1
|
Fang C, Liu KD, Tian FJ, Li JY, Li SJ, Zhang RM, Sun J, Fang LX, Ren H, Wang MG, Liao XP. Metagenomic analysis unveiled the response of microbial community and antimicrobial resistome in natural water body to duck farm sewage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124784. [PMID: 39182818 DOI: 10.1016/j.envpol.2024.124784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 07/06/2024] [Accepted: 08/19/2024] [Indexed: 08/27/2024]
Abstract
Sewages from duck farms are often recognized as a major source of antimicrobial resistance and pathogenic bacteria discharged to natural water bodies, but few studies depicted the dynamic changes in resistome and microbial communities in the rivers under immense exposure of sewage discharge. In this study, we investigated the ecological and environmental risks of duck sewages to the rivers that geographically near to the duck farms with short-distance (<1 km) using 16S rRNA amplicon and metagenomic sequencing. The results showed that a total of 20 ARG types were identified with abundances ranged from 0.61 to 1.33 cpc. Of note, the genes modulate resistances against aminoglycoside, bacitracin and beta-lactam were the most abundant ARGs. Limnohabitans, Fluviibacter and Cyanobium were the top 3 predominant genera in the microbial community. The alpha diversity of overall microbial community decrease while the abundance of pathogen increase during the input of sewage within 200 m. Sul1 and bacA were the dominant ARGs brought from duck farm sewage. The community variations of ARGs and microbiome were primarily driven by pH and temperature. Total phosphorus was significantly correlated to alpha diversity and top 30 ARGs subtype. Stochastic processes was the dominated microbial assembly pattern and did not be altered by sewage. We also highlighted the ecological risk caused by blaGES which possibly could be mitigated by Cyanobacteria, and the natural water body can purify partial ARGs as well as microbiome from duck farms sewage. These findings expanded our knowledge regarding the ecological risks by wastes from the livestock farm, and underscoring the necessity to monitor ARGs in farm-surrounding water bodies.
Collapse
Affiliation(s)
- Chang Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; College of Marine Science, South China Agricultural University, Guangzhou, 510642, PR China
| | - Kai-di Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Feng-Jie Tian
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jin-Ying Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Si-Jie Li
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Rong-Min Zhang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, PR China
| | - Hao Ren
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China
| | - Min-Ge Wang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China; Phage Research Center, Liaocheng University, Liaocheng, 252000, PR China
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, PR China; Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
2
|
Zhang R, Xu L, Tian D, Du L, Yang F. Coal mining activities driving the changes in bacterial community. Sci Rep 2024; 14:25615. [PMID: 39463387 PMCID: PMC11514224 DOI: 10.1038/s41598-024-75590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 10/07/2024] [Indexed: 10/29/2024] Open
Abstract
The mechanism of the difference in bacterial community composition caused by environmental factors in the underground coal mine is unclear. In order to reveal the influence of coal mining activities on the characteristics of bacterial community structure in coal seam, 16S rRNA gene amplicon sequencing technology was used to determine the species abundance, biodiversity, and gene abundance of bacterial community in a coal mine in Shanxi Province, and the environmental factors such as metal elements, non-metal elements, pH value, and gas concentration of coal samples were determined. The results showed that environmental factors and bacterial communities had obvious regional characteristics. Mining activities greatly affected the α diversity of bacterial communities, mining working face > main airway > roadway roof > unexposed coal seam > tunneling roadway. The bacterial community composition of each sample point is also very different. The main airway, roadway roof, and unexposed coal seam are dominated by Actinobacteria while the mining working face and tunneling roadway are dominated by Proteobacteria. Among the gene abundances of metabolic pathways in each site, Citrate cycle had the greatest difference, followed by glycine, serine and threonine metabolism, and oxidative phosphorylation and methane metabolism had little difference. RDA analysis showed that the environmental factors affecting the bacterial community were mainly cadmium, oxygen, hydrogen, and gas content. CCA analysis divided the bacterial community into three categories. Degradation functional bacteria are located in mining working face, bacteria that tolerate poor environments are located in main airway and tunneling roadway, and human pathogens are mostly located in roadway roof and unexposed coal seam. The research results would provide support for realizing green and safe mining in coal mines.
Collapse
Affiliation(s)
- Runjie Zhang
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Lianman Xu
- School of Environmental Science, Liaoning University, Shenyang, 110036, China.
| | - Da Tian
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Linlin Du
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| | - Fengshuo Yang
- School of Environmental Science, Liaoning University, Shenyang, 110036, China
| |
Collapse
|
3
|
Complete Genome Sequences of Three Limnohabitans sp. (Lhab-A3) Strains, INBF002, TEGF004, and MORI2, Isolated from Two Lakes and a River in Japan. Microbiol Resour Announc 2023; 12:e0129622. [PMID: 36840570 PMCID: PMC10019246 DOI: 10.1128/mra.01296-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023] Open
Abstract
Freshwater bacterioplankton of the genus Limnohabitans represent a dominant group that has worldwide distribution. Here, we report the complete genome sequences of three Limnohabitans sp. (Lhab-A3 tribe) strains, i.e., INBF002, TEGF004, and MORI2, which were isolated from surface water samples from two shallow eutrophic lakes and a river in Japan.
Collapse
|
4
|
Chiriac MC, Haber M, Salcher MM. Adaptive genetic traits in pelagic freshwater microbes. Environ Microbiol 2023; 25:606-641. [PMID: 36513610 DOI: 10.1111/1462-2920.16313] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/12/2022] [Indexed: 12/15/2022]
Abstract
Pelagic microbes have adopted distinct strategies to inhabit the pelagial of lakes and oceans and can be broadly categorized in two groups: free-living, specialized oligotrophs and patch-associated generalists or copiotrophs. In this review, we aim to identify genomic traits that enable pelagic freshwater microbes to thrive in their habitat. To do so, we discuss the main genetic differences of pelagic marine and freshwater microbes that are both dominated by specialized oligotrophs and the difference to freshwater sediment microbes, where copiotrophs are more prevalent. We phylogenomically analysed a collection of >7700 metagenome-assembled genomes, classified habitat preferences on different taxonomic levels, and compared the metabolic traits of pelagic freshwater, marine, and freshwater sediment microbes. Metabolic differences are mainly associated with transport functions, environmental information processing, components of the electron transport chain, osmoregulation and the isoelectric point of proteins. Several lineages with known habitat transitions (Nitrososphaeria, SAR11, Methylophilaceae, Synechococcales, Flavobacteriaceae, Planctomycetota) and the underlying mechanisms in this process are discussed in this review. Additionally, the distribution, ecology and genomic make-up of the most abundant freshwater prokaryotes are described in details in separate chapters for Actinobacteriota, Bacteroidota, Burkholderiales, Verrucomicrobiota, Chloroflexota, and 'Ca. Patescibacteria'.
