1
|
Smith CR, Baird JF, Buitendorp J, Horton H, Watkins M, Stewart JC. Implicit motor sequence learning using three-dimensional reaching movements with the non-dominant left arm. Exp Brain Res 2024; 242:2715-2726. [PMID: 39377917 PMCID: PMC11569025 DOI: 10.1007/s00221-024-06934-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/23/2024] [Indexed: 10/09/2024]
Abstract
Interlimb differences in reach control could impact the learning of a motor sequence that requires whole-arm movements. The purpose of this study was to investigate the learning of an implicit, 3-dimensional whole-arm sequence task with the non-dominant left arm compared to the dominant right arm. Thirty-one right-hand dominant adults completed two consecutive days of practice of a motor sequence task presented in a virtual environment with either their dominant right or non-dominant left arm. Targets were presented one-at-a-time alternating between Random and Repeated sequences. Task performance was indicated by the time to complete the sequence (response time), and kinematic measures (hand path distance, peak velocity) were used to examine how movements changed over time. While the Left Arm group was slower than the Right Arm group at baseline, both groups significantly improved response time with practice with the Left Arm group demonstrating greater gains. The Left Arm group improved performance by decreasing hand path distance (straighter path to targets) while the Right Arm group improved performance through a smaller decrease in hand path distance combined with increasing peak velocity. Gains made during practice on Day 1 were retained on Day 2 for both groups. Overall, individuals reaching with the non-dominant left arm learned the whole-arm motor sequence task but did so through a different strategy than individuals reaching with the dominant right arm. The strategy adopted for the learning of movement sequences that require whole-arm movements may be impacted by differences in reach control between the nondominant and dominant arms.
Collapse
Affiliation(s)
- Charles R Smith
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jessica F Baird
- Johns Hopkins Trial Innovation Center, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joelle Buitendorp
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Hannah Horton
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Macie Watkins
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA
| | - Jill C Stewart
- Department of Exercise Science, Arnold School of Public Health, University of South Carolina, Columbia, SC, USA.
| |
Collapse
|
2
|
Sato Y. Effects of motor imagery training on generalization and retention for different task difficulties. Front Hum Neurosci 2024; 18:1459987. [PMID: 39479228 PMCID: PMC11521821 DOI: 10.3389/fnhum.2024.1459987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 10/03/2024] [Indexed: 11/02/2024] Open
Abstract
Although previous studies have suggested that motor adaptation through motor imagery training of similar tasks can improve retention and generalization of motor learning, the benefits of mental and physical training remain unclear for different task difficulties. Two experiments were conducted in this study. The first experiment aimed to determine whether there were differences in movement time (MT) when drawing circles based on three conditions in accordance with Fitts' law. The results showed significant differences in MT among the three conditions (p < 0.001), with MT becoming long as the width of the circle line (which indicated different difficulty level) narrowed. The second experiment aimed to determine whether the task difficulty influenced immediate generalization and retention at 24 h after mental vs. physical training. Participants in both training groups practiced the task with the medium-sized circle, which indicated medium difficulty. The posttest results revealed that mental training leads to considerable performance improvement than physical training, as demonstrated by a shorter MT regardless of the task difficulty level. Meanwhile, the retention test results showed no difference in generalization between mental and physical training. However, generalization of an easier task was more effectively retained than more difficult tasks. These results suggest that mental training can improve performance during the adaptation phase and that difficulty level can influence the degree of retention.
Collapse
Affiliation(s)
- Yoichiro Sato
- Department of Physical Therapy, Faculty of Health Sciences, Hokkaido University of Science, Sapporo, Hokkaido, Japan
| |
Collapse
|
3
|
Yuk J, Sainburg RL. Lateralization of acquisition and consolidation in direction but not amplitude of a motor skill task. Exp Brain Res 2024; 242:2341-2356. [PMID: 39110162 DOI: 10.1007/s00221-024-06900-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 07/23/2024] [Indexed: 09/26/2024]
Abstract
Previous research suggests that the neural processes underlying specification of movement direction and amplitude are independently represented in the nervous system. However, our understanding of acquisition and consolidation processes in the direction and distance learning remains limited. We designed a virtual air hockey task, in which the puck direction is determined by the hand direction at impact, while the puck distance is determined by the amplitude of the velocity. In two versions of this task, participants were required to either specify the direction or the distance of the puck, while the alternate variable did not contribute to task success. Separate groups of right-handed participants were recruited for each task. Each participant was randomly assigned to one of two groups with a counter-balanced arm practice sequence (right to left, or left to right). We examined acquisition and, after 24 h, we examined two aspects of consolidation: 1) same hand performance to test the durability and 2) the opposite hand to test the effector-independent consolidation (interlimb transfer) of learning. The distance task showed symmetry between hands in the extent of acquisition as well as in both aspects of consolidation. In contrast, the direction task showed asymmetry in both acquisition and consolidation: the dominant right arm showed faster and greater acquisition and greater transfer from the opposite arm training. The asymmetric acquisition and consolidation processes shown in the direction task might be explained by lateralized control and mapping of direction, an interpretation consistent with previous findings on motor adaptation paradigms.
Collapse
Affiliation(s)
- Jisung Yuk
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA.
| | - Robert L Sainburg
- Department of Kinesiology, The Pennsylvania State University, University Park, PA, USA
- Department of Neurology, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
4
|
Takagi A, Kashino M. Distribution of control during bimanual movement and stabilization. Sci Rep 2024; 14:16506. [PMID: 39019893 PMCID: PMC11255328 DOI: 10.1038/s41598-024-67303-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024] Open
Abstract
In two-handed actions like baseball batting, the brain can allocate the control to each arm in an infinite number of ways. According to hemispheric specialization theory, the dominant hemisphere is adept at ballistic control, while the non-dominant hemisphere is specialized at postural stabilization, so the brain should divide the control between the arms according to their respective specialization. Here, we tested this prediction by examining how the brain shares the control between the dominant and non-dominant arms during bimanual reaching and postural stabilization. Participants reached with both hands, which were tied together by a stiff virtual spring, to a target surrounded by an unstable repulsive force field. If the brain exploits each hemisphere's specialization, then the dominant arm should be responsible for acceleration early in the movement, and the non-dominant arm will be the prime actor at the end when holding steady against the force field. The power grasp force, which signifies the postural stability of each arm, peaked at movement termination but was equally large in both arms. Furthermore, the brain predominantly used the arm that could use the stronger flexor muscles to mainly accelerate the movement. These results point to the brain flexibly allocating the control to each arm according to the task goal without adhering to a strict specialization scheme.
Collapse
Affiliation(s)
- Atsushi Takagi
- NTT Communication Science Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan.
| | - Makio Kashino
- NTT Communication Science Laboratories, 3-1 Morinosato Wakamiya, Atsugi, Kanagawa, 243-0198, Japan
| |
Collapse
|
5
|
Yamada M, Barclift AD, Raisbeck LD. The Effect of Motor Imagery Practice on an Aiming Task with Attentional Focus Cues. J Mot Behav 2024; 56:519-532. [PMID: 38735557 DOI: 10.1080/00222895.2024.2350721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 03/14/2024] [Accepted: 04/29/2024] [Indexed: 05/14/2024]
Abstract
When one directs their attention to an intended effect (external focus of attention, EFOA), motor performance is generally better than when one directs their attention to their own body movements (internal focus of attention, IFOA). However, the effect of attentional focus is unclear when a skill is practiced through motor imagery (MI) in the absence of physical trials. Participants (N = 30, M = 22.33 yrs, SD = 2.69) in the present study completed three physical trials of a reciprocal aiming task before and (24-h) after MI practice. During MI practice, the EFOA (n = 15) and IFOA (n = 15) groups mentally practiced the task with no physical practice with EFOA-MI or IFOA-MI, respectively, for three consecutive days. Our results showed that both groups significantly improved in accuracy (F1,28 = 6.49, p = .017), supporting the benefit of MI in motor skill acquisition. However, a significant effect of attentional focus was not observed (F1.,28 = 0.445, p = 0.51). We discussed two potential explanations: EFOA/IFOA requires physical trials to affect performance, or individuals must use both EFOA and IFOA in the process of creating imagery of the environment and movements, which may obscure the effect of EFOA and IFOA.
Collapse
Affiliation(s)
- Masahiro Yamada
- Moss Rehabilitation Research Institute, Neuroplasticity & Motor Behavior Lab, Elkins Park, Pennsylvania, USA
- The University of North Carolina at Greensboro, Greensboro, North Carolina, USA
- Department of Kinesiology, Whittier College, Whittier, California, USA
| | - Amanda D Barclift
- The University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| | - Louisa D Raisbeck
- The University of North Carolina at Greensboro, Greensboro, North Carolina, USA
| |
Collapse
|
6
|
Janeiro Valenciano P, Emiliano Castan V, Henrique Martins Monteiro P, Augusto Teixeira L. Symmetric unipedal balance in quiet stance and dynamic tasks in older individuals. Brain Res 2024; 1830:148850. [PMID: 38460718 DOI: 10.1016/j.brainres.2024.148850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 02/28/2024] [Accepted: 03/05/2024] [Indexed: 03/11/2024]
Abstract
Previous evidence of increased difference of muscular strength between the dominant and non-dominant legs in older adults suggests the possibility of dissimilar balance control between the legs (between-leg asymmetry) associated with aging. In the current investigation, we evaluated between-leg asymmetries in older adults when performing quiet and dynamic balance tasks. Fifty-two physically active and healthy older adults within the age range of 60 to 80 years were recruited. Participants performed balance tasks in unipedal stance, including quiet standing and cyclic sway (rhythmic oscillation) of the non-supporting leg in the anteroposterior or mediolateral directions, producing foot displacements with amplitudes of 20 cm paced in 1 Hz through a metronome. Body balance was evaluated through trunk accelerometry, by using the sensors embedded into a smartphone fixed at the height of the 10th-12th thoracic spines. Analysis revealed lack of significant differences in balance control between the legs either when comparing the right versus left or the preferred versus non-preferred legs, regardless of whether they were performing quiet stance or dynamic tasks. Further examination of the data showed high between-leg correlation coefficients (rs range: 0.71-0.84) across all tasks. Then, our results indicated symmetric and associated between-leg balance control in the examined older adults.
Collapse
Affiliation(s)
- Paola Janeiro Valenciano
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | - Victória Emiliano Castan
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| | | | - Luis Augusto Teixeira
- Human Motor Systems Laboratory, School of Physical Education and Sport, University of São Paulo, São Paulo, Brazil.
| |
Collapse
|
7
|
Chen J, Jiang S, Lu B, Liao J, Yang Z, Li H, Pei H, Li J, Iturria-Medina Y, Yao D, Luo C. The role of the primary sensorimotor system in generalized epilepsy: Evidence from the cerebello-cerebral functional integration. Hum Brain Mapp 2024; 45:e26551. [PMID: 38063289 PMCID: PMC10789200 DOI: 10.1002/hbm.26551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 11/12/2023] [Accepted: 11/16/2023] [Indexed: 01/16/2024] Open
Abstract
The interaction between cerebellum and cerebrum participates widely in function from motor processing to high-level cognitive and affective processing. Because of the motor symptom, idiopathic generalized epilepsy (IGE) patients with generalized tonic-clonic seizure have been recognized to associate with motor abnormalities, but the functional interaction in the cerebello-cerebral circuit is still poorly understood. Resting-state functional magnetic resonance imaging data were collected for 101 IGE patients and 106 healthy controls. The voxel-based functional connectivity (FC) between cerebral cortex and the cerebellum was contacted. The functional gradient and independent components analysis were applied to evaluate cerebello-cerebral functional integration on the voxel-based FC. Cerebellar motor components were further linked to cerebellar gradient. Results revealed cerebellar motor functional modules were closely related to cerebral motor components. The altered mapping of cerebral motor components to cerebellum was observed in motor module in patients with IGE. In addition, patients also showed compression in cerebello-cerebral functional gradient between motor and cognition modules. Interestingly, the contribution of the motor components to the gradient was unbalanced between bilateral primary sensorimotor components in patients: the increase was observed in cerebellar cognitive module for the dominant hemisphere primary sensorimotor, but the decrease was found in the cerebellar cognitive module for the nondominant hemisphere primary sensorimotor. The present findings suggest that the cerebral primary motor system affects the hierarchical architecture of cerebellum, and substantially contributes to the functional integration evidence to understand the motor functional abnormality in IGE patients.
