1
|
Yuan HY, Kagale S, Ferrie AMR. Multifaceted roles of transcription factors during plant embryogenesis. FRONTIERS IN PLANT SCIENCE 2024; 14:1322728. [PMID: 38235196 PMCID: PMC10791896 DOI: 10.3389/fpls.2023.1322728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 12/11/2023] [Indexed: 01/19/2024]
Abstract
Transcription factors (TFs) are diverse groups of regulatory proteins. Through their specific binding domains, TFs bind to their target genes and regulate their expression, therefore TFs play important roles in various growth and developmental processes. Plant embryogenesis is a highly regulated and intricate process during which embryos arise from various sources and undergo development; it can be further divided into zygotic embryogenesis (ZE) and somatic embryogenesis (SE). TFs play a crucial role in the process of plant embryogenesis with a number of them acting as master regulators in both ZE and SE. In this review, we focus on the master TFs involved in embryogenesis such as BABY BOOM (BBM) from the APETALA2/Ethylene-Responsive Factor (AP2/ERF) family, WUSCHEL and WUSCHEL-related homeobox (WOX) from the homeobox family, LEAFY COTYLEDON 2 (LEC2) from the B3 family, AGAMOUS-Like 15 (AGL15) from the MADS family and LEAFY COTYLEDON 1 (LEC1) from the Nuclear Factor Y (NF-Y) family. We aim to present the recent progress pertaining to the diverse roles these master TFs play in both ZE and SE in Arabidopsis, as well as other plant species including crops. We also discuss future perspectives in this context.
Collapse
Affiliation(s)
| | | | - Alison M. R. Ferrie
- Aquatic and Crop Resource Development Research Center, National Research Council Canada, Saskatoon, SK, Canada
| |
Collapse
|
2
|
Chen G, Hu H, Chen X, Chen J, Wang S, Ning H, Zhu C, Yang S. TFIIB-Related Protein BRP5/PTF2 Is Required for Both Male and Female Gametogenesis and for Grain Formation in Rice. Int J Mol Sci 2023; 24:16473. [PMID: 38003663 PMCID: PMC10671200 DOI: 10.3390/ijms242216473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/26/2023] Open
Abstract
Transcription factor IIB (TFIIB) is a general transcription factor for RNA polymerase II, exerting its influence across various biological contexts. In the majority of eukaryotes, TFIIB typically has two homologs, serving as general transcription factors for RNA polymerase I and III. In plants, however, the TFIIB-related protein family has expanded greatly, with 14 and 9 members in Arabidopsis and rice, respectively. BRP5/pollen-expressed transcription factor 2 (PTF2) proteins belong to a subfamily of TFIIB-related proteins found only in plants and algae. The prior analysis of an Arabidopsis atbrp5 mutant, characterized by a T-DNA insertion at the 5' untranslated region, demonstrated the essential role of BRP5/PTF2 during the process of pollen germination and embryogenesis in Arabidopsis. Using a rice transformation system based on CRISPR/Cas9 technology, we have generated transgenic rice plants containing loss-of-function frameshift mutations in the BRP5/PTF2 gene. Unlike in the Arabidopsis atbrp5 mutant, the brp5/ptf2 frameshift mutations were not transmitted to progeny in rice, indicating an essential role of BRP5/PTF2 in both male and female gamete development or viability. The silencing of rice BRP5/PTF2 expression through RNA interference (RNAi) had little effect on vegetative growth and panicle formation but strongly affected pollen development and grain formation. Genetic analysis revealed that strong RNAi silencing of rice BRP5/PTF2 was still transmissible to progeny almost exclusively through female gametes, as found in the Arabidopsis atbrp5 knockdown mutant. Thus, reduced rice BRP5/PTF2 expression impacted pollen preferentially by interfering with male gamete development or viability. Drawing upon these findings, we posit that BRP5/PTF2 assumes a distinct and imperative function in the realm of plant sexual reproduction.