Collapse
Affiliation(s)
| | - Markus Haber
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| | - Michaela M Salcher
- Institute of Hydrobiology, Biology Centre CAS, Ceske Budejovice, Czechia
| |
Collapse
|
5
|
Kim S, Islam MR, Kang I, Cho JC. Cultivation of Dominant Freshwater Bacterioplankton Lineages Using a High-Throughput Dilution-to-Extinction Culturing Approach Over a 1-Year Period. Front Microbiol 2021; 12:700637. [PMID: 34385989 PMCID: PMC8353197 DOI: 10.3389/fmicb.2021.700637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 07/09/2021] [Indexed: 11/13/2022] Open
Abstract
Although many culture-independent molecular analyses have elucidated a great diversity of freshwater bacterioplankton, the ecophysiological characteristics of several abundant freshwater bacterial groups are largely unknown due to the scarcity of cultured representatives. Therefore, a high-throughput dilution-to-extinction culturing (HTC) approach was implemented herein to enable the culture of these bacterioplankton lineages using water samples collected at various seasons and depths from Lake Soyang, an oligotrophic reservoir located in South Korea. Some predominant freshwater bacteria have been isolated from Lake Soyang via HTC (e.g., the acI lineage); however, large-scale HTC studies encompassing different seasons and water depths have not been documented yet. In this HTC approach, bacterial growth was detected in 14% of 5,376 inoculated wells. Further, phylogenetic analyses of 16S rRNA genes from a total of 605 putatively axenic bacterial cultures indicated that the HTC isolates were largely composed of Actinobacteria, Bacteroidetes, Alphaproteobacteria, Betaproteobacteria, Gammaproteobacteria, and Verrucomicrobia. Importantly, the isolates were distributed across diverse taxa including phylogenetic lineages that are widely known cosmopolitan and representative freshwater bacterial groups such as the acI, acIV, LD28, FukuN57, MNG9, and TRA3-20 lineages. However, some abundant bacterial groups including the LD12 lineage, Chloroflexi, and Acidobacteria could not be domesticated. Among the 71 taxonomic groups in the HTC isolates, representative strains of 47 groups could either form colonies on agar plates or be revived from frozen glycerol stocks. Additionally, season and water depth significantly affected bacterial community structure, as demonstrated by 16S rRNA gene amplicon sequencing analyses. Therefore, our study successfully implemented a dilution-to-extinction cultivation strategy to cultivate previously uncultured or underrepresented freshwater bacterial groups, thus expanding the basis for future multi-omic studies.
Collapse
Affiliation(s)
- Suhyun Kim
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| | - Md Rashedul Islam
- Bacteriophage Biology Laboratory, Guelph Research and Development Centre, Agriculture and Agri-Food Canada, Guelph, ON, Canada
| | - Ilnam Kang
- Department of Biological Sciences, Center for Molecular and Cell Biology, Inha University, Incheon, South Korea
| | - Jang-Cheon Cho
- Department of Biological Sciences and Bioengineering, Inha University, Incheon, South Korea
| |
Collapse
|
6
|
Okazaki Y, Fujinaga S, Salcher MM, Callieri C, Tanaka A, Kohzu A, Oyagi H, Tamaki H, Nakano SI. Microdiversity and phylogeographic diversification of bacterioplankton in pelagic freshwater systems revealed through long-read amplicon sequencing. MICROBIOME 2021; 9:24. [PMID: 33482922 PMCID: PMC7825169 DOI: 10.1186/s40168-020-00974-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Accepted: 12/07/2020] [Indexed: 05/16/2023]
Abstract
BACKGROUND Freshwater ecosystems are inhabited by members of cosmopolitan bacterioplankton lineages despite the disconnected nature of these habitats. The lineages are delineated based on > 97% 16S rRNA gene sequence similarity, but their intra-lineage microdiversity and phylogeography, which are key to understanding the eco-evolutional processes behind their ubiquity, remain unresolved. Here, we applied long-read amplicon sequencing targeting nearly full-length 16S rRNA genes and the adjacent ribosomal internal transcribed spacer sequences to reveal the intra-lineage diversities of pelagic bacterioplankton assemblages in 11 deep freshwater lakes in Japan and Europe. RESULTS Our single nucleotide-resolved analysis, which was validated using shotgun metagenomic sequencing, uncovered 7-101 amplicon sequence variants for each of the 11 predominant bacterial lineages and demonstrated sympatric, allopatric, and temporal microdiversities that could not be resolved through conventional approaches. Clusters of samples with similar intra-lineage population compositions were identified, which consistently supported genetic isolation between Japan and Europe. At a regional scale (up to hundreds of kilometers), dispersal between lakes was unlikely to be a limiting factor, and environmental factors or genetic drift were potential determinants of population composition. The extent of microdiversification varied among lineages, suggesting that highly diversified lineages (e.g., Iluma-A2 and acI-A1) achieve their ubiquity by containing a consortium of genotypes specific to each habitat, while less diversified lineages (e.g., CL500-11) may be ubiquitous due to a small number of widespread genotypes. The lowest extent of intra-lineage diversification was observed among the dominant hypolimnion-specific lineage (CL500-11), suggesting that their dispersal among lakes is not limited despite the hypolimnion being a more isolated habitat than the epilimnion. CONCLUSIONS Our novel approach complemented the limited resolution of short-read amplicon sequencing and limited sensitivity of the metagenome assembly-based approach, and highlighted the complex ecological processes underlying the ubiquity of freshwater bacterioplankton lineages. To fully exploit the performance of the method, its relatively low read throughput is the major bottleneck to be overcome in the future. Video abstract.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan.
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan.
- Institute for Chemical Research, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan.
