1
|
Melo EM, Del Sarto J, Vago JP, Tavares LP, Rago F, Gonçalves APF, Machado MG, Aranda-Pardos I, Valiate BVS, Cassali GD, Pinho V, Sousa LP, A-Gonzalez N, Campagnole-Santos MJ, Bader M, Santos RAS, Machado AV, Ludwig S, Teixeira MM. Relevance of angiotensin-(1-7) and its receptor Mas in pneumonia caused by influenza virus and post-influenza pneumococcal infection. Pharmacol Res 2021; 163:105292. [PMID: 33171305 DOI: 10.1016/j.phrs.2020.105292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/12/2022]
Abstract
Resolution failure of exacerbated inflammation triggered by Influenza A virus (IAV) prevents return of pulmonary homeostasis and survival, especially when associated with secondary pneumococcal infection. Therapeutic strategies based on pro-resolving molecules have great potential against acute inflammatory diseases. Angiotensin-(1-7) [Ang-(1-7)] is a pro-resolving mediator that acts on its Mas receptor (MasR) to promote resolution of inflammation. We investigated the effects of Ang-(1-7) and the role of MasR in the context of primary IAV infection and secondary pneumococcal infection and evaluated pulmonary inflammation, virus titers and bacteria counts, and pulmonary damage. Therapeutic treatment with Ang-(1-7) decreased neutrophil recruitment, lung injury, viral load and morbidity after a primary IAV infection. Ang-(1-7) induced apoptosis of neutrophils and efferocytosis of these cells by alveolar macrophages, but had no direct effect on IAV replication in vitro. MasR-deficient (MasR-/-) mice were highly susceptible to IAV infection, displaying uncontrolled inflammation, increased viral load and greater lethality rate, as compared to WT animals. Ang-(1-7) was not protective in MasR-/- mice. Interestingly, Ang-(1-7) given during a sublethal dose of IAV infection greatly reduced morbidity associated with a subsequent S. pneumoniae infection, as seen by decrease in the magnitude of neutrophil influx, number of bacteria in the blood leading to a lower lethality. Altogether, these results show that Ang-(1-7) is highly protective against severe primary IAV infection and protects against secondary bacterial infection of the lung. These effects are MasR-dependent. Mediators of resolution of inflammation, such as Ang-(1-7), should be considered for the treatment of pulmonary viral infections.
Collapse
Affiliation(s)
- Eliza M Melo
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Juliana Del Sarto
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Juliana P Vago
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Luciana P Tavares
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Pulmonary and Critical Care Medicine Division, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA
| | - Flávia Rago
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Ana Paula F Gonçalves
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Imunologia de Doenças Virais, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Minas Gerais, Brazil
| | - Marina G Machado
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Irene Aranda-Pardos
- Institute of Immunology, Westfaelische Wilhelms-University muenster, Röntgenstraße 21, D-48149 Muenster, Germany
| | - Bruno V S Valiate
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Geovanni D Cassali
- Laboratório de Patologia Comparada, Departamento de Patologia, ICB, Universidade Federal de Minas gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vanessa Pinho
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lirlândia P Sousa
- Laboratório de sinalização da inflamação, Departamento de Análises Clínicase Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Noelia A-Gonzalez
- Institute of Immunology, Westfaelische Wilhelms-University muenster, Röntgenstraße 21, D-48149 Muenster, Germany
| | - Maria José Campagnole-Santos
- Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Michael Bader
- Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Robson A S Santos