Collapse
Affiliation(s)
- Guangna Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (G.C.); (H.H.); (X.C.); (J.C.); (S.W.); (C.Z.)
| | - Hongliang Hu
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (G.C.); (H.H.); (X.C.); (J.C.); (S.W.); (C.Z.)
| | - Xinhui Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (G.C.); (H.H.); (X.C.); (J.C.); (S.W.); (C.Z.)
| | - Jialuo Chen
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (G.C.); (H.H.); (X.C.); (J.C.); (S.W.); (C.Z.)
| | - Siyi Wang
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (G.C.); (H.H.); (X.C.); (J.C.); (S.W.); (C.Z.)
| | - He Ning
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (G.C.); (H.H.); (X.C.); (J.C.); (S.W.); (C.Z.)
| | - Cheng Zhu
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (G.C.); (H.H.); (X.C.); (J.C.); (S.W.); (C.Z.)
| | - Su Yang
- College of Life Sciences, China Jiliang University, 258 Xueyuan Street, Hangzhou 310018, China; (G.C.); (H.H.); (X.C.); (J.C.); (S.W.); (C.Z.)
- Institute of Crop Science and Zhejiang Key Laboratory of Crop Germplasm, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
3
|
Li W, Guo X, Wu W, Yu W, Li S, Luo D, Wang T, Zhu Q, Chen L, Lee D. Construction of a Novel Female Sterility System for Hybrid Rice. FRONTIERS IN PLANT SCIENCE 2022; 12:815401. [PMID: 35185963 PMCID: PMC8850283 DOI: 10.3389/fpls.2021.815401] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 12/27/2021] [Indexed: 06/14/2023]
Abstract
The main constraints of current hybrid rice technology using male sterility (MS) are the low yield and high labor costs of hybrid rice seed (HRS) production. Therefore, there is an urgent need for innovative new hybrid rice technology. Fortunately, we discovered a unique spontaneous sporophytic female-sterile rice mutant controlled by a single recessive locus in the nucleus. Because female-sterile mutant lines cannot produce any selfed-seeds but their pollen has totally normal functions, female sterility (FS) lines may be considered ideal pollen donors to replace the female-fertile pollen donor parent lines currently used in the HRS production. In this study, a genetically engineered FS-based system was constructed to propagate a pure transgene-free FS line using a bentazon herbicide screening. Additionally, the ability of the FS + MS (FM)-line system, with mixed plantings of FS and MS lines, to produce HRS was tested. The pilot field experiment results showed that HRS of the FM-line system was more efficient compared with the conventional FS to MS strip planting control mode. Thus, this study provides new insights into genetic engineering technology and a promising strategy for the utilization of FS in hybrid rice.
Collapse
Affiliation(s)
- Wei Li
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Xiaoqiong Guo
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Wenbin Wu
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Weilin Yu
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Shichuan Li
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Di Luo
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Tianjie Wang
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
| | - Qian Zhu
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Lijuan Chen
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| | - Dongsun Lee
- Rice Research Institute, Yunnan Agriculture University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural University, Kunming, China
- The Key Laboratory for Crop Production and Smart Agriculture of Yunnan Province, Yunnan Agricultural University, Kunming, China
| |
Collapse
|
4
|
Ye LX, Zhang JX, Hou XJ, Qiu MQ, Wang WF, Zhang JX, Hu CG, Zhang JZ. A MADS-Box Gene CiMADS43 Is Involved in Citrus Flowering and Leaf Development through Interaction with CiAGL9. Int J Mol Sci 2021; 22:ijms22105205. [PMID: 34069068 PMCID: PMC8156179 DOI: 10.3390/ijms22105205] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 05/10/2021] [Accepted: 05/12/2021] [Indexed: 11/16/2022] Open
Abstract
MADS-box genes are involved in various developmental processes including vegetative development, flower architecture, flowering, pollen formation, seed and fruit development. However, the function of most MADS-box genes and their regulation mechanism are still unclear in woody plants compared with model plants. In this study, a MADS-box gene (CiMADS43) was identified in citrus. Phylogenetic and sequence analysis showed that CiMADS43 is a GOA-like Bsister MADS-box gene. It was localized in the nucleus and as a transcriptional activator. Overexpression of CiMADS43 promoted early flowering and leaves curling in transgenic Arabidopsis. Besides, overexpression or knockout of CiMADS43 also showed leaf curl phenotype in citrus similar to that of CiMADS43 overexpressed in Arabidopsis. Protein–protein interaction found that a SEPALLATA (SEP)-like protein (CiAGL9) interacted with CiMADS43 protein. Interestingly, CiAGL9 also can bind to the CiMADS43 promoter and promote its transcription. Expression analysis also showed that these two genes were closely related to seasonal flowering and the development of the leaf in citrus. Our findings revealed the multifunctional roles of CiMADS43 in the vegetative and reproductive development of citrus. These results will facilitate our understanding of the evolution and molecular mechanisms of MADS-box genes in citrus.