| | - Shohei Fujinaga
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| | - Michaela M Salcher
- Department of Aquatic Microbial Ecology, Institute of Hydrobiology, Biology Centre CAS, Na Sádkách 7, 37005, České Budějovice, Czech Republic
- Limnological Station, Institute of Plant and Microbial Biology, University of Zurich, Seestrasse 187, 8802, Kilchberg, Zurich, Switzerland
| | - Cristiana Callieri
- CNR, IRSA Institute of Water Research, Largo Tonolli 50, 28922, Verbania, Italy
| | - Atsushi Tanaka
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, 16-2 Onogawa, Tsukuba, Ibaraki, 305-8506, Japan
| | - Hideo Oyagi
- Faculty of Policy Studies, Nanzan University, 18 Yamazato-cho, Showa-ku, Nagoya, Aichi, 466-8673, Japan
| | - Hideyuki Tamaki
- Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Central 6, Higashi 1-1-1, Tsukuba, Ibaraki, 305-8566, Japan
| | - Shin-Ichi Nakano
- Center for Ecological Research, Kyoto University, 2-509-3 Hirano, Otsu, Shiga, 520-2113, Japan
| |
Collapse
|
7
|
Zhang X, Ohtsuki H, Makino W, Kato Y, Watanabe H, Urabe J. Variations in effects of ectosymbiotic microbes on the growth rates among different species and genotypes of
Daphnia
fed different algal diets. Ecol Res 2020. [DOI: 10.1111/1440-1703.12194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Xuan Zhang
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Hajime Ohtsuki
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Wataru Makino
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| | - Yasuhiko Kato
- Department of Biotechnology, Graduate School of Engineering Osaka University Suita Osaka Japan
| | - Hajime Watanabe
- Department of Biotechnology, Graduate School of Engineering Osaka University Suita Osaka Japan
| | - Jotaro Urabe
- Aquatic Ecology Lab, Graduate School of Life Sciences Tohoku University Aoba‐ku Sendai Japan
| |
Collapse
|
8
|
Lifestyle preferences drive the structure and diversity of bacterial and archaeal communities in a small riverine reservoir. Sci Rep 2020; 10:11288. [PMID: 32647153 PMCID: PMC7347578 DOI: 10.1038/s41598-020-67774-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Accepted: 04/22/2020] [Indexed: 02/01/2023] Open
Abstract
Spatial heterogeneity along river networks is interrupted by dams, affecting the transport, processing, and storage of organic matter, as well as the distribution of biota. We here investigated the structure of planktonic (free-living, FL), particle-attached (PA) and sediment-associated (SD) bacterial and archaeal communities within a small reservoir. We combined targeted-amplicon sequencing of bacterial and archaeal 16S rRNA genes in the DNA and RNA community fractions from FL, PA and SD, followed by imputed functional metagenomics, in order to unveil differences in their potential metabolic capabilities within the reservoir (tail, mid, and dam sections) and lifestyles (FL, PA, SD). Both bacterial and archaeal communities were structured according to their life-style preferences rather than to their location in the reservoir. Bacterial communities were richer and more diverse when attached to particles or inhabiting the sediment, while Archaea showed an opposing trend. Differences between PA and FL bacterial communities were consistent at functional level, the PA community showing higher potential capacity to degrade complex carbohydrates, aromatic compounds, and proteinaceous materials. Our results stressed that particle-attached prokaryotes were phylogenetically and metabolically distinct from their free-living counterparts, and that performed as hotspots for organic matter processing within the small reservoir.
Collapse
|
9
|
Sediment Microbial Diversity in Urban Piedmont North Carolina Watersheds Receiving Wastewater Input. WATER 2020. [DOI: 10.3390/w12061557] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Urban streams are heavily influenced by human activity. One way that this occurs is through the reintroduction of treated effluent from wastewater treatment plants. We measured the microbial community composition of water, sediment, and soil at sites upstream and downstream from two Charlotte treatment facilities. We performed 16S rRNA gene sequencing to assay the microbial community composition at each site at four time points between the late winter and mid-summer of 2016. Despite the location of these streams in an urban area with many influences and disruptions, the streams maintain distinct water, sediment, and soil microbial profiles. While there is an overlap of microbial species in upstream and downstream sites, there are several taxa that differentiate these sites. Some taxa characteristics of human-associated microbial communities appear elevated in the downstream sediment communities. In the wastewater treatment plant and to a lesser extent in the downstream community, there are high abundance amplicon sequence variants (ASVs) which are less than 97% similar to any sequence in reference databases, suggesting that these environments contain an unexplored biological novelty. Taken together, these results suggest a need to more fully characterize the microbial communities associated with urban streams, and to integrate information about microbial community composition with mechanistic models.
Collapse
|
10
|
Temperature and Nutrient Levels Correspond with Lineage-Specific Microdiversification in the Ubiquitous and Abundant Freshwater Genus Limnohabitans. Appl Environ Microbiol 2020; 86:AEM.00140-20. [PMID: 32169939 DOI: 10.1128/aem.00140-20] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 03/10/2020] [Indexed: 11/20/2022] Open
Abstract
Most freshwater bacterial communities are characterized by a few dominant taxa that are often ubiquitous across freshwater biomes worldwide. Our understanding of the genomic diversity within these taxonomic groups is limited to a subset of taxa. Here, we investigated the genomic diversity that enables Limnohabitans, a freshwater genus key in funneling carbon from primary producers to higher trophic levels, to achieve abundance and ubiquity. We reconstructed eight putative Limnohabitans metagenome-assembled genomes (MAGs) from stations located along broad environmental gradients existing in Lake Michigan, part of Earth's largest surface freshwater system. De novo strain inference analysis resolved a total of 23 strains from these MAGs, which strongly partitioned into two habitat-specific clusters with cooccurring strains from different lineages. The largest number of strains belonged to the abundant LimB lineage, for which robust in situ strain delineation had not previously been achieved. Our data show that temperature and nutrient levels may be important environmental parameters associated with microdiversification within the Limnohabitans genus. In addition, strains predominant in low- and high-phosphorus conditions had larger genomic divergence than strains abundant under different temperatures. Comparative genomics and gene expression analysis yielded evidence for the ability of LimB populations to exhibit cellular motility and chemotaxis, a phenotype not yet associated with available Limnohabitans isolates. Our findings broaden historical marker gene-based surveys of Limnohabitans microdiversification and provide in situ evidence of genome diversity and its functional implications across freshwater gradients.IMPORTANCE Limnohabitans is an important bacterial taxonomic group for cycling carbon in freshwater ecosystems worldwide. Here, we examined the genomic diversity of different Limnohabitans lineages. We focused on the LimB lineage of this genus, which is globally distributed and often abundant, and its abundance has shown to be largely invariant to environmental change. Our data show that the LimB lineage is actually comprised of multiple cooccurring populations for which the composition and genomic characteristics are associated with variations in temperature and nutrient levels. The gene expression profiles of this lineage suggest the importance of chemotaxis and motility, traits that had not yet been associated with the Limnohabitans genus, in adapting to environmental conditions.
Collapse
|
11
|
Nuy JK, Hoetzinger M, Hahn MW, Beisser D, Boenigk J. Ecological Differentiation in Two Major Freshwater Bacterial Taxa Along Environmental Gradients. Front Microbiol 2020; 11:154. [PMID: 32117171 PMCID: PMC7031163 DOI: 10.3389/fmicb.2020.00154] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 01/22/2020] [Indexed: 12/05/2022] Open
Abstract
Polynucleobacter (Burkholderiaceae, Betaproteobacteria) and Limnohabitans (Comamonadaceae, Betaproteobacteria) are abundant freshwater bacteria comprising large genetic and taxonomic diversities, with species adapted to physico-chemically distinct types of freshwater systems. The relative importance of environmental drivers, i.e., physico-chemistry, presence of microeukaryotes and geographic position for the diversity and prevalence has not been investigated for both taxa before. Here, we present the first pan-European study on this topic, comprising 255 freshwater lakes. We investigated Limnohabitans and Polynucleobacter using an amplicon sequencing approach of partial 16S rRNA genes along environmental gradients. We show that physico-chemical factors had the greatest impact on both genera. Analyses on environmental gradients revealed an exceptionally broad ecological spectrum of operational taxonomic units (OTUs). Despite the coarse resolution of the genetic marker, we found OTUs with contrasting environmental preferences within Polynucleobacter and Limnohabitans subclusters. Such an ecological differentiation has been characterized for PnecC and LimC before but was so far unknown for less well studied subclusters such as PnecA and PnecB. Richness and abundance of OTUs are geographically clustered, suggesting that geographic diversity patterns are attributable to region-specific physico-chemical characteristics (e.g., pH and temperature) rather than latitudinal gradients or lake sizes.