- Instituto Nacional de Ciência e Tecnologia em Nanobiofarmacêutica, Departamento de Fisiologia e Biofísica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alexandre V Machado
- Imunologia de Doenças Virais, Centro de Pesquisa René Rachou, Fundação Oswaldo Cruz (FIOCRUZ-Minas), Belo Horizonte, Minas Gerais, Brazil
| | - Stephan Ludwig
- Institute of Virology Muenster (IVM), Westfaelische Wilhelms-University Muenster, Von-Esmarch-Str. 56, D-48149 Muenster, Germany
| | - Mauro M Teixeira
- Laboratório de Imunofarmacologia, Departamento de Bioquímica e Imunologia, ICB, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
2
|
Ong HK, Yong CY, Tan WS, Yeap SK, Omar AR, Razak MA, Ho KL. An Influenza A Vaccine Based on the Extracellular Domain of Matrix 2 Protein Protects BALB/C Mice Against H1N1 and H3N2. Vaccines (Basel) 2019; 7:vaccines7030091. [PMID: 31430965 PMCID: PMC6789677 DOI: 10.3390/vaccines7030091] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 08/14/2019] [Accepted: 08/14/2019] [Indexed: 01/27/2023] Open
Abstract
Current seasonal influenza A virus (IAV) vaccines are strain-specific and require annual reconstitution to accommodate the viral mutations. Mismatches between the vaccines and circulating strains often lead to high morbidity. Hence, development of a universal influenza A vaccine targeting all IAV strains is urgently needed. In the present study, the protective efficacy and immune responses induced by the extracellular domain of Matrix 2 protein (M2e) displayed on the virus-like particles of Macrobrachium rosenbergii nodavirus (NvC-M2ex3) were investigated in BALB/c mice. NvC-M2ex3 was demonstrated to be highly immunogenic even in the absence of adjuvants. Higher anti-M2e antibody titers corresponded well with increased survival, reduced immunopathology, and morbidity of the infected BALB/c mice. The mice immunized with NvC-M2ex3 exhibited lower H1N1 and H3N2 virus replication in the respiratory tract and the vaccine activated the production of different antiviral cytokines when they were challenged with H1N1 and H3N2. Collectively, these results suggest that NvC-M2ex3 could be a potential universal influenza A vaccine.
Collapse
Affiliation(s)
- Hui Kian Ong
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Chean Yeah Yong
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Wen Siang Tan
- Department of Microbiology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Swee Keong Yeap
- Department of Marine Biotechnology, China-ASEAN College of Marine Sciences, Xiamen University Malaysia, Jalan Sunsuria, Bandar Sunsuria, Sepang 43900, Selangor, Malaysia
| | - Abdul Rahman Omar
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Mariatulqabtiah Abdul Razak
- Institute of Bioscience, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia
| | - Kok Lian Ho
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, UPM Serdang 43400, Selangor, Malaysia.
| |
Collapse
|
3
|
Zubova SV, Vorovich MF, Gambaryan AS, Ishmukhametov AA, Grachev SV, Prokhorenko IR. The Effect of a Lipopolysaccharide from Rhodobacter capsulatus PG on Inflammation Caused by Various Influenza Strains. Acta Naturae 2019; 11:46-55. [PMID: 31720016 PMCID: PMC6826150 DOI: 10.32607/20758251-2019-11-3-46-55] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The development of a specific inflammation in mice that had been infected by
two influenza virus strains, A/chicken/Kurgan/5/2005 (H5N1) and A/Hamburg/2009
MA (H1N1), was studied. We investigated the effect of a non-toxic
lipopolysaccharide from Rhodobacter capsulatus PG on the survival and body
weight of the mice, production of IgG antibodies, and the induction of pro- and
anti-inflammatory cytokines in blood serum. The administration of the R.
capsulatus PG lipopolysaccharide was shown to induce interferon-β
synthesis, both in healthy and influenza A virus-infected mice, and to promote
production of antiviral antibodies in the blood of the influenza-infected
animals.
