1
|
Shi S, Tang R, Hao X, Tang S, Chen W, Jiang C, Long M, Chen K, Hu X, Xie Q, Xie S, Meng Z, Ismayil A, Jin X, Wang F, Liu H, Li H. Integrative Transcriptomic and Metabolic Analyses Reveal That Flavonoid Biosynthesis Is the Key Pathway Regulating Pigment Deposition in Naturally Brown Cotton Fibers. PLANTS (BASEL, SWITZERLAND) 2024; 13:2028. [PMID: 39124145 PMCID: PMC11314106 DOI: 10.3390/plants13152028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/11/2024] [Accepted: 07/18/2024] [Indexed: 08/12/2024]
Abstract
Brown cotton is a major cultivar of naturally colored cotton, and brown cotton fibers (BCFs) are widely utilized as raw materials for textile industry production due to their advantages of being green and dyeing-pollution-free. However, the mechanisms underlying the pigmentation in fibers are still poorly understood, which significantly limits their extensive applications in related fields. In this study, we conducted a multidimensional comparative analysis of the transcriptomes and metabolomes between brown and white fibers at different developmental periods to identify the key genes and pathways regulating the pigment deposition. The transcriptomic results indicated that the pathways of flavonoid biosynthesis and phenylpropanoid biosynthesis were significantly enriched regulatory pathways, especially in the late development periods of fiber pigmentation; furthermore, the genes distributed in the pathways of PAL, CHS, F3H, DFR, ANR, and UFGT were identified as significantly up-regulated genes. The metabolic results showed that six metabolites, namely (-)-Epigallocatechin, Apiin, Cyanidin-3-O-glucoside, Gallocatechin, Myricetin, and Poncirin, were significantly accumulated in brown fibers but not in white fibers. Integrative analysis of the transcriptomic and metabolomic data demonstrated a possible regulatory network potentially regulating the pigment deposition, in which three MYB transcription factors promote the expression levels of flavonoid biosynthesis genes, thereby inducing the content increase in (-)-Epigallocatechin, Cyanidin-3-O-glucoside, Gallocatechin, and Myricetin in BCFs. Our findings provide new insights into the pigment deposition mechanism in BCFs and offer references for genetic engineering and breeding of colored cotton materials.
Collapse
Affiliation(s)
- Shandang Shi
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
| | - Rui Tang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Xiaoyun Hao
- Rural Energy and Environment Workstation of Yili State, Yining 835000, China
| | - Shouwu Tang
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
| | - Wengang Chen
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
| | - Chao Jiang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Mengqian Long
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Kailu Chen
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Xiangxiang Hu
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Quanliang Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Shuangquan Xie
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Zhuang Meng
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Asigul Ismayil
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Xiang Jin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou 571158, China
| | - Fei Wang
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| | - Haifeng Liu
- China Colored-Cotton (Group) Co., Ltd., Urumqi 830023, China
| | - Hongbin Li
- Key Laboratory of Xinjiang Phytomedicine Resource and Utilization of Ministry of Education, Key Laboratory of Oasis Town and Mountain-Basin System Ecology of Bingtuan, College of Life Sciences, Shihezi University, Shihezi 832000, China
| |
Collapse
|
2
|
Jiao J, Zheng H, Zhou X, Huang Y, Niu Q, Ke L, Tang S, Liu H, Sun Y. The functions of laccase gene GhLAC15 in fiber colouration and development in brown-colored cotton. PHYSIOLOGIA PLANTARUM 2024; 176:e14415. [PMID: 38962818 DOI: 10.1111/ppl.14415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/16/2024] [Accepted: 06/18/2024] [Indexed: 07/05/2024]
Abstract
The monotonicity of color type in naturally colored cottons (NCCs) has become the main limiting factor to their widespread use, simultaneously coexisting with poor fiber quality. The synchronous improvement of fiber quality and color become more urgent and crucial as the demand for sustainable development increases. The homologous gene of wild cotton Gossypium stocksii LAC15 in G. hirsutum, GhLAC15, was also dominantly expressed in the developing fibers of brown cotton XC20 from 5 DPA (day post anthesis) to 25 DPA, especially at the secondary cell wall thickening stage (20 DPA and 25 DPA). In XC20 plants with downregulated GhLAC15 (GhLAC15i), a remarkable reduction in proanthocyanidins (PAs) and lignin contents was observed. Some of the key genes in the phenylpropane and flavonoid biosynthesis pathway were down-regulated in GhLAC15i plants. Notably, the fiber length of GhLAC15i plants showed an obvious increase and the fiber color was lightened. Moreover, we found that the thickness of cotton fiber cell wall was decreased in GhLAC15i plants and the fiber surface became smoother compared to that of WT. Taken together, this study revealed that GhLAC15 played an important role in PAs and lignin biosynthesis in naturally colored cotton fibers. It might mediate fiber color and fiber quality by catalyzing PAs oxidation and lignin polymerization, ultimately regulating fiber colouration and development.
Collapse
Affiliation(s)
- Junye Jiao
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Hongli Zheng
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
- College of Textile Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Xinping Zhou
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Yinshuai Huang
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Qingqing Niu
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Liping Ke
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| | - Shouwu Tang
- China Colored-cotton (Group) Co., Ltd., China
| | - Haifeng Liu
- China Colored-cotton (Group) Co., Ltd., China
| | - Yuqiang Sun
- Plant Genomics and Molecular Improvement of Colored Fiber Laboratory, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, P.R. China
| |
Collapse
|
3
|
Zhao J, Xu Y, Li H, An W, Yin Y, Wang B, Wang L, Wang B, Duan L, Ren X, Liang X, Wang Y, Wan R, Huang T, Zhang B, Li Y, Luo J, Cao Y. Metabolite-based genome-wide association studies enable the dissection of the genetic bases of flavonoids, betaine and spermidine in wolfberry (Lycium). PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1435-1452. [PMID: 38194521 PMCID: PMC11123438 DOI: 10.1111/pbi.14278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 10/28/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
Wolfberry is a plant with medicinal and food values. However, its bioactive ingredients and the corresponding genetic bases have not been determined. Here, we de novo generated a chromosome-level genome assembly for wolfberry, yielding a genome sequence of ~1.77 Gb with contig N50 of 50.55 Mb and 39 224 predicted gene models. A variation map, using 307 re-sequenced accessions, was called based on this genome assembly. Furthermore, the fruit metabolome of these accessions was profiled using 563 annotated metabolites, which separated Lycium barbarum L. and non-L. barbarum L. The flavonoids, coumarins, alkaloids and nicotinic acid contents were higher in the former than in the latter. A metabolite-based genome-wide association study mapped 156 164 significant single nucleotide polymorphisms corresponding to 340 metabolites. This included 19 219 unique lead single nucleotide polymorphisms in 1517 significant association loci, of which three metabolites, flavonoids, betaine and spermidine, were highlighted. Two candidate genes, LbUGT (evm.TU.chr07.2692) and LbCHS (evm.TU.chr07.2738), with non-synonymous mutations, were associated with the flavonoids content. LbCHS is a structural gene that interacts with a nearby MYB transcription factor (evm.TU.chr07.2726) both in L. barbarum and L. ruthenicum. Thus, these three genes might be involved in the biosynthesis/metabolism of flavonoids. LbSSADH (evm.TU.chr09.627) was identified as possibly participating in betaine biosynthesis/metabolism. Four lycibarbarspermidines (E-G and O) were identified, and only the lycibarbarspermidines O content was higher in L. barbarum varieties than in non-L. barbarum varieties. The evm.TU.chr07.2680 gene associated with lycibarbarspermidines O was annotated as an acetyl-CoA-benzylalcohol acetyltransferase, suggesting that it is a candidate gene for spermidine biosynthesis. These results provide novel insights into the specific metabolite profile of non-L. barbarum L. and the genetic bases of flavonoids, betaine and spermidine biosynthesis/metabolism.