Collapse
Affiliation(s)
- Julia K Nuy
- Department of Biodiversity, University of Duisburg Essen, Essen, Germany
| | - Matthias Hoetzinger
- Department of Biology and Environmental Science, Linnaeus University, Kalmar, Sweden
| | - Martin W Hahn
- Research Department for Limnology, University of Innsbruck, Mondsee, Austria
| | - Daniela Beisser
- Department of Biodiversity, University of Duisburg Essen, Essen, Germany
| | - Jens Boenigk
- Department of Biodiversity, University of Duisburg Essen, Essen, Germany
| |
Collapse
|
12
|
Genomic and ecological study of two distinctive freshwater bacteriophages infecting a Comamonadaceae bacterium. Sci Rep 2018; 8:7989. [PMID: 29789681 PMCID: PMC5964084 DOI: 10.1038/s41598-018-26363-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Accepted: 05/10/2018] [Indexed: 01/29/2023] Open
Abstract
Bacteriophages of freshwater environments have not been well studied despite their numerical dominance and ecological importance. Currently, very few phages have been isolated for many abundant freshwater bacterial groups, especially for the family Comamonadaceae that is found ubiquitously in freshwater habitats. In this study, we report two novel phages, P26059A and P26059B, that were isolated from Lake Soyang in South Korea, and lytically infected bacterial strain IMCC26059, a member of the family Comamonadaceae. Morphological observations revealed that phages P26059A and P26059B belonged to the family Siphoviridae and Podoviridae, respectively. Of 12 bacterial strains tested, the two phages infected strain IMCC26059 only, showing a very narrow host range. The genomes of the two phages were different in length and highly distinct from each other with little sequence similarity. A comparison of the phage genome sequences and freshwater viral metagenomes showed that the phage populations represented by P26059A and P26059B exist in the environment with different distribution patterns. Presence of the phages in Lake Soyang and Lake Michigan also indicated a consistent lytic infection of the Comamonadaceae bacterium, which might control the population size of this bacterial group. Taken together, although the two phages shared a host strain, they showed completely distinctive characteristics from each other in morphological, genomic, and ecological analyses. Considering the abundance of the family Comamonadaceae in freshwater habitats and the rarity of phage isolates infecting this family, the two phages and their genomes in this study would be valuable resources for freshwater virus research.
Collapse
|
13
|
Ricão Canelhas M, Andersson M, Eiler A, Lindström ES, Bertilsson S. Influence of pulsed and continuous substrate inputs on freshwater bacterial community composition and functioning in bioreactors. Environ Microbiol 2017; 19:5078-5087. [PMID: 29124844 DOI: 10.1111/1462-2920.13979] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/17/2017] [Accepted: 10/30/2017] [Indexed: 11/26/2022]
Abstract
Aquatic environments are typically not homogenous, but characterized by changing substrate concentration gradients and nutrient patches. This heterogeneity in substrate availability creates a multitude of niches allowing bacteria with different substrate utilization strategies to hypothetically coexist even when competing for the same substrate. To study the impact of heterogeneous distribution of organic substrates on bacterioplankton, bioreactors with freshwater bacterial communities were fed artificial freshwater medium with acetate supplied either continuously or in pulses. After a month-long incubation, bacterial biomass and community-level substrate uptake rates were twice as high in the pulsed treatment compared to the continuously fed reactors even if the same total amount of acetate was supplied to both treatments. The composition of the bacterial communities emerging in the two treatments differed significantly with specific taxa overrepresented in the respective treatments. The higher estimated growth yield in cultures that received pulsed substrate inputs, imply that such conditions enable bacteria to use resources more efficiently for biomass production. This finding agrees with established concepts of basal maintenance energy requirements and high energetic costs to assimilate substrates at low concentration. Our results further imply that degradation of organic matter is influenced by temporal and spatial heterogeneity in substrate availability.
Collapse
Affiliation(s)
- Monica Ricão Canelhas
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| | - Martin Andersson
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| | - Alexander Eiler
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| | - Eva S Lindström
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| | - Stefan Bertilsson
- Department of Ecology and Genetics/Limnology, Uppsala University, Norbyvägen 18D, Uppsala, 752 36, Sweden
| |
Collapse
|
14
|
The Limnohabitans Genus Harbors Generalistic and Opportunistic Subtypes: Evidence from Spatiotemporal Succession in a Canyon-Shaped Reservoir. Appl Environ Microbiol 2017; 83:AEM.01530-17. [PMID: 28842542 DOI: 10.1128/aem.01530-17] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 08/22/2017] [Indexed: 11/20/2022] Open
Abstract
We studied the diversity of Limnohabitans using reverse line blot hybridization with Limnohabitans lineage-specific probes in the freshwater canyon-shaped Římov reservoir (Czech Republic). To examine the succession of distinct lineages, we performed (i) a study of an intensive spring sampling program at the lacustrine part of the Římov reservoir (from ice melt through a phytoplankton peak to the clear-water phase), and (ii) a seasonal study (April to November) when the occurrence of distinct Limnohabitans lineages was related to the inherent longitudinal heterogeneity of the reservoir. Significant spatiotemporal changes in the compositions of distinct Limnohabitans lineages allowed for the identification of "generalists" that were always present throughout the whole season as well as "specialists" that appeared in the reservoir only for limited periods of time or irregularly. Our results indicate that some phytoplankton groups, such as cryptophytes or cyanobacteria, and zooplankton composition were the major factors modulating the distribution and dynamics of distinct Limnohabitans lineages. The highest Limnohabitans diversity was observed during the spring algal bloom, whereas the lowest was during the summer cyanobacterial bloom. The microdiversity also markedly increased upstream in the reservoir, being highest at the inflow, and thus likely reflecting strong influences of the watershed.IMPORTANCE The genus Limnohabitans is a typical freshwater bacterioplankton and is believed to play a significant role in inland freshwater habitats. This work is unique in detecting and tracing different closely related lineages of this bacterial genus in its natural conditions using the semiquantitative reverse line blot hybridization method and in discovering the factors influencing the microdiversity, subtype alternations, and seasonality.