Collapse
Affiliation(s)
- Junxia Chen
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Sisi Jiang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Bao Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jiangyan Liao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Zhihuan Yang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Hechun Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Haonan Pei
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Jianfu Li
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
| | - Yasser Iturria-Medina
- McConnell Brain Imaging Center, Montreal Neurological Institute, McGill University, Quebec, Canada
| | - Dezhong Yao
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, P. R. China
| | - Cheng Luo
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Lab for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, P. R. China
- High-Field Magnetic Resonance Brain Imaging Key Laboratory of Sichuan Province, Center for Information in Medicine, University of Electronic Science and Technology of China, Chengdu, P. R. China
- Research Unit of NeuroInformation, Chinese Academy of Medical Sciences, Chengdu, P. R. China
| |
Collapse
|
8
|
Nazarahari M, Ajami S, Jeon S, Arami A. Visual feedback decoding during bimanual circle drawing. J Neurophysiol 2023; 130:1200-1213. [PMID: 37820018 DOI: 10.1152/jn.00372.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/13/2023] Open
Abstract
The between-hand interference during bimanual tasks is a consequence of the connection between the neural controllers of movement. Previous studies showed the existence of an asymmetric between-hand interference (caused by neural cross talk) when different kinematics plans were to be executed by each hand or when only one was visually guided and received perturbed visual feedback. Here, in continuous bimanual circle drawing tasks, we investigated if the central nervous system (CNS) can benefit from visual composite feedback, i.e., a weighted sum of hands' positions presented for the visually guided hand, to control the nonvisible hand. Our results demonstrated improvement in the nonvisible nondominant hand (NDH) performance in the presence of the composite feedback. When NDH was visually guided, the dominant hand's (DH) performance during asymmetric drawing deteriorated, whereas its performance during symmetric drawing improved. This indicates that the CNS's ability to leverage composite feedback, which can be the result of decoding the nonvisible hand positional information from the composite feedback, is task-dependent and can be asymmetric. Also, the nonvisible hand's performance degraded when DH or NDH was visually guided with amplified error feedback. The results of the amplified feedback condition do not strongly support the asymmetry of the interference during asymmetric circle drawing. Comparing muscle activations in the asymmetric experiment, we concluded that the observed kinematic differences were not due to alternation in muscle co-contractions.NEW & NOTEWORTHY Many daily activities involve bimanual coordination while simultaneous movement of the hands may result in interference with their movements. Here, we studied whether the central nervous system could use the relevant information in composite feedback, i.e., a weighted sum of positional information of nonvisible and visible hands, to improve the movement of the nonvisible hand. Our results suggest the ability to decode and associate task-relevant information from the composite feedback.
Collapse
Affiliation(s)
- Milad Nazarahari
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Sahand Ajami
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Soo Jeon
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
| | - Arash Arami
- Department of Mechanical and Mechatronics Engineering, University of Waterloo, Waterloo, Ontario, Canada
- KITE Institute, University Health Network (UHN), Toronto, Ontario, Canada
| |
Collapse
|
9
|
Pena-Perez N, Mutalib SA, Eden J, Farkhatdinov I, Burdet E. The Impact of Stiffness in Bimanual Versus Dyadic Interactions Requiring Force Exchange. IEEE TRANSACTIONS ON HAPTICS 2023; 16:609-615. [PMID: 37167040 DOI: 10.1109/toh.2023.3274584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
During daily activities, humans routinely manipulate objects bimanually or with the help of a partner. This work explored how bimanual and dyadic coordination modes are impacted by the object's stiffness, which conditions inter-limb haptic communication. For this, we recruited 20 healthy participants who performed a virtual task inspired by object handling, where we looked at the initiation of force exchange and its continued maintenance while tracking. Our findings suggest that while individuals and dyads displayed different motor behaviours, which may stem from the dyad members' need to estimate their partner's actions, they exhibited similar tracking accuracy. For both coordination modes, increased stiffness resulted in better tracking accuracy and more correlated motions, but required a larger effort through increased average torque. These results suggest that stiffness may be a key consideration in applications such as rehabilitation, where bimanual or external physical assistance is often provided.
Collapse
|
10
|
Beyaz O, Eyraud V, Demirhan G, Akpinar S, Przybyla A. Effects of Short-Term Novice Archery Training on Reaching Movement Performance and Interlimb Asymmetries. J Mot Behav 2023; 56:78-90. [PMID: 37586703 DOI: 10.1080/00222895.2023.2245352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/26/2023] [Accepted: 07/26/2023] [Indexed: 08/18/2023]
Abstract
Previous studies showed numerous evidence for the interlimb asymmetries in motor performance during arm reaching movements. Furthermore, these interlimb asymmetries have been shown to associate with spatial patterns of hand selection behavior. Importantly, these interlimb asymmetries can be modified systematically by occlusion of visual feedback, or a long-term sports training. In this study, we asked about the effects of a short-term training on interlimb asymmetries. Eighteen healthy young participants underwent a 12-week novice traditional archery training (TAT). Their unimanual dominant and nondominant arm reaching movement performance was assessed before and after TAT. We found that movement accuracy, movement precision, and movement efficiency in the experimental group have all improved significantly as a result of TAT. These improvements were comparable across both arms, thus the interlimb differences in movement performance were not affected by the short-term TAT and remained similar. These results suggest that while short-term training may contribute positively to reaching performance, it is unlikely to have a significant impact on the differences observed between the dominant and nondominant arms. This unique characteristics of dominant and nondominant arm should be taken into consideration when developing targeted sports and rehabilitation programs for athletes or individuals with acute or chronic motor deficits.
Collapse
Affiliation(s)
- Ozkan Beyaz
- Department of Physical Education and Sports, Faculty of Sport Science, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Virginie Eyraud
- Department of Physical Therapy, University of North Georgia, Dahlonega, Georgia, USA
| | - Gıyasettin Demirhan
- Department of Physical Education and Sports, Faculty of Sport Science, Hacettepe University, Ankara, Turkey
| | - Selcuk Akpinar
- Department of Physical Education and Sports, Faculty of Sport Science, Nevşehir Hacı Bektaş Veli University, Nevşehir, Turkey
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, Georgia, USA
| |
Collapse
|
11
|
Bernier PM, Puygrenier A, Danion FR. Concurrent Implicit Adaptation to Multiple Opposite Perturbations. eNeuro 2023; 10:ENEURO.0066-23.2023. [PMID: 37468329 PMCID: PMC10408782 DOI: 10.1523/eneuro.0066-23.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/19/2023] [Accepted: 07/17/2023] [Indexed: 07/21/2023] Open
Abstract
Simultaneous adaptation to opposite visuomotor perturbations is known to be difficult. It has been shown to be possible only in situations where the two tasks are associated with different contexts, being either a different colored background, a different area of workspace, or a different follow-through movement. However, many of these elements evoke explicit mechanisms that could contribute to storing separate (modular) memories. It remains to be shown whether simultaneous adaptation to multiple perturbations is possible when they are introduced in a fully implicit manner. Here, we sought to test this possibility using a visuomotor perturbation small enough to eliminate explicit awareness. Participants (N = 25) performed center-out reaching movements with a joystick to five targets located 72° apart. Depending on the target, visual feedback of cursor position was either veridical (one target) or could be rotated by +5 or -5° (two targets each). After 300 trials of adaptation (60 to each target), results revealed that participants were able to fully compensate for each of the imposed rotations. Moreover, when veridical visual feedback was restored, participants exhibited after-effects that were consistent with the rotations applied at each target. Questionnaires collected immediately after the experiment confirmed that none of the participants were aware of the perturbations. These results speak for the existence of implicit processes that can smoothly handle small and opposite visual perturbations when these are associated with distinct target locations.
Collapse
Affiliation(s)
- Pierre-Michel Bernier
- Département de Kinanthropologie, Université de Sherbrooke, Sherbrooke, Québec, J1K 2R1, Canada
| | - Alice Puygrenier
- Centre National de la Recherche Scientifique, Université de Poitiers, Université de Tours, Centre de Recherches sur la Cognition et l'Apprentissage, Unité Mixte de Recherche 7295, 86073 Poitiers Cedex 9, France
| | - Frederic R Danion
- Centre National de la Recherche Scientifique, Université de Poitiers, Université de Tours, Centre de Recherches sur la Cognition et l'Apprentissage, Unité Mixte de Recherche 7295, 86073 Poitiers Cedex 9, France
| |
Collapse
|
12
|
Steinbach MJ, Campbell RW, DeVore BB, Harrison DW. Laterality in Parkinson's disease: A neuropsychological review. APPLIED NEUROPSYCHOLOGY. ADULT 2023; 30:126-140. [PMID: 33844619 DOI: 10.1080/23279095.2021.1907392] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Laterality of motor symptom onset in Parkinson's disease is both well-known and under-appreciated. Treatment of disorders that have asymmetric pathological features, such as stroke and epilepsy, demonstrate the importance of incorporating hemispheric lateralization and specialization into therapy and care planning. These practices could theoretically extend to Parkinson's disease, providing increased diagnostic accuracy and improved treatment outcomes. Additionally, while motor symptoms have generally received the majority of attention, non-motor features (e.g., autonomic dysfunction) also decrease quality of life and are influenced by asymmetrical neurodegeneration. Due to the laterality of cognitive and behavioral processes in the two brain hemispheres, analysis of hemibody side of onset can potentially give insight into expected symptom profile of the patient and allow for increased predictive accuracy of disease progression and outcome, thus opening the door to personalized and improved therapy in treating Parkinson's disease patients. This review discusses motor and non-motor symptoms (namely autonomic, sensory, emotional, and cognitive dysfunction) of Parkinson's disease in respect to hemispheric lateralization from a theoretical perspective in hopes of providing a framework for future research and personalized treatment.
Collapse
|
13
|
Dexheimer B, Przybyla A, Murphy TE, Akpinar S, Sainburg R. Reaction time asymmetries provide insight into mechanisms underlying dominant and non-dominant hand selection. Exp Brain Res 2022; 240:2791-2802. [PMID: 36066589 PMCID: PMC10130955 DOI: 10.1007/s00221-022-06451-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 08/24/2022] [Indexed: 11/24/2022]
Abstract
Handedness is often thought of as a hand "preference" for specific tasks or components of bimanual tasks. Nevertheless, hand selection decisions depend on many factors beyond hand dominance. While these decisions are likely influenced by which hand might show performance advantages for the particular task and conditions, there also appears to be a bias toward the dominant hand, regardless of performance advantage. This study examined the impact of hand selection decisions and workspace location on reaction time and movement quality. Twenty-six neurologically intact participants performed targeted reaching across the horizontal workspace in a 2D virtual reality environment, and we compared reaction time across two groups: those selecting which hand to use on a trial-by-trial basis (termed the choice group) and those performing the task with a preassigned hand (the no-choice group). Along with reaction time, we also compared reach performance for each group across two ipsilateral workspaces: medial and lateral. We observed a significant difference in reaction time between the hands in the choice group, regardless of workspace. In contrast, both hands showed shorter but similar reaction times and differences between the lateral and medial workspaces in the no-choice group. We conclude that the shorter reaction times of the dominant hand under choice conditions may be due to dominant hand bias in the selection process that is not dependent upon interlimb performance differences.