Collapse
|
5
|
Liu W, Huang S, Liu Z, Lou T, Tan C, Wang Y, Feng H. A missense mutation of STERILE APETALA leads to female sterility in Chinese cabbage (Brassica campestris ssp. pekinensis). PLANT REPRODUCTION 2019; 32:217-228. [PMID: 30806770 DOI: 10.1007/s00497-019-00368-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 02/18/2019] [Indexed: 05/03/2023]
Abstract
Flower development is essential for the sexual reproduction and crop yield of plants. Thus, a better understanding of plant sterility from the perspective of morphological and molecular genetics is imperative. In our previous study, a recessive female-sterile Chinese cabbage mutant fsm was obtained from a doubled haploid line 'FT' via an isolated microspore culture combined with EMS mutagenesis. Pistil aniline blue staining and stigma scanning observation showed that the growth of the stigma papillar cells and pollen tubes of the mutant fsm were normal. Therefore, the female sterility was due to abnormal development of the ovules. To map the mutant fsm, 3108 F2 individuals were selected for linkage analysis. Two closely linked markers, Indel-I2 and Indel-I7, were localized on the flanking region of fsm at distances of 0.05 cM and 0.06 cM, respectively. The physical distance between Indel-I2 and Indel-I7 was ~ 1376 kb, with 107 genes remaining in the target region. This region was located on the chromosome A04 centromere, on which low recombination rates and a high frequency of repetitive sequences were present. Whole-genome re-sequencing detected a single-nucleotide (C-to-A) transition (TCG/TAG) on the exon of BraA04001030, resulting in a premature stop codon. Genotyping revealed that the female-sterile phenotype was fully cosegregated with this SNP. BraA04001030 encodes a homologue of STERILE APETALA (SAP) transcriptional regulator, which plays vital roles in floral development. The results of the present study suggest that BraA04001030 is a strong candidate gene for fsm and provide the basis for exploring the molecular mechanism underlying female sterility in Chinese cabbage.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Shengnan Huang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Zhiyong Liu
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Tengxue Lou
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, People's Republic of China
| | - Chong Tan
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Yiheng Wang
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China
| | - Hui Feng
- Department of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenhe District, Shenyang, 110866, People's Republic of China.
| |
Collapse
|
6
|
Zhu Q, Zhang XL, Nadir S, DongChen WH, Guo XQ, Zhang HX, Li CY, Chen LJ, Lee DS. A LysM Domain-Containing Gene OsEMSA1 Involved in Embryo sac Development in Rice ( Oryza sativa L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1596. [PMID: 28979272 PMCID: PMC5611485 DOI: 10.3389/fpls.2017.01596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/15/2017] [Accepted: 08/30/2017] [Indexed: 06/07/2023]
Abstract
The embryo sac plays a vital role in sexual reproduction of angiosperms. LysM domain containing proteins with multiple lysin motifs are widespread proteins and are involved in plant defense responses against fungal chitins and bacterial peptidoglycans. Various studies have reported the role of LysM domain-containing proteins in plant defense mechanisms but their involvement in sexual reproduction remains largely unknown. Here, we report the involvement of a LysM domain-containing gene, EMBRYO SAC 1 (OsEMSA1), in the sexual reproduction of rice. The gene encoded a LysM domain-containing protein that was necessary for embryo sac development and function. The gene was expressed in root, stem, leaf tissues, panicle and ovaries and had some putative role in hormone regulation. Suppression of OsEMSA1 expression resulted in a defective embryo sac with poor differentiation of gametophytic cells, which consequently failed to attract pollen tubes and so reduced the panicle seed-setting rate. Our data offers new insight into the functions of LysM domain-containing proteins in rice.