Collapse
|
15
|
Okazaki Y, Fujinaga S, Tanaka A, Kohzu A, Oyagi H, Nakano SI. Ubiquity and quantitative significance of bacterioplankton lineages inhabiting the oxygenated hypolimnion of deep freshwater lakes. THE ISME JOURNAL 2017; 11:2279-2293. [PMID: 28585941 PMCID: PMC5607371 DOI: 10.1038/ismej.2017.89] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/16/2017] [Accepted: 05/05/2017] [Indexed: 02/01/2023]
Abstract
The oxygenated hypolimnion accounts for a volumetrically significant part of the global freshwater systems. Previous studies have proposed the presence of hypolimnion-specific bacterioplankton lineages that are distinct from those inhabiting the epilimnion. To date, however, no consensus exists regarding their ubiquity and abundance, which is necessary to evaluate their ecological importance. The present study investigated the bacterioplankton community in the oxygenated hypolimnia of 10 deep freshwater lakes. Despite the broad geochemical characteristics of the lakes, 16S rRNA gene sequencing demonstrated that the communities in the oxygenated hypolimnia were distinct from those in the epilimnia and identified several predominant lineages inhabiting multiple lakes. Catalyzed reporter deposition fluorescence in situ hybridization revealed that abundant hypolimnion-specific lineages, CL500-11 (Chloroflexi), CL500-3, CL500-37, CL500-15 (Planctomycetes) and Marine Group I (Thaumarchaeota), together accounted for 1.5-32.9% of all bacterioplankton in the hypolimnion of the lakes. Furthermore, an analysis of single-nucleotide variation in the partial 16S rRNA gene sequence (oligotyping) suggested the presence of different sub-populations between lakes and water layers among the lineages occurring in the entire water layer (for example, acI-B1 and acI-A7). Collectively, these results provide the first comprehensive overview of the bacterioplankton community in the oxygenated hypolimnion of deep freshwater lakes.
Collapse
Affiliation(s)
- Yusuke Okazaki
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Shohei Fujinaga
- Center for Ecological Research, Kyoto University, Otsu, Japan
| | - Atsushi Tanaka
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Ayato Kohzu
- National Institute for Environmental Studies, Tsukuba, Japan
| | - Hideo Oyagi
- College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | | |
Collapse
|
16
|
Sun W, Xia C, Xu M, Guo J, Sun G. Seasonality Affects the Diversity and Composition of Bacterioplankton Communities in Dongjiang River, a Drinking Water Source of Hong Kong. Front Microbiol 2017; 8:1644. [PMID: 28912759 PMCID: PMC5583224 DOI: 10.3389/fmicb.2017.01644] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 08/15/2017] [Indexed: 01/11/2023] Open
Abstract
Water quality ranks the most vital criterion for rivers serving as drinking water sources, which periodically changes over seasons. Such fluctuation is believed associated with the state shifts of bacterial community within. To date, seasonality effects on bacterioplankton community patterns in large rivers serving as drinking water sources however, are still poorly understood. Here we investigated the intra-annual bacterial community structure in the Dongjiang River, a drinking water source of Hong Kong, using high-throughput pyrosequencing in concert with geochemical property measurements during dry, and wet seasons. Our results showed that Proteobacteria, Actinobacteria, and Bacteroidetes were the dominant phyla of bacterioplankton communities, which varied in composition, and distribution from dry to wet seasons, and exhibited profound seasonal changes. Actinobacteria, Bacteroidetes, and Cyanobacteria seemed to be more associated with seasonality that the relative abundances of Actinobacteria, and Bacteroidetes were significantly higher in the dry season than those in the wet season (p < 0.01), while the relative abundance of Cyanobacteria was about 10-fold higher in the wet season than in the dry season. Temperature and NO3--N concentration represented key contributing factors to the observed seasonal variations. These findings help understand the roles of various bacterioplankton and their interactions with the biogeochemical processes in the river ecosystem.
Collapse
Affiliation(s)
- Wei Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of MicrobiologyGuangzhou, China.,School of Life Sciences, Longyan UniversityLongyan, China
| | - Chunyu Xia
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of MicrobiologyGuangzhou, China.,School of Life Sciences, Longyan UniversityLongyan, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of MicrobiologyGuangzhou, China.,State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China
| | - Jun Guo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of MicrobiologyGuangzhou, China.,State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China
| | - Guoping Sun
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of MicrobiologyGuangzhou, China.,State Key Laboratory of Applied Microbiology Southern ChinaGuangzhou, China
| |
Collapse
|
17
|
Bertilsson S. How to see more: double hybridization to reveal ecological differentiation among close bacterial relatives. Environ Microbiol 2017; 19:2110-2111. [DOI: 10.1111/1462-2920.13740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Affiliation(s)
- Stefan Bertilsson
- Department of Ecology and Genetics, Limnology and Science for Life Laboratory; Uppsala University; Norbyv. 18D Uppsala SE 75236 Sweden
| |
Collapse
|
18
|
Iliev I, Yahubyan G, Marhova M, Apostolova E, Gozmanova M, Gecheva G, Kostadinova S, Ivanova A, Baev V. Metagenomic profiling of the microbial freshwater communities in two Bulgarian reservoirs. J Basic Microbiol 2017; 57:669-679. [PMID: 28543439 DOI: 10.1002/jobm.201700137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/21/2017] [Accepted: 05/06/2017] [Indexed: 12/21/2022]
Abstract
Microorganisms inhabiting freshwater environments are an integral part of the aquatic ecosystems. Very few data are available regarding the profiles of the microbial communities in the reservoirs in Bulgaria, despite their key role in the biogeochemical processes. In the present study, we provide the first comprehensive metagenomic analysis on the planktonic bacterial diversity of two large and economically important Bulgarian reservoirs (Batak and Tsankov Kamak) using next-generation sequencing of 16S ribosomal RNA gene (16S rRNA). Analysis of the metagenomic amplicon datasets, including quality filtering, clustering of Operational Taxonomic Units and taxonomy assignment revealed that 78.45% of the microbial communities between the two reservoirs were overlapping. The diversity (H) and Pielou's evenness (J) indices declined along the longitudinal axis of both reservoirs. The estimated values for the Shannon diversity index are typically observed in oligotrophic lakes. The microbial communities of both reservoirs were dominated by Proteobacteria, followed by Actinobacteria and Bacteroidetes all comprised over 95% of the relative abundance, regardless of the reservoir's large hydrogeological differences. The bacterioplankton was characterized by high phylogenetic heterogeneity in the taxonomic structure, being distributed among 211 genera. The genera Limnohabitans and Rhodoferax held the absolute predominance, implying their significance in the aquatic food webs. The obtained data can contribute to the better systematic understanding of the microbial diversity of freshwater environments.
