negative pressure promoted chondrocyte proliferation and upregulated the expression of chondrocyte-specific protein, namely the collagen type II alpha 1 chain (COL2A1) protein, and the transcription factor SRY-box transcription factor 9 (SOX9). Additionally, RNA sequencing analysis revealed that the gene levels of insulin-like growth factor 2 (IGF-2) and early growth response 1 (EGR-1) were significantly elevated in the cyclic negative pressure group. This study demonstrates that cyclic negative pressure stimulates the proliferation of C28/I2 chondrocytes by promoting the expression of EGR-1 and IGF-2. This new discovery may provide novel insights into cartilage health and KOA prevention.
Collapse
Affiliation(s)
- Xiaoyu Li
- School of Medicine, Jianghan University, Wuhan, China
| | - Lixia Huang
- Tianyuan Translational Medicine Research and Development Team, School of Medicine, Jianghan University, Wuhan, China
- Institute of Translational Medicine, Wuhan College of Arts and Science, Wuhan, China
| | - Bingxue Liu
- School of Medicine, Jianghan University, Wuhan, China
| | - Zehua Zhang
- School of Medicine, Jianghan University, Wuhan, China
| | - Guoyong Zhou
- Tianyuan Translational Medicine Research and Development Team, School of Medicine, Jianghan University, Wuhan, China
| | - Zirui Guo
- Department of Materials, Swiss Federal Institute of Technology, Zurich, Switzerland
| | - Jiuhong Song
- Wuhan FL Medical Science and Technology Ltd., Wuhan, China
| | - Xiang Wang
- School of Medicine, Jianghan University, Wuhan, China
- Tianyuan Translational Medicine Research and Development Team, School of Medicine, Jianghan University, Wuhan, China
| |
Collapse
|
3
|
Gilbert HTJ, Wignall FEJ, Zeef L, Hoyland JA, Richardson SM. Transcriptomic profiling reveals key early response genes during GDF6-mediated differentiation of human adipose-derived stem cells to nucleus pulposus cells. JOR Spine 2024; 7:e1315. [PMID: 38249721 PMCID: PMC10797253 DOI: 10.1002/jsp2.1315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/12/2023] [Accepted: 12/18/2023] [Indexed: 01/23/2024] Open
Abstract
Background Stem cell-based therapies show promise as a means of repairing the degenerate intervertebral disc, with growth factors often used alongside cells to help direct differentiation toward a nucleus pulposus (NP)-like phenotype. We previously demonstrated adipose-derived stem cell (ASC) differentiation with GDF6 as optimal for generating NP-like cells through evaluating end-stage differentiation parameters. Here we conducted a time-resolved transcriptomic characterization of ASCs response to GDF6 stimulation to understand the early drivers of differentiation to NP-like cells. Methods Human ASCs were treated with recombinant human GDF6 for 2, 6, and 12 h. RNA sequencing and detailed bioinformatic analysis were used to assess differential gene expression, gene ontology (GO), and transcription factor involvement during early differentiation. Quantitative polymerase chain reaction (qPCR) was used to validate RNA sequencing findings and inhibitors used to interrogate Smad and Erk signaling pathways, as well as identify primary and secondary response genes. Results The transcriptomic response of ASCs to GDF6 stimulation was time-resolved and highly structured, with "cell differentiation" "developmental processes," and "response to stimulus" identified as key biological process GO terms. The transcription factor ERG1 was identified as a key early response gene. Temporal cluster analysis of differentiation genes identified positive regulation NP cell differentiation, as well as inhibition of osteogenesis and adipogenesis. A role for Smad and Erk signaling in the regulation of GDF6-induced early gene expression response was observed and both primary and secondary response genes were identified. Conclusions This study identifies a multifactorial early gene response that contributes to lineage commitment, with the identification of a number of potentially useful early markers of differentiation of ASCs to NP cells. This detailed insight into the molecular processes in response to GDF6 stimulation of ASCs is important for the development of an efficient and efficacious cell-based therapy for intervertebral disc degeneration-associated back pain.
Collapse
Affiliation(s)
- Hamish T. J. Gilbert
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Francis E. J. Wignall
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Leo Zeef
- Bioinformatics Core Facility, Faculty of Biology, Medicine & HealthUniversity of ManchesterManchesterUK
| | - Judith A. Hoyland
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| | - Stephen M. Richardson
- Division of Cell Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and HealthUniversity of Manchester, Manchester Academic Health Sciences CentreManchesterUK
| |
Collapse
|
4
|
Bell N, Bhagat S, Muruganandan S, Kim R, Ho K, Pierce R, Kozhemyakina E, Lassar AB, Gamer L, Rosen V, Ionescu AM. Overexpression of transcription factor FoxA2 in the developing skeleton causes an enlargement of the cartilage hypertrophic zone, but it does not trigger ectopic differentiation in immature chondrocytes. Bone 2022; 160:116418. [PMID: 35398294 PMCID: PMC9133231 DOI: 10.1016/j.bone.2022.116418] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 01/29/2023]
Abstract
We previously found that FoxA factors are necessary for chondrocyte differentiation. To investigate whether FoxA factors alone are sufficient to drive chondrocyte hypertrophy, we build a FoxA2 transgenic mouse in which FoxA2 cDNA is driven by a reiterated Tetracycline Response Element (TRE) and a minimal CMV promoter. This transgenic line was crossed with a col2CRE;Rosa26rtTA/+ mouse line to generate col2CRE;Rosa26rtTA/+;TgFoxA2+/- mice for inducible expression of FoxA2 in cartilage using doxycycline treatment. Ectopic expression of FoxA2 in the developing skeleton reveals skeletal defects and shorter skeletal elements in E17.5 mice. The chondro-osseous border was frequently mis-shaped in mutant mice, with small islands of col.10+ hypertrophic cells extending in the metaphyseal bone. Even though overexpression of FoxA2 causes an accumulation of hypertrophic chondrocytes, it did not trigger ectopic hypertrophy in the immature chondrocytes. This suggests that FoxA2 may need transcriptional co-factors (such as Runx2), whose expression is restricted to the hypertrophic zone, and absent in the immature chondrocytes. To investigate a potential FoxA2/Runx2 interaction in immature chondrocytes versus hypertrophic cells, we separated these two subpopulations by FACS to obtain CD24+CD200+ hypertrophic chondrocytes and CD24+CD200- immature chondrocytes and we ectopically expressed FoxA2 alone or in combination with Runx2 via lentiviral gene delivery. In CD24+CD200+ hypertrophic chondrocytes, FoxA2 enhanced the expression of chondrocyte hypertrophic markers collagen 10, MMP13, and alkaline phosphatase. In contrast, in the CD24+CD200- immature chondrocytes, neither FoxA2 nor Runx2 overexpression could induce ectopic expression of hypertrophic markers MMP13, alkaline phosphatase, or PTH/PTHrP receptor. Overall these findings mirror our in vivo data, and suggest that induction of chondrocyte hypertrophy by FoxA2 may require other factors in addition to Runx2 (i.e., Hif2α, MEF2C, or perhaps unknown factors), whose expression/activity is rate-limiting in immature chondrocytes.
Collapse
Affiliation(s)
- Nicole Bell
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America
| | - Sanket Bhagat
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Shanmugam Muruganandan
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America; Department of Biology, 134 Mugar Life Sciences Building, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| | - Ryunhyung Kim
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Kailing Ho
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Rachel Pierce
- Department of Biology, 134 Mugar Life Sciences Building, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| | - Elena Kozhemyakina
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, United States of America.
| | - Andrew B Lassar
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, 240 Longwood Ave, Boston, MA 02115, United States of America.
| | - Laura Gamer
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Vicki Rosen
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America.
| | - Andreia M Ionescu
- Department of Developmental Biology, Harvard School of Dental Medicine, 188 Longwood Avenue, Boston, MA 02115, United States of America; Department of Biology, 134 Mugar Life Sciences Building, Northeastern University, 360 Huntington Ave, Boston, MA 02115, United States of America.
| |
Collapse
|
5
|
Steinbusch MMF, van den Akker GGH, Cremers A, Witlox AMA, Staal HM, Peffers MJ, van Rhijn LW, Caron MMJ, Welting TJM. Adaptation of the protein translational apparatus during ATDC5 chondrogenic differentiation. Noncoding RNA Res 2022; 7:55-65. [PMID: 35261930 PMCID: PMC8881200 DOI: 10.1016/j.ncrna.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/10/2022] [Accepted: 02/13/2022] [Indexed: 11/05/2022] Open
Abstract
Introduction Ribosome biogenesis is integrated with many cellular processes including proliferation, differentiation and oncogenic events. Chondrogenic proliferation and differentiation require a high cellular translational capacity to facilitate cartilaginous extracellular matrix production. We here investigated the expression dynamics of factors involved in ribosome biogenesis during in vitro chondrogenic differentiation and determined whether protein translation capacity adapts to different phases of chondrogenic differentiation. Materials SnoRNA expression during ATDC5 differentiation was analyzed by RNA sequencing of samples acquired from day 0 (progenitor stage), 7 (chondrogenic stage) and day 14 (hypertrophic stage). RT-qPCR was used to determine expression of fibrillarin, dyskerin, UBF-1, Sox9, Col2a1, Runx2, Col10a1 mRNAs and 18S, 5.8S and 28S rRNAs. Protein expression of fibrillarin, dyskerin and UBF-1 was determined by immunoblotting. Ribosomal RNA content per cell was determined by calculating rRNA RT-qPCR signals relative to DNA content (SYBR Green assay). Total protein translational activity was evaluated with a puromycilation assay and polysome profiling. Results As a result of initiation of chondrogenic differentiation (Δt0-t7), 21 snoRNAs were differentially expressed (DE). Hypertrophic differentiation caused DE of 23 snoRNAs (Δt7-t14) and 43 when t0 was compared to t14. DE snoRNAs, amongst others, target nucleotide modifications in the 28S rRNA peptidyl transferase center and the 18S rRNA decoding center. UBF-1, fibrillarin and dyskerin expression increased as function of differentiation and displayed highest fold induction at day 5-6 in differentiation. Ribosomal RNA content per cell was significantly increased at day 7, but not at day 14 in differentiation. Similar dynamics in translational capacity and monosomal ribosome fraction were observed during differentiation. Conclusion The expression of a great number of ribosome biogenesis factors is altered during chondrogenic differentiation of ATDC5 cells, which is accompanied by significant changes in cellular translational activity. This elucidation of ribosome biogenesis dynamics in chondrogenic differentiation models enables the further understanding of the role of ribosome biogenesis and activity during chondrocyte cell commitment and their roles in human skeletal development diseases.