Collapse
Affiliation(s)
- Brooke Dexheimer
- Department of Kinesiology, The Pennsylvania State University, PA, 16802, University Park, USA.
| | - Andrzej Przybyla
- Department of Physical Therapy, University of North Georgia, Dahlonega, GA, USA
| | - Terrence E Murphy
- Department of Public Health Sciences, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Selcuk Akpinar
- Department of Physical Education and Sport, Nevsehir Bektas Veli University, Nevsehir, Turkey
| | - Robert Sainburg
- Department of Kinesiology, The Pennsylvania State University, PA, 16802, University Park, USA.,Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, USA
| |
Collapse
|
14
|
A Comparison of Electromyographic Inter-Limb Asymmetry During a Standard Versus a Sling Shot Assisted Bench Press Exercise. J Hum Kinet 2022; 83:223-234. [PMID: 36157940 PMCID: PMC9465753 DOI: 10.2478/hukin-2022-0084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The objective of this study was to compare peak surface electromyography (sEMG) activity of selected muscles along with inter-limb asymmetries between a control (CONT) and a Sling shot assisted (SS) bench press exercise. Ten resistance-trained males with at least three-year experience in resistance training (22.2 ± 1.9 years, 88.7 ± 11.2 kg, 179.5 ± 4.1 cm, bench press one-repetition maximum (1RM) = 127.3 ± 25.9 kg) performed the flat bench press exercise under two conditions at selected loads (85% and 100% of 1RM assessed without the SS). Peak sEMG amplitude of triceps brachii, pectoralis major, and anterior deltoid was recorded for the dominant and the non-dominant side of the body during each attempt. The comparison between the dominant and the non-dominant side was carried out using the limb symmetry index (LSI(%) = (2*(XR - XL)/(XR + XL))*100%) where XR = values of the right side and XL = values of the left side. There was a main effect of condition (p = 0.004; η2 = 0.64) and the load (p = 0.004; η2 = 0.63) for the triceps brachii LSI in parallel with a main effect of condition (p = 0.003; η2 = 0.42) for the anterior deltoid LSI. Post hoc analysis for the main effect of condition showed significant differences in the LSI between the CONT and SS conditions for the triceps brachii (p = 0.003; 1.10% vs. -8.78%) as well as for the anterior deltoid muscles (p = 0.03; 12.91% vs. 9.23%). The results indicate that the assistance of the Sling shot significantly affects the sEMG activity pattern on both the dominant and non-dominant sides of the body while influencing inter-limb asymmetries.
Collapse
|
15
|
Coudière A, Fernandez E, de Rugy A, Danion FR. Asymmetrical transfer of adaptation between reaching and tracking: implications for feedforward and feedback processes. J Neurophysiol 2022; 128:480-493. [PMID: 35858120 DOI: 10.1152/jn.00547.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Reaching and manual tracking are two very common tasks for studying human sensorimotor processes. Although these motor tasks rely both on feedforward and feedback processes, emphasis is more on feedforward processes for reaching, and more on feedback processes for tracking. The extent to which feedforward and feedback processes are interrelated when being updated is not settled yet. Here, using reaching and tracking as proxies, we examined the bidirectional relationship between the update of feedforward and feedback processes. Forty right-handed participants were asked to move a joystick so as to either track a target moving rather unpredictably (pursuit tracking) or to make fast pointing movements toward a static target (center-out reaching task). Visuomotor adaptation was elicited by introducing a 45° rotation between the joystick motion and the cursor motion. Half of the participants adapted to rotation first via reaching movements, and then with pursuit tracking, while the other half performed both tasks in opposite order. Group comparisons revealed a strong asymmetrical transfer of adaptation between tasks. Namely, although nearly complete transfer of adaptation was observed from reaching to tracking, only modest transfer was found from tracking to reaching. A control experiment (N=10) revealed that making target motion fully predictable did not impact the latter finding. One possible interpretation is that the update of feedforward processes contributes directly to feedback processes, but the update of feedback processes engaged in tracking can be performed in isolation. These results suggest that reaching movements are supported by broader (i.e. more universal) mechanisms than tracking ones.
Collapse
Affiliation(s)
- Adrien Coudière
- University of Poitiers, CNRS, Center for Research on Cognition and Learning (CERCA) UMR 7295, Poitiers, France
| | - Enzo Fernandez
- University of Poitiers, CNRS, Center for Research on Cognition and Learning (CERCA) UMR 7295, Poitiers, France.,Université de Bordeaux, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France
| | - Aymar de Rugy
- Université de Bordeaux, Centre National de la Recherche Scientifique, Institut de Neurosciences Cognitives et Intégratives d'Aquitaine, UMR 5287, Bordeaux, France.,Centre for Sensorimotor Performance, School of Human Movement and Nutrition Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Frederic R Danion
- University of Poitiers, CNRS, Center for Research on Cognition and Learning (CERCA) UMR 7295, Poitiers, France
| |
Collapse
|
16
|
Wriessnegger SC, Unterhauser K, Bauernfeind G. Limb Preference and Skill Level Dependence During the Imagery of a Whole-Body Movement: A Functional Near Infrared Spectroscopy Study. Front Hum Neurosci 2022; 16:900834. [PMID: 35734351 PMCID: PMC9207184 DOI: 10.3389/fnhum.2022.900834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/09/2022] [Indexed: 12/01/2022] Open
Abstract
In the past years motor imagery (MI) turned out to be also an innovative and effective tool for motor learning and improvement of sports performance. Whereas many studies investigating sports MI focusing on upper or lower limbs involvement, knowledge about involved neural structures during whole-body movements is still limited. In the present study we investigated brain activity of climbers during a kinesthetic motor imagery (KMI) climbing task with different difficulties by means of functional near infrared spectroscopy (fNIRS). Twenty healthy participants were split into two groups according to their climbing skill level. The aim of the current study is investigating neural correlates of a whole-body sports MI task with an additional focus on skill level dependency. Climbing experts and non-experts imagined bouldering an "easy" and "difficult" route from a first-person perspective while hemodynamic responses were recorded simultaneously. We found significant differences between the two climbing routes, easy and difficult within participants as well as between the two groups of different climbing skill levels. Overall beginners showed increased hemodynamic responses compared to experts in all defined regions of interest (ROI) supporting the claim of the neural efficiency hypothesis (NEH). Even though climbing is a complex, coordinated movement of upper and lower limbs we found a stronger activation focus of the upper limbs, especially of the dominant hand-area, while the foot area seems to be deactivated or inhibited simultaneously. Summarizing, these findings provide novel insights into brain activation during the imagery of a whole-body movement and its relation to climbing expertise.
Collapse
Affiliation(s)
| | - Kris Unterhauser
- Institute of Neural Engineering, Graz University of Technology, Graz, Austria
| | | |
Collapse
|
17
|
Revill KP, Barany DA, Vernon I, Rellick S, Caliban A, Tran J, Belagaje SR, Nahab F, Haut MW, Buetefisch CM. Evaluating the Abnormality of Bilateral Motor Cortex Activity in Subacute Stroke Patients Executing a Unimanual Motor Task With Increasing Demand on Precision. Front Neurol 2022; 13:836716. [PMID: 35693005 PMCID: PMC9174784 DOI: 10.3389/fneur.2022.836716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/22/2022] [Indexed: 12/02/2022] Open
Abstract
Abnormal contralesional M1 activity is consistently reported in patients with compromised upper limb and hand function after stroke. The underlying mechanisms and functional implications of this activity are not clear, which hampers the development of treatment strategies targeting this brain area. The goal of the present study was to determine the extent to which contralesional M1 activity can be explained by the demand of a motor task, given recent evidence for increasing ipsilateral M1 activity with increasing demand in healthy age-matched controls. We hypothesized that higher activity in contralesional M1 is related to greater demand on precision in a hand motor task. fMRI data were collected from 19 patients with ischemic stroke affecting hand function in the subacute recovery phase and 31 healthy, right-handed, age-matched controls. The hand motor task was designed to parametrically modulate the demand on movement precision. Electromyography data confirmed strictly unilateral task performance by all participants. Patients showed significant impairment relative to controls in their ability to perform the task in the fMRI scanner. However, patients and controls responded similarly to an increase in demand for precision, with better performance for larger targets and poorer performance for smaller targets. Patients did not show evidence of elevated ipsilesional or contralesional M1 blood oxygenation level-dependent (BOLD) activation relative to healthy controls and mean BOLD activation levels were not elevated for patients with poorer performance relative to patients with better task performance. While both patients and healthy controls showed demand-dependent increases in BOLD activation in both ipsilesional/contralateral and contralesional/ipsilateral hemispheres, patients with stroke were less likely to show evidence of a linear relationship between the demand on precision and BOLD activation in contralesional M1 than healthy controls. Taken together, the findings suggest that task demand affects the BOLD response in contralesional M1 in patients with stroke, though perhaps less strongly than in healthy controls. This has implications for the interpretation of reported abnormal bilateral M1 activation in patients with stroke because in addition to contralesional M1 reorganization processes it could be partially related to a response to the relatively higher demand of a motor task when completed by patients rather than by healthy controls.
Collapse
Affiliation(s)
- Kate Pirog Revill
- Department of Psychology, Emory University, Atlanta, GA, United States
| | - Deborah A. Barany
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Isabelle Vernon
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Stephanie Rellick
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Alexandra Caliban
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Julie Tran
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Samir R. Belagaje
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Fadi Nahab
- Department of Neurology, Emory University, Atlanta, GA, United States
| | - Marc W. Haut
- Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
- Department of Radiology, Rockefeller Neuroscience Institute, West Virginia University, Morgantown, WV, United States
| | - Cathrin M. Buetefisch
- Department of Neurology, Emory University, Atlanta, GA, United States
- Department of Rehabilitation Medicine, Emory University, Atlanta, GA, United States
- Department of Radiology, Emory University, Atlanta, GA, United States
- *Correspondence: Cathrin M. Buetefisch
| |
Collapse
|
18
|
Maenza C, Sainburg RL, Varghese R, Dexheimer B, Demers M, Bishop L, Jayasinghe SAL, Wagstaff DA, Winstein C. Ipsilesional arm training in severe stroke to improve functional independence (IPSI): phase II protocol. BMC Neurol 2022; 22:141. [PMID: 35413856 PMCID: PMC9002228 DOI: 10.1186/s12883-022-02643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 03/16/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously characterized hemisphere-specific motor control deficits in the ipsilesional, less-impaired arm of unilaterally lesioned stroke survivors. Our preliminary data indicate these deficits are substantial and functionally limiting in patients with severe paresis. METHODS We have designed an intervention ("IPSI") to remediate the hemisphere-specific deficits in the ipsilesional arm, using a virtual-reality platform, followed by manipulation training with a variety of real objects, designed to facilitate generalization and transfer to functional behaviors encountered in the natural environment. This is a 2-site (primary site - Penn State College of Medicine, secondary site - University of Southern California), two-group randomized intervention with an experimental group, which receives unilateral training of the ipsilesional arm throughout 3 one-hour sessions per week for 5 weeks, through our Virtual Reality and Manipulation Training (VRMT) protocol. Our control group receives a conventional intervention on the contralesional arm, 3 one-hour sessions per week for 5 weeks, guided by recently released practice guidelines for upper limb rehabilitation in adult stroke. The study aims to include a total of 120 stroke survivors (60 per group) whose stroke was in the territory of the middle cerebral artery (MCA) resulting in severe upper-extremity motor impairments. Outcome measures (Primary: Jebsen-Taylor Hand Function Test, Fugl-Meyer Assessment, Abilhand, Barthel Index) are assessed at five evaluation points: Baseline 1, Baseline 2, immediate post-intervention (primary endpoint), and 3-weeks (short-term retention) and 6-months post-intervention (long-term retention). We hypothesize that both groups will improve performance of the targeted arm, but that the ipsilesional arm remediation group will show greater improvements in functional independence. DISCUSSION The results of this study are expected to inform upper limb evaluation and treatment to consider ipsilesional arm function, as part of a comprehensive physical rehabilitation strategy that includes evaluation and remediation of both arms. TRIAL REGISTRATION This study is registered with ClinicalTrials.gov (Registration ID: NCT03634397 ; date of registration: 08/16/2018).