Collapse
Affiliation(s)
- Ivan Iliev
- Faculty of Biology, Department of Biotechnology and Microbiology, University of Plovdiv, Plovdiv, Bulgaria
| | - Galina Yahubyan
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Mariana Marhova
- Faculty of Biology, Department of Biotechnology and Microbiology, University of Plovdiv, Plovdiv, Bulgaria
| | - Elena Apostolova
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Mariyana Gozmanova
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| | - Gana Gecheva
- Faculty of Biology, Department of Ecology and Environmental Conservation, University of Plovdiv, Plovdiv, Bulgaria
| | - Sonya Kostadinova
- Faculty of Biology, Department of Biotechnology and Microbiology, University of Plovdiv, Plovdiv, Bulgaria
| | | | - Vesselin Baev
- Faculty of Biology, Department of Plant Physiology and Molecular Biology, University of Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|
19
|
Pernthaler J. Competition and niche separation of pelagic bacteria in freshwater habitats. Environ Microbiol 2017; 19:2133-2150. [PMID: 28370850 DOI: 10.1111/1462-2920.13742] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 03/19/2017] [Accepted: 03/23/2017] [Indexed: 11/29/2022]
Abstract
Freshwater bacterioplankton assemblages are composed of sympatric populations that can be delineated, for example, by ribosomal RNA gene relatedness and that differ in key ecophysiological properties. They may be free-living or attached, specialized for particular concentrations or subsets of substrates, or invest a variable amount of their resources in defence traits against protistan predators and viruses. Some may be motile and tactic whereas others are not, with far-reaching implications for their respective life styles and niche partitioning. The co-occurrence of competitors with overlapping growth requirements has profound consequences for the stability of community functions; it can to some extent be explained by habitat factors such as the microscale complexity and spatiotemporal variability of the lacustrine environments. On the other hand, the composition and diversity of freshwater microbial assemblages also reflects non-equilibrium states, dispersal and the stochasticity of community assembly processes. This review synoptically discusses the competition and niche separation of heterotrophic bacterial populations (defined at various levels of phylogenetic resolution) in the pelagic zone of inland surface waters from a variety of angles, focusing on habitat heterogeneity and the resulting biogeographic distribution patterns, the ecophysiological adaptations to the substrate field and the interactions of prokaryotes with predators and viruses.
Collapse
Affiliation(s)
- Jakob Pernthaler
- Limnological Station Kilchberg, Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| |
Collapse
|
20
|
Wang F, Li W, Zhang J, Qi W, Zhou Y, Xiang Y, Shi N. Characterization of suspended bacteria from processing units in an advanced drinking water treatment plant of China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:12176-12184. [PMID: 28353100 DOI: 10.1007/s11356-017-8874-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 03/20/2017] [Indexed: 06/06/2023]
Abstract
For the drinking water treatment plant (DWTP), the organic pollutant removal was the primary focus, while the suspended bacterial was always neglected. In this study, the suspended bacteria from each processing unit in a DWTP employing an ozone-biological activated carbon process was mainly characterized by using heterotrophic plate counts (HPCs), a flow cytometer, and 454-pyrosequencing methods. The results showed that an adverse changing tendency of HPC and total cell counts was observed in the sand filtration tank (SFT), where the cultivability of suspended bacteria increased to 34%. However, the cultivability level of other units stayed below 3% except for ozone contact tank (OCT, 13.5%) and activated carbon filtration tank (ACFT, 34.39%). It meant that filtration processes promoted the increase in cultivability of suspended bacteria remarkably, which indicated biodegrading capability. In the unit of OCT, microbial diversity indexes declined drastically, and the dominant bacteria were affiliated to Proteobacteria phylum (99.9%) and Betaproteobacteria class (86.3%), which were also the dominant bacteria in the effluent of other units. Besides, the primary genus was Limnohabitans in the effluents of SFT (17.4%) as well as ACFT (25.6%), which was inferred to be the crucial contributors for the biodegradable function in the filtration units. Overall, this paper provided an overview of community composition of each processing units in a DWTP as well as reference for better developing microbial function for drinking water treatment in the future.
Collapse
Affiliation(s)
- Feng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Weiying Li
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China.
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China.
| | - Junpeng Zhang
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Wanqi Qi
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yanyan Zhou
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Yuan Xiang
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, 1239 Siping Road, Shanghai, 200092, P. R. China
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| | - Nuo Shi
- College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
- Key Laboratory of Yangtze Aquatic Environment, Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, P. R. China
| |
Collapse
|
21
|
Genomic Microdiversity of Bifidobacterium pseudocatenulatum Underlying Differential Strain-Level Responses to Dietary Carbohydrate Intervention. mBio 2017; 8:mBio.02348-16. [PMID: 28196965 PMCID: PMC5312088 DOI: 10.1128/mbio.02348-16] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
The genomic basis of the response to dietary intervention of human gut beneficial bacteria remains elusive, which hinders precise manipulation of the microbiota for human health. After receiving a dietary intervention enriched with nondigestible carbohydrates for 105 days, a genetically obese child with Prader-Willi syndrome lost 18.4% of his body weight and showed significant improvement in his bioclinical parameters. We obtained five isolates (C1, C15, C55, C62, and C95) of one of the most abundantly promoted beneficial species, Bifidobacterium pseudocatenulatum, from a postintervention fecal sample. Intriguingly, these five B. pseudocatenulatum strains showed differential responses during the dietary intervention. Two strains were largely unaffected, while the other three were promoted to different extents by the changes in dietary carbohydrate resources. The differential responses of these strains were consistent with their functional clustering based on the COGs (Clusters of Orthologous Groups), including those involved with the ABC-type sugar transport systems, suggesting that the strain-specific genomic variations may have contributed to the niche adaption. Particularly, B. pseudocatenulatum C15, which had the most diverse types and highest gene copy numbers of carbohydrate-active enzymes targeting plant polysaccharides, had the highest abundance after the dietary intervention. These studies show the importance of understanding genomic diversity of specific members of the gut microbiota if precise nutrition approaches are to be realized. The manipulation of the gut microbiota via dietary approaches is a promising option for improving human health. Our findings showed differential responses of multiple B. pseudocatenulatum strains isolated from the same habitat to the dietary intervention, as well as strain-specific correlations with bioclinical parameters of the host. The comparative genomics revealed a genome-level microdiversity of related functional genes, which may have contributed to these differences. These results highlight the necessity of understanding strain-level differences if precise manipulation of gut microbiota through dietary approaches is to be realized.
Collapse
|
22
|
Shabarova T, Kasalický V, Šimek K, Nedoma J, Znachor P, Posch T, Pernthaler J, Salcher MM. Distribution and ecological preferences of the freshwater lineage LimA (genus Limnohabitans) revealed by a new double hybridization approach. Environ Microbiol 2017; 19:1296-1309. [PMID: 28063252 DOI: 10.1111/1462-2920.13663] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 12/21/2016] [Accepted: 01/02/2017] [Indexed: 11/26/2022]
Abstract
The ecological relevance and factors shaping dynamics of Limnohabitans sp. have been largely studied by fluorescence in situ hybridization with a 16S rRNA probe targeting the R-BT group (lineages LimBCDE), but not lineage LimA. Consequently, ecology and distribution of LimA remained unknown. We developed a double hybridization strategy using a novel 23S rRNA probe specifically targeting LimA and LimE that in combination with the existing R-BT probe can discriminate LimA populations. This technique was applied for more than 1000 samples from 46 freshwater sites including long-term data sets from oligo-mesotrophic Lake Zurich, CH and meso-eutrophic Římov reservoir, CZ. LimA was ubiquitously distributed and highly abundant. Observed ecological preferences of LimA in Lake Zurich were in general similar to already reported for Limnohabitans with highest numbers in surface waters during growing seasons. Three times higher densities of LimA were detected in Římov reservoir, where they were significantly more abundant at the riverine zone especially after flood events that introduced fresh terrestrial DOM (dissolved organic matter). Moreover, statistical analyses of biological and physicochemical parameters obtained from small dynamic water bodies confirmed a correspondence between LimA and allochthonous DOM, in opposite to R-BT that was more related to algal primary production.