Collapse
Affiliation(s)
- Mandy M F Steinbusch
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, P.O. Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - Guus G H van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, P.O. Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, P.O. Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - Adhiambo M A Witlox
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - Heleen M Staal
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, William Henry Duncan Building, 6 West Derby Street, L7 8TX, Liverpool, United Kingdom
| | - Lodewijk W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, P.O. Box 5800, 6202 AZ, Maastricht, the Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University, P.O. Box 5800, 6202 AZ, Maastricht, the Netherlands.,Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center, P.O. Box 5800, 6202 AZ, Maastricht, the Netherlands
| |
Collapse
|
6
|
Zheng B, Liu J, Shi X, Xu J, Zhang K, Zhou H, Wu T, Huang X, Shen C, Liang Y, Zhao D, Guo Y. BMI1 governs the maintenance of mouse GC-2 cells through epigenetic repression of Foxl1 transcription. Am J Transl Res 2022; 14:3407-3418. [PMID: 35702123 PMCID: PMC9185053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/30/2022] [Indexed: 06/15/2023]
Abstract
OBJECTIVES Studies have demonstrated that B lymphoma Mo-MLV insertion region 1 (BMI1) plays an important role in male reproductive function and the regulation of spermatogonia proliferation. However, whether BMI1 exerts a similarly important function in spermatocyte development remains unclear. METHODS In this study, we investigated the role of BMI1 in spermatocyte development using a mouse spermatocyte-derived cell line (GC-2) and a Bmi1-knockout (KO) mouse model. RESULTS We demonstrated that BMI1 promoted the proliferation and inhibited the apoptosis of GC-2 cells. Mechanistically, we presented in vitro and in vivo evidence showing that BMI1 binds to the promoter region of the forkhead box L1 (Foxl1) gene, sequentially driving chromatin remodeling and gene silencing. BMI1, which functions as a classical polycomb protein, was found to direct the transcriptional repression of Foxl1 through increasing the H2AK119ub level and reducing that of H3K4me3 in the promoter region of Foxl1. Our results further indicated that the knockdown of Foxl1 expression significantly enhanced cell proliferation via activating β-catenin signaling in BMI1-deficient GC-2 cells. CONCLUSIONS Collectively, our study revealed for the first time the existence of an epigenetic mechanism involving BMI1-mediated gene silencing in GC-2 cells development and provided potential targets for the treatment of male infertility.
Collapse
Affiliation(s)
- Bo Zheng
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Juanjuan Liu
- Reproductive Medicine Center, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu, China
| | - Xiaodan Shi
- Department of Reproduction, The Affiliated Obstetrics and Gynecology Hospital with Nanjing Medical University, Nanjing Maternity and Child Health Care HospitalNanjing 210004, Jiangsu, China
| | - Jinfu Xu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Ke Zhang
- Department of Urology, The Second Affiliated Hospital of Soochow UniversitySuzhou 215004, Jiangsu, China
| | - Hui Zhou
- Human Reproductive and Genetic Center, Affiliated Hospital of Jiangnan UniversityWuxi 214122, Jiangsu, China
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine, Center for Reproduction and Genetics, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical UniversitySuzhou 215002, Jiangsu, China
| | - Yuting Liang
- Center for Clinical Laboratory, The First Affiliated Hospital of Soochow UniversitySuzhou 215006, Jiangsu, China
| | - Dan Zhao
- Fourth Affiliated Hospital of Jiangsu UniversityZhenjiang 212008, Jiangsu, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine, Department of Histology and Embryology, Nanjing Medical UniversityNanjing 211166, Jiangsu, China
| |
Collapse
|
7
|
Jang S, Hwang J, Jeong HS. The Role of Histone Acetylation in Mesenchymal Stem Cell Differentiation. Chonnam Med J 2022; 58:6-12. [PMID: 35169553 PMCID: PMC8813658 DOI: 10.4068/cmj.2022.58.1.6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 11/06/2022] Open
Abstract
The mechanism and action concerning epigenetic modifications, especially that of histone modifications, are not fully understood. However, it is clear that histone modifications play an essential role in several biological processes that are involved in cell proliferation and differentiation. In this article, we focused on how histone acetylation may result in differentiation into mesenchymal stem cells as well as histone acetylation function. Moreover, histone acetylation followed by the action of histone deacetylase inhibitors, which can result in the differentiation of stem cells into other types of cells such as adipocytes, chondrocytes, osteocytes, neurons, and other lineages, were also reviewed.
Collapse
Affiliation(s)
- Sujeong Jang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| | - Jinsu Hwang
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| | - Han-Seong Jeong
- Department of Physiology, Chonnam National University Medical School, Hwasun, Korea
| |
Collapse
|
8
|
Zhu Z, Zhang X, Jiang Y, Ruan S, Huang F, Zeng H, Liu M, Xia W, Zeng F, Chen J, Cui Y, Chen H. NEAT1 functions as a key mediator of BMP2 to promote osteogenic differentiation of renal interstitial fibroblasts. Epigenomics 2021; 13:1171-1186. [PMID: 34325517 DOI: 10.2217/epi-2021-0212] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aim: To clarify the mechanism of NEAT1, an aberrantly upregulated lncRNA in Randall's plaques (RP) similar to biomineralization, in mediating osteogenic differentiation of human renal interstitial fibroblasts. Materials & methods: A comprehensive strategy of bioinformatic analysis and experimental verification was performed. Results: BMP2 silence abolished the osteogenic differentiation of human renal interstitial fibroblasts promoted by NEAT1. Mechanically, NEAT1 not only induced the nucleolar translocation of EGR1 binding to BMP2 promotor, but also functioned as a sponge of miR-129-5p in the cytoplasm to promote BMP2 expression. Moreover, there was a positive correlation between NEAT1 and BMP2 expression in RP instead of normal renal papilla. Conclusion: NEAT1 acted as a key mediator of BMP2 to promote human renal interstitial fibroblast osteogenic differentiation, through which NEAT1 might be involved in RP formation.
Collapse
Affiliation(s)
- Zewu Zhu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Xiaoqiong Zhang
- Transplantation Center, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yingcheng Jiang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Shuhao Ruan
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Fang Huang
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Huimin Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Minghui Liu
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Weiping Xia
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Feng Zeng
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Jinbo Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yu Cui
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Hequn Chen
- Department of Urology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
9
|
Gorbacheva AM, Uvarova AN, Ustiugova AS, Bhattacharyya A, Korneev KV, Kuprash DV, Mitkin NA. EGR1 and RXRA transcription factors link TGF-β pathway and CCL2 expression in triple negative breast cancer cells. Sci Rep 2021; 11:14120. [PMID: 34239022 PMCID: PMC8266896 DOI: 10.1038/s41598-021-93561-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/28/2021] [Indexed: 02/03/2023] Open
Abstract
Transforming growth factor beta (TGF-β) is the main cytokine responsible for the induction of the epithelial-mesenchymal transition of breast cancer cells, which is a hallmark of tumor transformation to the metastatic phenotype. Recently, research demonstrated that the chemokine CCL2 gene expression level directly correlates with the TGF-β activity in breast cancer patients. CCL2 attracts tumor-associated macrophages and is, therefore, considered as an important inductor of breast cancer progression; however, the precise mechanisms underlying its regulation by TGF-β are unknown. Here, we studied the behavior of the CCL2 gene in MDA-MB-231 and HCC1937 breast cancer cells representing mesenchymal-like phenotype activated by TGF-β. Using bioinformatics, deletion screening and point mutagenesis, we identified binding sites in the CCL2 promoter and candidate transcription factors responsible for its regulation by TGF-β. Among these factors, only the knock-down of EGR1 and RXRA made CCL2 promoter activity independent of TGF-β. These factors also demonstrated binding to the CCL2 promoter in a TGF-β-dependent manner in a chromatin immunoprecipitation assay, and point mutations in the EGR1 and RXRA binding sites totally abolished the effect of TGF-β. Our results highlight the key role of EGR1 and RXRA transcription factors in the regulation of CCL2 gene in response to TGF-β pathway.
Collapse
Affiliation(s)
- Alisa M Gorbacheva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Aksinya N Uvarova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Alina S Ustiugova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Arindam Bhattacharyya
- Immunology Laboratory, Department of Zoology, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Kirill V Korneev
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia
| | - Dmitry V Kuprash
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.,Biological Faculty, Lomonosov Moscow State University, Moscow, 119234, Russia
| | - Nikita A Mitkin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, 119991, Russia.
| |
Collapse
|
10
|
Caron MMJ, Eveque M, Cillero-Pastor B, Heeren RMA, Housmans B, Derks K, Cremers A, Peffers MJ, van Rhijn LW, van den Akker G, Welting TJM. Sox9 Determines Translational Capacity During Early Chondrogenic Differentiation of ATDC5 Cells by Regulating Expression of Ribosome Biogenesis Factors and Ribosomal Proteins. Front Cell Dev Biol 2021; 9:686096. [PMID: 34235151 PMCID: PMC8256280 DOI: 10.3389/fcell.2021.686096] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 05/17/2021] [Indexed: 12/13/2022] Open
Abstract
Introduction In addition to the well-known cartilage extracellular matrix-related expression of Sox9, we demonstrated that chondrogenic differentiation of progenitor cells is driven by a sharply defined bi-phasic expression of Sox9: an immediate early and a late (extracellular matrix associated) phase expression. In this study, we aimed to determine what biological processes are driven by Sox9 during this early phase of chondrogenic differentiation. Materials Sox9 expression in ATDC5 cells was knocked down by siRNA transfection at the day before chondrogenic differentiation or at day 6 of differentiation. Samples were harvested at 2 h and 7 days of differentiation. The transcriptomes (RNA-seq approach) and proteomes (Label-free proteomics approach) were compared using pathway and network analyses. Total protein translational capacity was evaluated with the SuNSET assay, active ribosomes were evaluated with polysome profiling, and ribosome modus was evaluated with bicistronic reporter assays. Results Early Sox9 knockdown severely inhibited chondrogenic differentiation weeks later. Sox9 expression during the immediate early phase of ATDC5 chondrogenic differentiation regulated the expression of ribosome biogenesis factors and ribosomal protein subunits. This was accompanied by decreased translational capacity following Sox9 knockdown, and this correlated to lower amounts of active mono- and polysomes. Moreover, cap- versus IRES-mediated translation was altered by Sox9 knockdown. Sox9 overexpression was able to induce reciprocal effects to the Sox9 knockdown. Conclusion Here, we identified an essential new function for Sox9 during early chondrogenic differentiation. A role for Sox9 in regulation of ribosome amount, activity, and/or composition may be crucial in preparation for the demanding proliferative phase and subsequent cartilage extracellular matrix production of chondroprogenitors in the growth plate in vivo.