Collapse
Affiliation(s)
- Candice Maenza
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA. .,Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA.
| | - Robert L Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA.,Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
| | - Rini Varghese
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Brooke Dexheimer
- Department of Kinesiology, Pennsylvania State University, 27 Rec Hall, University Park, PA, 16802, USA
| | - Marika Demers
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Lauri Bishop
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Shanie A L Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA, 17033, USA
| | - David A Wagstaff
- Department of Human Development and Family Studies, Pennsylvania State University, 102 HHD Building, University Park, PA, 16802, USA
| | - Carolee Winstein
- Division of Biokinesiology and Physical Therapy, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA.,Department of Neurology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | | |
Collapse
|
19
|
Logue RN, Goldenkoff ER, Vesia M, Brown SH. Measuring hand sensory function and force control in older adults: Are current hand assessment tools enough? J Gerontol A Biol Sci Med Sci 2021; 77:1405-1412. [PMID: 34908115 DOI: 10.1093/gerona/glab368] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND The ability to grasp and manipulate objects is essential for performing activities of daily living. However, there is limited information regarding age-related behavioral differences in hand sensorimotor function due, in part, to the lack of assessment tools capable of measuring subtle but important differences in hand function. The purpose of this study was to demonstrate performance differences in submaximal force control and tactile pattern recognition in healthy older adults using two custom-designed sensorimotor assessment tools. METHODS Sensorimotor function was assessed in 13 healthy older adults (mean age 72.2 ±5.5y, range: 65-84y) and 13 young adults (mean age 20 ±1.4y, range: 19-23y). Clinical assessments included the Montreal Cognitive Assessment (MoCA), monofilament testing, maximum voluntary contraction (MVC), and Grooved Pegboard Test. Sensorimotor assessments included submaximal (5, 20% MVC) grip force step-tracking and tactile pattern recognition tasks. RESULTS Clinical assessments revealed no or minimal group differences in MVC, monofilament thresholds, and MoCA. However, sensorimotor assessments showed that older adults took longer to discriminate tactile patterns and had poorer accuracy than young adults. Older adults also produced submaximal forces less smoothly than young adults at the 20% force level while greater variability in force maintenance was seen at 5% but not 20% MVC. CONCLUSIONS These results demonstrate the ability to integrate higher-order tactile information and control low grip forces is impaired in older adults despite no differences in grip strength or cognition. These findings underscore the need for more sensitive evaluation methods that focus on sensorimotor ability reflective of daily activities.
Collapse
Affiliation(s)
- Rachel N Logue
- Motor Control Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elana R Goldenkoff
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Michael Vesia
- Brain Behavior Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Susan H Brown
- Motor Control Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
20
|
Salters D, Scharoun Benson SM. Hand preference for unimanual and bimanual tasks: Evidence from questionnaires and preferential reaching. Laterality 2021; 27:308-323. [PMID: 34658296 DOI: 10.1080/1357650x.2021.1990313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
The current research compared hand selection in a preferential reaching paradigm with unimanual (i.e., pick-up cup) and bimanual (pick-up cup and pour from pitcher) tasks. In addition, relationships between self-report, questionnaire-based hand preference (unimanual and bimanual) and patterns of hand selection were assessed. Data offer support for a division of labour between the hands in at the midline; however, bimanual selection otherwise reflects consideration of object proximity (i.e., location) and comfort (i.e., biomechanical constraints). When grasping cups in right space, the right-hand was used to stabilize the cup and left-hand to mobilize the pitcher, whereas the opposite pattern was observed in left-space. Unimanual hand selection was also driven by object location. Subsequent analyses revealed a relationship between unimanual measures, but not bimanual measures of hand preference. Overall, findings support the notion that questionnaire data are associated with hand preference for grasping to a certain extent; however, use of a comprehensive battery of assessments is recommended when assessing and/or predicting handedness.
Collapse
Affiliation(s)
- Danielle Salters
- Department of Kinesiology, University of Windsor, Windsor, Canada
| | | |
Collapse
|
21
|
Jayasinghe SAL, Maenza C, Good DC, Sainburg RL. Deficits in Performance on a Mechanically Coupled Asymmetrical Bilateral Task in Chronic Stroke Survivors with Mild Unilateral Paresis. Symmetry (Basel) 2021; 13:1366. [PMID: 38332947 PMCID: PMC10852351 DOI: 10.3390/sym13081366] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2024] Open
Abstract
Typical upper limb-mediated activities of daily living involve coordination of both arms, often requiring distributed contributions to mechanically coupled tasks, such as stabilizing a loaf of bread with one hand while slicing with the other. We sought to examine whether mild paresis in one arm results in deficits in performance on a bilateral mechanically coupled task. We designed a virtual reality-based task requiring one hand to stabilize against a spring load that varies with displacement of the other arm. We recruited 15 chronic stroke survivors with mild hemiparesis and 7 age-matched neurologically intact adults. We found that stroke survivors produced less linear reaching movements and larger initial direction errors compared to controls (p < 0.05), and that contralesional hand performance was less linear than that of ipsilesional hand. We found a hand × group interaction (p < 0.05) for peak acceleration of the stabilizing hand, such that the dominant right hand of controls stabilized less effectively than the nondominant left hand while stroke survivors showed no differences between the hands. Our results indicate that chronic stroke survivors with mild hemiparesis show significant deficits in reaching aspects of bilateral coordination, but no deficits in stabilizing against a movement-dependent spring load in this task.
Collapse
Affiliation(s)
- Shanie A. L. Jayasinghe
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Candice Maenza
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Kinesiology, Pennsylvania State University, State College, PA 16802, USA
| | - David C. Good
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
| | - Robert L. Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA 17033, USA
- Department of Kinesiology, Pennsylvania State University, State College, PA 16802, USA
| |
Collapse
|
22
|
van der Cruijsen J, Manoochehri M, Jonker ZD, Andrinopoulou ER, Frens MA, Ribbers GM, Schouten AC, Selles RW. Theta but not beta power is positively associated with better explicit motor task learning. Neuroimage 2021; 240:118373. [PMID: 34246767 DOI: 10.1016/j.neuroimage.2021.118373] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 11/26/2022] Open
Abstract
Neurophysiologic correlates of motor learning that can be monitored during neurorehabilitation interventions can facilitate the development of more effective learning methods. Previous studies have focused on the role of the beta band (14-30 Hz) because of its clear response during motor activity. However, it is difficult to discriminate between beta activity related to learning a movement and performing the movement. In this study, we analysed differences in the electroencephalography (EEG) power spectra of complex and simple explicit sequential motor tasks in healthy young subjects. The complex motor task (CMT) allowed EEG measurement related to motor learning. In contrast, the simple motor task (SMT) made it possible to control for EEG activity associated with performing the movement without significant motor learning. Source reconstruction of the EEG revealed task-related activity from 5 clusters covering both primary motor cortices (M1) and 3 clusters localised to different parts of the cingulate cortex (CC). We found no association between M1 beta power and learning, but the CMT produced stronger bilateral beta suppression compared to the SMT. However, there was a positive association between contralateral M1 theta (5-8 Hz) and alpha (8-12 Hz) power and motor learning, and theta and alpha power in the posterior mid-CC and posterior CC were positively associated with greater motor learning. These findings suggest that the theta and alpha bands are more related to motor learning than the beta band, which might merely relate to the level of perceived difficulty during learning.
Collapse
Affiliation(s)
- Joris van der Cruijsen
- Erasmus MC, University Medical Center Rotterdam, Department of Rehabilitation Medicine, 3015 GD Rotterdam, Netherlands.
| | - Mana Manoochehri
- Delft University of Technology, Department of Biomechanical Engineering, 2628 DS Delft, Netherlands
| | - Zeb D Jonker
- Erasmus MC, University Medical Center Rotterdam, Department of Rehabilitation Medicine, 3015 GD Rotterdam, Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Neuroscience, 3015 GD Rotterdam, Netherlands; Rijndam Rehabilitation Center, 3015 LJ Rotterdam, Netherlands
| | | | - Maarten A Frens
- Erasmus MC, University Medical Center Rotterdam, Department of Neuroscience, 3015 GD Rotterdam, Netherlands
| | - Gerard M Ribbers
- Erasmus MC, University Medical Center Rotterdam, Department of Rehabilitation Medicine, 3015 GD Rotterdam, Netherlands; Rijndam Rehabilitation Center, 3015 LJ Rotterdam, Netherlands
| | - Alfred C Schouten
- Delft University of Technology, Department of Biomechanical Engineering, 2628 DS Delft, Netherlands; University of Twente, Department of Biomechanical Engineering, 7522 NB Enschede, Netherlands
| | - Ruud W Selles
- Erasmus MC, University Medical Center Rotterdam, Department of Rehabilitation Medicine, 3015 GD Rotterdam, Netherlands; Erasmus MC, University Medical Center Rotterdam, Department of Plastic and Reconstructive Surgery and Hand Surgery, 3015 GD Rotterdam, Netherlands
| |
Collapse
|
23
|
Bobrova EV, Reshetnikova VV, Vershinina EA, Grishin AA, Bobrov PD, Frolov AA, Gerasimenko YP. Success of Hand Movement Imagination Depends on Personality Traits, Brain Asymmetry, and Degree of Handedness. Brain Sci 2021; 11:853. [PMID: 34202413 PMCID: PMC8301954 DOI: 10.3390/brainsci11070853] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 12/05/2022] Open
Abstract
Brain-computer interfaces (BCIs), based on motor imagery, are increasingly used in neurorehabilitation. However, some people cannot control BCI, predictors of this are the features of brain activity and personality traits. It is not known whether the success of BCI control is related to interhemispheric asymmetry. The study was conducted on 44 BCI-naive subjects and included one BCI session, EEG-analysis, 16PF Cattell Questionnaire, estimation of latent left-handedness, and of subjective complexity of real and imagery movements. The success of brain states recognition during imagination of left hand (LH) movement compared to the rest is higher in reserved, practical, skeptical, and not very sociable individuals. Extraversion, liveliness, and dominance are significant for the imagination of right hand (RH) movements in "pure" right-handers, and sensitivity in latent left-handers. Subjective complexity of real LH and of imagery RH movements correlates with the success of brain states recognition in the imagination of movement of LH compared to RH and depends on the level of handedness. Thus, the level of handedness is the factor influencing the success of BCI control. The data are supposed to be connected with hemispheric differences in motor control, lateralization of dopamine, and may be important for rehabilitation of patients after a stroke.
Collapse
Affiliation(s)
- Elena V. Bobrova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Varvara V. Reshetnikova
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Elena A. Vershinina
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Alexander A. Grishin
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
| | - Pavel D. Bobrov
- Institute of Translational Medicine of Pirogov of Russian National Research Medical University, 117997 Moscow, Russia; (P.D.B.); (A.A.F.)
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia
| | - Alexander A. Frolov
- Institute of Translational Medicine of Pirogov of Russian National Research Medical University, 117997 Moscow, Russia; (P.D.B.); (A.A.F.)
- Institute of Higher Nervous Activity and Neurophysiology of the Russian Academy of Sciences, 117485 Moscow, Russia
| | - Yury P. Gerasimenko
- Pavlov Institute of Physiology of the Russian Academy of Sciences, 199034 Saint-Petersburg, Russia; (V.V.R.); (E.A.V.); (A.A.G.); (Y.P.G.)
- Department of Physiology and Biophysics, University of Louisville, Louisville, KY 40292, USA
- Kentucky Spinal Cord Injury Research Center, Frazier Rehab Institute, University of Louisville, UofL Health, Louisville, KY 40202, USA
| |
Collapse
|
24
|
Bagesteiro LB, Lima KO, Wang J. Interlimb differences in visuomotor and dynamic adaptation during targeted reaching in children. Hum Mov Sci 2021; 77:102788. [PMID: 33798930 DOI: 10.1016/j.humov.2021.102788] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/11/2021] [Accepted: 03/24/2021] [Indexed: 11/17/2022]
Abstract
While a number of studies have focused on movement (a)symmetries between the arms in adults, less is known about movement asymmetries in typically developing children. The goal of this study was to examine interlimb differences in children when adapting to novel visuomotor and dynamic conditions while performing a center-out reaching task. We tested 13 right-handed children aged 9-11 years old. Prior to movement, one of eight targets arranged radially around the start position was randomly displayed. Movements were made either with the right (dominant) arm or the left (nondominant) arm. The children participated in two experiments separated by at least one week. In one experiment, subjects were exposed to a rotated visual display (30° about the start circle); and in the other, a 1 kg mass (attached eccentrically to the forearm axis). Each experiment consisted of three blocks: pre-exposure, exposure and post-exposure. Three measures of task performance were calculated from hand trajectory data: hand-path deviation from the straight target line, direction error at peak velocity and final position error. Results showed that during visuomotor adaptation, no interlimb differences were observed for any of the three measures. During dynamic adaptation, however, a significant difference between the arms was observed at the first cycle during dynamic adaptation. With regard to the aftereffects observed during the post-exposure block, direction error data indicate considerably large aftereffects for both arms during visuomotor adaptation; and there was a significant difference between the arms, resulting in substantially larger aftereffects for the right arm. Similarly, dynamic adaptation results also showed a significant difference between the arms; and post hoc analyses indicated that aftereffects were present only for the right arm. Collectively, these findings indicate that the dominant arm advantage for developing an internal model associated with a novel visuomotor or dynamic transform, as previously shown in young adults, may already be apparent at 9 to 11-year old children.