Collapse
Affiliation(s)
- Tanja Shabarova
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Vojtěch Kasalický
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Karel Šimek
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Jiří Nedoma
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Petr Znachor
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic.,Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
| | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Jakob Pernthaler
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Michaela M Salcher
- Institute of Hydrobiology, Aquatic Microbial Ecology, Biology Centre CAS, České Budějovice, Czech Republic.,Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| |
Collapse
|
23
|
Kaluzhnaya OV, Itskovich VB. Distinctive features of the microbial diversity and the polyketide synthase genes spectrum in the community of the endemic Baikal sponge Swartschewskia papyracea. RUSS J GENET+ 2016. [DOI: 10.1134/s1022795416010099] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
24
|
Morrissey EM, Franklin RB. Evolutionary history influences the salinity preference of bacterial taxa in wetland soils. Front Microbiol 2015; 6:1013. [PMID: 26483764 PMCID: PMC4591843 DOI: 10.3389/fmicb.2015.01013] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 09/07/2015] [Indexed: 11/13/2022] Open
Abstract
Salinity is a major driver of bacterial community composition across the globe. Despite growing recognition that different bacterial species are present or active at different salinities, the mechanisms by which salinity structures community composition remain unclear. We tested the hypothesis that these patterns reflect ecological coherence in the salinity preferences of phylogenetic groups using a reciprocal transplant experiment of fresh- and saltwater wetland soils. The salinity of both the origin and host environments affected community composition (16S rRNA gene sequences) and activity (CO2 and CH4 production, and extracellular enzyme activity). These changes in community composition and activity rates were strongly correlated, which suggests the effect of environment on function could be mediated, at least in part, by microbial community composition. Based on their distribution across treatments, each phylotype was categorized as having a salinity preference (freshwater, saltwater, or none) and phylogenetic analyses revealed a significant influence of evolutionary history on these groupings. This finding was corroborated by examining the salinity preferences of high-level taxonomic groups. For instance, we found that the majority of α- and γ-proteobacteria in these wetland soils preferred saltwater, while many β-proteobacteria prefer freshwater. Overall, our results indicate the effect of salinity on bacterial community composition results from phylogenetically-clustered salinity preferences.
Collapse
Affiliation(s)
- Ember M Morrissey
- Laboratory of Microbial Ecology, Department of Biology, Virginia Commonwealth University Richmond, VA, USA
| | - Rima B Franklin
- Laboratory of Microbial Ecology, Department of Biology, Virginia Commonwealth University Richmond, VA, USA
| |
Collapse
|
25
|
Newton RJ, McLellan SL. A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Front Microbiol 2015; 6:1028. [PMID: 26483766 PMCID: PMC4586452 DOI: 10.3389/fmicb.2015.01028] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Accepted: 09/10/2015] [Indexed: 12/31/2022] Open
Abstract
Water quality is impacted significantly by urbanization. The delivery of increased nutrient loads to waterways is a primary characteristic of this land use change. Despite the recognized effects of nutrient loading on aquatic systems, the influence of urbanization on the bacterial community composition of these systems is not understood. We used massively-parallel sequencing of bacterial 16S rRNA genes to examine the bacterial assemblages in transect samples spanning the heavily urbanized estuary of Milwaukee, WI to the relatively un-impacted waters of Lake Michigan. With this approach, we found that genera and lineages common to freshwater lake epilimnia were common and abundant in both the high nutrient, urban-impacted waterways, and the low nutrient Lake Michigan. Although the two environments harbored many taxa in common, we identified a significant change in the community assemblage across the urban-influence gradient, and three distinct community features drove this change. First, we found the urban-influenced waterways harbored significantly greater bacterial richness and diversity than Lake Michigan (i.e., taxa augmentation). Second, we identified a shift in the relative abundance among common freshwater lineages, where acI, acTH1, Algoriphagus and LD12, had decreased representation and Limnohabitans, Polynucleobacter, and Rhodobacter had increased representation in the urban estuary. Third, by oligotyping 18 common freshwater genera/lineages, we found that oligotypes (highly resolved sequence clusters) within many of these genera/lineages had opposite preferences for the two environments. With these data, we suggest many of the defined cosmopolitan freshwater genera/lineages contain both oligotroph and more copiotroph species or populations, promoting the idea that within-genus lifestyle specialization, in addition to shifts in the dominance among core taxa and taxa augmentation, drive bacterial community change in urbanized waters.
Collapse
Affiliation(s)
- Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| |
Collapse
|
26
|
Prey-Specific Growth Responses of Freshwater Flagellate Communities Induced by Morphologically Distinct Bacteria from the Genus Limnohabitans. Appl Environ Microbiol 2015; 81:4993-5002. [PMID: 25979896 DOI: 10.1128/aem.00396-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 05/12/2015] [Indexed: 11/20/2022] Open
Abstract
Because their large growth potential is counterbalanced with grazing by heterotrophic nanoflagellates (HNF), bacteria of the genus Limnohabitans, which are common in many freshwater habitats, represent a valuable model for examining bacterial carbon flow to the grazer food chain. We conducted experiments with natural HNF communities taken from two distinct habitats, the meso-eutrophic Římov Reservoir and the oligo-mesotrophic Lake Cep (South Bohemia). HNF communities from each habitat at distinct seasonal phases, a late April algal bloom and a late May clear water phase, were each fed 3 Limnohabitans strains of differing cell sizes. Water samples were prefiltered (5 μm) to release natural HNF communities from zooplankton control and then amended with the Limnohabitans strains L. planktonicus II-D5 (medium sized, rod shaped), Limnohabitans sp. strain T6-5 (thin, long, curved rod), and Limnohabitans sp. strain 2KL-3 (large solenoid). Using temporal sampling and prey treatment, we determined HNF growth parameters such as doubling time, growth efficiency, and length of lag phase prior starting to exponential growth. All three Limnohabitans strains supported HNF growth but in significant prey-, site-, and season-dependent fashions. For instance, addition of the moderately large T6-5 strain yielded very rapid HNF growth with a short lag phase. In contrast, the curved morphology and larger cell size of strain 2KL-3 made this prey somewhat protected against grazing by smaller HNF, resulting in slower HNF growth and longer lag phases. These trends were particularly pronounced during the late May clear-water phase, which was dominated by smaller HNF cells. This may indicate a longer "adaptation time" for the flagellate communities toward the large prey size offered.