Collapse
Affiliation(s)
- Marjolein M J Caron
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Maxime Eveque
- Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University Medical Center, Maastricht, Netherlands
| | - Berta Cillero-Pastor
- Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University Medical Center, Maastricht, Netherlands
| | - Ron M A Heeren
- Maastricht MultiModal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University Medical Center, Maastricht, Netherlands
| | - Bas Housmans
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Kasper Derks
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, Netherlands
| | - Andy Cremers
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Mandy J Peffers
- Department of Musculoskeletal Biology, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lodewijk W van Rhijn
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Guus van den Akker
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| | - Tim J M Welting
- Laboratory for Experimental Orthopedics, Department of Orthopedic Surgery, CAPHRI Care and Public Health Research Institute, Maastricht University Medical Center, Maastricht, Netherlands
| |
Collapse
|
11
|
Sanchez C, Hemmer K, Krömmelbein N, Seilheimer B, Dubuc JE, Antoine C, Henrotin Y. Reduction of Matrix Metallopeptidase 13 and Promotion of Chondrogenesis by Zeel T in Primary Human Osteoarthritic Chondrocytes. Front Pharmacol 2021; 12:635034. [PMID: 34045958 PMCID: PMC8144641 DOI: 10.3389/fphar.2021.635034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 02/26/2021] [Indexed: 12/21/2022] Open
Abstract
Objectives: Zeel T (Ze14) is a multicomponent medicinal product. Initial preclinical data suggested a preventive effect on cartilage degradation. Clinical observational studies demonstrated that Ze14 reduced symptoms of osteoarthritis (OA), including stiffness and pain. This study aimed to explore these effects further to better understand the mode of action of Ze14 on human OA chondrocytes in vitro. Methods: Primary chondrocytes were obtained from the knees of 19 OA patients and cultured either as monolayers or in alginate beads. The cultures were treated with 20% or 10% (v/v) Ze14 or placebo. For RNA-seq, reads were generated with Illumina NextSeq5000 sequencer and aligned to the human reference genome (UCSC hg19). Differential expression analysis between Ze14 and placebo was performed in R using the DESeq2 package. Protein quantification by ELISA was performed on selected genes from the culture medium and/or the cellular fractions of primary human OA chondrocyte cultures. Results: In monolayer cultures, Ze14 20% (v/v) significantly modified the expression of 13 genes in OA chondrocytes by at least 10% with an adjusted p-value < 0.05: EGR1, FOS, NR4A1, DUSP1, ZFP36, ZFP36L1, NFKBIZ, and CCN1 were upregulated and ATF7IP, TXNIP, DEPP1, CLEC3A, and MMP13 were downregulated after 24 h Ze14 treatment. Ze14 significantly increased (mean 2.3-fold after 24 h, p = 0.0444 and 72 h, p = 0.0239) the CCN1 protein production in human OA chondrocytes. After 72 h, Ze14 significantly increased type II collagen pro-peptide production by mean 27% (p = 0.0147). For both time points CCN1 production by OA chondrocytes was correlated with aggrecan (r = 0.66, p = 0.0004) and type II collagen pro-peptide (r = 0.64, p = 0.0008) production. In alginate beads cultures, pro-MMP-13 was decreased by Ze14 from day 7-14 (from -16 to -25%, p < 0.05) and from day 17-21 (-22%, p = 0.0331) in comparison to controls. Conclusion: Ze14 significantly modified the expression of DUSP1, DEPP1, ZFP36/ZFP36L1, and CLEC3A, which may reduce MMP13 expression and activation. Protein analysis confirmed that Ze14 significantly reduced the production of pro-MMP-13. As MMP-13 is involved in type II collagen degradation, Ze14 may limit cartilage degradation. Ze14 also promoted extracellular matrix formation arguably through CCN1 production, a growth factor well correlated with type II collagen and aggrecan production.
Collapse
Affiliation(s)
- Christelle Sanchez
- MusculoSKeletal Innovative Research Lab, University of Liège, Center for Interdisciplinary Research on Medicines, Liège, Belgium
| | | | | | | | - Jean-Emile Dubuc
- MusculoSKeletal Innovative Research Lab, University of Liège, Center for Interdisciplinary Research on Medicines, Liège, Belgium.,Division of Orthopedics and Musculoskeletal Trauma, Cliniques Universitaires de St Luc, Brussels, Belgium
| | | | - Yves Henrotin
- MusculoSKeletal Innovative Research Lab, University of Liège, Center for Interdisciplinary Research on Medicines, Liège, Belgium.,Artialis SA, Liège, Belgium.,Physical Therapy and Rehabilitation Department, Princess Paola Hospital, Vivalia, Marche-en-Famenne, Belgium
| |
Collapse
|
12
|
Maki K, Nava MM, Villeneuve C, Chang M, Furukawa KS, Ushida T, Wickström SA. Hydrostatic pressure prevents chondrocyte differentiation through heterochromatin remodeling. J Cell Sci 2021; 134:224090. [PMID: 33310912 PMCID: PMC7860130 DOI: 10.1242/jcs.247643] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 12/01/2020] [Indexed: 01/03/2023] Open
Abstract
Articular cartilage protects and lubricates joints for smooth motion and transmission of loads. Owing to its high water content, chondrocytes within the cartilage are exposed to high levels of hydrostatic pressure, which has been shown to promote chondrocyte identity through unknown mechanisms. Here, we investigate the effects of hydrostatic pressure on chondrocyte state and behavior, and discover that application of hydrostatic pressure promotes chondrocyte quiescence and prevents maturation towards the hypertrophic state. Mechanistically, hydrostatic pressure reduces the amount of trimethylated H3K9 (K3K9me3)-marked constitutive heterochromatin and concomitantly increases H3K27me3-marked facultative heterochromatin. Reduced levels of H3K9me3 attenuates expression of pre-hypertrophic genes, replication and transcription, thereby reducing replicative stress. Conversely, promoting replicative stress by inhibition of topoisomerase II decreases Sox9 expression, suggesting that it enhances chondrocyte maturation. Our results reveal how hydrostatic pressure triggers chromatin remodeling to impact cell fate and function. This article has an associated First Person interview with the first author of the paper. Highlighted Article: Hydrostatic pressure promotes chondrocyte quiescence and immature chondrocyte state through reducing the amount of H3K9me3-marked heterochromatin.
Collapse
Affiliation(s)
- Koichiro Maki
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.,Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Michele M Nava
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.,Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany
| | - Clémentine Villeneuve
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Minki Chang
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Katsuko S Furukawa
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Takashi Ushida
- Department of Mechanical Engineering, The University of Tokyo, Tokyo 113-0033, Japan
| | - Sara A Wickström
- Helsinki Institute of Life Science, Biomedicum, University of Helsinki, 00290 Helsinki, Finland .,Wihuri Research Institute, Biomedicum, University of Helsinki, 00290 Helsinki, Finland.,Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland.,Max Planck Institute for Biology of Ageing, 50931 Cologne, Germany.,Cologne Excellence Cluster for Stress Responses in Ageing-associated diseases (CECAD), University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
13
|
Zhang Q, Zuo H, Yu S, Lin Y, Chen S, Liu H, Chen Z. RUNX2 co-operates with EGR1 to regulate osteogenic differentiation through Htra1 enhancers. J Cell Physiol 2020; 235:8601-8612. [PMID: 32324256 PMCID: PMC8895429 DOI: 10.1002/jcp.29704] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 02/20/2020] [Accepted: 03/31/2020] [Indexed: 11/19/2023]
Abstract
Runt-related transcription factor 2 (Runx2) has been shown to regulate osteoblast differentiation by directly or indirectly regulating numerous osteoblast-related genes. However, our understanding of the transcriptional mechanisms of RUNX2 is mainly restricted to its transactivation, while the mechanism underlying its inhibitory effect during osteoblast differentiation remains largely unknown. Here, we incorporated the anti-RUNX2 chromatin immunoprecipitation (ChIP) sequencing in MC3T3-E1 cells and RNA-sequencing of parietal bone from Runx2 heterozygous mutant mice, to identify the putative genes negatively regulated by RUNX2. We identified HtrA serine peptidase 1 (Htra1) as a target gene and found ten candidate Htra1 enhancers potentially regulated by RUNX2, among which seven were verified by dual-luciferase assays. Furthermore, we investigated the motifs in the vicinity of RUNX2-binding sites and identified early growth response 1 (EGR1) as a potential partner transcription factor (TF) potentially regulating Htra1 expression, which was subsequently confirmed by Re-ChIP assays. RUNX2 and EGR1 co-repressed Htra1 and increased the expression levels of other osteoblast marker genes, such as osterix, osteocalcin, and osteoprotegerin at the messenger RNA and protein level. Moreover, Alizarin red staining combined with alkaline phosphatase (ALP) staining showed decreased calcified nodules and ALP activity in the siRUNX2+siEGR1 group compared with siRUNX2 group. Our findings revealed the detailed mechanism of the inhibitory function of RUNX2 towards its downstream genes, along with its partner TFs, to promote osteoblast differentiation.