Collapse
Affiliation(s)
- S. V. Zubova
- Institute of Basic Biological Problems of RAS, FRC PSCBR RAS, Science Ave. 3, Pushchino, Moscow, 142290, Russia
| | - M. F. Vorovich
- FGBNU Federal Scientific Center of Research and Development of Immunobiological Preparations named M.P. Chumakov of RAS, pos. Institute of Poliomyelitis, Kievskoye Highway, 27th km, 8/1, Moscow Region, 142782, Russia
- GAOUVO First Moscow State Medical University named I.M. Sechenov of Russia Health Ministry, Trubetskaya Str. 8, Moscow, 119811, Russia
| | - A. S. Gambaryan
- FGBNU Federal Scientific Center of Research and Development of Immunobiological Preparations named M.P. Chumakov of RAS, pos. Institute of Poliomyelitis, Kievskoye Highway, 27th km, 8/1, Moscow Region, 142782, Russia
| | - A. A. Ishmukhametov
- FGBNU Federal Scientific Center of Research and Development of Immunobiological Preparations named M.P. Chumakov of RAS, pos. Institute of Poliomyelitis, Kievskoye Highway, 27th km, 8/1, Moscow Region, 142782, Russia
- GAOUVO First Moscow State Medical University named I.M. Sechenov of Russia Health Ministry, Trubetskaya Str. 8, Moscow, 119811, Russia
| | - S. V. Grachev
- Institute of Basic Biological Problems of RAS, FRC PSCBR RAS, Science Ave. 3, Pushchino, Moscow, 142290, Russia
- GAOUVO First Moscow State Medical University named I.M. Sechenov of Russia Health Ministry, Trubetskaya Str. 8, Moscow, 119811, Russia
| | - I. R. Prokhorenko
- Institute of Basic Biological Problems of RAS, FRC PSCBR RAS, Science Ave. 3, Pushchino, Moscow, 142290, Russia
| |
Collapse
|
4
|
Novel protective mechanism for interleukin-33 at the mucosal barrier during influenza-associated bacterial superinfection. Mucosal Immunol 2018; 11:199-208. [PMID: 28401938 PMCID: PMC5638662 DOI: 10.1038/mi.2017.32] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 03/01/2017] [Indexed: 02/04/2023]
Abstract
Influenza A is a highly contagious respiratory virus that causes seasonal epidemics and occasional worldwide pandemics. The primary cause of influenza-related mortality is bacterial superinfection. There are numerous mechanisms by which preceding influenza infection attenuates host defense, allowing for increased susceptibility to bacterial pneumonia. Herein, we demonstrate that influenza inhibits Staphylococcus aureus-induced production of interleukin-33 (IL-33). Restoration of IL-33 during influenza A and methicillin-resistant S. aureus superinfection enhanced bacterial clearance and improved mortality. Innate lymphoid Type 2 cells and alternatively activated macrophages are not required for IL-33-mediated protection during superinfection. We show that IL-33 treatment resulted in neutrophil recruitment to the lung, associated with improved bacterial clearance. These findings identify a novel role for IL-33 in antibacterial host defense at the mucosal barrier.
Collapse
|
5
|
Tavares LP, Garcia CC, Machado MG, Queiroz-Junior CM, Barthelemy A, Trottein F, Siqueira MM, Brandolini L, Allegretti M, Machado AM, de Sousa LP, Teixeira MM. CXCR1/2 Antagonism Is Protective during Influenza and Post-Influenza Pneumococcal Infection. Front Immunol 2017; 8:1799. [PMID: 29326698 PMCID: PMC5733534 DOI: 10.3389/fimmu.2017.01799] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 11/30/2017] [Indexed: 01/29/2023] Open
Abstract
Rationale Influenza A infections are a leading cause of morbidity and mortality worldwide especially when associated with secondary pneumococcal infections. Inflammation is important to control pathogen proliferation but may also cause tissue injury and death. CXCR1/2 are chemokine receptors relevant for the recruitment of neutrophils. We investigated the role of CXCR1/2 during influenza, pneumococcal, and post-influenza pneumococcal infections. Methods Mice were infected with influenza A virus (IAV) or Streptococcus pneumoniae and then treated daily with the CXCR1/2 antagonist DF2162. To study secondary pneumococcal infection, mice were infected with a sublethal inoculum of IAV then infected with S. pneumoniae 14 days later. DF2162 was given in a therapeutic schedule from days 3 to 6 after influenza infection. Lethality, weight loss, inflammation, virus/bacteria counts, and lung injury were assessed. Results CXCL1 and CXCL2 were produced at high levels during IAV infection. DF2162 treatment decreased morbidity and this was associated with decreased infiltration of neutrophils in the lungs and reduced pulmonary damage and viral titers. During S. pneumoniae infection, DF2162 treatment decreased neutrophil recruitment, pulmonary damage, and lethality rates, without affecting bacteria burden. Therapeutic treatment with DF2162 during sublethal IAV infection reduced the morbidity associated with virus infection and also decreased the magnitude of inflammation, lung damage, and number of bacteria in the blood of mice subsequently infected with S. pneumoniae. Conclusion Modulation of the inflammatory response by blocking CXCR1/2 improves disease outcome during respiratory influenza and pneumococcal infections, without compromising the ability of the murine host to deal with infection. Altogether, inhibition of CXCR1/2 may be a valid therapeutic strategy for treating lung infections caused by these pathogens, especially controlling secondary bacterial infection after influenza.