Collapse
Affiliation(s)
- Jianhua Zhao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yuhui Xu
- Adsen Biotechnology Co., Ltd.UrumchiChina
| | - Haoxia Li
- Desertification Control Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Wei An
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yue Yin
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bin Wang
- Wuhan Matware Biotechnology Co., Ltd.WuhanChina
| | - Liping Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Bi Wang
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Linyuan Duan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaoyue Ren
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Xiaojie Liang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yajun Wang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ru Wan
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Ting Huang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Bo Zhang
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Yanlong Li
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| | - Jie Luo
- School of breeding and multiplcation (Sanya Institute of Breeding and Multiplication)Hainan, UniversitySanyaChina
| | - Youlong Cao
- National Wolfberry Engineering Research Center/Wolfberry Science Research Institute, Ningxia Academy of Agriculture and Forestry SciencesYinchuanChina
| |
Collapse
|
4
|
Xie N, Guo Q, Li H, Yuan G, Gui Q, Xiao Y, Liao M, Yang L. Integrated transcriptomic and WGCNA analyses reveal candidate genes regulating mainly flavonoid biosynthesis in Litsea coreana var. sinensis. BMC PLANT BIOLOGY 2024; 24:231. [PMID: 38561656 PMCID: PMC10985888 DOI: 10.1186/s12870-024-04949-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 03/26/2024] [Indexed: 04/04/2024]
Abstract
Litsea coreana Levl. var. sinensis (Allen) Yang et P. H. Huang is a popular ethnic herb and beverage plant known for its high flavonoid content, which has been linked to a variety of pharmacological benefits and crucial health-promoting impacts in humans. The progress in understanding the molecular mechanisms of flavonoid accumulation in this plant has been hindered due to the deficiency of genomic and transcriptomic resources. We utilized a combination of Illumina and Oxford Nanopore Technology (ONT) sequencing to generate a de novo hybrid transcriptome assembly. In total, 126,977 unigenes were characterized, out of which 107,977 were successfully annotated in seven public databases. Within the annotated unigenes, 3,781 were categorized into 58 transcription factor families. Furthermore, we investigated the presence of four valuable flavonoids-quercetin-3-O-β-D-galactoside, quercetin-3-O-β-D-glucoside, kaempferol-3-O-β-D-galactoside, and kaempferol-3-O-β-D-glucoside in 98 samples, using high-performance liquid chromatography. A weighted gene co-expression network analysis identified two co-expression modules, MEpink and MEturquoise, that showed strong positive correlation with flavonoid content. Within these modules, four transcription factor genes (R2R3-MYB, NAC, WD40, and ARF) and four key enzyme-encoding genes (CHI, F3H, PAL, and C4H) emerged as potential hub genes. Among them, the R2R3-MYB (LcsMYB123) as a homologous gene to AtMYB123/TT2, was speculated to play a significant role in flavonol biosynthesis based on phylogenetic analysis. Our findings provided a theoretical foundation for further research into the molecular mechanisms of flavonoid biosynthesis. Additionally, The hybrid transcriptome sequences will serve as a valuable molecular resource for the transcriptional annotation of L. coreana var. sinensis, which will contribute to the improvement of high-flavonoid materials.
Collapse
Affiliation(s)
- Na Xie
- Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Qiqaing Guo
- Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China.
| | - Huie Li
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Gangyi Yuan
- Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Qin Gui
- Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Yang Xiao
- Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Mengyun Liao
- Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| | - Lan Yang
- Institute for Forest Resources and Environment of Guizhou, College of Forestry, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
5
|
Identification and Functional Analysis of the Promoter of a Leucoanthocyanidin Reductase Gene from Gossypium hirsutum. Mol Biotechnol 2023; 65:645-654. [PMID: 36155889 DOI: 10.1007/s12033-022-00571-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Accepted: 09/15/2022] [Indexed: 10/14/2022]
Abstract
Leucoanthocyanidin reductase (LAR) is the critical enzyme in the synthesis pathway of proanthocyanidins, which are the primary pigments in brown cotton fibers. Our previous study has revealed significant differences in the expression levels of GhLAR1 between white and brown cotton fibers at 10 DPA. In this work, the expression pattern of the GhLAR1 gene was further studied, and the promoter of GhLAR1 (1780 bp) was isolated and characterized. Bioinformatic analysis indicated that GhLAR1 promoter contained many known light response elements and several defenses related to transcriptional factor-binding boxes, which may partially explain the response of the GhLAR1 to temperature, NaCl, and PEG treatments. Furthermore, GhLAR1 was preferentially and strongly expressed in fibers and flowers of cotton, and the expression levels in all tested tissues (especially fibers) of brown cotton were significantly higher than those in white cotton. Consistent with the expression analysis, the GhLAR1 promoter mainly drove GUS expression in epidermal trichomes and floral organs.
Collapse
|
6
|
Lv YP, Zhao G, Xie YF, Owusu AG, Wu Y, Gao JS. Transcriptome and Metabolome Profiling Unveil Pigment Formation Variations in Brown Cotton Lines (Gossypium hirsutum L.). Int J Mol Sci 2023; 24:ijms24065249. [PMID: 36982328 PMCID: PMC10049672 DOI: 10.3390/ijms24065249] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/23/2023] [Accepted: 03/01/2023] [Indexed: 03/12/2023] Open
Abstract
Naturally brown colored cotton (NBCC) is becoming increasingly popular due to its natural properties of coloration. However, poor fiber quality and color fading are key issues that are hindering the cultivation of naturally colored cotton. In this study, based on transcriptome and metabolome of 18 days post-anthesis (DPA), we compared the variations of pigment formation in two brown cotton fibers (DCF and LCF), with white cotton fiber (WCF) belonging to a near-isogenic line. A transcriptome study revealed a total of 15,785 differentially expressed genes significantly enriched in the flavonoid biosynthesis pathway. Furthermore, for flavonoid biosynthesis-related genes, such as flavonoid 3′5′-hydroxylase (F3′5′H), anthocyanidin synthase (ANS), anthocyanidin reductase (ANR), chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), and chalcone isomerase (CHI), their expressions significantly increased in LCF compared with DCF and WCF. Moreover, transcription factors MYB and bHLH were significantly expressed in LCF and DCF. Most flavonoid-related metabolites (myricetin naringenin, catechin, epicatechin-epiafzelechin, and epigallocatechin) were found to be more highly up-regulated in LCF and DCF than WCF. These findings reveal the regulatory mechanism controlling different brown pigmentation in cotton fibers and elucidate the need for the proper selection of high-quality brown cotton fiber breeding lines for promising fiber quality and durable brown color pigmentation.
Collapse
|
7
|
Ke L, Yu D, Zheng H, Xu Y, Wu Y, Jiao J, Wang X, Mei J, Cai F, Zhao Y, Sun J, Zhang X, Sun Y. Function deficiency of GhOMT1 causes anthocyanidins over-accumulation and diversifies fibre colours in cotton (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2022; 20:1546-1560. [PMID: 35503731 PMCID: PMC9342615 DOI: 10.1111/pbi.13832] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 04/23/2022] [Indexed: 05/25/2023]
Abstract
Naturally coloured cotton (NCC) fibres need little or no dyeing process in textile industry to low-carbon emission and are environment-friendly. Proanthocyanidins (PAs) and their derivatives were considered as the main components causing fibre coloration and made NCCs very popular and healthy, but the monotonous fibre colours greatly limit the wide application of NCCs. Here a G. hirsutum empurpled mutant (HS2) caused by T-DNA insertion is found to enhance the anthocyanidins biosynthesis and accumulate anthocyanidins in the whole plant. HPLC and LC/MS-ESI analysis confirmed the anthocyanidins methylation and peonidin, petunidin and malvidin formation are blocked. The deficiency of GhOMT1 in HS2 was associated with the activation of the anthocyanidin biosynthesis and the altered components of anthocyanidins. The transcripts of key genes in anthocyanidin biosynthesis pathway are significantly up-regulated in HS2, while transcripts of the genes for transport and decoration were at similar levels as in WT. To investigate the potential mechanism of GhOMT1 deficiency in cotton fibre coloration, HS2 mutant was crossed with NCCs. Surprisingly, offsprings of HS2 and NCCs enhanced PAs biosynthesis and increased PAs levels in their fibres from the accumulated anthocyanidins through up-regulated GhANR and GhLAR. As expected, multiple novel lines with improved fibre colours including orange red and navy blue were produced in their generations. Based on this work, a new strategy for breeding diversified NCCs was brought out by promoting PA biosynthesis. This work will help shed light on mechanisms of PA biosynthesis and bring out potential molecular breeding strategy to increase PA levels in NCCs.