Collapse
Affiliation(s)
- Leia B Bagesteiro
- Department of Kinesiology, San Francisco State University, San Francisco, CA 94132, USA.
| | - Karina O Lima
- Universidade Federal do ABC, Santo Andre, SP, 09210580, Brazil
| | - Jinsung Wang
- Department of Kinesiology, University of Wisconsin - Milwaukee, Milwaukee, WI, 53151, USA
| |
Collapse
|
25
|
Maenza C, Wagstaff DA, Varghese R, Winstein C, Good DC, Sainburg RL. Remedial Training of the Less-Impaired Arm in Chronic Stroke Survivors With Moderate to Severe Upper-Extremity Paresis Improves Functional Independence: A Pilot Study. Front Hum Neurosci 2021; 15:645714. [PMID: 33776672 PMCID: PMC7994265 DOI: 10.3389/fnhum.2021.645714] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 02/23/2021] [Indexed: 01/22/2023] Open
Abstract
The ipsilesional arm of stroke patients often has functionally limiting deficits in motor control and dexterity that depend on the side of the brain that is lesioned and that increase with the severity of paretic arm impairment. However, remediation of the ipsilesional arm has yet to be integrated into the usual standard of care for upper limb rehabilitation in stroke, largely due to a lack of translational research examining the effects of ipsilesional-arm intervention. We now ask whether ipsilesional-arm training, tailored to the hemisphere-specific nature of ipsilesional-arm motor deficits in participants with moderate to severe contralesional paresis, improves ipsilesional arm performance and generalizes to improve functional independence. We assessed the effects of this intervention on ipsilesional arm unilateral performance [Jebsen–Taylor Hand Function Test (JHFT)], ipsilesional grip strength, contralesional arm impairment level [Fugl–Meyer Assessment (FM)], and functional independence [Functional independence measure (FIM)] (N = 13). Intervention occurred over a 3 week period for 1.5 h/session, three times each week. All sessions included virtual reality tasks that targeted the specific motor control deficits associated with either left or right hemisphere damage, followed by graded dexterity training in real-world tasks. We also exposed participants to 3 weeks of sham training to control for the non-specific effects of therapy visits and interactions. We conducted five test-sessions: two pre-tests and three post-tests. Our results indicate substantial improvements in the less-impaired arm performance, without detriment to the paretic arm that transferred to improved functional independence in all three posttests, indicating durability of training effects for at least 3 weeks. We provide evidence for establishing the basis of a rehabilitation approach that includes evaluation and remediation of the ipsilesional arm in moderately to severely impaired stroke survivors. This study was originally a crossover design; however, we were unable to complete the second arm of the study due to the COVID-19 pandemic. We report the results from the first arm of the planned design as a longitudinal study.
Collapse
Affiliation(s)
- Candice Maenza
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Kinesiology, Pennsylvania State University, State College, PA, United States
| | - David A Wagstaff
- Department of Human Development and Family Studies, Pennsylvania State University, State College, PA, United States
| | - Rini Varghese
- Department of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - Carolee Winstein
- Department of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, CA, United States
| | - David C Good
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, United States
| | - Robert L Sainburg
- Department of Neurology, Pennsylvania State University College of Medicine, Hershey, PA, United States.,Department of Kinesiology, Pennsylvania State University, State College, PA, United States
| |
Collapse
|
26
|
Marcori AJ, Teixeira LA, Dascal JB, Okazaki VHA. Are the Predictions of the Dynamic Dominance Model of Laterality Applicable to Children? Dev Neuropsychol 2020; 45:496-505. [PMID: 33203247 DOI: 10.1080/87565641.2020.1849220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
According to the dynamic dominance model, the left cerebral hemisphere is specialized for the control of intersegmental dynamics and the right hemisphere for impedance control. Our aim was to test predictions from the dynamic dominance model in children by comparing performance between the right (preferred) and left hands in aiming. Three groups were compared: 4-7, 8-11, and 18-38 years old. Results showed higher movement linearity in the performance with the right hand in all age groups (P < .01), while initial directional error and endpoint accuracy were equivalent between hands. These results provided partial support for the dynamic dominance model.
Collapse
Affiliation(s)
- Alexandre Jehan Marcori
- School of Physical Education and Sport, Human Motor Systems Laboratory, University of São Paulo , São Paulo, Brazil
| | - Luis Augusto Teixeira
- School of Physical Education and Sport, Human Motor Systems Laboratory, University of São Paulo , São Paulo, Brazil
| | - Juliana Bayeux Dascal
- Center of Physical Education and Sport, Motor Neuroscience Research Group, Londrina State University , Londrina, Brazil
| | - Victor Hugo Alves Okazaki
- Center of Physical Education and Sport, Motor Neuroscience Research Group, Londrina State University , Londrina, Brazil
| |
Collapse
|
27
|
Boehm JR, Fey NP, Majewicz A. Inherent Kinematic Features of Dynamic Bimanual Path Following Tasks. IEEE TRANSACTIONS ON HUMAN-MACHINE SYSTEMS 2020; 50:613-622. [PMID: 36238926 PMCID: PMC9555814 DOI: 10.1109/thms.2020.3016084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bimanual coordination is critical in many robotic and haptic systems, such as surgical robots and rehabilitation robots. While these systems often incorporate two robotic manipulators for each limb, there may be a missed opportunity to leverage overarching models of human bimanual coordination to improve the way in which the robotic manipulators are controlled and respond to the dynamic human operator. In this paper, we study the influences of several bimanual motion factors (e.g., symmetry and direction) on kinematic human joint-space features and performance outcome task-space features in a user study with eleven subjects and two haptic devices. Additionally, we evaluated the ability to use joint-space features to classify types of bimanual movement, showing the potential for a robotic system to predict how users coordinate their limbs. Three classifiers: (1) likelihood ratio, (2) k-nearest neighbor, and (3) support vector machine, were evaluated for classification accuracy in regards to the factor of number of targets. Likelihood ratio resulted in an accuracy of 79.6% with the majority of correct predictions occurring immediately at the start of movement. The task-space performance results reveal that despite the relative direction of both hands, reaching two targets results in lower performance than a single target, and symmetry alone does not contribute to performance disparity. Also, dimensionless integrated absolute jerk (DIAJ) is an indicator of superior performance for this particular task. Furthermore, these results align with current bimanual coordination theory by showing manual performance disparities are a consequence of task constraints and conceptualization.
Collapse
Affiliation(s)
- Jacob R Boehm
- Human-Enabled Robotic Technology Lab, the Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Nicholas P Fey
- Department of Biomedical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| | - Ann Majewicz
- Human-Enabled Robotic Technology Lab, the Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX 75080, USA
| |
Collapse
|
28
|
El-Tamawy MS, Darwish MH, Elkholy SH, Moustafa EBS, Abulkassem ST, Khalifa HA. Low frequency transcranial magnetic stimulation in subacute ischemic stroke: Number of sessions that altered cortical excitability. NeuroRehabilitation 2020; 47:427-434. [PMID: 33136077 DOI: 10.3233/nre-203156] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Cortical reorganization between both cerebral hemispheres plays an important role in regaining the affected upper extremity motor function post-stroke. OBJECTIVES The purpose of the current study was to investigate the recommended number of contra-lesion low frequency repetitive transcranial magnetic stimulation (LF-rTMS) sessions that could enhance cortical reorganization post-stroke. METHODS Forty patients with right hemiparetic subacute ischemic stroke with an age range between 50-65 yrs were randomly assigned into two equal groups: control (GA) and study (GB) groups. Both groups were treated with a selected physical therapy program for the upper limb. Sham and real contra-lesion LF-rTMS was conducted for both groups daily for two consecutive weeks. Sequential changes of cortical excitability were calculated by the end of each session. RESULTS The significant enhancement in the cortical excitability was observed at the fourth session in favor of the study group (GB). Sequential rate of change in cortical excitability was significant for the first eight sessions. From the ninth session onwards, no difference could be detected between groups. CONCLUSION The pattern of recovery after stroke is extensive and not all factors could be controlled. Application of LF-rTMS in conjugation with a selected physical therapy program for the upper limb from four to eight sessions seems to be efficient.
Collapse
Affiliation(s)
| | - Moshera H Darwish
- Department of Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Egypt
| | - Saly H Elkholy
- Department of Clinical Neurophysiology, Faculty of Medicine, Cairo University, Egypt
| | - Engy BadrEldin S Moustafa
- Department of Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Egypt
| | - Shimaa T Abulkassem
- Department of Basic Science, Faculty of Physical Therapy, Cairo University, Egypt
| | - Heba A Khalifa
- Department of Neuromuscular Disorders and its Surgery, Faculty of Physical Therapy, Cairo University, Egypt
| |
Collapse
|
29
|
Yadav G, Mutha PK. Symmetric interlimb transfer of newly acquired skilled movements. J Neurophysiol 2020; 124:1364-1376. [PMID: 32902352 DOI: 10.1152/jn.00777.2019] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
In this study, we aimed to examine features of interlimb generalization or "transfer" of newly acquired motor skills, with a broader goal of better understanding the mechanisms mediating skill learning. Right-handed participants (n = 36) learned a motor task that required them to make very rapid but accurate reaches to one of eight randomly presented targets, thus bettering the typical speed-accuracy tradeoff. Subjects were divided into an "RL" group that first trained with the right arm and was then tested on the left and an "LR" group that trained with the left arm and was subsequently tested on the right. We found significant interlimb transfer in both groups. Remarkably, we also observed that participants learned faster with their left arm compared with the right. We hypothesized that this could be due to a previously suggested left arm/right hemisphere advantage for movements under variable task conditions. To corroborate this, we recruited two additional groups of participants (n = 22) that practiced the same task under a single target condition. This removal of task level variability eliminated learning rate differences between the arms, yet interlimb transfer remained robust and symmetric, as in the first experiment. Additionally, the strategy used to reduce errors during learning, albeit heterogeneous across subjects particularly in our second experiment, was adopted by the untrained arm. These findings may be best explained as the outcome of the operation of cognitive strategies during the early stages of motor skill learning.NEW & NOTEWORTHY How newly acquired motor skills generalize across effectors is not well understood. Here, we show that newly learned skilled actions transfer symmetrically across the arms and that task-level variability influences learning rate but not transfer magnitude or direction. Interestingly, strategies developed during learning with one arm transfer to the untrained arm. This likely reflects the outcome of learning driven by cognitive mechanisms during the initial stages of motor skill acquisition.
Collapse
Affiliation(s)
- Goldy Yadav
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India
| | - Pratik K Mutha
- Center for Cognitive and Brain Sciences, Indian Institute of Technology Gandhinagar, Gujarat, India.,Department of Biological Engineering, Indian Institute of Technology Gandhinagar, Gujarat, India
| |
Collapse
|
30
|
Burns MK, Stika J, Patel V, Pei D, Nataraj R, Vinjamuri R. Lateralization and Model Transference in a Bilateral Cursor Task .. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:3240-3243. [PMID: 33018695 DOI: 10.1109/embc44109.2020.9176496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Post-stroke rehabilitation, occupational and physical therapy, and training for use of assistive prosthetics leverages our current understanding of bilateral motor control to better train individuals. In this study, we examine upper limb lateralization and model transference using a bimanual joystick cursor task with orthogonal controls. Two groups of healthy subjects are recruited into a 2-session study spaced seven days apart. One group uses their left and right hands to control cursor position and rotation respectively, while the other uses their right and left hands. The groups switch control methods in the second session, and a rotational perturbation is applied to the positional controls in the latter half of each session. We find agreement with current lateralization theories when comparing robustness to feedforward perturbations in feedback and feedforward measures. We find no evidence of a transferable model after seven days, and evidence that the brain does not synchronize task completion between the hands.