Collapse
Affiliation(s)
- Luciana P Tavares
- Laboratóriode Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cristiana C Garcia
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Marina G Machado
- Laboratóriode Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil.,Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Celso M Queiroz-Junior
- Departamento de Morfologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Adeline Barthelemy
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - François Trottein
- Centre d'Infection et d'Immunité de Lille, INSERM U1019, CNRS UMR 8204, University of Lille, CHU Lille, Institut Pasteur de Lille, Lille, France
| | - Marilda M Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | | | | | - Alexandre M Machado
- Centro de Pesquisas René Rachou, Fundação Oswaldo Cruz, Belo Horizonte, Brazil
| | - Lirlândia P de Sousa
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz (Fiocruz), Rio de Janeiro, Brazil
| | - Mauro M Teixeira
- Laboratóriode Imunofarmacologia, Departamento de Bioquímica e Imunologia, Instituto de Ciencias Biologicas (ICB), Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
6
|
Influenza and Bacterial Superinfection: Illuminating the Immunologic Mechanisms of Disease. Infect Immun 2015. [PMID: 26216421 DOI: 10.1128/iai.00298-15] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Seasonal influenza virus infection presents a major strain on the health care system. Influenza virus infection has pandemic potential, which was repeatedly observed during the last century. Severe disease may occur in the young, in the elderly, in those with preexisting lung disease, and in previously healthy individuals. A common cause of severe influenza pathogenesis is superinfection with bacterial pathogens, namely, Staphylococcus aureus and Streptococcus pneumoniae. A great deal of recent research has focused on the immune pathways involved in influenza-induced susceptibility to secondary bacterial pneumonia. Both innate and adaptive antibacterial host defenses are impaired in the context of preceding influenza virus infection. The goal of this minireview is to highlight these findings and synthesize these data into a shared central theme of pathogenesis.
Collapse
|
7
|
Robinson KM, Kolls JK, Alcorn JF. The immunology of influenza virus-associated bacterial pneumonia. Curr Opin Immunol 2015; 34:59-67. [PMID: 25723597 DOI: 10.1016/j.coi.2015.02.002] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2014] [Accepted: 02/06/2015] [Indexed: 10/23/2022]
Abstract
Infection with influenza virus has been a significant cause of morbidity and mortality for more than a hundred years. Severe disease and increased mortality often results from bacterial super-infection of patients with influenza virus infection. Preceding influenza infection alters the host's innate and adaptive immune responses, allowing increased susceptibility to secondary bacterial pneumonia. Recent advances in the field have helped to define how influenza alters the immune response to bacteria through the dysregulation of phagocytes, antimicrobial peptides, and lymphocytes. Viral-induced interferons play a key role in altering the phenotype of the immune response. Potential genetic modifiers of disease will help to define additional immunologic mechanisms that predispose to viral, bacterial super-infection with the overarching goal of developing effective therapeutic strategies to prevent and treat disease.