Collapse
Affiliation(s)
- Qian Zhang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Huanyan Zuo
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuaitong Yu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yuxiu Lin
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Shuo Chen
- Department of Developmental Dentistry, University of Texas Health Science Center, San Antonio, Texas
| | - Huan Liu
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
- Department of Periodontology, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Zhi Chen
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory for Oral Biomedicine of Ministry of Education (KLOBM), School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
14
|
Guan X, Deng H, Choi UL, Li Z, Yang Y, Zeng J, Liu Y, Zhang X, Li G. EZH2 overexpression dampens tumor-suppressive signals via an EGR1 silencer to drive breast tumorigenesis. Oncogene 2020; 39:7127-7141. [PMID: 33009487 DOI: 10.1038/s41388-020-01484-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 08/27/2020] [Accepted: 09/21/2020] [Indexed: 02/08/2023]
Abstract
The mechanism underlying EZH2 overexpression in breast cancer and its involvement in tumorigenesis remain poorly understood. In this study, we developed an approach to systematically identify the trans-acting factors regulating the EZH2 expression, and identified more than 20 such factors. We revealed reciprocal regulation of early growth response 1 (EGR1) and EZH2: EGR1 activates the expression of EZH2, and EZH2 represses EGR1 expression. Using CRISPR-mediated genome/epigenome editing, we demonstrated that EHZ2 represses EGR1 expression through a silencer downstream of the EGR1 gene. Deletion of the EGR1 silencer resulted in reduced cell growth, invasion, tumorigenicity of breast cancer cells, and extensive changes in gene expression, such as upregulation of GADD45, DDIT3, and RND1; and downregulation of genes encoding cholesterol biosynthesis pathway enzymes. We hypothesize that EZH2/PRC2 acts as a "brake" for EGR1 expression by targeting the EGR1 silencer, and EZH2 overexpression dampens tumor-suppressive signals mediated by EGR1 to drive breast tumorigenesis.
Collapse
Affiliation(s)
- Xiaowen Guan
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Houliang Deng
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Un Lam Choi
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Zhengfeng Li
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yiqi Yang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Jianming Zeng
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Yunze Liu
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Xuanjun Zhang
- Faculty of Health Sciences, University of Macau, Macau, China.,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China.,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China
| | - Gang Li
- Faculty of Health Sciences, University of Macau, Macau, China. .,Cancer Centre, Faculty of Health Sciences, University of Macau, Macau, China. .,Centre of Reproduction, Development and Aging, Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau, China.
| |
Collapse
|
15
|
Carleton JB, Ginley-Hidinger M, Berrett KC, Layer RM, Quinlan AR, Gertz J. Regulatory sharing between estrogen receptor α bound enhancers. Nucleic Acids Res 2020; 48:6597-6610. [PMID: 32479598 PMCID: PMC7337896 DOI: 10.1093/nar/gkaa454] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/15/2020] [Accepted: 05/18/2020] [Indexed: 12/28/2022] Open
Abstract
The human genome encodes an order of magnitude more gene expression enhancers than promoters, suggesting that most genes are regulated by the combined action of multiple enhancers. We have previously shown that neighboring estrogen-responsive enhancers exhibit complex synergistic contributions to the production of an estrogenic transcriptional response. Here we sought to determine the molecular underpinnings of this enhancer cooperativity. We generated genetic deletions of four estrogen receptor α (ER) bound enhancers that regulate two genes and found that enhancers containing full estrogen response element (ERE) motifs control ER binding at neighboring sites, while enhancers with pre-existing histone acetylation/accessibility confer a permissible chromatin environment to the neighboring enhancers. Genome engineering revealed that two enhancers with half EREs could not compensate for the lack of a full ERE site within the cluster. In contrast, two enhancers with full EREs produced a transcriptional response greater than the wild-type locus. By swapping genomic sequences, we found that the genomic location of a full ERE strongly influences enhancer activity. Our results lead to a model in which a full ERE is required for ER recruitment, but the presence of a pre-existing permissible chromatin environment can also be needed for estrogen-driven gene regulation to occur.
Collapse
Affiliation(s)
- Julia B Carleton
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Matthew Ginley-Hidinger
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Kristofer C Berrett
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| | - Ryan M Layer
- BioFrontiers Institute, University of Colorado, Boulder, CO, USA.,Department of Computer Science, University of Colorado, Boulder, CO, USA
| | - Aaron R Quinlan
- Departments of Human Genetics and Biomedical Informatics, University of Utah, Salt Lake City, UT, USA
| | - Jason Gertz
- Huntsman Cancer Institute, University of Utah, Salt Lake City, UT, USA.,Department of Oncological Sciences, University of Utah, Salt Lake City, UT, USA
| |
Collapse
|
16
|
Grandi FC, Bhutani N. Epigenetic Therapies for Osteoarthritis. Trends Pharmacol Sci 2020; 41:557-569. [PMID: 32586653 PMCID: PMC10621997 DOI: 10.1016/j.tips.2020.05.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/29/2020] [Accepted: 05/31/2020] [Indexed: 12/31/2022]
Abstract
Osteoarthritis (OA) is an age-associated disease characterized by chronic joint pain resulting from degradation of articular cartilage, inflammation of the synovial lining, and changes to the subchondral bone. Despite the wide prevalence, no FDA-approved disease-modifying drugs exist. Recent evidence has demonstrated that epigenetic dysregulation of multiple molecular pathways underlies OA pathogenesis, providing a new mechanistic and therapeutic axis with the advantage of targeting multiple deregulated pathways simultaneously. In this review, we focus on the epigenetic regulators that have been implicated in OA, their individual roles, and potential crosstalk. Finally, we discuss the pharmacological molecules that can modulate their activities and discuss the potential advantages and challenges associated with epigenome-based therapeutics for OA.
Collapse
Affiliation(s)
| | - Nidhi Bhutani
- Department of Orthopedic Surgery, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
17
|
Pan B, Zhou Y, Li H, Li Y, Xue X, Li L, Liu Q, Zhao X, Niu Q. Relationship between occupational aluminium exposure and histone lysine modification through methylation. J Trace Elem Med Biol 2020; 61:126551. [PMID: 32470791 DOI: 10.1016/j.jtemb.2020.126551] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 04/26/2020] [Accepted: 05/11/2020] [Indexed: 11/30/2022]
Abstract
BACKGROUND Aluminium is an environmental neurotoxin to which human beings are extensively exposed. However, the molecular mechanism of aluminium toxicity remains unclear. METHODS The changes in cognitive function of aluminum exposed workers under long-term occupational exposure were evaluated, and the relationship between cognitive changes, plasma memory related BDNF and EGR1 protein expression, and variations of epigenetic markers H3K4me3, H3K9me2, H3K27me3 expression levels in blood was explored. RESULTS MMSE, DSFT, DST scores in cognitive function and the levels of plasma BDNF and EGR1 protein expression decreased with the increase of blood aluminum level. H3K4me3, H3K9me2, H3K27me3 expression levels in peripheral blood lymphocytes of aluminum exposed workers were statistically different (all P<0.05). H3K4me3, H3K9me2 and H3K27me3 expression levels in lymphocytes were correlated with blood aluminum level. BDNF, EGR1 protein level and H3K4me3, H3K9me2, H3K27me3 expression levels have different degrees of correlation. There was a linear regression relationship between plasma BDNF, H3K4me3 and H3K9me2. H3K9me2 had a greater effect on BDNF than H3K4me3. There is a linear regression relationship between EGR1, H3K4me3 and H3K27me3, and the influence of H3K4me3 on EGR1 is greater than that of H3K27me3 on EGR1. CONCLUSION Alummnum may regulate the expression of BDNF and EGR1 by regulating H3K4me3, H3K27me3 and H3K9me2, and affect the cognitive function of workers by affecting the expression of BDNF and EGR1.
Collapse
Affiliation(s)
- Baolong Pan
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Sixth Hospital of Shanxi Medical University (General Hospital of Tisco), China
| | - Yue Zhou
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Huan Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China
| | - Yaqin Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Xingli Xue
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Liang Li
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Qun Liu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Xiaoyan Zhao
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China
| | - Qiao Niu
- Department of Occupational Health, School of Public Health, Shanxi Medical University, China; Key Lab of Environmental Hazard and Health of Shanxi Province, Shanxi Medical University, China; Key Lab of Cellular Physiology of Education Ministry, Shanxi Medical University, China.
| |
Collapse
|
18
|
Du X, Ouyang H. [Correlation between histone methylation level and pathological development of osteoarthritis]. Zhejiang Da Xue Xue Bao Yi Xue Ban 2019; 48:682-687. [PMID: 31955544 PMCID: PMC8800784 DOI: 10.3785/j.issn.1008-9292.2019.12.14] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2019] [Accepted: 06/03/2019] [Indexed: 06/10/2023]
Abstract
Osteoarthritis is the most common degenerative cartilage disease. A large number of studies have shown the close association between epigenetics and osteoarthritis. Histone methylation is a type of epigenetic modification, and the link between histone methylation and osteoarthritis has also been revealed. In this article, we summarize the correlation between methylation levels of different histones and osteoarthritis in an attempt to explore the changes and regulation mechanisms of histone methylation in osteoarthritis. It has been shown that there are possible relations between the methylation levels of different amino acids on histone H3 and the pathological development of osteoarthritis; specifically, the rise of methylation level at the lysine 4 would aggravate the pathological development of osteoarthritis, while the the pattern of lysine 9 and 27 would be the opposite. These results indicate the possible existence of a complex network of histone methylation modifications. And the specific regulation of histone methylation levels in different positions may delay or prevent the occurrence and development of osteoarthritis.
Collapse
Affiliation(s)
- Xiaotian Du
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
| | - Hongwei Ouyang
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cells and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou 310058, China
- Key Laboratory of Tissue Engineering and Regenerative Medicine of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310058, China
- Zhejiang University-University of Edinburgh Institute, International Campus of Zhejiang University, Haining 314400, Zhejiang Province, China
| |
Collapse
|
19
|
Yu J, Wang L, Pei P, Li X, Wu J, Qiu Z, Zhang J, Ao R, Wang S, Zhang T, Xie J. Reduced H3K27me3 leads to abnormal Hox gene expression in neural tube defects. Epigenetics Chromatin 2019; 12:76. [PMID: 31856916 PMCID: PMC6921514 DOI: 10.1186/s13072-019-0318-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 12/03/2019] [Indexed: 12/15/2022] Open
Abstract
Background Neural tube defects (NTDs) are severe, common birth defects that result from failure of normal neural tube closure during early embryogenesis. Accumulating strong evidence indicates that genetic factors contribute to NTDs etiology, among them, HOX genes play a key role in neural tube closure. Although abnormal HOX gene expression can lead to NTDs, the underlying pathological mechanisms have not fully been understood. Method We detected that H3K27me3 and expression of the Hox genes in a retinoic acid (RA) induced mouse NTDs model on E8.5, E9.5 and E10.5 using RNA-sequencing and chromatin immunoprecipitation sequencing assays. Furthermore, we quantified 10 Hox genes using NanoString nCounter in brain tissue of fetuses with 39 NTDs patients including anencephaly, spina bifida, hydrocephaly and encephalocele. Results Here, our results showed differential expression in 26 genes with a > 20-fold change in the level of expression, including 10 upregulated Hox genes. RT-qPCR revealed that these 10 Hox genes were all upregulated in RA-induced mouse NTDs as well as RA-treated embryonic stem cells (ESCs). Using ChIP-seq assays, we demonstrate that a decrease in H3K27me3 level upregulates the expression of Hox cluster A–D in RA-induced mouse NTDs model on E10.5. Interestingly, RA treatment led to attenuation of H3K27me3 due to cooperate between UTX and Suz12, affecting Hox gene regulation. Further analysis, in human anencephaly cases, upregulation of 10 HOX genes was observed, along with aberrant levels of H3K27me3. Notably, HOXB4, HOXC4 and HOXD1 expression was negatively correlated with H3K27me3 levels. Conclusion Our results indicate that abnormal HOX gene expression induced by aberrant H3K27me3 levels may be a risk factor for NTDs and highlight the need for further analysis of genome-wide epigenetic modification in NTDs.