Collapse
Affiliation(s)
- Qian Zhu
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Xiao-Ling Zhang
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Sadia Nadir
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
- Department of Chemistry, University of Science and TechnologyBannu, Pakistan
| | - Wen-Hua DongChen
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Xiao-Qiong Guo
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Hui-Xin Zhang
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
| | - Cheng-Yun Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural UniversityKunming, China
- Key Laboratory for Agricultural Biodiversity and Pest Management of China Education Ministry, Yunnan Agricultural UniversityKunming, China
| | - Li-Juan Chen
- Rice Research Institute, Yunnan Agricultural UniversityKunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural UniversityKunming, China
| | - Dong-Sun Lee
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan Agricultural UniversityKunming, China
| |
Collapse
|
7
|
Liu WG, Wang YP, Zhang ZJ, Wang M, Lv QX, Liu HW, Meng LC, Lu M. Generation and characterization of caprine chymosin in corn seed. Protein Expr Purif 2017; 135:78-82. [DOI: 10.1016/j.pep.2017.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 04/25/2017] [Accepted: 05/15/2017] [Indexed: 10/19/2022]
|
8
|
Ehlers K, Bhide AS, Tekleyohans DG, Wittkop B, Snowdon RJ, Becker A. The MADS Box Genes ABS, SHP1, and SHP2 Are Essential for the Coordination of Cell Divisions in Ovule and Seed Coat Development and for Endosperm Formation in Arabidopsis thaliana. PLoS One 2016; 11:e0165075. [PMID: 27776173 PMCID: PMC5077141 DOI: 10.1371/journal.pone.0165075] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 10/05/2016] [Indexed: 01/07/2023] Open
Abstract
Seed formation is a pivotal process in plant reproduction and dispersal. It begins with megagametophyte development in the ovule, followed by fertilization and subsequently coordinated development of embryo, endosperm, and maternal seed coat. Two closely related MADS-box genes, SHATTERPROOF 1 and 2 (SHP1 and SHP2) are involved in specifying ovule integument identity in Arabidopsis thaliana. The MADS box gene ARABIDOPSIS BSISTER (ABS or TT16) is required, together with SEEDSTICK (STK) for the formation of endothelium, part of the seed coat and innermost tissue layer formed by the maternal plant. Little is known about the genetic interaction of SHP1 and SHP2 with ABS and the coordination of endosperm and seed coat development. In this work, mutant and expression analysis shed light on this aspect of concerted development. Triple tt16 shp1 shp2 mutants produce malformed seedlings, seed coat formation defects, fewer seeds, and mucilage reduction. While shp1 shp2 mutants fail to coordinate the timely development of ovules, tt16 mutants show less peripheral endosperm after fertilization. Failure in coordinated division of the innermost integument layer in early ovule stages leads to inner seed coat defects in tt16 and tt16 shp1 shp2 triple mutant seeds. An antagonistic action of ABS and SHP1/SHP2 is observed in inner seed coat layer formation. Expression analysis also indicates that ABS represses SHP1, SHP2, and FRUITFUL expression. Our work shows that the evolutionary conserved Bsister genes are required not only for endothelium but also for endosperm development and genetically interact with SHP1 and SHP2 in a partially antagonistic manner.
Collapse
Affiliation(s)
- Katrin Ehlers
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Amey S. Bhide
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Dawit G. Tekleyohans
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| | - Benjamin Wittkop
- Justus Liebig University, Department of Plant Breeding, Heinrich-Buff-Ring 26-32, D 35392, Gießen, Germany
| | - Rod J. Snowdon
- Justus Liebig University, Department of Plant Breeding, Heinrich-Buff-Ring 26-32, D 35392, Gießen, Germany
| | - Annette Becker
- Justus Liebig University, Institute of Botany, Heinrich-Buff-Ring 38, D-35392, Gießen, Germany
| |
Collapse
|
9
|
Dreni L, Zhang D. Flower development: the evolutionary history and functions of the AGL6 subfamily MADS-box genes. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:1625-1638. [PMID: 26956504 DOI: 10.1093/jxb/erw046] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
AGL6 is an ancient subfamily of MADS-box genes found in both gymnosperms and angiosperms. Its functions remained elusive despite the fact that the MADS-box genes and the ABC model have been studied for >20 years. Nevertheless, recent discoveries in petunia, rice, and maize support its involvement in the 'E' function of floral development, very similar to the closely related AGL2 (SEPALLATA) subfamily which has been well characterized. The known functions of AGL6 span from ancient conserved roles to new functions acquired in specific plant families. The AGL6 genes are involved in floral meristem regulation, in floral organs, and ovule (integument) and seed development, and have possible roles in both male and female germline and gametophyte development. In grasses, they are also important for the development of the first whorl of the flower, whereas in Arabidopsis they may play additional roles before floral meristem formation. This review covers these recent insights and some other aspects that are not yet fully elucidated, which deserve more studies in the future.