Collapse
Affiliation(s)
- Keven M Robinson
- Department of Medicine, University of Pittsburgh Medical Center, Pittsburgh, PA 15261, USA
| | - Jay K Kolls
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 15224, USA; Richard K. Mellon Foundation Institute, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA 15224, USA.
| | - John F Alcorn
- Department of Pediatrics, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, PA. 15224, USA.
| |
Collapse
|
8
|
Mina MJ, Klugman KP. The role of influenza in the severity and transmission of respiratory bacterial disease. THE LANCET RESPIRATORY MEDICINE 2014; 2:750-63. [PMID: 25131494 DOI: 10.1016/s2213-2600(14)70131-6] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Infections with influenza viruses and respiratory bacteria each contribute substantially to the global burden of morbidity and mortality. Simultaneous or sequential infection with these pathogens manifests in complex and difficult-to-treat disease processes that need extensive antimicrobial therapy and cause substantial excess mortality, particularly during annual influenza seasons and pandemics. At the host level, influenza viruses prime respiratory mucosal surfaces for excess bacterial acquisition and this supports increased carriage density and dissemination to the lower respiratory tract, while greatly constraining innate and adaptive antibacterial defences. Driven by virus-mediated structural modifications, aberrant immunological responses to sequential infection, and excessive immunopathological responses, co-infections are noted by short-term and long-term departures from immune homoeostasis, inhibition of appropriate pathogen recognition, loss of tolerance to tissue damage, and general increases in susceptibility to severe bacterial disease. At the population level, these effects translate into increased horizontal bacterial transmission and excess use of antimicrobial therapies. With increasing concerns about future possible influenza pandemics, the past decade has seen rapid advances in our understanding of these interactions. In this Review, we discuss the epidemiological and clinical importance of influenza and respiratory bacterial co-infections, including the foundational efforts that laid the groundwork for today's investigations, and detail the most important and current advances in our understanding of the structural and immunological mechanisms underlying the pathogenesis of co-infection. We describe and interpret what is known in sequence, from transmission and phenotypic shifts in bacterial dynamics to the immunological, cellular, and molecular modifications that underlie these processes, and propose avenues of further research that might be most valuable for prevention and treatment strategies to best mitigate excess disease during future influenza pandemics.
Collapse
Affiliation(s)
- Michael J Mina
- Rollins School of Public Health, Department of Global Health, Emory University, Atlanta, GA, USA; Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ, USA.
| | - Keith P Klugman
- Rollins School of Public Health, Department of Global Health, Emory University, Atlanta, GA, USA
| |
Collapse
|
9
|
Heimesaat MM, Fischer A, Alutis M, Grundmann U, Boehm M, Tegtmeyer N, Göbel UB, Kühl AA, Bereswill S, Backert S. The impact of serine protease HtrA in apoptosis, intestinal immune responses and extra-intestinal histopathology during Campylobacter jejuni infection of infant mice. Gut Pathog 2014; 6:16. [PMID: 24883112 PMCID: PMC4040118 DOI: 10.1186/1757-4749-6-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Accepted: 05/19/2014] [Indexed: 12/19/2022] Open
Abstract
Background Campylobacter jejuni has emerged as a leading cause of bacterial enterocolitis. The serine protease HtrA has been shown to be a pivotal, novel C. jejuni virulence factor involved in cell invasion and transmigration across polarised epithelial cells in vitro. However, the functional relevance of the htrA gene for the interaction of C. jejuni with the host immune system in the infant mouse infection model has not been investigated so far. Results Here we studied the role of C. jejuni htrA during infection of 3-weeks-old infant mice. Immediately after weaning, conventional wild-type mice were perorally infected with the NCTC11168∆htrA mutant (∆htrA) or the parental wild-type strain. Approximately one third of infected infant mice suffered from bloody diarrhea until day 7 post infection (p.i.), whereas colonic histopathological changes were rather moderate but comparable between the two strains. Interestingly, parental, but not ∆htrA mutant infected mice, displayed a multifold increase of apoptotic cells in the colonic mucosa at day 7 p.i., which was paralleled by higher colonic levels of pro-inflammatory cytokines such as TNF-α and IFN-γ and the matrix-degrading enzyme matrixmetalloproteinase-2 (MMP-2). Furthermore, higher numbers of proliferating cells could be observed in the colon of ∆htrA infected mice as compared to the parental wild-type strain. Remarkably, as early as 7 days p.i. infant mice also exhibited inflammatory changes in extra-intestinal compartments such as liver, kidneys and lungs, which were less distinct in kidneys and lungs following ∆htrA versus parental strain infection. However, live C. jejuni bacteria could not be found in these organs, suggesting the induction of systemic effects during intestinal infection. Conclusion Upon C. jejuni ∆htrA strain infection of infant mice, intestinal and extra-intestinal pro-inflammatory immune responses were ameliorated in the infant mouse model system. Future studies will shed further light onto the molecular mechanisms of host-pathogen interactions.