Collapse
Affiliation(s)
- Juan Yu
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Lei Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Pei Pei
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Xue Li
- School of Clinical Medical, Weifang Medical University, Weifang, 261053, Shandong, China
| | - Jianxin Wu
- Department of Biochemistry, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Zhiyong Qiu
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China
| | - Juan Zhang
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Ruifang Ao
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China
| | - Shan Wang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Ting Zhang
- Beijing Municipal Key Laboratory of Child Development and Nutriomics, Capital Institute of Pediatrics, Beijing, 100020, China.
| | - Jun Xie
- Department of Biochemistry and Molecular Biology, Shanxi Medical University, Taiyuan, 030001, Shanxi, China.
| |
Collapse
|
20
|
Toan NK, Tai NC, Kim SA, Ahn SG. Soluble Klotho regulates bone differentiation by upregulating expression of the transcription factor EGR-1. FEBS Lett 2019; 594:290-300. [PMID: 31536138 DOI: 10.1002/1873-3468.13613] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 09/02/2019] [Accepted: 09/11/2019] [Indexed: 12/25/2022]
Abstract
Klotho is a transmembrane protein known to regulate aging and lifespan. Soluble Klotho (sKL), a truncated form of Klotho, regulates various cell signaling pathways, including bone development. Here, we investigated the relationship between sKL and the zinc finger transcription factor early growth response protein 1 (EGR-1) on bone formation. We find that sKL induces the expression of EGR-1 mRNA and protein. Through mutational analysis, we identify the 130 bp region on the EGR-1 promoter that is responsive to sKL overexpression. Additionally, sKL induces the expression of markers of bone differentiation (BMP2, RUNX2, ALP, COL1A, and osteocalcin) in osteoblast MC3T3 cells. EGR-1 siRNA decreases the bone mineralization induced by sKL or ascorbic acid/glycerol 2-phosphate in MC3T3 cells. Our results suggest that sKL may regulate bone development through EGR-1 expression.
Collapse
Affiliation(s)
- Nguyen Khanh Toan
- Department of Pathology, School of Dentistry, Chosun University, Gwangju, Korea
| | - Nguyen Chi Tai
- Department of Pathology, School of Dentistry, Chosun University, Gwangju, Korea
| | - Soo-A Kim
- Department of Biochemistry, School of Oriental Medicine, Dongguk University, Gyeongju, Korea
| | - Sang-Gun Ahn
- Department of Pathology, School of Dentistry, Chosun University, Gwangju, Korea
| |
Collapse
|
21
|
Wong SW, Yeh SJ, Li CW, Wang LHC, Chen BS. Investigation mechanisms between normal, developing and regenerating livers for regenerative liver drug design. Regen Med 2019; 14:359-387. [PMID: 31204905 DOI: 10.2217/rme-2018-0058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: A systematic multimolecule drug design procedure is proposed for promoting hepatogenesis and liver regeneration. Materials & methods: Genome-wide microarray data including three hepatic conditions are obtained from the GEO database (GSE15238). System modeling and big data mining methods are used to construct real genome-wide genetic-and-epigenetic networks (GWGENs). Then, we extracted the core GWGENs by applying principal network projection on real GWGENs of normal, developing and regenerating livers, respectively. After that, we investigated the significant signal pathways and epigenetic modifications in the core GWGENs to identify potential biomarkers as drug targets. Result & conclusion: A multimolecule drug consisting of sulmazole, clofibrate, colchicine, furazolidone, nadolol, eticlopride and felbinac is proposed to target on novel biomarkers for promoting hepatogenesis and liver regeneration.
Collapse
Affiliation(s)
- Shang-Wen Wong
- Lab of Automatic Control, Signal Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Shan-Ju Yeh
- Lab of Automatic Control, Signal Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Cheng-Wei Li
- Lab of Automatic Control, Signal Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Lily Hui-Ching Wang
- Department of Life Science, National Tsing Hua University, Hsinchu 30013, Taiwan
| | - Bor-Sen Chen
- Lab of Automatic Control, Signal Processing, and Systems Biology, Department of Electrical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan
| |
Collapse
|
22
|
TBX3 represses TBX2 under the control of the PRC2 complex in skeletal muscle and rhabdomyosarcoma. Oncogenesis 2019; 8:27. [PMID: 30979887 PMCID: PMC6461654 DOI: 10.1038/s41389-019-0137-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/12/2019] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
TBX2 and TBX3 function as repressors and are frequently implicated in oncogenesis. We have shown that TBX2 represses p21, p14/19, and PTEN in rhabdomyosarcoma (RMS) and skeletal muscle but the function and regulation of TBX3 were unclear. We show that TBX3 directly represses TBX2 in RMS and skeletal muscle. TBX3 overexpression impairs cell growth and migration and we show that TBX3 is directly repressed by the polycomb repressive complex 2 (PRC2), which methylates histone H3 lysine 27 (H3K27me). We found that TBX3 promotes differentiation only in the presence of early growth response factor 1 (EGR1), which is differentially expressed in RMS and is also a target of the PRC2 complex. The potent regulation axis revealed in this work provides novel insight into the effects of the PRC2 complex in normal cells and RMS and further supports the therapeutic value of targeting of PRC2 in RMS.
Collapse
|
23
|
Vermeulen S, Vasilevich A, Tsiapalis D, Roumans N, Vroemen P, Beijer NRM, Dede Eren A, Zeugolis D, de Boer J. Identification of topographical architectures supporting the phenotype of rat tenocytes. Acta Biomater 2019; 83:277-290. [PMID: 30394345 DOI: 10.1016/j.actbio.2018.10.041] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Revised: 09/22/2018] [Accepted: 10/25/2018] [Indexed: 01/01/2023]
Abstract
Tenocytes, the main cell type of the tendon, require mechanical stimuli for their proper function. When the tenocyte environment changes due to tissue damage or by transferring tenocytes from their native environment into cell culture, the signals from the tenocyte niche are lost, leading towards a decline of phenotypic markers. It is known that micro-topographies can influence cell fate by the physical cues they provide. To identify the optimal topography-induced biomechanical niche in vitro, we seeded tenocytes on the TopoChip, a micro-topographical screening platform, and measured expression of the tendon transcription factor Scleraxis. Through machine learning algorithms, we associated elevated Scleraxis levels with topological design parameters. Fabricating micro-topographies with optimal surface characteristics on larger surfaces allowed finding an improved expression of multiple tenogenic markers. However, long-term confluent culture conditions coincided with osteogenic marker expression and the loss of morphological characteristics. In contrast, passaging tenocytes which migrated from the tendon directly on the topography resulted in prolonged elongated morphology and elevated Scleraxis levels. This research provides new insights into how micro-topographies influence tenocyte cell fate, and supports the notion that micro-topographical design can be implemented in a new generation of tissue culture platforms for supporting the phenotype of tenocytes. STATEMENT OF SIGNIFICANCE: The challenge in controlling in vitro cell behavior lies in controlling the complex culture environment. Here, we present for the first time the use of micro-topographies as a biomechanical niche to support the phenotype of tenocytes. For this, we applied the TopoChip platform, a screening tool with 2176 unique micro-topographies for identifying feature characteristics associated with elevated Scleraxis expression, a tendon related marker. Large area fabrication of micro-topographies with favorable characteristics allowed us to find a beneficial influence on other tenogenic markers as well. Furthermore, passaging cells is more beneficial for Scleraxis marker expression and tenocyte morphology compared to confluent conditions. This study presents important insights for the understanding of tenocyte behavior in vitro, a necessary step towards tendon engineering.
Collapse
Affiliation(s)
- Steven Vermeulen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aliaksei Vasilevich
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Dimitrios Tsiapalis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland; Science Foundation Ireland, Centre for Research in Medical Device, National University of Ireland Galway, Galway, Ireland
| | - Nadia Roumans
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Pascal Vroemen
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands; University Eye Clinic Maastricht UMC+, Maastricht University Medical Centre+, Maastricht, The Netherlands
| | - Nick R M Beijer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Aysegul Dede Eren
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands
| | - Dimitrios Zeugolis
- Regenerative, Modular & Developmental Engineering Laboratory, National University of Ireland Galway, Galway, Ireland; Science Foundation Ireland, Centre for Research in Medical Device, National University of Ireland Galway, Galway, Ireland
| | - Jan de Boer
- Laboratory for Cell Biology-Inspired Tissue Engineering, MERLN Institute, University of Maastricht, Maastricht, The Netherlands; Dept. of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, The Netherlands.
| |
Collapse
|
24
|
Camilleri ET, Dudakovic A, Riester SM, Galeano-Garces C, Paradise CR, Bradley EW, McGee-Lawrence ME, Im HJ, Karperien M, Krych AJ, Westendorf JJ, Larson AN, van Wijnen AJ. Loss of histone methyltransferase Ezh2 stimulates an osteogenic transcriptional program in chondrocytes but does not affect cartilage development. J Biol Chem 2018; 293:19001-19011. [PMID: 30327434 PMCID: PMC6295726 DOI: 10.1074/jbc.ra118.003909] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/12/2018] [Indexed: 01/09/2023] Open
Abstract
Ezh2 is a histone methyltransferase that suppresses osteoblast maturation and skeletal development. We evaluated the role of Ezh2 in chondrocyte lineage differentiation and endochondral ossification. Ezh2 was genetically inactivated in the mesenchymal, osteoblastic, and chondrocytic lineages in mice using the Prrx1-Cre, Osx1-Cre, and Col2a1-Cre drivers, respectively. WT and conditional knockout mice were phenotypically assessed by gross morphology, histology, and micro-CT imaging. Ezh2-deficient chondrocytes in micromass culture models were evaluated using RNA-Seq, histologic evaluation, and Western blotting. Aged mice with Ezh2 deficiency were also evaluated for premature development of osteoarthritis using radiographic analysis. Ezh2 deficiency in murine chondrocytes reduced bone density at 4 weeks of age but caused no other gross developmental effects. Knockdown of Ezh2 in chondrocyte micromass cultures resulted in a global reduction in trimethylation of histone 3 lysine 27 (H3K27me3) and altered differentiation in vitro RNA-Seq analysis revealed enrichment of an osteogenic gene expression profile in Ezh2-deficient chondrocytes. Joint development proceeded normally in the absence of Ezh2 in chondrocytes without inducing excessive hypertrophy or premature osteoarthritis in vivo In summary, loss of Ezh2 reduced H3K27me3 levels, increased the expression of osteogenic genes in chondrocytes, and resulted in a transient post-natal bone phenotype. Remarkably, Ezh2 activity is dispensable for normal chondrocyte maturation and endochondral ossification in vivo, even though it appears to have a critical role during early stages of mesenchymal lineage commitment.