Collapse
|
31
|
Are the predictions of the dynamic dominance model of laterality applicable to the lower limbs? Hum Mov Sci 2020; 73:102684. [DOI: 10.1016/j.humov.2020.102684] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 09/10/2020] [Accepted: 09/12/2020] [Indexed: 11/22/2022]
|
32
|
Lee JH, Kang N. Effects of online-bandwidth visual feedback on unilateral force control capabilities. PLoS One 2020; 15:e0238367. [PMID: 32941453 PMCID: PMC7498075 DOI: 10.1371/journal.pone.0238367] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 08/15/2020] [Indexed: 11/19/2022] Open
Abstract
Purpose The purpose of this study was to examine how different threshold ranges of online-bandwidth visual feedback influence unilateral force control capabilities in healthy young women. Methods Twenty-five right-handed young women (mean±standard deviation age = 23.6±1.5 years) participated in this study. Participants unilaterally executed hand-grip force control tasks with their dominant and non-dominant hands, respectively. Each participant completed four experimental blocks in a different order of block presentation for each hand condition: (a) 10% of maximum voluntary contraction (MVC) with ±5% bandwidth threshold range (BTR), (b) 10% of MVC with ±10% BTR, (c) 40% of MVC with ±5% BTR, and (d) 40% of MVC with ±10% BTR. Outcome measures on force control capabilities included: (a) force accuracy, (b) force variability, (c) force regularity, and (d) the number of times and duration out of BTR. Results The non-dominant hand showed significant improvements in force control capabilities, as indicated by higher force accuracy, less force variability, and decreased force regularity from ±10% BTR to ±5% BTR during higher targeted force level task. For both hands, the number of times and duration out of BTR increased from ±10% BTR to ±5% BTR. Conclusions The current findings suggested that the narrow threshold range of online-bandwidth visual feedback effectively revealed transient improvements in unilateral isometric force control capabilities during higher targeted force level tasks.
Collapse
Affiliation(s)
- Joon Ho Lee
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
| | - Nyeonju Kang
- Department of Human Movement Science, Incheon National University, Incheon, South Korea
- Neuromechanical Rehabilitation Research Laboratory, Incheon National University, Incheon, South Korea
- Division of Sport Science & Sport Science Institute, Incheon National University, Incheon, South Korea
- * E-mail:
| |
Collapse
|
33
|
Barany DA, Revill KP, Caliban A, Vernon I, Shukla A, Sathian K, Buetefisch CM. Primary motor cortical activity during unimanual movements with increasing demand on precision. J Neurophysiol 2020; 124:728-739. [PMID: 32727264 PMCID: PMC7509291 DOI: 10.1152/jn.00546.2019] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
In functional magnetic resonance imaging (fMRI) studies, performance of unilateral hand movements is associated with primary motor cortex activity ipsilateral to the moving hand (M1ipsi), in addition to contralateral activity (M1contra). The magnitude of M1ipsi activity increases with the demand on precision of the task. However, it is unclear how demand-dependent increases in M1ipsi recruitment relate to the control of hand movements. To address this question, we used fMRI to measure blood oxygenation level-dependent (BOLD) activity during performance of a task that varied in demand on precision. Participants (n = 23) manipulated an MRI-compatible joystick with their right or left hand to move a cursor into targets of different sizes (small, medium, large, extra large). Performance accuracy, movement time, and number of velocity peaks scaled with target size, whereas reaction time, maximum velocity, and initial direction error did not. In the univariate analysis, BOLD activation in M1contra and M1ipsi was higher for movements to smaller targets. Representational similarity analysis, corrected for mean activity differences, revealed multivoxel BOLD activity patterns during movements to small targets were most similar to those for medium targets and least similar to those for extra-large targets. Only models that varied with demand (target size, performance accuracy, and number of velocity peaks) correlated with the BOLD dissimilarity patterns, though differently for right and left hands. Across individuals, M1contra and M1ipsi similarity patterns correlated with each other. Together, these results suggest that increasing demand on precision in a unimanual motor task increases M1 activity and modulates M1 activity patterns.NEW & NOTEWORTHY Contralateral primary motor cortex (M1) predominantly controls unilateral hand movements, but the role of ipsilateral M1 is unclear. We used functional magnetic resonance imaging (fMRI) to investigate how M1 activity is modulated by unimanual movements at different levels of demand on precision. Our results show that task characteristics related to demand on precision influence bilateral M1 activity, suggesting that in addition to contralateral M1, ipsilateral M1 plays a key role in controlling hand movements to meet performance precision requirements.
Collapse
Affiliation(s)
| | | | | | | | - Ashwin Shukla
- Department of Neurology, Emory University, Atlanta, Georgia
| | - K Sathian
- Departments of Neurology and Neural & Behavioral Sciences, Milton S. Hershey Medical Center and Penn State College of Medicine, Hershey, Pennsylvania
- Department of Psychology, College of Liberal Arts, The Pennsylvania State University, University Park, Pennsylvania
| | - Cathrin M Buetefisch
- Department of Neurology, Emory University, Atlanta, Georgia
- Department of Rehabilitation Medicine, Emory University, Atlanta, Georgia
- Department of Radiology, Emory University, Atlanta, Georgia
| |
Collapse
|
34
|
O’Brien S, Andrew D, Zabihhosseinian M, Yielder P, Murphy B. Proximal Upper Limb Sensorimotor Integration in Response to Novel Motor Skill Acquisition. Brain Sci 2020; 10:brainsci10090581. [PMID: 32842625 PMCID: PMC7563374 DOI: 10.3390/brainsci10090581] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/15/2020] [Accepted: 08/18/2020] [Indexed: 11/16/2022] Open
Abstract
Previous studies have shown significant changes in cortical and subcortical evoked potential activity levels in response to motor training with the distal upper-limb muscles. However, no studies to date have assessed the neurological processing changes in somatosensory evoked potentials (SEPs) associated with motor training whole-arm movements utilizing proximal upper-limb muscles. The proximal upper-limb muscles are a common source of work-related injuries, due to repetitive glenohumeral movements. Measuring neurophysiological changes following performance of a proximal motor task provide insight into potential neurophysiological changes associated with occupational postures and movements involving proximal upper limb muscles. This study sought to assess the impact of a novel motor skill acquisition task on neural processing of the proximal upper-limb muscle groups, through the measurement of short-latency median nerve SEPs. One group of 12 participants completed a novel motor training task, consisting of tracing a sinusoidal waveform varying in amplitude and frequency. Baseline SEP measurements were recorded from each participant, followed by a mental recitation control task. Pre-test SEP measurements were then recorded, followed by the motor training task, and post-test SEP recordings. The participants completed the tracing with their right thumb, using glenohumeral rotation only to move their hand. Significant improvements in task accuracy were demonstrated, indicating that motor acquisition had occurred. Significant changes were also seen in the N11, N13, N20, N24, P25, and the N30 SEP peaks were seen following the motor training task. Conclusion: Early SEPs appear to be a sensitive measure of changes in sensorimotor integration in response to novel motor skill acquisition within the proximal upper-limb muscles.
Collapse
|
35
|
Changes in Muscle Pattern Activity during the Asymmetric Flat Bench Press (Offset Training). INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17113912. [PMID: 32492829 PMCID: PMC7312575 DOI: 10.3390/ijerph17113912] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 11/17/2022]
Abstract
Background: This study aimed to compare the muscle activity between the symmetric and selected asymmetric loads (2.5%; 5% and 7.5% differences in load position between sides of the bar) during the flat bench press (BP) exercise at 70%1RM. The study included 10 resistance-trained males (25.3 ± 2.3 years; 82.9 ± 6.9 kg; 177.8 ± 4.5 cm; 1RM BP: 104.5 ± 8.6 kg; experience: 5.6 ± 1.5 years). Methods: To assess the differences in muscle activity between both sides of the body and load placement, the participants performed several attempts of the BP with symmetric and asymmetric load at 70%1RM in a random order (symmetric; 2.5%; 5% and 7.5% differences in load position between sides of the bar). Peak muscle activity of dominant and non-dominant body-side was recorded for the pectoralis major (PM), anterior deltoid (AD), and the long head of the triceps brachii (TB). Results: A two-way repeated-measures analysis of variance (ANOVA) indicated a statistically significant main interaction between side and load (p < 0.01) for AD, PM and TB muscles. Conclusion: The results of this study showed that asymmetrically loaded BP leads to significantly higher muscle activity on the loaded side of the body. The offset training method during bilateral resistance exercise may be an effective and simple approach for reductions in muscle imbalances and improvement in bilateral exercise performance.
Collapse
|
36
|
Differential Changes in Early Somatosensory Evoked Potentials between the Dominant and Non-Dominant Hand, Following a Novel Motor Tracing Task. Brain Sci 2020; 10:brainsci10050290. [PMID: 32422867 PMCID: PMC7287782 DOI: 10.3390/brainsci10050290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/07/2020] [Accepted: 05/13/2020] [Indexed: 02/08/2023] Open
Abstract
During training in a novel dynamic environment, the non-dominant upper limb favors feedback control, whereas the dominant limb favors feedforward mechanisms. Early somatosensory evoked potentials (SEPs) offer a means to explore differences in cortical regions involved in sensorimotor integration (SMI). This study sought to compare differences in SMI between the right (Dom) and left (Non-Dom) hand in healthy right-handed participants. SEPs were recorded in response to median nerve stimulation, at baseline and post, a motor skill acquisition-tracing task. One group (n = 12) trained with their Dom hand and the other group (n = 12), with their Non-Dom hand. The Non-Dom hand was significantly more accurate at baseline (p < 0.0001) and both groups improved with time (p < 0.0001), for task accuracy, with no significant interaction effect between groups for both post-acquisition and retention. There were significant group interactions for the N24 (p < 0.001) and the N30 (p < 0.0001) SEP peaks. Post motor acquisition, the Dom hand had a 28.9% decrease in the N24 and a 23.8% increase in the N30, with opposite directional changes for the Non-Dom hand; 22.04% increase in N24 and 24% decrease in the N30. These SEP changes reveal differences in early SMI between Dom and Non-Dom hands in response to motor acquisition, providing objective, temporally sensitive measures of differences in neural mechanisms between the limbs.
Collapse
|
37
|
Srinivasan GA, Embar T, Sainburg R. Interlimb differences in coordination of rapid wrist/forearm movements. Exp Brain Res 2020; 238:713-725. [PMID: 32060564 DOI: 10.1007/s00221-020-05743-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Accepted: 01/30/2020] [Indexed: 11/28/2022]
Abstract
We have previously proposed a model of motor lateralization that attributes specialization for predictive control of intersegmental coordination to the dominant hemisphere/limb system, and control of limb impedance to the non-dominant system. This hypothesis was developed based on visually targeted discrete reaching movement made predominantly with the shoulder and elbow joints. The purpose of this experiment was to determine whether dominant arm advantages for multi-degree of freedom coordination also occur during continuous distal movements of the wrist that do not involve visual guidance. In other words, are the advantages of the dominant arm restricted to controlling intersegmental coordination during discrete visually targeted reaching movements, or are they more generally related to coordination of multiple degrees of freedom at other joints, regardless of whether the movements are discrete or invoke visual guidance? Eight right-handed participants were instructed to perform alternating wrist ulnar/radial deviation movements at two instructed speeds, slow and fast, with the dominant or the non-dominant arm, and were instructed not to rotate the forearm (pronation/supination) or move the wrist up and down (flexion/extension). This was explained by slowly and passively moving the wrist in each plane during the instructions. Because all the muscles that cross the wrist have moment arms with respect to more than one axis of rotation, intermuscular coordination is required to prevent motion about non-instructed axes of rotation. We included two conditions, a very slow condition, as a control condition, to demonstrate understanding of the task, and an as-fast-as-possible condition to challenge predictive aspect of control, which we hypothesize are specialized to the dominant controller. Our results indicated that during as-fast-as-possible conditions the non-dominant arm incorporated significantly more non-instructed motion, which resulted in greater circumduction at the non-dominant than the dominant wrist. These findings extend the dynamic dominance hypothesis, indicating that the dominant hemisphere-arm system is specialized for predictive control of multiple degrees of freedom, even in movements of the distal arm and made in the absence of visual guidance.