Collapse
Affiliation(s)
- Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Dongliang Yu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Hongli Zheng
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yihan Xu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yuqing Wu
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Junye Jiao
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Xiaoli Wang
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Jun Mei
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Fangfang Cai
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Yanyan Zhao
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| | - Jie Sun
- College of AgricultureThe Key Laboratory of Oasis Eco‐AgricultureShihezi UniversityShiheziChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanChina
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber LaboratoryCollege of Life Sciences and MedicineZhejiang Sci‐Tech UniversityHangzhouChina
| |
Collapse
|
8
|
Revealing Genetic Differences in Fiber Elongation between the Offspring of Sea Island Cotton and Upland Cotton Backcross Populations Based on Transcriptome and Weighted Gene Coexpression Networks. Genes (Basel) 2022; 13:genes13060954. [PMID: 35741716 PMCID: PMC9222338 DOI: 10.3390/genes13060954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 02/05/2023] Open
Abstract
Fiber length is an important indicator of cotton fiber quality, and the time and rate of cotton fiber cell elongation are key factors in determining the fiber length of mature cotton. To gain insight into the differences in fiber elongation mechanisms in the offspring of backcross populations of Sea Island cotton Xinhai 16 and land cotton Line 9, we selected two groups with significant differences in fiber length (long-fiber group L and short-fiber group S) at different fiber development stages 0, 5, 10 and 15 days post-anthesis (DPA) for transcriptome comparison. A total of 171.74 Gb of clean data was obtained by RNA-seq, and eight genes were randomly selected for qPCR validation. Data analysis identified 6055 differentially expressed genes (DEGs) between two groups of fibers, L and S, in four developmental periods, and gene ontology (GO) term analysis revealed that these DEGs were associated mainly with microtubule driving, reactive oxygen species, plant cell wall biosynthesis, and glycosyl compound hydrolase activity. Kyoto encyclopedia of genes and genomes (KEGG) pathway analysis indicated that plant hormone signaling, mitogen-activated protein kinase (MAPK) signaling, and starch and sucrose metabolism pathways were associated with fiber elongation. Subsequently, a sustained upregulation expression pattern, profile 19, was identified and analyzed using short time-series expression miner (STEM). An analysis of the weighted gene coexpression network module uncovered 21 genes closely related to fiber development, mainly involved in functions such as cell wall relaxation, microtubule formation, and cytoskeletal structure of the cell wall. This study helps to enhance the understanding of the Sea Island–Upland backcross population and identifies key genes for cotton fiber development, and these findings will provide a basis for future research on the molecular mechanisms of fiber length formation in cotton populations.
Collapse
|
9
|
Xu M, Shen C, Zhu Q, Xu Y, Xue C, Zhu B, Hu J. Comparative metabolomic and transcriptomic analyses revealed the differential accumulation of secondary metabolites during the ripening process of acerola cherry (Malpighia emarginata) fruit. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2022; 102:1488-1497. [PMID: 34402073 DOI: 10.1002/jsfa.11483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/25/2021] [Accepted: 08/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Acerola cherry is a famous functional fruit containing plentiful antioxidants and other nutrients. However, studies on the variations among nutrients during the ripening process of acerola fruit are scare. RESULTS Comparative metabolomic and transcriptomic analyses were performed and identified 31 331 unigenes and 1896 annotated metabolite features in acerola cherry fruit. K Kyoto Encyclopedia of Genes and Genomes enrichment analysis showed that several antioxidant and nutrient-related metabolic pathways, such as the flavonoids, vitamins, carotenoids, amino acids, and fatty acids metabolic pathways, were significantly changed during the ripening process. The metabolites related to the vitamin, carotenoid, and fatty acid metabolic pathways were downregulated during the ripening process. Several flavonoid biosynthesis-related genes (including dihydroflavonol 4-reductase, chalcone synthase, flavanone 3-hydroxylase, and anthocyanidin synthase), were significantly upregulated, suggesting their essential functions in the accumulation of flavonoids in mature fruit. CONCLUSION Most of the vitamin and carotenoid metabolism-related metabolites significantly accumulated in immature fruit, suggesting that immature acerola fruit is a good material for the extraction of vitamins and carotenoids. For macronutrients, most of the amino acids accumulated in mature fruit and most of the fatty acids greatly accumulated in immature fruit. Our data revealed the differential accumulation of antioxidants and nutrients during the ripening process of acerola cherry fruit. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Mingfeng Xu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Qin Zhu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Yunsheng Xu
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Changfeng Xue
- School of Food Science and Engineering, Hainan Tropical Ocean University, Sanya, China
| | - Beiwei Zhu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| | - Jiangning Hu
- School of Food Science and Technology, Dalian Polytechnic University, Dalian, China
| |
Collapse
|
10
|
Wang Z, Zhang X, He S, Rehman A, Jia Y, Li H, Pan Z, Geng X, Gao Q, Wang L, Peng Z, Du X. Transcriptome Co-expression Network and Metabolome Analysis Identifies Key Genes and Regulators of Proanthocyanidins Biosynthesis in Brown Cotton. FRONTIERS IN PLANT SCIENCE 2022; 12:822198. [PMID: 35237281 PMCID: PMC8882990 DOI: 10.3389/fpls.2021.822198] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/29/2021] [Indexed: 05/24/2023]
Abstract
Brown cotton fiber (BCF) is a unique raw material of naturally colored cotton (NCC). But characteristics of the regulatory gene network and metabolic components related to the proanthocyanidins biosynthesis pathway at various stages of its fiber development remain unclear. Here, the dynamic changes in proanthocyanidins biosynthesis components and transcripts in the BCF variety "Zong 1-61" and its white near-isogenic lines (NILs) "RT" were characterized at five fiber developmental stages (0, 5, 10, 15, and 20 days post-anthesis; DPA). Enrichment analysis of differentially expressed genes (DEGs), comparison of metabolome differences, and pathway enrichment analysis of a weighted gene correlation network analysis together revealed the dominant gene expression of flavonoid biosynthesis (FB), phenylpropanoid metabolisms, and some carbohydrate metabolisms at 15 or 20 DPA than white cotton. Eventually, 63 genes were identified from five modules putatively related to FB. Three R2R3-MYB and two bHLH transcription factors were predicted as the core genes. Further, GhANS, GhANR1, and GhUFGT2 were preliminarily regulated by GhMYB46, GhMYB6, and GhMYB3, respectively, according to yeast one-hybrid assays in vitro. Our findings provide an important transcriptional regulatory network of proanthocyanidins biosynthesis pathway and dynamic flavonoid metabolism profiles.
Collapse
Affiliation(s)
- Zhenzhen Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaomeng Zhang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Shoupu He
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Abdul Rehman
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Yinhua Jia
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Hongge Li
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
| | - Zhaoe Pan
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Xiaoli Geng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Qiong Gao
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Liru Wang
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Zhen Peng
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| | - Xiongming Du
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
- Zhengzhou Research Base, State Key Laboratory of Cotton Biology, Zhengzhou University, Zhengzhou, China
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya, China
| |
Collapse
|
11
|
Biochemical and Expression Analyses Revealed the Involvement of Proanthocyanidins and/or Their Derivatives in Fiber Pigmentation of Gossypium stocksii. Int J Mol Sci 2022; 23:ijms23021008. [PMID: 35055193 PMCID: PMC8779443 DOI: 10.3390/ijms23021008] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 01/06/2022] [Accepted: 01/11/2022] [Indexed: 02/01/2023] Open
Abstract
The wild cotton species Gossypium stocksii produces a brown fiber that provides a valuable resource for the color improvement of naturally colored cotton (NCC) fiber. However, the biochemical basis and molecular mechanism of its fiber pigmentation remain unclear. Herein, we analyzed the dynamics of proanthocyanidins (PAs) accumulation in developing the fiber of G. stocksii, which suggested a similar role of PAs and/or their derivatives in the fiber coloration of G. stocksii. In addition, comparative transcriptomics analyses revealed that the PA biosynthetic genes were expressed at higher levels and for a longer period in developing fibers of G. stocksii than G. arboreum (white fiber), and the transcription factors, such as TT8, possibly played crucial regulatory roles in regulating the PA branch genes. Moreover, we found that the anthocyanidin reductase (ANR) was expressed at a higher level than the leucoanthocyanidin reductases (LARs) and significantly upregulated during fiber elongation, suggesting a major role of ANR in PA synthesis in G. stocksii fiber. In summary, this work revealed the accumulation of PAs and the expression enhancement of PA biosynthetic genes in developing fibers of G. stocksii. We believe this work will help our understanding of the molecular mechanisms of cotton fiber coloration and further promote the future breeding of novel NCCs.