Collapse
Affiliation(s)
| | | | | | | | - Christopher R Paradise
- From the Departments of Orthopedic Surgery
- Molecular Pharmacology and Experimental Therapeutics, and
| | | | - Meghan E McGee-Lawrence
- the Department of Cellular Biology and Anatomy, Medical College of Georgia, Augusta University, Augusta, Georgia 30912
| | - Hee-Jeong Im
- the Jesse Brown Veterans Affairs Medical Center, Chicago, Illinois 60612, and
| | - Marcel Karperien
- the Department of Developmental BioEngineering, University of Twente, 7522 NB Enschede, The Netherlands
| | | | - Jennifer J Westendorf
- From the Departments of Orthopedic Surgery
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901
| | | | - Andre J van Wijnen
- From the Departments of Orthopedic Surgery,
- Biochemistry and Molecular Biology, Mayo Clinic, Rochester, Minnesota 55901
| |
Collapse
|
25
|
Zhang J, Xiang Z, Malaviarachchi PA, Yan Y, Baltz NJ, Emanuel PD, Liu YL. PTEN is indispensable for cells to respond to MAPK inhibitors in myeloid leukemia. Cell Signal 2018; 50:72-79. [PMID: 29964149 DOI: 10.1016/j.cellsig.2018.06.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 06/02/2018] [Accepted: 06/06/2018] [Indexed: 12/13/2022]
Abstract
Constitutively activated MAPK and AKT signaling pathways are often found in solid tumors and leukemias. PTEN is one of the tumor suppressors that are frequently found deficient in patients with late-stage cancers or leukemias. In this study we demonstrate that a MAPK inhibitor, PD98059, inhibits both AKT and ERK phosphorylation in a human myeloid leukemia cell line (TF-1), but not in PTEN-deficient leukemia cells (TF-1a). Ectopic expression of wild-type PTEN in myeloid leukemia cells restored cytokine responsiveness at physiological concentrations of GM-CSF (<0.02 ng/mL) and significantly improved cell sensitivity to MAPK inhibitor. We also found that Early Growth Response 1 (EGR1) was constitutively over-expressed in cytokine-independent TF-1a cells, and ectopic expression of PTEN down-regulated EGR1 expression and restored dynamics of EGR1 expression in response to GM-CSF stimulation. Data from primary bone marrow cells from mice with Pten deletion further supports that PTEN is indispensible for myeloid leukemia cells in response to MAPK inhibitors. Finally, We demonstrate that the absence of EGR1 expression dynamics in response to GM-CSF stimulation is one of the mechanisms underlying drug resistance to MAPK inhibitors in leukemia cells with PTEN deficiency. Our data suggest a novel mechanism of PTEN in regulating expression of EGR1 in hematopoietic cells in response to cytokine stimulation. In conclusion, this study demonstrates that PTEN is dispensable for myeloid leukemia cells in response to MAPK inhibitors, and PTEN regulates EGR1 expression and contributes to the cytokine sensitivity in leukemia cells.
Collapse
Affiliation(s)
- Jingliao Zhang
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States; Department of Pediatrics, Institute of Hematology and Blood Disease Hospital, Chinese Academy of Medical Sciences, Tianjin 300020, China
| | - Zhifu Xiang
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Priyangi A Malaviarachchi
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Yan Yan
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Nicholas J Baltz
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States
| | - Peter D Emanuel
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States.
| | - Y Lucy Liu
- Winthrop P. Rockefeller Cancer Institute, Division of Hematology, Department of Internal Medicine, College of Medicine, University of Arkansas for Medical Sciences (UAMS), Little Rock, AR 72205, United States.
| |
Collapse
|
26
|
Lu K, Shi TS, Shen SY, Lu WL, Wu J, Zhang KJ, Zhu XB, Shi Y, Liu XL, Yu F, Li L, Teng HJ, Gao X, Ju HX, Wang W, Li CJ, Jiang Q, Xue B. Egr1 deficiency disrupts dynamic equilibrium of chondrocyte extracellular matrix through PPARγ/RUNX2 signaling pathways. Am J Transl Res 2018; 10:1620-1632. [PMID: 30018705 PMCID: PMC6038088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2017] [Accepted: 03/28/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND This study is to investigate the effect of Egr1 on the mineralization and accumulation of chondrocyte extracellular matrix. METHODS The femoral heads of patients of various heights were collected. Egr1 knockout mice were used. Their limb lengtha nd body weight were assessed. The bone characteristics were detected by micro-CT scan and histological staining. Immature murine articular chondrocytes (iMACs) were isolated. Gross morphology was observed by histological staining. Relevant mRNA and protein expression were detected by qRT-PCR and Western blot, respectively. the related proteins were observed by immunohistochemical staining and immunofluorescence assay. Chromatin immunoprecipitation and reporter gene assay were also used. TUNEL was used to detect apoptosis. RESULTS It was found that shorter patients had reduced Egr1 expression levels in the hypertrophic cartilage zone of the femoral head. In addition, Egr1 knockout mice exhibited reduced body size. Micro-CT analysis showed that these mice also had reduced bone volume. Safranin-O staining showed that the extracellular matrix of these mice exhibited a relatively limited degree of mineralization, and TUNEL staining showed reduced cell apoptosis levels. After transfecting the iMACs with dominant-negative Egr1 adenoviruses to inhibit Egr1, the enzymes of Adamst4, Adamst5, Mmp3 and Mmp13 were significantly upregulated. ChIP and luciferase assays revealed that Egr1 might regulate the chondrocyte extracellular matrix by the PPARγ/RUNX2 signaling pathways. CONCLUSION Egr1 has an important regulatory effect on the dynamic equilibrium of the chondrocyte extracellular matrix, which may be achieved through the PPARγ/RUNX2 signaling pathways.
Collapse
Affiliation(s)
- Ke Lu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, Jiangsu Province, P. R. China
| | - Tian-Shu Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, Jiangsu Province, P. R. China
| | - Si-Yu Shen
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Wan-Li Lu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, Jiangsu Province, P. R. China
| | - Jing Wu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Kai-Jia Zhang
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, Jiangsu Province, P. R. China
| | - Xiao-Bo Zhu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, Jiangsu Province, P. R. China
| | - Yong Shi
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Xiang-Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Fei Yu
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, Jiangsu Province, P. R. China
| | - Lan Li
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, Jiangsu Province, P. R. China
| | - Hua-Jian Teng
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, Jiangsu Province, P. R. China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Xiang Gao
- Key Laboratory of Model Animal for Disease Study of Ministry of Education, Model Animal Research Center, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Huang-Xian Ju
- MOE Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Wei Wang
- National Laboratory of Solid State Microstructures, Department of Physics, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Chao-Jun Li
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, Drum Tower Hospital, School of Medicine, Nanjing UniversityNanjing 210008, Jiangsu Province, P. R. China
- Joint Research Center for Bone and Joint Disease, Model Animal Research Center (MARC), Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| | - Bin Xue
- State Key Laboratory of Pharmaceutical Biotechnology and Jiangsu Key Laboratory of Molecular Medicine, School of Medicine, Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
- State Key Laboratory of Natural Medicines, China Pharmaceutical UniversityNanjing 210009, Jiangsu Province, P. R. China
- Liver Disease Collaborative Research Platform of Medical School of Nanjing UniversityNanjing 210093, Jiangsu Province, P. R. China
| |
Collapse
|
27
|
PRC1 Prevents Replication Stress during Chondrogenic Transit Amplification. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
28
|
Marín-Béjar O, Mas AM, González J, Martinez D, Athie A, Morales X, Galduroz M, Raimondi I, Grossi E, Guo S, Rouzaut A, Ulitsky I, Huarte M. The human lncRNA LINC-PINT inhibits tumor cell invasion through a highly conserved sequence element. Genome Biol 2017; 18:202. [PMID: 29078818 PMCID: PMC5660458 DOI: 10.1186/s13059-017-1331-y] [Citation(s) in RCA: 154] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 10/04/2017] [Indexed: 01/16/2023] Open
Abstract
Background It is now obvious that the majority of cellular transcripts do not code for proteins, and a significant subset of them are long non-coding RNAs (lncRNAs). Many lncRNAs show aberrant expression in cancer, and some of them have been linked to cell transformation. However, the underlying mechanisms remain poorly understood and it is unknown how the sequences of lncRNA dictate their function. Results Here we characterize the function of the p53-regulated human lncRNA LINC-PINT in cancer. We find that LINC-PINT is downregulated in multiple types of cancer and acts as a tumor suppressor lncRNA by reducing the invasive phenotype of cancer cells. A cross-species analysis identifies a highly conserved sequence element in LINC-PINT that is essential for its function. This sequence mediates a specific interaction with PRC2, necessary for the LINC-PINT-dependent repression of a pro-invasion signature of genes regulated by the transcription factor EGR1. Conclusions Our findings support a conserved functional co-dependence between LINC-PINT and PRC2 and lead us to propose a new mechanism where the lncRNA regulates the availability of free PRC2 at the proximity of co-regulated genomic loci. Electronic supplementary material The online version of this article (doi:10.1186/s13059-017-1331-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Oskar Marín-Béjar
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.,Present Address: Laboratory for Molecular Cancer Biology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Aina M Mas
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Jovanna González
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Dannys Martinez
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Alejandro Athie
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Xabier Morales
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
| | - Mikel Galduroz
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Ivan Raimondi
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Elena Grossi
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain.,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain
| | - Shuling Guo
- Department of Antisense Drug Discovery and Clinical Development, Ionis Pharmaceuticals, Carlsbad, CA, USA
| | - Ana Rouzaut
- Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.,Department of Immunology and Immunotherapy, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain
| | - Igor Ulitsky
- Department of Biological Regulation, Weizmann Institute of Science, Rehovot, 76100, Israel
| | - Maite Huarte
- Department of Gene Therapy and Regulation of Gene Expression, Center for Applied Medical Research, University of Navarra, Pamplona, 31008, Spain. .,Institute of Health Research of Navarra (IdiSNA), Pamplona, Spain.