Collapse
Affiliation(s)
- Gautum A Srinivasan
- Department of Kinesiology, Pennsylvania State University, Rec Hall 27, Burrowes Rd., University Park, PA, 16802, USA.
| | - Tarika Embar
- Department of Kinesiology, Pennsylvania State University, Rec Hall 27, Burrowes Rd., University Park, PA, 16802, USA
| | - Robert Sainburg
- Department of Kinesiology, Pennsylvania State University, Rec Hall 27, Burrowes Rd., University Park, PA, 16802, USA.,Department of Neurology, Penn State College of Medicine, Hershey, USA
| |
Collapse
|
38
|
On the Neurocircuitry of Grasping: The influence of action intent on kinematic asymmetries in reach-to-grasp actions. Atten Percept Psychophys 2020; 81:2217-2236. [PMID: 31290131 DOI: 10.3758/s13414-019-01805-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Evidence from electrophysiology suggests that nonhuman primates produce reach-to-grasp movements based on their functional end goal rather than on the biomechanical requirements of the movement. However, the invasiveness of direct-electrical stimulation and single-neuron recording largely precludes analogous investigations in humans. In this review, we present behavioural evidence in the form of kinematic analyses suggesting that the cortical circuits responsible for reach-to-grasp actions in humans are organized in a similar fashion. Grasp-to-eat movements are produced with significantly smaller and more precise maximum grip apertures (MGAs) than are grasp-to-place movements directed toward the same objects, despite near identical mechanical requirements of the two subsequent (i.e., grasp-to-eat and grasp-to-place) movements. Furthermore, the fact that this distinction is limited to right-handed movements suggests that the system governing reach-to-grasp movements is asymmetric. We contend that this asymmetry may be responsible, at least in part, for the preponderance of right-hand dominance among the global population.
Collapse
|
39
|
Maenza C, Good DC, Winstein CJ, Wagstaff DA, Sainburg RL. Functional Deficits in the Less-Impaired Arm of Stroke Survivors Depend on Hemisphere of Damage and Extent of Paretic Arm Impairment. Neurorehabil Neural Repair 2019; 34:39-50. [PMID: 31538852 DOI: 10.1177/1545968319875951] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Background. Previous research has detailed the hemisphere dependence and specific kinematic deficits observed for the less-affected arm of patients with unilateral stroke. Objective. We now examine whether functional motor deficits in the less-affected arm, measured by standardized clinical measures of motor function, also depend on the hemisphere that was damaged and on the severity of contralesional impairment. Methods. We recruited 48 left-hemisphere-damaged (LHD) participants, 62 right-hemisphere-damaged participants, and 54 age-matched control participants. Measures of motor function included the following: (1) Jebsen-Taylor Hand Function Test (JHFT), (2) Grooved Pegboard Test (GPT), and (3) grip strength. We measured the extent of contralesional arm impairment with the upper-extremity component of the Fugl-Meyer (UEFM) assessment of motor impairment. Results. Ipsilesional limb functional performance deficits (JHFT) varied with both the damaged hemisphere and severity of contralesional arm impairment, with the most severe deficits expressed in LHD participants with severe contralesional impairment (UEFM). GPT and grip strength varied with severity of contralesional impairment but not with hemisphere. Conclusions. Stroke survivors with the most severe paretic arm impairment, who must rely on their ipsilesional arm for performing daily activities, have the greatest motor deficit in the less-affected arm. We recommend remediation of this arm to improve functional independence in this group of stroke patients.
Collapse
Affiliation(s)
- Candice Maenza
- The Pennsylvania State University, University Park, PA, USA
- Pennsylvania State College of Medicine, Hershey, PA, USA
| | - David C Good
- Pennsylvania State College of Medicine, Hershey, PA, USA
| | | | | | - Robert L Sainburg
- The Pennsylvania State University, University Park, PA, USA
- Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
40
|
Scarpina F, Magnani FG, Tagini S, Priano L, Mauro A, Sedda A. Mental representation of the body in action in Parkinson's disease. Exp Brain Res 2019; 237:2505-2521. [PMID: 31327026 DOI: 10.1007/s00221-019-05608-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022]
Abstract
Mixed findings characterize studies in Parkinson's disease (PD): some studies indicate a relationship between physical impairments and the ability to mentally represent the body, while others suggest spared abilities for this cognitive function. To clarify the matter, in the present study we explored the mental representations of the body in action in the same PD patients, taking also into account lateralization of symptoms and visual imagery skills. 10 PD patients with left- (lPD), 10 with right (rPD) lateralized symptoms (lPD), and 20 matched healthy controls have been recruited for the study. All patients were screened for neuropsychological impairments. To explore a more implicit component we used the hand laterality task (HLT), while the mental motor chronometry (MMC) was used to explore a more explicit one. Two control tasks, with objects instead of body parts, were administered to control for visual imagery skills. In the HLT, we detected the effects of biomechanical constraints effects in both controls and PD patients. In the latter group, importantly, this was true independently from lateralization of symptoms. In the MMC, we found the expected positive correlation between executed and imagined movements for both hands in controls only, while all PD patients, again independently form lateralization, only showed this effect for the left hand. In terms of visual imagery, only rPD patients differed from controls when asked to implicitly rotate letters, and in terms of accuracy only. However, this difference is explained by executive functions measured through the neuropsychological assessment rather than by a "pure" visual imagery impairment. In summary, our findings suggest that two different aspects of the mental representations of the body in action, one more implicit and the other more explicit, can be differently affected by PD. These impairments are unlikely explained by a basic visual imagery deficit. When present, impairments concern a higher dimension, related to motor functions and awareness, and not driven by sensory impairments, as shown by the independence of effects from physical laterality of symptoms.
Collapse
Affiliation(s)
- Federica Scarpina
- Division of Neurology and Neuro-Rehabilitation, Istituto Auxologico Italiano, IRCCS, Ospedale San Giuseppe, Via Cadorna 90, 28824, Piancavallo, VCO, Italy.
| | - Francesca Giulia Magnani
- Cognitive Neuropsychology Center, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy.,NeuroMi-Milan Center for Neuroscience, University of Milano Bicocca, Milan, Italy
| | - Sofia Tagini
- Division of Neurology and Neuro-Rehabilitation, Istituto Auxologico Italiano, IRCCS, Ospedale San Giuseppe, Via Cadorna 90, 28824, Piancavallo, VCO, Italy.,CIMeC, Center for the Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Lorenzo Priano
- Division of Neurology and Neuro-Rehabilitation, Istituto Auxologico Italiano, IRCCS, Ospedale San Giuseppe, Via Cadorna 90, 28824, Piancavallo, VCO, Italy.,"Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Alessandro Mauro
- Division of Neurology and Neuro-Rehabilitation, Istituto Auxologico Italiano, IRCCS, Ospedale San Giuseppe, Via Cadorna 90, 28824, Piancavallo, VCO, Italy.,"Rita Levi Montalcini" Department of Neuroscience, University of Turin, Turin, Italy
| | - Anna Sedda
- Psychology Department, School of Social Sciences, Heriot Watt University, Edinburgh, UK
| |
Collapse
|
41
|
Right Hemisphere Contributions to Bilateral Force Control in Chronic Stroke: A Preliminary Report. J Stroke Cerebrovasc Dis 2018; 27:3218-3223. [PMID: 30093198 DOI: 10.1016/j.jstrokecerebrovasdis.2018.07.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/05/2018] [Indexed: 11/20/2022] Open
Abstract
BACKGROUND Bilateral motor control deficits poststroke may be lateralized by hemisphere damage. This preliminary study investigated bilateral force control between left and right hemisphere-damaged groups at baseline and after coupled bilateral movement training with neuromuscular stimulation. METHODS Stroke participants (8 left hemisphere and 6 right hemisphere cerebrovascular accidents) performed a bilateral isometric force control task at 3 submaximal force levels (5%, 25%, and 50% of maximum voluntary contraction [MVC]) before and after training. Force accuracy, force variability, and interlimb force coordination were analyzed in 3-way mixed design ANOVAs (2 × 2 × 3; Group × Test Session × Force Level) with repeated measures on test session and force level. RESULTS The findings indicated that force accuracy and variability at 50% of MVC in the right hemisphere-damaged group were more impaired than lower targeted force levels at baseline, and the impairment at the highest target level was improved after coupled bilateral movement training. However, these patterns were not observed in the left hemisphere-damaged group. CONCLUSIONS Current findings support a proposition that the right hemisphere presumably contributes to controlling bilateral force production.
Collapse
|
42
|
Becker CO, Bassett DS, Preciado VM. Large-scale dynamic modeling of task-fMRI signals via subspace system identification. J Neural Eng 2018; 15:066016. [PMID: 30088476 DOI: 10.1088/1741-2552/aad8c7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
OBJECTIVE We analyze task-based fMRI time series to produce large-scale dynamical models that are capable of approximating the observed signal with good accuracy. APPROACH We extend subspace system identification methods for deterministic and stochastic state-space models with external inputs. The dynamic behavior of the generated models is characterized using control-theoretic analysis tools. To validate their effectiveness, we perform a probabilistic inversion of the identified input-output relationships via joint state-input maximum likelihood estimation. Our experimental setup explores a large dataset generated using state-of-the-art acquisition and pre-processing methods from the Human Connectome Project. MAIN RESULTS We analyze both anatomically parcellated and spatially dense time series, and propose an efficient algorithm to address the high-dimensional optimization problem resulting from the latter. Our results enable the quantification of input-output transfer functions between each task condition and each region of the cortex, as exemplified by a motor task. Further, the identified models produce impulse response functions between task conditions and cortical regions that are compatible with typical hemodynamic response functions. We then extend subspace methods to account for multi-subject experimental configurations, identifying models that capture common dynamical characteristics across subjects. Finally, we show that system inversion via maximum-likelihood allows the time-of-occurrence of the task stimuli to be estimated from the observed outputs. SIGNIFICANCE The ability to produce dynamical input-output models might have an impact in the expanding field of neurofeedback. In particular, the models we produce allow the partial quantification of the effect of external task-related inputs on the metabolic response of the brain, conditioned on its current state. Such a notion provides a basis for leveraging control-theoretic approaches to neuromodulation and self-regulation in therapeutic applications.
Collapse
|
43
|
Woytowicz EJ, Westlake KP, Whitall J, Sainburg RL. Handedness results from complementary hemispheric dominance, not global hemispheric dominance: evidence from mechanically coupled bilateral movements. J Neurophysiol 2018; 120:729-740. [PMID: 29742023 PMCID: PMC7132323 DOI: 10.1152/jn.00878.2017] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 04/13/2018] [Accepted: 05/06/2018] [Indexed: 11/22/2022] Open
Abstract
Two contrasting views of handedness can be described as 1) complementary dominance, in which each hemisphere is specialized for different aspects of motor control, and 2) global dominance, in which the hemisphere contralateral to the dominant arm is specialized for all aspects of motor control. The present study sought to determine which motor lateralization hypothesis best predicts motor performance during common bilateral task of stabilizing an object (e.g., bread) with one hand while applying forces to the object (e.g., slicing) using the other hand. We designed an experimental equivalent of this task, performed in a virtual environment with the unseen arms supported by frictionless air-sleds. The hands were connected by a spring, and the task was to maintain the position of one hand while moving the other hand to a target. Thus the reaching hand was required to take account of the spring load to make smooth and accurate trajectories, while the stabilizer hand was required to impede the spring load to keep a constant position. Right-handed subjects performed two task sessions (right-hand reach and left-hand stabilize; left-hand reach and right-hand stabilize) with the order of the sessions counterbalanced between groups. Our results indicate a hand by task-component interaction such that the right hand showed straighter reaching performance whereas the left hand showed more stable holding performance. These findings provide support for the complementary dominance hypothesis and suggest that the specializations of each cerebral hemisphere for impedance and dynamic control mechanisms are expressed during bilateral interactive tasks. NEW & NOTEWORTHY We provide evidence for interlimb differences in bilateral coordination of reaching and stabilizing functions, demonstrating an advantage for the dominant and nondominant arms for distinct features of control. These results provide the first evidence for complementary specializations of each limb-hemisphere system for different aspects of control within the context of a complementary bilateral task.