Collapse
|
12
|
Tang Z, Fan Y, Zhang L, Zheng C, Chen A, Sun Y, Guo H, Wu J, Li T, Fan Y, Lian X, Guo H, Ma X, Chen H, Zeng F. Quantitative metabolome and transcriptome analysis reveals complex regulatory pathway underlying photoinduced fiber color formation in cotton. Gene 2020; 767:145180. [PMID: 33002572 DOI: 10.1016/j.gene.2020.145180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 10/23/2022]
Abstract
As an important plant single cell model and textile application materials, poorly known about fiber color formation in cotton, which is sensitively regulated by environmental signals. Our studies underline the importance of photo signal on sensitive fiber color formation and characterize fiber color early initiation (15 DPA) and late accumulated metabolites (45 DPA) in different lighting condition. The results revealed 236 differential metabolites between control and shading, of which phenylpropanoids metabolites accounted for 20%, including uncharacterized novel metabolites and pathways. Furthermore, the early initiation specific genes respond to the absence of light are highly correlated with phenylpropanoid metabolites related to pigmentation. The current study reveals the complex pathways involving early initiation regulation and late metabolic pathways. In addition, the collection composed of uncharacterized photoinduced metabolites and early initiation signaling/regulatory genes were identified, which are important resources for understanding fiber color formation. This report provides new insight into molecular regulatory and biochemical basis underlying photoinduced fiber color formation in cotton.
Collapse
Affiliation(s)
- Zhengmin Tang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yijie Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Li Zhang
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Congcong Zheng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Aiyun Chen
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yuxiao Sun
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Haixia Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Jianfei Wu
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Tongtong Li
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Yupeng Fan
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Xin Lian
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Huihui Guo
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China
| | - Xiongfeng Ma
- State Key Laboratory of Cotton Biology, Cotton Research Institute, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Haifeng Chen
- Key Laboratory for Biological Sciences of Oil Crops, Ministry of Agriculture, Institute of Oil Crops Research, Chinese Academy of Agriculture Sciences, Wuhan 430062, China
| | - Fanchang Zeng
- State Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an 271018, China.
| |
Collapse
|
13
|
Genetic Analysis of the Transition from Wild to Domesticated Cotton ( Gossypium hirsutum L.). G3-GENES GENOMES GENETICS 2020; 10:731-754. [PMID: 31843806 PMCID: PMC7003101 DOI: 10.1534/g3.119.400909] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The evolution and domestication of cotton is of great interest from both economic and evolutionary standpoints. Although many genetic and genomic resources have been generated for cotton, the genetic underpinnings of the transition from wild to domesticated cotton remain poorly known. Here we generated an intraspecific QTL mapping population specifically targeting domesticated cotton phenotypes. We used 466 F2 individuals derived from an intraspecific cross between the wild Gossypium hirsutum var. yucatanense (TX2094) and the elite cultivar G. hirsutum cv. Acala Maxxa, in two environments, to identify 120 QTL associated with phenotypic changes under domestication. While the number of QTL recovered in each subpopulation was similar, only 22 QTL were considered coincident (i.e., shared) between the two locations, eight of which shared peak markers. Although approximately half of QTL were located in the A-subgenome, many key fiber QTL were detected in the D-subgenome, which was derived from a species with unspinnable fiber. We found that many QTL are environment-specific, with few shared between the two environments, indicating that QTL associated with G. hirsutum domestication are genomically clustered but environmentally labile. Possible candidate genes were recovered and are discussed in the context of the phenotype. We conclude that the evolutionary forces that shape intraspecific divergence and domestication in cotton are complex, and that phenotypic transformations likely involved multiple interacting and environmentally responsive factors.
Collapse
|
14
|
Zhang S, Jia T, Zhang Z, Zou X, Fan S, Lei K, Jiang X, Niu D, Yuan Y, Shang H. Insight into the relationship between S-lignin and fiber quality based on multiple research methods. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2020; 147:251-261. [PMID: 31884241 DOI: 10.1016/j.plaphy.2019.12.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 11/18/2019] [Accepted: 12/20/2019] [Indexed: 06/10/2023]
Abstract
Cotton (Gossypium hirsutum) is an important cash crop, providing people with high quality natural fiber. Lignin is the main component of cotton fiber, second only to cellulose. As a main substance filled in the cellulose framework during the secondary wall thickening process, lignin plays a key role in the formation of cotton fiber quality. However, the mechanism behind it is still unclear. In this research, we screened candidate genes involved in lignin biosynthesis based on analysis of cotton genome and transcriptome sequence data. The authenticity of the transcriptome data was verified by qRT-PCR assay. Total 62 genes were identified from nine gene families. In the process, we found the key gene GhCAD7 that affects the biosynthesis of S-lignin and the ratio of syringyl/guaiacyl (S/G). In addition, in combination with the metabolites and transcriptome profiles of the line 0-153 with high fiber quality and the line sGK9708 with low fiber quality during cotton fiber development, we speculate that the ratio of syringyl/guaiacyl (S/G) is inseparable from the quality of cotton fiber. Finally, the S-type lignin synthesis branch may play a more important role in the formation of high-quality fiber. This work provides insights into the synthesis of lignin in cotton and lays the foundation for future research into improving fiber quality.
Collapse
Affiliation(s)
- Shuya Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Tingting Jia
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Zhen Zhang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xianyan Zou
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Senmiao Fan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Kang Lei
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Xiao Jiang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Doudou Niu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China
| | - Youlu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
15
|
Gao J, Shen L, Yuan J, Zheng H, Su Q, Yang W, Zhang L, Nnaemeka VE, Sun J, Ke L, Sun Y. Functional analysis of GhCHS, GhANR and GhLAR in colored fiber formation of Gossypium hirsutum L. BMC PLANT BIOLOGY 2019; 19:455. [PMID: 31664897 PMCID: PMC6819470 DOI: 10.1186/s12870-019-2065-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Accepted: 10/02/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND The formation of natural colored fibers mainly results from the accumulation of different anthocyanidins and their derivatives in the fibers of Gossypium hirsutum L. Chalcone synthase (CHS) is the first committed enzyme of flavonoid biosynthesis, and anthocyanidins are transported into fiber cells after biosynthesis mainly by Anthocyanidin reductase (ANR) and Leucoanthocyanidin reductase (LAR) to present diverse colors with distinct stability. The biochemical and molecular mechanism of pigment formation in natural colored cotton fiber is not clear. RESULTS The three key genes of GhCHS, GhANR and GhLAR were predominantly expressed in the developing fibers of colored cotton. In the GhCHSi, GhANRi and GhLARi transgenic cottons, the expression levels of GhCHS, GhANR and GhLAR significantly decreased in the developing cotton fiber, negatively correlated with the content of anthocyanidins and the color depth of cotton fiber. In colored cotton Zongxu1 (ZX1) and the GhCHSi, GhANRi and GhLARi transgenic lines of ZX1, HZ and ZH, the anthocyanidin contents of the leaves, cotton kernels, the mixture of fiber and seedcoat were all changed and positively correlated with the fiber color. CONCLUSION The three genes of GhCHS, GhANR and GhLAR were predominantly expressed early in developing colored cotton fibers and identified to be a key genes of cotton fiber color formation. The expression levels of the three genes affected the anthocyanidin contents and fiber color depth. So the three genes played a crucial part in cotton fiber color formation and has important significant to improve natural colored cotton quality and create new colored cotton germplasm resources by genetic engineering.