Collapse
|
27
|
Cabassi J, Tassi F, Mapelli F, Borin S, Calabrese S, Rouwet D, Chiodini G, Marasco R, Chouaia B, Avino R, Vaselli O, Pecoraino G, Capecchiacci F, Bicocchi G, Caliro S, Ramirez C, Mora-Amador R. Geosphere-biosphere interactions in bio-activity volcanic lakes: evidences from Hule and Rìo Cuarto (Costa Rica). PLoS One 2014; 9:e102456. [PMID: 25058537 PMCID: PMC4109938 DOI: 10.1371/journal.pone.0102456] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Accepted: 06/19/2014] [Indexed: 11/18/2022] Open
Abstract
Hule and Río Cuarto are maar lakes located 11 and 18 km N of Poás volcano along a 27 km long fracture zone, in the Central Volcanic Range of Costa Rica. Both lakes are characterized by a stable thermic and chemical stratification and recently they were affected by fish killing events likely related to the uprising of deep anoxic waters to the surface caused by rollover phenomena. The vertical profiles of temperature, pH, redox potential, chemical and isotopic compositions of water and dissolved gases, as well as prokaryotic diversity estimated by DNA fingerprinting and massive 16S rRNA pyrosequencing along the water column of the two lakes, have highlighted that different bio-geochemical processes occur in these meromictic lakes. Although the two lakes host different bacterial and archaeal phylogenetic groups, water and gas chemistry in both lakes is controlled by the same prokaryotic functions, especially regarding the CO2-CH4 cycle. Addition of hydrothermal CO2 through the bottom of the lakes plays a fundamental priming role in developing a stable water stratification and fuelling anoxic bacterial and archaeal populations. Methanogens and methane oxidizers as well as autotrophic and heterotrophic aerobic bacteria responsible of organic carbon recycling resulted to be stratified with depth and strictly related to the chemical-physical conditions and availability of free oxygen, affecting both the CO2 and CH4 chemical concentrations and their isotopic compositions along the water column. Hule and Río Cuarto lakes were demonstrated to contain a CO2 (CH4, N2)-rich gas reservoir mainly controlled by the interactions occurring between geosphere and biosphere. Thus, we introduced the term of bio-activity volcanic lakes to distinguish these lakes, which have analogues worldwide (e.g. Kivu: D.R.C.-Rwanda; Albano, Monticchio and Averno: Italy; Pavin: France) from volcanic lakes only characterized by geogenic CO2 reservoir such as Nyos and Monoun (Cameroon).
Collapse
Affiliation(s)
- Jacopo Cabassi
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
| | - Franco Tassi
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
- CNR – Istituto di Geoscienze e Georisorse, Florence, Italy
| | - Francesca Mapelli
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sara Borin
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Sergio Calabrese
- Dipartimento di Scienze della Terra e del Mare, University of Palermo, Palermo, Italy
| | - Dmitri Rouwet
- Istituto Nazionale di Geofisica e Vulcanologia, Sezione di Bologna, Bologna, Italy
| | - Giovanni Chiodini
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Ramona Marasco
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Bessem Chouaia
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Rosario Avino
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Orlando Vaselli
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
- CNR – Istituto di Geoscienze e Georisorse, Florence, Italy
| | | | - Francesco Capecchiacci
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
- CNR – Istituto di Geoscienze e Georisorse, Florence, Italy
| | - Gabriele Bicocchi
- Dipartimento di Scienze della Terra, University of Florence, Florence, Italy
| | - Stefano Caliro
- Istituto Nazionale di Geofisica e Vulcanologia, Osservatorio Vesuviano, Naples, Italy
| | - Carlos Ramirez
- Centro de Investigaciones en Ciencias Geológicas, Escuela Centroamericana de Geología, Red Sismológica Nacional, Universidad de Costa Rica, San Jose, Costa Rica
| | - Raul Mora-Amador
- Centro de Investigaciones en Ciencias Geológicas, Escuela Centroamericana de Geología, Red Sismológica Nacional, Universidad de Costa Rica, San Jose, Costa Rica
| |
Collapse
|
28
|
Bacterial epibionts of Daphnia: a potential route for the transfer of dissolved organic carbon in freshwater food webs. ISME JOURNAL 2014; 8:1808-19. [PMID: 24694716 DOI: 10.1038/ismej.2014.39] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 02/06/2014] [Accepted: 02/12/2014] [Indexed: 11/09/2022]
Abstract
The identification of interacting species and elucidation of their mode of interaction may be crucial to understand ecosystem-level processes. We analysed the activity and identity of bacterial epibionts in cultures of Daphnia galeata and of natural daphnid populations. Epibiotic bacteria incorporated considerable amounts of dissolved organic carbon (DOC), as estimated via uptake of tritiated leucine: three times more tracer was consumed by microbes on a single Daphnia than in 1 ml of lake water. However, there was virtually no incorporation if daphnids were anaesthetised, suggesting that their filtration activity was essential for this process. Microbial DOC uptake could predominantly be assigned to microbes that were located on the filter combs of daphnids, where the passage of water would ensure a continuously high DOC supply. Most of these bacteria were Betaproteobacteria from the genus Limnohabitans. Specifically, we identified a monophyletic cluster harbouring Limnohabitans planktonicus that encompassed sequence types from D. galeata cultures, from the gut of Daphnia magna and from daphnids of Lake Zurich. Our results suggest that the epibiotic growth of bacteria related to Limnohabitans on Daphnia spp. may be a widespread and rather common phenomenon. Moreover, most of the observed DOC flux to Daphnia in fact does not seem to be associated with the crustacean biomass itself but with its epibiotic microflora. The unexplored physical association of daphnids with heterotrophic bacteria may have considerable implications for our understanding of carbon transfer in freshwater food webs, that is, a trophic 'shortcut' between microbial DOC uptake and predation by fish.
Collapse
|
29
|
Differential freshwater flagellate community response to bacterial food quality with a focus on Limnohabitans bacteria. ISME JOURNAL 2013; 7:1519-30. [PMID: 23552621 DOI: 10.1038/ismej.2013.57] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 02/27/2013] [Accepted: 03/02/2013] [Indexed: 11/09/2022]
Abstract
Different bacterial strains can have different value as food for heterotrophic nanoflagellates (HNF), thus modulating HNF growth and community composition. We examined the influence of prey food quality using four Limnohabitans strains, one Polynucleobacter strain and one freshwater actinobacterial strain on growth (growth rate, length of lag phase and growth efficiency) and community composition of a natural HNF community from a freshwater reservoir. Pyrosequencing of eukaryotic small subunit rRNA amplicons was used to assess time-course changes in HNF community composition. All four Limnohabitans strains and the Polynucleobacter strain yielded significant HNF community growth while the actinobacterial strain did not although it was detected in HNF food vacuoles. Notably, even within the Limnohabitans strains we found significant prey-related differences in HNF growth parameters, which could not be related only to size of the bacterial prey. Sequence data characterizing the HNF communities showed also that different bacterial prey items induced highly significant differences in community composition of flagellates. Generally, Stramenopiles dominated the communities and phylotypes closely related to Pedospumella (Chrysophyceae) were most abundant bacterivorous flagellates rapidly reacting to addition of the bacterial prey of high food quality.
Collapse
|