Collapse
Affiliation(s)
- Elizabeth J Woytowicz
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
| | - Kelly P Westlake
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
| | - Jill Whitall
- Department of Physical Therapy and Rehabilitation Science, University of Maryland School of Medicine , Baltimore, Maryland
- Department of Health Sciences, University of Southampton , Southampton , United Kingdom
| | - Robert L Sainburg
- Department of Kinesiology, Penn State University , University Park, Pennsylvania
- Department of Neurology, Penn State Milton S. Hershey Medical Center and College of Medicine , Hershey, Pennsylvania
| |
Collapse
|
44
|
Beke C, Flindall JW, Gonzalez CLR. Kinematics of ventrally mediated grasp-to-eat actions: right-hand advantage is dependent on dorsal stream input. Exp Brain Res 2018; 236:1621-1630. [PMID: 29589079 DOI: 10.1007/s00221-018-5242-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 03/21/2018] [Indexed: 11/24/2022]
Abstract
Studies have suggested a left-hemisphere specialization for visually guided grasp-to-eat actions by way of task-dependent kinematic asymmetries (i.e., smaller maximum grip apertures for right-handed grasp-to-eat movements than for right-handed grasp-to-place movements or left-handed movements of either type). It is unknown, however, whether this left-hemisphere/right-hand kinematic advantage is reliant on the dorsal "vision-for-action" visual stream. The present study investigates the kinematic differences between grasp-to-eat and grasp-to place actions performance during closed-loop (i.e., dorsally mediated) and open-loop delay (i.e., ventrally mediated) conditions. Twenty-one right-handed adult participants were asked to reach to grasp small food items to (1) eat them, or (2) place them in a container below the mouth. Grasps were performed in both closed-loop and open-loop delay conditions, in separate sessions. We show that participants displayed the right-hand grasp-to-eat kinematic advantage in the closed-loop condition, but not in the open-loop delay condition. As no task-dependent kinematic differences were found in ventrally mediated grasps, we posit that the left-hemisphere/right-hand advantage is dependent on dorsal stream processing.
Collapse
Affiliation(s)
- Clarissa Beke
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 6T5, Canada
| | - Jason W Flindall
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 6T5, Canada. .,Department of Psychology, University of British Columbia, 2136 West Mall, Vancouver, BC, V6T 1Z4, Canada.
| | - Claudia L R Gonzalez
- The Brain in Action Laboratory, Department of Kinesiology, University of Lethbridge, 4401 University Dr W, Lethbridge, AB, T1K 6T5, Canada
| |
Collapse
|
45
|
Budisavljevic S, Dell'Acqua F, Zanatto D, Begliomini C, Miotto D, Motta R, Castiello U. Asymmetry and Structure of the Fronto-Parietal Networks Underlie Visuomotor Processing in Humans. Cereb Cortex 2018; 27:1532-1544. [PMID: 26759477 DOI: 10.1093/cercor/bhv348] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Research in both humans and monkeys has shown that even simple hand movements require cortical control beyond primary sensorimotor areas. An extensive functional neuroimaging literature demonstrates the key role that cortical fronto-parietal regions play for movements such as reaching and reach-to-grasp. However, no study so far has examined the specific white matter connections linking the fronto-parietal regions, namely the 3 parallel pathways of the superior longitudinal fasciculus (SLF). The aim of the current study was to explore how selective fronto-parietal connections are for different kinds of hand movement in 30 right-handed subjects by correlating diffusion imaging tractography and kinematic data. We showed that a common network, consisting of bilateral SLF II and SLF III, was involved in both reaching and reach-to-grasp movements. Larger SLF II and SLF III in the right hemisphere were associated with faster speed of visuomotor processing, while the left SLF II and SLF III played a role in the initial movement trajectory control. Furthermore, the right SLF II was involved in the closing grip phase necessary for efficient grasping of the object. We demonstrated for the first time that individual differences in asymmetry and structure of the fronto-parietal networks were associated with visuomotor processing in humans.
Collapse
Affiliation(s)
| | - Flavio Dell'Acqua
- Natbrainlab, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Debora Zanatto
- Department of General Psychology.,Cognitive Neuroscience Center
| | | | - Diego Miotto
- Department of Medicine, University of Padova, Padova, Italy
| | | | - Umberto Castiello
- Department of General Psychology.,Cognitive Neuroscience Center.,Centro Linceo Interdisciplinare, Accademia dei Lincei, Roma, Italy
| |
Collapse
|
46
|
An examination of lower limb asymmetry in ankle isometric force control. Hum Mov Sci 2018; 57:40-49. [DOI: 10.1016/j.humov.2017.11.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Revised: 10/20/2017] [Accepted: 11/05/2017] [Indexed: 11/20/2022]
|
47
|
Whitall J, Clark JE. A Perception-Action Approach to Understanding Typical and Atypical Motor Development. ADVANCES IN CHILD DEVELOPMENT AND BEHAVIOR 2018; 55:245-272. [PMID: 30031437 DOI: 10.1016/bs.acdb.2018.04.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
In this chapter, we ask two questions. First, can the study of the perception-action system across time offer a useful model for understanding motor development? Second, can the study of the perception-action system in children with developmental coordination disorder (DCD) inform our understanding of atypical as well as typical motor development? We begin by describing the dynamical systems perspective and a control-theoretic approach that together provide the conceptual framework for our paradigms, methodology, and interpretation of our experiments. Our experimental strategy has been to perturb one or more sensory systems and observe the effect on the motor system. The majority of the chapter explains how we employed two principal perturbation strategies: (1) removing or adding a static source of sensory information believed to be salient to the task at hand and (2) enhancing a dynamic source of sensory information either implicitly or explicitly. These strategies were employed in three different action systems: posture; rhythmic interlimb coordination, and goal-directed reaching and drawing. After synthesizing our findings, we conclude by addressing the original questions and offering future directions. In brief, we consider that perception-action coupling is an underlying mechanism/foundation/constraint of motor development in the sense that the ongoing processing of sensations and the planning and execution of movements are how the brain produces goal-directed movements. Therefore, a better understanding of how this coupling changes or adapts over time has much to offer as to how motor behavior develops across the lifespan, both typically and atypically.
Collapse
Affiliation(s)
- Jill Whitall
- Department of Physical Therapy & Rehabilitation Science, University of Maryland, Baltimore, MD, United States; University of Southampton, Southampton, United Kingdom
| | - Jane E Clark
- Department of Kinesiology, University of Maryland, College Park, MD, United States
| |
Collapse
|
48
|
Lingo VanGilder J, Hengge CR, Duff K, Schaefer SY. Visuospatial function predicts one-week motor skill retention in cognitively intact older adults. Neurosci Lett 2017; 664:139-143. [PMID: 29154858 DOI: 10.1016/j.neulet.2017.11.032] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/08/2017] [Accepted: 11/13/2017] [Indexed: 10/18/2022]
Abstract
Motor learning declines with aging, such that older adults retain less motor skill after practice compared to younger adults. However, it remains unclear if these motor learning declines are related to normal cognitive changes associated with aging. The purpose of this study was to examine which cognitive domains would best predict the amount of retention on a motor task one week after training in cognitively intact older adults. Twenty-one adults ages 65-84 years old were assessed with Repeatable Battery for the Assessment of Neuropsychological Status, which assesses five cognitive domains (immediate and delayed memory, visuospatial/constructional, language, and attention). Participants also completed one training session of a functional upper extremity task, and were re-tested one week later. Stepwise regression indicated that the visuospatial domain was the only significant predictor of how much skill participants retained over one week, with a visual perception subtest explaining the most variance. Results from this study support previous work reporting that older adults' capacity for motor learning can be probed with visuospatial tests. These tests may capture the structural or functional health of neural networks critical for skill learning within the aging brain, and provide valuable clinical insight about an individual's unique rehabilitation potential.
Collapse
Affiliation(s)
- Jennapher Lingo VanGilder
- School of Biological and Health Systems Engineering, 501 E. Tyler Mall, ECG 334A, Arizona State University, Tempe, AZ 85287, USA
| | - Caitlin R Hengge
- University of Utah Hospital, 50 N. Medical Dr., Salt Lake City, UT, 84112, USA
| | - Kevin Duff
- Center for Alzheimer's Care, Imaging and Research, University of Utah Health Sciences Center, 650 Komas Dr. 106A, Salt Lake City UT 84108-1225, USA; Department of Neurology, University of Utah, 175 N. Medical Dr. E., Salt Lake City, UT 84132, USA
| | - Sydney Y Schaefer
- School of Biological and Health Systems Engineering, 501 E. Tyler Mall, ECG 334A, Arizona State University, Tempe, AZ 85287, USA.
| |
Collapse
|
49
|
Córdova Bulens D, Crevecoeur F, Thonnard JL, Lefèvre P. Optimal use of limb mechanics distributes control during bimanual tasks. J Neurophysiol 2017; 119:921-932. [PMID: 29118194 DOI: 10.1152/jn.00371.2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Bimanual tasks involve the coordination of both arms, which often offers redundancy in the ways a task can be completed. The distribution of control across limbs is often considered from the perspective of handedness. In this context, although there are differences across dominant and nondominant arms during reaching control ( Sainburg 2002 ), previous studies have shown that the brain tends to favor the dominant arm when performing bimanual tasks ( Salimpour and Shadmehr 2014 ). However, biomechanical factors known to influence planning and control in unimanual tasks may also generate limb asymmetries in force generation, but their influence on bimanual control has remained unexplored. We investigated this issue in a series of experiments in which participants were instructed to generate a 20-N force with both arms, with or without perturbation of the target force during the trial. We modeled the task in the framework of optimal feedback control of a two-link model with six human-like muscles groups. The biomechanical model predicted a differential contribution of each arm dependent on the orientation of the target force and joint configuration that was quantitatively matched by the participants' behavior, regardless of handedness. Responses to visual perturbations were strongly influenced by the perturbation direction, such that online corrections also reflected an optimal use of limb biomechanics. These results show that the nervous system takes biomechanical constraints into account when optimizing the distribution of forces generated across limbs during both movement planning and feedback control of a bimanual task. NEW & NOTEWORTHY Here, we studied a bimanual force production task to examine the effects of biomechanical constraints on the distribution of control across limbs. Our findings show that the central nervous system optimizes the distribution of force across the two arms according to the joint configuration of the upper limbs. We further show that the underlying mechanisms influence both movement planning and online corrective responses to sudden changes in the target force.
Collapse
Affiliation(s)
- David Córdova Bulens
- Institute of Neuroscience, Université Catholique de Louvain , Brussels , Belgium.,Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
| | - Frédéric Crevecoeur
- Institute of Neuroscience, Université Catholique de Louvain , Brussels , Belgium.,Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
| | - Jean-Louis Thonnard
- Institute of Neuroscience, Université Catholique de Louvain , Brussels , Belgium.,Physical and Rehabilitation Medicine Department, Cliniques Universitaires Saint-Luc, Brussels , Belgium
| | - Philippe Lefèvre
- Institute of Neuroscience, Université Catholique de Louvain , Brussels , Belgium.,Institute of Information and Communication Technologies, Electronics, and Applied Mathematics, Université Catholique de Louvain , Louvain-la-Neuve , Belgium
| |
Collapse
|
50
|
Mojtahedi K, Fu Q, Santello M. On the Role of Physical Interaction on Performance of Object Manipulation by Dyads. Front Hum Neurosci 2017; 11:533. [PMID: 29163109 PMCID: PMC5673979 DOI: 10.3389/fnhum.2017.00533] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 10/19/2017] [Indexed: 12/03/2022] Open
Abstract
Human physical interactions can be intrapersonal, e.g., manipulating an object bimanually, or interpersonal, e.g., transporting an object with another person. In both cases, one or two agents are required to coordinate their limbs to attain the task goal. We investigated the physical coordination of two hands during an object-balancing task performed either bimanually by one agent or jointly by two agents. The task consisted of a series of static (holding) and dynamic (moving) phases, initiated by auditory cues. We found that task performance of dyads was not affected by different pairings of dominant and non-dominant hands. However, the spatial configuration of the two agents (side-by-side vs. face-to-face) appears to play an important role, such that dyads performed better side-by-side than face-to-face. Furthermore, we demonstrated that only individuals with worse solo performance can benefit from interpersonal coordination through physical couplings, whereas the better individuals do not. The present work extends ongoing investigations on human-human physical interactions by providing new insights about factors that influence dyadic performance. Our findings could potentially impact several areas, including robotic-assisted therapies, sensorimotor learning and human performance augmentation.
Collapse
Affiliation(s)
- Keivan Mojtahedi
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Qiushi Fu
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| | - Marco Santello
- School of Biological and Health Systems Engineering, Arizona State University, Tempe, AZ, United States
| |
Collapse
|