Collapse
Affiliation(s)
- Jianfang Gao
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Li Shen
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Jingli Yuan
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Hongli Zheng
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Quansheng Su
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Weiguang Yang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Liqing Zhang
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Vitalis Ekene Nnaemeka
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-Agriculture, Shihezi University, Shihezi 832000, Xinjiang, China
| | - Liping Ke
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| | - Yuqiang Sun
- Plant Genomics & Molecular Improvement of Colored Fiber Lab, Key Laboratory of Plant Secondary Metabolism and Regulation of Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310016 Zhejiang China
| |
Collapse
|
16
|
Khan AQ, Li Z, Ahmed MM, Wang P, Zhang X, Tu L. Eriodictyol can modulate cellular auxin gradients to efficiently promote in vitro cotton fibre development. BMC PLANT BIOLOGY 2019; 19:443. [PMID: 31651240 PMCID: PMC6814110 DOI: 10.1186/s12870-019-2054-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 09/25/2019] [Indexed: 05/24/2023]
Abstract
BACKGROUND Flavonoids have essential roles in flower pigmentation, fibre development and disease resistance in cotton. Previous studies show that accumulation of naringenin in developing cotton fibres significantly affects fibre growth. This study focused on determining the effects of the flavonoids naringenin, dihydrokaempferol, dihydroquerectin and eriodictyol on fibre development in an in vitro system. RESULTS 20 μM eriodictyol treatment produced a maximum fibre growth, in terms of fibre length and total fibre units. To gain insight into the associated transcriptional regulatory networks, RNA-seq analysis was performed on eriodictyol-treated elongated fibres, and computational analysis of differentially expressed genes revealed that carbohydrate metabolism and phytohormone signaling pathways were differentially modulated. Eriodictyol treatment also promoted the biosynthesis of quercetin and dihydroquerectin in ovules and elongating fibres through enhanced expression of genes encoding chalcone isomerase, chalcone synthase and flavanone 3-hydroxylase. In addition, auxin biosynthesis and signaling pathway genes were differentially expressed in eriodictyol-driven in vitro fibre elongation. In absence of auxin, eriodictyol predominantly enhanced fibre growth when the localized auxin gradient was disrupted by the auxin transport inhibitor, triiodobenzoic acid. CONCLUSION Eriodictyol was found to significantly enhance fibre development through accumulating and maintaining the temporal auxin gradient in developing unicellular cotton fibres.
Collapse
Affiliation(s)
- Anam Qadir Khan
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Zhonghua Li
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Muhammad Mahmood Ahmed
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
- Institute of Plant Breeding & Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Pengcheng Wang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| | - Lili Tu
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University 430070, Wuhan, Hubei People’s Republic of China
| |
Collapse
|
17
|
Yan Q, Wang Y, Li Q, Zhang Z, Ding H, Zhang Y, Liu H, Luo M, Liu D, Song W, Liu H, Yao D, Ouyang X, Li Y, Li X, Pei Y, Xiao Y. Up-regulation of GhTT2-3A in cotton fibres during secondary wall thickening results in brown fibres with improved quality. PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1735-1747. [PMID: 29509985 PMCID: PMC6131414 DOI: 10.1111/pbi.12910] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 02/21/2018] [Accepted: 02/23/2018] [Indexed: 05/20/2023]
Abstract
Brown cotton fibres are the most widely used naturally coloured raw materials for the eco-friendly textile industry. Previous studies have indicated that brown fibre pigments belong to proanthocyanidins (PAs) or their derivatives, and fibre coloration is negatively associated with cotton productivity and fibre quality. To date, the molecular basis controlling the biosynthesis and accumulation of brown pigments in cotton fibres is largely unknown. In this study, based on expressional and transgenic analyses of cotton homologs of ArabidopsisPA regulator TRANSPARENT TESTA 2 (TT2) and fine-mapping of the cotton dark-brown fibre gene (Lc1), we show that a TT2 homolog, GhTT2-3A, controls PA biosynthesis and brown pigmentation in cotton fibres. We observed that GhTT2-3A activated GhbHLH130D, a homolog of ArabidopsisTT8, which in turn synergistically acted with GhTT2-3A to activate downstream PA structural genes and PA synthesis and accumulation in cotton fibres. Furthermore, the up-regulation of GhTT2-3A in fibres at the secondary wall-thickening stage resulted in brown mature fibres, and fibre quality and lint percentage were comparable to that of the white-fibre control. The findings of this study reveal the regulatory mechanism controlling brown pigmentation in cotton fibres and demonstrate a promising biotechnological strategy to break the negative linkage between coloration and fibre quality and/or productivity.
Collapse
Affiliation(s)
- Qian Yan
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Yi Wang
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Qian Li
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Zhengsheng Zhang
- College of Agronomy and Biological Science and TechnologySouthwest UniversityChongqingChina
| | - Hui Ding
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Yue Zhang
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Housheng Liu
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Ming Luo
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Dexin Liu
- College of Agronomy and Biological Science and TechnologySouthwest UniversityChongqingChina
| | - Wu Song
- Institute of Xinjiang Naturally‐Coloured CottonChina Coloured Cotton (Group) CompanyUrumchiXinjiang Uygur Autonomous RegionChina
| | - Haifeng Liu
- Institute of Xinjiang Naturally‐Coloured CottonChina Coloured Cotton (Group) CompanyUrumchiXinjiang Uygur Autonomous RegionChina
| | - Dan Yao
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Xufen Ouyang
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Yaohua Li
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Xin Li
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Yan Pei
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| | - Yuehua Xiao
- Biotechnology Research CenterChongqing Key Laboratory of Application and Safety Control of Genetically Modified CropsSouthwest UniversityChongqingChina
| |
Collapse
|
18
|
Yu C, Luo X, Zhan X, Hao J, Zhang L, L Song YB, Shen C, Dong M. Comparative metabolomics reveals the metabolic variations between two endangered Taxus species (T. fuana and T. yunnanensis) in the Himalayas. BMC PLANT BIOLOGY 2018; 18:197. [PMID: 30223770 PMCID: PMC6142684 DOI: 10.1186/s12870-018-1412-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2018] [Accepted: 08/31/2018] [Indexed: 05/19/2023]
Abstract
BACKGROUND Plants of the genus Taxus have attracted much attention owing to the natural product taxol, a successful anti-cancer drug. T. fuana and T. yunnanensis are two endangered Taxus species mainly distributed in the Himalayas. In our study, an untargeted metabolomics approach integrated with a targeted UPLC-MS/MS method was applied to examine the metabolic variations between these two Taxus species growing in different environments. RESULTS The level of taxol in T. yunnanensis is much higher than that in T. fuana, indicating a higher economic value of T. yunnanensis for taxol production. A series of specific metabolites, including precursors, intermediates, competitors of taxol, were identified. All the identified intermediates are predominantly accumulated in T. yunnanensis than T. fuana, giving a reasonable explanation for the higher accumulation of taxol in T. yunnanensis. Taxusin and its analogues are highly accumulated in T. fuana, which may consume limited intermediates and block the metabolic flow towards taxol. The contents of total flavonoids and a majority of tested individual flavonoids are significantly accumulated in T. fuana than T. yunnanensis, indicating a stronger environmental adaptiveness of T. fuana. CONCLUSIONS Systemic metabolic profiling may provide valuable information for the comprehensive industrial utilization of the germplasm resources of these two endangered Taxus species growing in different environments.
Collapse
Affiliation(s)
- Chunna Yu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xiujun Luo
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Xiaori Zhan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Juan Hao
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430 USA
| | - Yao-Bin L Song
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou, 310036 China
| | - Ming Dong
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036 China
| |
Collapse
|
19
|
Liu HF, Luo C, Song W, Shen H, Li G, He ZG, Chen WG, Cao YY, Huang F, Tang SW, Hong P, Zhao EF, Zhu J, He D, Wang S, Huo GY, Liu H. Flavonoid biosynthesis controls fiber color in naturally colored cotton. PeerJ 2018; 6:e4537. [PMID: 29682406 PMCID: PMC5910794 DOI: 10.7717/peerj.4537] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Accepted: 03/06/2018] [Indexed: 12/28/2022] Open
Abstract
The existence of only natural brown and green cotton fibers (BCF and GCF, respectively), as well as poor fiber quality, limits the use of naturally colored cotton (Gossypium hirsutum L.). A better understanding of fiber pigment regulation is needed to surmount these obstacles. In this work, transcriptome analysis and quantitative reverse transcription PCR revealed that 13 and 9 phenylpropanoid (metabolic) pathway genes were enriched during pigment synthesis, while the differential expression of phenylpropanoid (metabolic) and flavonoid metabolic pathway genes occurred among BCF, GCF, and white cotton fibers (WCF). Silencing the chalcone flavanone isomerase gene in a BCF line resulted in three fiber phenotypes among offspring of the RNAi lines: BCF, almost WCF, and GCF. The lines with almost WCF suppressed chalcone flavanone isomerase, while the lines with GCF highly expressed the glucosyl transferase (3GT) gene. Overexpression of the Gh3GT or Arabidopsis thaliana 3GT gene in BCF lines resulted in GCF. Additionally, the phenylpropanoid and flavonoid metabolites of BCF and GCF were significantly higher than those of WCF as assessed by a metabolomics analysis. Thus, the flavonoid biosynthetic pathway controls both brown and green pigmentation processes. Like natural colored fibers, the transgenic colored fibers were weaker and shorter than WCF. This study shows the potential of flavonoid pathway modifications to alter cotton fibers’ color and quality.