| |
Collapse
|
29
|
Anti-inflammatory and chondroprotective effects of the S-adenosylhomocysteine hydrolase inhibitor 3-Deazaneplanocin A, in human articular chondrocytes. Sci Rep 2017; 7:6483. [PMID: 28744016 PMCID: PMC5526903 DOI: 10.1038/s41598-017-06913-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 06/19/2017] [Indexed: 12/18/2022] Open
Abstract
3-Deazaneplanocin A (DZNep) is an inhibitor of S-Adenosyl-L-Homocysteine Hydrolase (SAHH) known to inhibit EZH2, a histone methylase upregulated during osteoarthritis. In this study, we assessed its effects in human articular chondrocytes. Anti-inflammatory effects were assessed by Nitric Oxide (NO), Prostaglandin E2 (PGE2) and Metalloprotease (MMP) release in IL-1β-stimulated chondrocytes. MAPK and NFκB activation was analyzed by western blotting. Differentially expressed genes (DEG) regulated by DZNep were identified by whole-transcriptome microarray. DZNep inhibited SAHH activity and was not toxic. It counteracted NO, PGE2 and MMP release, and reduced MAPK activation induced by IL-1β. By whole-transcriptome analysis, we identified that DNZep counteracts the effect of IL-1β on the expression of 81 protein-coding genes, including CITED2, an MMP inhibitor. These genes are organized in a protein-protein network centred on EGR1, which is known to functionally interact with EZH2. Gene ontologies enrichment analysis confirmed that DZNep counteracts IL-1β-induced expression of genes involved in cartilage matrix breakdown (MMPs and ADAMTS). In addition, DZNep up-regulated cartilage specific genes, such as COL2A1 and SOX9, suggesting a chondroprotective effect of DZNep. DZNep exhibits anti-inflammatory effects, and regulates genes implicated in chondroprotective response in human articular chondrocytes, suggesting that inhibitors of S-adenosylmethionine-dependent methyltransferases could be effective treatments for OA.
Collapse
|
30
|
Saul MC, Seward CH, Troy JM, Zhang H, Sloofman LG, Lu X, Weisner PA, Caetano-Anolles D, Sun H, Zhao SD, Chandrasekaran S, Sinha S, Stubbs L. Transcriptional regulatory dynamics drive coordinated metabolic and neural response to social challenge in mice. Genome Res 2017; 27:959-972. [PMID: 28356321 PMCID: PMC5453329 DOI: 10.1101/gr.214221.116] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 03/24/2017] [Indexed: 12/22/2022]
Abstract
Agonistic encounters are powerful effectors of future behavior, and the ability to learn from this type of social challenge is an essential adaptive trait. We recently identified a conserved transcriptional program defining the response to social challenge across animal species, highly enriched in transcription factor (TF), energy metabolism, and developmental signaling genes. To understand the trajectory of this program and to uncover the most important regulatory influences controlling this response, we integrated gene expression data with the chromatin landscape in the hypothalamus, frontal cortex, and amygdala of socially challenged mice over time. The expression data revealed a complex spatiotemporal patterning of events starting with neural signaling molecules in the frontal cortex and ending in the modulation of developmental factors in the amygdala and hypothalamus, underpinned by a systems-wide shift in expression of energy metabolism-related genes. The transcriptional signals were correlated with significant shifts in chromatin accessibility and a network of challenge-associated TFs. Among these, the conserved metabolic and developmental regulator ESRRA was highlighted for an especially early and important regulatory role. Cell-type deconvolution analysis attributed the differential metabolic and developmental signals in this social context primarily to oligodendrocytes and neurons, respectively, and we show that ESRRA is expressed in both cell types. Localizing ESRRA binding sites in cortical chromatin, we show that this nuclear receptor binds both differentially expressed energy-related and neurodevelopmental TF genes. These data link metabolic and neurodevelopmental signaling to social challenge, and identify key regulatory drivers of this process with unprecedented tissue and temporal resolution.
Collapse
Affiliation(s)
- Michael C Saul
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Christopher H Seward
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Joseph M Troy
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Illinois Informatics Institute, Urbana, Illinois 61801, USA
| | - Huimin Zhang
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Laura G Sloofman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Xiaochen Lu
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Patricia A Weisner
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Derek Caetano-Anolles
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Hao Sun
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sihai Dave Zhao
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Statistics, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Sriram Chandrasekaran
- Harvard Society of Fellows, Harvard University, Cambridge, Massachusetts 02138, USA
- Faculty of Arts and Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts 02142, USA
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Computer Science
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Lisa Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Cell and Developmental Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| |
Collapse
|
31
|
Bahrami S, Drabløs F. Gene regulation in the immediate-early response process. Adv Biol Regul 2016; 62:37-49. [PMID: 27220739 DOI: 10.1016/j.jbior.2016.05.001] [Citation(s) in RCA: 256] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 05/03/2016] [Indexed: 05/13/2023]
Abstract
Immediate-early genes (IEGs) can be activated and transcribed within minutes after stimulation, without the need for de novo protein synthesis, and they are stimulated in response to both cell-extrinsic and cell-intrinsic signals. Extracellular signals are transduced from the cell surface, through receptors activating a chain of proteins in the cell, in particular extracellular-signal-regulated kinases (ERKs), mitogen-activated protein kinases (MAPKs) and members of the RhoA-actin pathway. These communicate through a signaling cascade by adding phosphate groups to neighboring proteins, and this will eventually activate and translocate TFs to the nucleus and thereby induce gene expression. The gene activation also involves proximal and distal enhancers that interact with promoters to simulate gene expression. The immediate-early genes have essential biological roles, in particular in stress response, like the immune system, and in differentiation. Therefore they also have important roles in various diseases, including cancer development. In this paper we summarize some recent advances on key aspects of the activation and regulation of immediate-early genes.
Collapse
Affiliation(s)
- Shahram Bahrami
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway; St. Olavs Hospital, Trondheim University Hospital, NO-7006 Trondheim, Norway.
| | - Finn Drabløs
- Department of Cancer Research and Molecular Medicine, NTNU - Norwegian University of Science and Technology, NO-7491 Trondheim, Norway.
| |
Collapse
|
32
|
Gtf2ird1-Dependent Mohawk Expression Regulates Mechanosensing Properties of the Tendon. Mol Cell Biol 2016; 36:1297-309. [PMID: 26884464 PMCID: PMC4836271 DOI: 10.1128/mcb.00950-15] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 02/08/2016] [Indexed: 11/20/2022] Open
Abstract
Mechanoforces experienced by an organ are translated into biological information for cellular sensing and response. In mammals, the tendon connective tissue experiences and resists physical forces, with tendon-specific mesenchymal cells called tenocytes orchestrating extracellular matrix (ECM) turnover. We show that Mohawk (Mkx), a tendon-specific transcription factor, is essential in mechanoresponsive tenogenesis through regulation of its downstream ECM genes such as type I collagens and proteoglycans such as fibromodulin both in vivo and in vitro Wild-type (WT) mice demonstrated an increase in collagen fiber diameter and density in response to physical treadmill exercise, whereas in Mkx(-/-) mice, tendons failed to respond to the same mechanical stimulation. Furthermore, functional screening of the Mkx promoter region identified several upstream transcription factors that regulate Mkx In particular, general transcription factor II-I repeat domain-containing protein 1 (Gtf2ird1) that is expressed in the cytoplasm of unstressed tenocytes translocated into the nucleus upon mechanical stretching to activate the Mkx promoter through chromatin regulation. Here, we demonstrate that Gtf2ird1 is essential for Mkx transcription, while also linking mechanical forces to Mkx-mediated tendon homeostasis and regeneration.
Collapse
|
33
|
van den Akker GGH, Surtel DAM, Cremers A, Hoes MFGA, Caron MM, Richardson SM, Rodrigues-Pinto R, van Rhijn LW, Hoyland JA, Welting TJM, Voncken JW. EGR1 controls divergent cellular responses of distinctive nucleus pulposus cell types. BMC Musculoskelet Disord 2016; 17:124. [PMID: 26975996 PMCID: PMC4791893 DOI: 10.1186/s12891-016-0979-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 03/09/2016] [Indexed: 01/07/2023] Open
Abstract
Background Immediate early genes (IEGs) encode transcription factors which serve as first line response modules to altered conditions and mediate appropriate cell responses. The immediate early response gene EGR1 is involved in physiological adaptation of numerous different cell types. We have previously shown a role for EGR1 in controlling processes supporting chondrogenic differentiation. We recently established a unique set of phenotypically distinct cell lines from the human nucleus pulposus (NP). Extensive characterization showed that these NP cellular subtypes represented progenitor-like cell types and more functionally mature cells. Methods To further understanding of cellular heterogeneity in the NP, we analyzed the response of these cell subtypes to anabolic and catabolic factors. Here, we test the hypothesis that physiological responses of distinct NP cell types are mediated by EGR1 and reflect specification of cell function using an RNA interference-based experimental approach. Results We show that distinct NP cell types rapidly induce EGR1 exposure to either growth factors or inflammatory cytokines. In addition, we show that mRNA profiles induced in response to anabolic or catabolic conditions are cell type specific: the more mature NP cell type produced a strong and more specialized transcriptional response to IL-1β than the NP progenitor cells and aspects of this response were controlled by EGR1. Conclusions Our current findings provide important substantiation of differential functionality among NP cellular subtypes. Additionally, the data shows that early transcriptional programming initiated by EGR1 is essentially restrained by the cells’ epigenome as it was determined during development and differentiation. These studies begin to define functional distinctions among cells of the NP and will ultimately contribute to defining functional phenotypes within the adult intervertebral disc. Electronic supplementary material The online version of this article (doi:10.1186/s12891-016-0979-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guus G H van den Akker
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands.,Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.,Current Address: Department of Experimental Rheumatology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Don A M Surtel
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Andy Cremers
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Martijn F G A Hoes
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Marjolein M Caron
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Stephen M Richardson
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK
| | - Ricardo Rodrigues-Pinto
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,Current Address: Department of Orthopaedics, Centro Hospitalar do Porto - Hospital de Santo António, Porto, Portugal
| | - Lodewijk W van Rhijn
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Judith A Hoyland
- Centre for Tissue Injury and Repair, Institute of Inflammation and Repair, The University of Manchester, Manchester, UK.,NIHR Manchester Musculoskeletal Biomedical Research Unit, Manchester Academic Health Science Centre, Manchester, UK
| | - Tim J M Welting
- Department of Orthopaedic Surgery, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - Jan Willem Voncken
- Department of Molecular Genetics, Maastricht University Medical Centre, Maastricht, The Netherlands.