Collapse
Affiliation(s)
- Ludovico Dreni
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic and Developmental Sciences, Shanghai Jiao Tong University (SJTU)-University of Adelaide Joint Centre for Agriculture and Health, State Key Laboratory of Hybrid Rice, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China School of Agriculture, Food, and Wine, University of Adelaide, South Australia 5064, Australia
| |
Collapse
|
10
|
Gene Expression Profiles in Rice Developing Ovules Provided Evidence for the Role of Sporophytic Tissue in Female Gametophyte Development. PLoS One 2015; 10:e0141613. [PMID: 26506227 PMCID: PMC4624635 DOI: 10.1371/journal.pone.0141613] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Accepted: 10/09/2015] [Indexed: 12/21/2022] Open
Abstract
The development of ovule in rice (Oryza sativa) is vital during its life cycle. To gain more understanding of the molecular events associated with the ovule development, we used RNA sequencing approach to perform transcriptome-profiling analysis of the leaf and ovules at four developmental stages. In total, 25,401, 23,343, 23,647 and 23,806 genes were identified from the four developmental stages of the ovule, respectively. We identified a number of differently expressed genes (DEGs) from three adjacent stage comparisons, which may play crucial roles in ovule development. The DEGs were then conducted functional annotations and Kyoto encyclopedia of genes and genomes (KEGG) pathway analyses. Genes related to cellular component biogenesis, membrane-bounded organelles and reproductive regulation were identified to be highly expressed during the ovule development. Different expression levels of auxin-related and cytokinin-related genes were also identified at various stages, providing evidence for the role of sporophytic ovule tissue in female gametophyte development from the aspect of gene expression. Generally, an overall transcriptome analysis for rice ovule development has been conducted. These results increased our knowledge of the complex molecular and cellular events that occur during the development of rice ovule and provided foundation for further studies on rice ovule development.
Collapse
|
11
|
Phylogenomics reveals surprising sets of essential and dispensable clades of MIKCc-group MADS-box genes in flowering plants. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:353-62. [DOI: 10.1002/jez.b.22598] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2014] [Accepted: 09/02/2014] [Indexed: 11/07/2022]
|
12
|
Kuang Q, Yu X, Peng X, Sun MX. The isolation of early nuclear endosperm of Oryza sativa to facilitate gene expression analysis and screening imprinted genes. PLANT METHODS 2015; 11:49. [PMID: 26500689 PMCID: PMC4618753 DOI: 10.1186/s13007-015-0092-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2015] [Accepted: 10/13/2015] [Indexed: 05/16/2023]
Abstract
BACKGROUND Since the quality and yield of rice production depends on endosperm development, previous studies have focused on the molecular mechanism that regulates this developmental process. Recently, how this process is epigenetically regulated has become an important topic. However, the gene expression analysis and screening imprinted genes during early endosperm development remain challenging since the isolation of early endosperm has not been possible. Here, we report a procedure for the isolation of endosperm at 24 or 48 HAP (hours after pollination) during the free nuclear stage of endosperm development. RESULTS This technique allows for rapid and convenient collection of pure free nuclear endosperm. Early endosperm RNA can then be extracted from the isolated endosperm cells using dynabeads. Our results showed that the quality of RNA is satisfactory for gene expression analysis and screening the parental-of-origin specific genes in early endosperm. CONCLUSIONS Thus, we offer a reliable method to overcome one of the major obstacles in the investigation of the molecular mechanisms of early endosperm development. Our approach can be used for accurate gene expression analysis and screening of imprinted genes, and facilitates the confirmation of endosperm-specific gene expression at the very early stages of endosperm development. This method could also be used in other species to collect early free nuclear endosperm.
Collapse
Affiliation(s)
- Quan Kuang
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072 China
| | - Xiaobo Yu
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072 China
| | - Xiongbo Peng
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072 China
| | - Meng-xiang Sun
- College of Life Science, State Key Laboratory of Hybrid Rice, Wuhan University, Wuhan, 430072 China
| |
Collapse
|