Collapse
Affiliation(s)
- Hai-Feng Liu
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Cheng Luo
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Wu Song
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Haitao Shen
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - Zhi-Gang He
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Wen-Gang Chen
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Yan-Yan Cao
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Fang Huang
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Shou-Wu Tang
- China Colored-cotton (Group) Co., Ltd., Urumqi, Xinjiang, China
| | - Ping Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, China
| | - En-Feng Zhao
- Translational Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Jianbo Zhu
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Dajun He
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Shaoming Wang
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China
| | - Guang-Ying Huo
- Translational Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Hailiang Liu
- Laboratory of Agricultural Biotechnology, College of Life Science, Shihezi University, Shihezi, Xinjiang, China.,Translational Stem Cell Research Center, Tongji Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
20
|
Wen T, Wu M, Shen C, Gao B, Zhu D, Zhang X, You C, Lin Z. Linkage and association mapping reveals the genetic basis of brown fibre (Gossypium hirsutum). PLANT BIOTECHNOLOGY JOURNAL 2018; 16:1654-1666. [PMID: 29476651 PMCID: PMC6097129 DOI: 10.1111/pbi.12902] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 05/14/2023]
Abstract
Brown fibre cotton is an environmental-friendly resource that plays a key role in the textile industry. However, the fibre quality and yield of natural brown cotton are poor, and fundamental research on brown cotton is relatively scarce. To understand the genetic basis of brown fibre cotton, we constructed linkage and association populations to systematically examine brown fibre accessions. We fine-mapped the brown fibre region, Lc1 , and dissected it into 2 loci, qBF-A07-1 and qBF-A07-2. The qBF-A07-1 locus mediates the initiation of brown fibre production, whereas the shade of the brown fibre is affected by the interaction between qBF-A07-1 and qBF-A07-2. Gh_A07G2341 and Gh_A07G0100 were identified as candidate genes for qBF-A07-1 and qBF-A07-2, respectively. Haploid analysis of the signals significantly associated with these two loci showed that most tetraploid modern brown cotton accessions exhibit the introgression signature of Gossypium barbadense. We identified 10 quantitative trait loci (QTLs) for fibre yield and 19 QTLs for fibre quality through a genome-wide association study (GWAS) and found that qBF-A07-2 negatively affects fibre yield and quality through an epistatic interaction with qBF-A07-1. This study sheds light on the genetics of fibre colour and lint-related traits in brown fibre cotton, which will guide the elite cultivars breeding of brown fibre cotton.
Collapse
Affiliation(s)
- Tianwang Wen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Mi Wu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chao Shen
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Bin Gao
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - De Zhu
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| | - Chunyuan You
- Cotton Research InstituteShihezi Academy of Agriculture ScienceShiheziXinjiangChina
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic ImprovementCollege of Plant Science and TechnologyHuazhong Agricultural UniversityWuhanChina
| |
Collapse
|
21
|
Hao J, Guo H, Shi X, Wang Y, Wan Q, Song YB, Zhang L, Dong M, Shen C. Comparative proteomic analyses of two Taxus species (Taxus × media and Taxus mairei) reveals variations in the metabolisms associated with paclitaxel and other metabolites. PLANT & CELL PHYSIOLOGY 2017; 58:1878-1890. [PMID: 29016978 DOI: 10.1093/pcp/pcx128] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 08/23/2017] [Indexed: 05/20/2023]
Abstract
Taxus species are well-known for paclitaxel, which exhibits antitumor activities and is used for treating various cancers. Although most Taxus species are widespread in many areas, few studies have characterized the variation in metabolism among different Taxus species. Using an integrated approach involving 'tandem mass tag' labeling and liquid chromatography-tandem mass spectrometry (HPLC-MS), proteomes of T. media and T. mairei were investigated and 4078 proteins were quantified. Screening and classification of differentially expressed proteins revealed many metabolism-associated proteins. In detail, four enzymes involved in the flavonoid biosynthesis pathway were predominantly expressed in T. mairei. Four enzymes associated with supplying precursors for paclitaxel biosynthesis and three cytochrome P450 taxoid oxygenases were preferentially expressed in T. media compared with T. mairei. Furthermore, variations in taxoid contents between T. media and T. mairei were determined using HPLC-MS analysis. Variations in flavonoid contents between T. media and T. mairei were determined by HPLC analysis. A number of differentially expressed proteins may provide an explanation for the variation in metabolisms of different Taxus species.
Collapse
Affiliation(s)
- Juan Hao
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Hong Guo
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| | - Xinai Shi
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Ye Wang
- Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, Henan Province 455000, China
| | - Qinghua Wan
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
| | - Yao-Bin Song
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Lei Zhang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164-6430, USA
| | - Ming Dong
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Chenjia Shen
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, China
- Zhejiang Provincial Key Laboratory for Genetic Improvement and Quality Control of Medicinal Plants, Hangzhou Normal University, Hangzhou 310036, China
| |
Collapse
|
22
|
Su X, Sun X, Cheng X, Wang Y, Abdullah M, Li M, Li D, Gao J, Cai Y, Lin Y. Comparative genomic analysis of the PKS genes in five species and expression analysis in upland cotton. PeerJ 2017; 5:e3974. [PMID: 29104824 PMCID: PMC5667535 DOI: 10.7717/peerj.3974] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Accepted: 10/10/2017] [Indexed: 01/08/2023] Open
Abstract
Plant type III polyketide synthase (PKS) can catalyse the formation of a series of secondary metabolites with different structures and different biological functions; the enzyme plays an important role in plant growth, development and resistance to stress. At present, the PKS gene has been identified and studied in a variety of plants. Here, we identified 11 PKS genes from upland cotton (Gossypium hirsutum) and compared them with 41 PKS genes in Populus tremula, Vitis vinifera, Malus domestica and Arabidopsis thaliana. According to the phylogenetic tree, a total of 52 PKS genes can be divided into four subfamilies (I-IV). The analysis of gene structures and conserved motifs revealed that most of the PKS genes were composed of two exons and one intron and there are two characteristic conserved domains (Chal_sti_synt_N and Chal_sti_synt_C) of the PKS gene family. In our study of the five species, gene duplication was found in addition to Arabidopsis thaliana and we determined that purifying selection has been of great significance in maintaining the function of PKS gene family. From qRT-PCR analysis and a combination of the role of the accumulation of proanthocyanidins (PAs) in brown cotton fibers, we concluded that five PKS genes are candidate genes involved in brown cotton fiber pigment synthesis. These results are important for the further study of brown cotton PKS genes. It not only reveals the relationship between PKS gene family and pigment in brown cotton, but also creates conditions for improving the quality of brown cotton fiber.