| |
Collapse
|
34
|
Falconi G, Fabiani E, Fianchi L, Criscuolo M, Raffaelli CS, Bellesi S, Hohaus S, Voso MT, D’Alò F, Leone G. Impairment of PI3K/AKT and WNT/β-catenin pathways in bone marrow mesenchymal stem cells isolated from patients with myelodysplastic syndromes. Exp Hematol 2016; 44:75-83.e1-4. [DOI: 10.1016/j.exphem.2015.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 10/14/2015] [Accepted: 10/19/2015] [Indexed: 01/01/2023]
|
35
|
Santos JP, Pileggi-Castro C, Camelo JS, Silva AA, Duran P, Serruya SJ, Cecatti JG. Neonatal near miss: a systematic review. BMC Pregnancy Childbirth 2015; 15:320. [PMID: 26625905 PMCID: PMC4667407 DOI: 10.1186/s12884-015-0758-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 11/23/2015] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The concept of neonatal near miss has been proposed as a tool for assessment of quality of care in neonates who suffered any life-threatening condition. However, there are no internationally agreed concepts or criteria for defining or identifying neonatal near miss. The purpose of this study was to perform a systematic review of studies and markers that are able to identify neonatal near miss cases and predict neonatal mortality. METHODS Electronic searches were performed in the Medline, Embase and Scielo databases, with no time or language restriction, until December 2014. The term "neonatal near miss" was used alone or in combination with terms related to neonatal morbidity/mortality and neonatal severity scores. Study selection criteria involved three steps: title, abstract and full text of the articles. Two researchers performed study selection and data extraction independently. Heterogeneity of study results did not permit the performance of meta-analysis. RESULTS Following the inclusion and exclusion criteria adopted, only four articles were selected. Preterm and perinatal asphyxia were used as near miss markers in all studies. Health indicators on neonatal morbidity and mortality were extracted or estimated. The neonatal near miss rate was 2.6 to 8 times higher than the neonatal mortality rate. CONCLUSIONS Pragmatic and management criteria are used to help develop the neonatal near miss concept. The most severe cases are identified and mortality is predicted with these criteria. Furthermore, the near miss concept can be used as a tool for evaluating neonatal care. It is the first step in building management strategies to reduce mortality and long-term sequelae.
Collapse
Affiliation(s)
- Juliana P Santos
- Department of Gynecology and Obstetrics, School of Medicine, University of Campinas (UNICAMP), Campinas, Brazil.
| | - Cynthia Pileggi-Castro
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.
| | - Jose S Camelo
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo (USP), Ribeirão Preto, Brazil.
| | - Antonio A Silva
- Department of Public Health, Federal University of Maranhão, Sao Luis, Brazil.
| | - Pablo Duran
- Latin American Center of Perinatology (CLAP), Pan-American Health Organization (PAHO), Montevideo, Uruguay.
| | - Suzanne J Serruya
- Latin American Center of Perinatology (CLAP), Pan-American Health Organization (PAHO), Montevideo, Uruguay.
| | - Jose G Cecatti
- Department of Gynecology and Obstetrics, School of Medicine, University of Campinas (UNICAMP), Campinas, Brazil.
| |
Collapse
|
36
|
Kutmon M, van Iersel MP, Bohler A, Kelder T, Nunes N, Pico AR, Evelo CT. PathVisio 3: an extendable pathway analysis toolbox. PLoS Comput Biol 2015; 11:e1004085. [PMID: 25706687 PMCID: PMC4338111 DOI: 10.1371/journal.pcbi.1004085] [Citation(s) in RCA: 302] [Impact Index Per Article: 30.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2014] [Accepted: 12/11/2014] [Indexed: 12/20/2022] Open
Abstract
PathVisio is a commonly used pathway editor, visualization and analysis software. Biological pathways have been used by biologists for many years to describe the detailed steps in biological processes. Those powerful, visual representations help researchers to better understand, share and discuss knowledge. Since the first publication of PathVisio in 2008, the original paper was cited more than 170 times and PathVisio was used in many different biological studies. As an online editor PathVisio is also integrated in the community curated pathway database WikiPathways. Here we present the third version of PathVisio with the newest additions and improvements of the application. The core features of PathVisio are pathway drawing, advanced data visualization and pathway statistics. Additionally, PathVisio 3 introduces a new powerful extension systems that allows other developers to contribute additional functionality in form of plugins without changing the core application. PathVisio can be downloaded from http://www.pathvisio.org and in 2014 PathVisio 3 has been downloaded over 5,500 times. There are already more than 15 plugins available in the central plugin repository. PathVisio is a freely available, open-source tool published under the Apache 2.0 license (http://www.apache.org/licenses/LICENSE-2.0). It is implemented in Java and thus runs on all major operating systems. The code repository is available at http://svn.bigcat.unimaas.nl/pathvisio. The support mailing list for users is available on https://groups.google.com/forum/#!forum/wikipathways-discuss and for developers on https://groups.google.com/forum/#!forum/wikipathways-devel.
Collapse
Affiliation(s)
- Martina Kutmon
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, The Netherlands
- Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- * E-mail: (MK); (CTE)
| | | | - Anwesha Bohler
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, The Netherlands
| | | | - Nuno Nunes
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, The Netherlands
| | - Alexander R. Pico
- Gladstone Institutes, San Francisco, California, United States of America
| | - Chris T. Evelo
- Department of Bioinformatics - BiGCaT, Maastricht University, Maastricht, The Netherlands
- * E-mail: (MK); (CTE)
| |
Collapse
|
37
|
Li J, Ohliger J, Pei M. Significance of epigenetic landscape in cartilage regeneration from the cartilage development and pathology perspective. Stem Cells Dev 2014; 23:1178-94. [PMID: 24555773 DOI: 10.1089/scd.2014.0002] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Regenerative therapies for cartilage defects have been greatly advanced by progress in both the stem cell biology and tissue engineering fields. Despite notable successes, significant barriers remain including shortage of autologous cell sources and generation of a stable chondrocyte phenotype using progenitor cells. Increasing demands for the treatment of degenerative diseases, such as osteoarthritis and rheumatoid arthritis, highlight the importance of epigenetic remodeling in cartilage regeneration. Epigenetic regulatory mechanisms, such as microRNAs, DNA methylation, and histone modifications, have been intensively studied due to their direct regulatory role on gene expression. However, a thorough understanding of the environmental factors that initiate these epigenetic events may provide greater insight into the prevention of degenerative diseases and improve the efficacy of treatments. In other words, if we could identify a specific factor from the environment and its downstream signaling events, then we could stop or retard degradation and enhance cartilage regeneration. A more operational definition of epigenetic remodeling has recently been proposed by categorizing the signals during the epigenetic process into epigenators, initiators, and maintainers. This review seeks to compile and reorganize the existing literature pertaining to epigenetic remodeling events placing emphasis on perceiving the landscape of epigenetic mechanisms during cartilage regeneration with the new operational definition, especially from the environmental factors' point of view. Progress in understanding epigenetic regulatory mechanisms could benefit cartilage regeneration and engineering on a larger scale and provide more promising therapeutic applications.
Collapse
Affiliation(s)
- Jingting Li
- 1 Stem Cell and Tissue Engineering Laboratory, Department of Orthopaedics, West Virginia University , Morgantown, West Virginia
| | | | | |
Collapse
|
38
|
Worringer KA, Rand TA, Hayashi Y, Sami S, Takahashi K, Tanabe K, Narita M, Srivastava D, Yamanaka S. The let-7/LIN-41 pathway regulates reprogramming to human induced pluripotent stem cells by controlling expression of prodifferentiation genes. Cell Stem Cell 2013; 14:40-52. [PMID: 24239284 DOI: 10.1016/j.stem.2013.11.001] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 07/22/2013] [Accepted: 10/31/2013] [Indexed: 12/14/2022]
Abstract
Reprogramming differentiated cells into induced pluripotent stem cells (iPSCs) promotes a broad array of cellular changes. Here we show that the let-7 family of microRNAs acts as an inhibitory influence on the reprogramming process through a regulatory pathway involving prodifferentiation factors, including EGR1. Inhibiting let-7 in human cells promotes reprogramming to a comparable extent to c-MYC when combined with OCT4, SOX2, and KLF4, and persistence of let-7 inhibits reprogramming. Inhibiting let-7 during reprogramming leads to an increase in the level of the let-7 target LIN-41/TRIM71, which in turn promotes reprogramming and is important for overcoming the let-7 barrier to reprogramming. Mechanistic studies revealed that LIN-41 regulates a broad array of differentiation genes, and more specifically, inhibits translation of EGR1 through binding its cognate mRNA. Together our findings outline a let-7-based pathway that counteracts the activity of reprogramming factors through promoting the expression of prodifferentiation genes.
Collapse
Affiliation(s)
- Kathleen A Worringer
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Tim A Rand
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Yohei Hayashi
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Salma Sami
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA
| | - Kazutoshi Takahashi
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Koji Tanabe
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Megumi Narita
- Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan
| | - Deepak Srivastava
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Departments of Pediatrics and Biochemistry & Biophysics, University of California, San Francisco, San Francisco, CA 94143, USA.
| | - Shinya Yamanaka
- Gladstone Institute of Cardiovascular Disease, San Francisco, CA 94158, USA; Roddenberry Center for Stem Cell Biology and Medicine at Gladstone, San Francisco, CA 94158, USA; Center for iPS Cell Research and Application, Kyoto University, Kyoto 606-8507, Japan; Department of Anatomy, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|