Collapse
Affiliation(s)
- Markus M Heimesaat
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - André Fischer
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Marie Alutis
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Ursula Grundmann
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Manja Boehm
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Nuremberg, Germany
| | - Nicole Tegtmeyer
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Nuremberg, Germany
| | - Ulf B Göbel
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Anja A Kühl
- Department of Medicine I for Gastroenterology, Infectious Disease and Rheumatology / Research Center ImmunoSciences (RCIS), Charité - University Medicine Berlin, Berlin, Germany
| | - Stefan Bereswill
- Department of Microbiology and Hygiene, Charité - University Medicine Berlin, Campus Benjamin Franklin, Hindenburgdamm 27, D-12203 Berlin, Germany
| | - Steffen Backert
- Department of Biology, Division of Microbiology, Friedrich Alexander University Erlangen, Nuremberg, Germany
| |
Collapse
|
10
|
Blok DC, van Lieshout MHP, Hoogendijk AJ, Florquin S, de Boer OJ, Garlanda C, Mantovani A, van't Veer C, de Vos AF, van der Poll T. Single immunoglobulin interleukin-1 receptor-related molecule impairs host defense during pneumonia and sepsis caused by Streptococcus pneumoniae. J Innate Immun 2014; 6:542-52. [PMID: 24556793 DOI: 10.1159/000358239] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2013] [Accepted: 12/28/2013] [Indexed: 12/13/2022] Open
Abstract
Streptococcus pneumoniae is a common cause of pneumonia and sepsis. Toll-like receptors (TLRs) play a pivotal role in the host defense against infection. In this study, we sought to determine the role of single immunoglobulin interleukin-1 receptor-related molecule (SIGIRR a.k.a. TIR8), a negative regulator of TLR signaling, in pneumococcal pneumonia and sepsis. Wild-type and SIGIRR-deficient (sigirr-/-) mice were infected intranasally (to induce pneumonia) or intravenously (to induce primary sepsis) with S. pneumoniae and euthanized after 6, 24, or 48 h for analyses. Additionally, survival studies were performed. sigirr-/- mice showed delayed mortality during lethal pneumococcal pneumonia. Accordingly, sigirr-/- mice displayed lower bacterial loads in lungs and less dissemination of the infection 24 h after the induction of pneumonia. SIGIRR deficiency was associated with increased interstitial and perivascular inflammation in lung tissue early after infection, with no impact on neutrophil recruitment or cytokine production. sigirr-/- mice also demonstrated reduced bacterial burdens at multiple body sites during S. pneumoniae sepsis. sigirr-/- alveolar macrophages and neutrophils exhibited an increased capacity to phagocytose viable pneumococci. These results suggest that SIGIRR impairs the antibacterial host defense during pneumonia and sepsis caused by S. pneumoniae.
Collapse
Affiliation(s)
- Dana C Blok
- Center of Experimental and Molecular Medicine, Center of Infection and Immunity, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | | | | | | | | | | | | | | | | |
Collapse
|