Collapse
Affiliation(s)
- Xueqiang Su
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xu Sun
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Xi Cheng
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yanan Wang
- School of Life Science, Anhui Agricultural University, Hefei, China
| | | | - Manli Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Dahui Li
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Junshan Gao
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yongping Cai
- School of Life Science, Anhui Agricultural University, Hefei, China
| | - Yi Lin
- School of Life Science, Anhui Agricultural University, Hefei, China
| |
Collapse
|
23
|
Nix A, Paull C, Colgrave M. Flavonoid Profile of the Cotton Plant, Gossypium hirsutum: A Review. PLANTS 2017; 6:plants6040043. [PMID: 28946657 PMCID: PMC5750619 DOI: 10.3390/plants6040043] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Revised: 09/10/2017] [Accepted: 09/19/2017] [Indexed: 11/16/2022]
Abstract
Cotton, Gossypium hirsutum L., is a plant fibre of significant economic importance, with seeds providing an additional source of protein in human and animal nutrition. Flavonoids play a vital role in maintaining plant health and function and much research has investigated the role of flavonoids in plant defence and plant vigour and the influence these have on cotton production. As part of ongoing research into host plant/invertebrate pest interactions, we investigated the flavonoid profile of cotton reported in published, peer-reviewed literature. Here we report 52 flavonoids representing seven classes and their reported distribution within the cotton plant. We briefly discuss the historical research of flavonoids in cotton production and propose research areas that warrant further investigation.
Collapse
Affiliation(s)
- Aaron Nix
- CSIRO Agriculture and Food, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Cate Paull
- CSIRO Agriculture and Food, GPO Box 2583, Brisbane, QLD 4001, Australia.
| | - Michelle Colgrave
- CSIRO Agriculture and Food, GPO Box 2583, Brisbane, QLD 4001, Australia.
| |
Collapse
|
24
|
Li PT, Wang M, Lu QW, Ge Q, Rashid MHO, Liu AY, Gong JW, Shang HH, Gong WK, Li JW, Song WW, Guo LX, Su W, Li SQ, Guo XP, Shi YZ, Yuan YL. Comparative transcriptome analysis of cotton fiber development of Upland cotton (Gossypium hirsutum) and Chromosome Segment Substitution Lines from G. hirsutum × G. barbadense. BMC Genomics 2017; 18:705. [PMID: 28886694 PMCID: PMC5591532 DOI: 10.1186/s12864-017-4077-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Accepted: 08/21/2017] [Indexed: 12/15/2022] Open
Abstract
Background How to develop new cotton varieties possessing high yield traits of Upland cotton and superior fiber quality traits of Sea Island cotton remains a key task for cotton breeders and researchers. While multiple attempts bring in little significant progresses, the development of Chromosome Segment Substitution Lines (CSSLs) from Gossypium barbadense in G. hirsutum background provided ideal materials for aforementioned breeding purposes in upland cotton improvement. Based on the excellent fiber performance and relatively clear chromosome substitution segments information identified by Simple Sequence Repeat (SSR) markers, two CSSLs, MBI9915 and MBI9749, together with the recurrent parent CCRI36 were chosen to conduct transcriptome sequencing during the development stages of fiber elongation and Secondary Cell Wall (SCW) synthesis (from 10DPA and 28DPA), aiming at revealing the mechanism of fiber development and the potential contribution of chromosome substitution segments from Sea Island cotton to fiber development of Upland cotton. Results In total, 15 RNA-seq libraries were constructed and sequenced separately, generating 705.433 million clean reads with mean GC content of 45.13% and average Q30 of 90.26%. Through multiple comparisons between libraries, 1801 differentially expressed genes (DEGs) were identified, of which the 902 up-regulated DEGs were mainly involved in cell wall organization and response to oxidative stress and auxin, while the 898 down-regulated ones participated in translation, regulation of transcription, DNA-templated and cytoplasmic translation based on GO annotation and KEGG enrichment analysis. Subsequently, STEM software was performed to explicate the temporal expression pattern of DEGs. Two peroxidases and four flavonoid pathway-related genes were identified in the “oxidation-reduction process”, which could play a role in fiber development and quality formation. Finally, the reliability of RNA-seq data was validated by quantitative real-time PCR of randomly selected 20 genes. Conclusions The present report focuses on the similarities and differences of transcriptome profiles between the two CSSLs and the recurrent parent CCRI36 and provides novel insights into the molecular mechanism of fiber development, and into further exploration of the feasible contribution of G. barbadense substitution segments to fiber quality formation, which will lay solid foundation for simultaneously improving fiber yield and quality of upland cotton through CSSLs. Electronic supplementary material The online version of this article (10.1186/s12864-017-4077-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peng-Tao Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Mi Wang
- College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Quan-Wei Lu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Md Harun Or Rashid
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ai-Ying Liu
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Ju-Wu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Hai-Hong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wan-Kui Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Jun-Wen Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei-Wu Song
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Li-Xue Guo
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Wei Su
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.,College of Agriculture, Yangtze University, Jingzhou, Hubei, 434025, China
| | - Shao-Qi Li
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China
| | - Xiao-Ping Guo
- National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Yu-Zhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| | - You-Lu Yuan
- State Key Laboratory of Cotton Biology, Key Laboratory of Biologiacl and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Science, Anyang, Henan, 455000, China.
| |
Collapse
|
25
|
Lu N, Roldan M, Dixon RA. Characterization of two TT2-type MYB transcription factors regulating proanthocyanidin biosynthesis in tetraploid cotton, Gossypium hirsutum. PLANTA 2017; 246:323-335. [PMID: 28421329 DOI: 10.1007/s00425-017-2682-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 03/21/2017] [Indexed: 05/27/2023]
Abstract
Two TT2-type MYB transcription factors identified from tetraploid cotton are involved in regulating proanthocyanidin biosynthesis, providing new strategies for engineering condensed tannins in crops. Proanthocyanidins (PAs), also known as condensed tannins, are important secondary metabolites involved in stress resistance in plants, and are health supplements that help to reduce cholesterol levels. As one of the most widely grown crops in the world, cotton provides the majority of natural fabrics and is a supplemental food for ruminant animals. The previous studies have suggested that PAs present in cotton are a major contributor to fiber color. However, the biosynthesis of PAs in cotton still remains to be elucidated. AtTT2 (transparent testa 2) is a MYB family transcription factor from Arabidopsis that initiates the biosynthesis of PAs by inducing the expression of multiple genes in the pathway. In this study, we isolated two R2R3-type MYB transcription factors from Gossypium hirsutum that are homologous to AtTT2. Expression analysis showed that both genes were expressed at different levels in various cotton tissues, including leaf, seed coat, and fiber. Protoplast transactivation assays revealed that these two GhMYBs were able to activate promoters of genes encoding enzymes in the PA biosynthesis pathway, namely anthocyanidin reductase and leucoanthocyanidin reductase. Complementation experiments showed that both of the GhMYBs were able to recover the transparent testa seed coat phenotype of the Arabidopsis tt2 mutant by restoring PA biosynthesis. Ectopic expression of either of the two GhMYBs in Medicago truncatula hairy roots increased the contents of anthocyanins and PAs compared to control lines expressing the GUS gene, and expression levels of MtDFR, MtLAR, and MtANR were also elevated in lines expressing GhMYBs. Together, these data provide new insights into engineering condensed tannins in cotton.
Collapse
Affiliation(s)
- Nan Lu
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA
| | | | - Richard A Dixon
- Department of Biological Sciences, BioDiscovery Institute, University of North Texas, Denton, TX, 76203, USA.
| |
Collapse
|
26
|
Xu D, Yuan H, Tong Y, Zhao L, Qiu L, Guo W, Shen C, Liu H, Yan D, Zheng B. Comparative Proteomic Analysis of the Graft Unions in Hickory ( Carya cathayensis) Provides Insights into Response Mechanisms to Grafting Process. FRONTIERS IN PLANT SCIENCE 2017; 8:676. [PMID: 28496455 PMCID: PMC5406401 DOI: 10.3389/fpls.2017.00676] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Accepted: 04/12/2017] [Indexed: 05/18/2023]
Abstract
Hickory (Carya cathayensis), a tree with high nutritional and economic value, is widely cultivated in China. Grafting greatly reduces the juvenile phase length and makes the large scale cultivation of hickory possible. To reveal the response mechanisms of this species to grafting, we employed a proteomics-based approach to identify differentially expressed proteins in the graft unions during the grafting process. Our study identified 3723 proteins, of which 2518 were quantified. A total of 710 differentially expressed proteins (DEPs) were quantified and these were involved in various molecular functional and biological processes. Among these DEPs, 341 were up-regulated and 369 were down-regulated at 7 days after grafting compared with the control. Four auxin-related proteins were down-regulated, which was in agreement with the transcription levels of their encoding genes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that the 'Flavonoid biosynthesis' pathway and 'starch and sucrose metabolism' were both significantly up-regulated. Interestingly, five flavonoid biosynthesis-related proteins, a flavanone 3-hyfroxylase, a cinnamate 4-hydroxylase, a dihydroflavonol-4-reductase, a chalcone synthase, and a chalcone isomerase, were significantly up-regulated. Further experiments verified a significant increase in the total flavonoid contents in scions, which suggests that graft union formation may activate flavonoid biosynthesis to increase the content of a series of downstream secondary metabolites. This comprehensive analysis provides fundamental information on the candidate proteins and secondary metabolism pathways involved in the grafting process for hickory.
Collapse
Affiliation(s)
- Dongbin Xu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Huwei Yuan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Yafei Tong
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Liang Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Lingling Qiu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Wenbin Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
| | - Chenjia Shen
- College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhou, China
| | - Hongjia Liu
- Crop and Nuclear Technology Institute, Zhejiang Academy of Agricultural SciencesHangzhou, China
| | - Daoliang Yan
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
- *Correspondence: Bingsong Zheng, Daoliang Yan,
| | - Bingsong Zheng
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F UniversityLinan, China
- Center for Cultivation of Subtropical Forest Resources, Zhejiang A&F UniversityLinan, China
- *Correspondence: Bingsong Zheng, Daoliang Yan,
| |
Collapse
|
27
|
Hinchliffe DJ, Condon BD, Thyssen G, Naoumkina M, Madison CA, Reynolds M, Delhom CD, Fang DD, Li P, McCarty J. The GhTT2_A07 gene is linked to the brown colour and natural flame retardancy phenotypes of Lc1 cotton (Gossypium hirsutum L.) fibres. JOURNAL OF EXPERIMENTAL BOTANY 2016; 67:5461-5471. [PMID: 27567364 PMCID: PMC5049394 DOI: 10.1093/jxb/erw312] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Some naturally coloured brown cotton fibres from accessions of Gossypium hirsutum L. can be used to make textiles with enhanced flame retardancy (FR). Several independent brown fibre loci have been identified and mapped to chromosomes, but the underlying genes have not yet been identified, and the mechanism of lint fibre FR is not yet fully understood. In this study, we show that both the brown colour and enhanced FR of the Lc1 lint colour locus are linked to a 1.4Mb inversion on chromosome A07 that is immediately upstream of a gene with similarity to Arabidopsis TRANSPARENT TESTA 2 (TT2). As a result of the alternative upstream sequence, the transcription factor GhTT2_A07 is highly up-regulated in developing fibres. In turn, genes in the phenylpropanoid metabolic pathway are activated, leading to biosynthesis of proanthocyanidins and accumulation of inorganic elements. We show that enhanced FR and anthocyanin precursors appear in developing brown fibres well before the brown colour is detectible, demonstrating for the first time that the polymerized proanthocyanidins that constitute the brown colour are not the source of enhanced FR. Identifying the particular colourless metabolite that provides Lc1 cotton with enhanced FR could help minimize the use of synthetic chemical flame retardant additives in textiles.
Collapse
Affiliation(s)
- Doug J Hinchliffe
- Cotton Chemistry and Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Brian D Condon
- Cotton Chemistry and Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Gregory Thyssen
- Cotton Chemistry and Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Marina Naoumkina
- Cotton Fiber Bioscience Research Unit, Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Crista A Madison
- Cotton Chemistry and Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Michael Reynolds
- Cotton Chemistry and Utilization Research Unit, Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Christopher D Delhom
- Cotton Structure and Quality Research Unit, Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - David D Fang
- Cotton Fiber Bioscience Research Unit, Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Ping Li
- Cotton Fiber Bioscience Research Unit, Southern Regional Research Center, Agricultural Research Service, USDA, 1100 Robert E. Lee Blvd, New Orleans, LA 70124, USA
| | - Jack McCarty
- Genetics and Sustainable Agriculture Research Unit, Agricultural Research Service, USDA, Mississippi State, MS 39762, USA
| |
Collapse
|
28
|
Genome-wide identification of multifunctional laccase gene family in cotton (Gossypium spp.); expression and biochemical analysis during fiber development. Sci Rep 2016; 6:34309. [PMID: 27679939 PMCID: PMC5041144 DOI: 10.1038/srep34309] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 09/12/2016] [Indexed: 12/27/2022] Open
Abstract
The single-celled cotton fibers, produced from seed coat epidermal cells are the largest natural source of textile fibers. The economic value of cotton fiber lies in its length and quality. The multifunctional laccase enzymes play important roles in cell elongation, lignification and pigmentation in plants and could play crucial role in cotton fiber quality. Genome-wide analysis of cultivated allotetraploid (G. hirsutum) and its progenitor diploid (G. arboreum and G. raimondii) cotton species identified 84, 44 and 46 laccase genes, respectively. Analysis of chromosomal location, phylogeny, conserved domain and physical properties showed highly conserved nature of laccases across three cotton species. Gene expression, enzymatic activity and biochemical analysis of developing cotton fibers was performed using G. arboreum species. Of the total 44, 40 laccases showed expression during different stages of fiber development. The higher enzymatic activity of laccases correlated with higher lignin content at 25 DPA (Days Post Anthesis). Further, analysis of cotton fiber phenolic compounds showed an overall decrease at 25 DPA indicating possible incorporation of these substrates into lignin polymer during secondary cell wall biosynthesis. Overall data indicate significant roles of laccases in cotton fiber development, and presents an excellent opportunity for manipulation of fiber development and quality.
Collapse
|
29
|
Ahad A, Ahmad A, Din SU, Rao AQ, Shahid AA, Husnain T. In silico study for diversing the molecular pathway of pigment formation: an alternative to manual coloring in cotton fibers. FRONTIERS IN PLANT SCIENCE 2015; 6:751. [PMID: 26442064 PMCID: PMC4584984 DOI: 10.3389/fpls.2015.00751] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Accepted: 09/03/2015] [Indexed: 06/05/2023]
Abstract
Diversity of colors in flowers and fruits is largely due to anthocyanin pigments. The flavonoid/anthocyanin pathway has been most extensively studied. Dihydroflavonol 4-reductase (DFR) is a vital enzyme of the flavonoid pathway which displays major impact on the formation of anthocyanins, flavan 3-ols and flavonols. The substrate specificity of the DFR was found to play a crucial role in determination of type of anthocyanidins. Altering the flavonoid/anthocyanin pathway through genetic engineering to develop color of our own choice is an exciting subject of future research. In the present study, comparison among four DFR genes (Gossypium hirsutum, Iris × hollandica, Ang. DFRI and DFRII), sequence alignment for homology as well as protein modeling and docking is demonstrated. Estimation of catalytic sites, prediction of substrate preference and protein docking were the key features of this article. For specific substrate uptake, a proline rich region and positions 12 plus 26 along with other positions emphasizing the 26-amino acid residue region (132-157) was tested. Results showed that proline rich region position 12, 26, and 132-157 plays an important role in selective attachment of DFRs with respective substrates. Further, "Expasy ProtParam tool" results showed that Iris × hollandica DFR amino acids (Asn 9: Asp 23) are favorable for reducing DHQ and DHM thus accumulating delphinidin, while Gossypium hirsutum DFR has (Asn 13: Asp 21) hypothesized to consume DHK. Protein docking data showed that amino acid residues in above mentioned positions were just involved in attachment of DFR with substrate and had no role in specific substrate uptake. Advanced bioinformatics analysis has revealed that all above mentioned positions have role in substrate attachment. For substrate specificity, other residues region is involved. It will help in color manipulations in different plant species.
Collapse
Affiliation(s)
- Ammara Ahad
- *Correspondence: Ammara Ahad, Center of Excellence in Molecular Biology, University of the Punjab, Lahore, 87 W Canal Bank Road, Thokar Niaz Baig, Lahore-53700, Pakistan
| | | | | | | | | | | |
Collapse
|
30
|
Feng H, Li Y, Wang S, Zhang L, Liu Y, Xue F, Sun Y, Wang Y, Sun J. Molecular analysis of proanthocyanidins related to pigmentation in brown cotton fibre (Gossypium hirsutum L.). JOURNAL OF EXPERIMENTAL BOTANY 2014; 65:5759-5769. [PMID: 25086591 DOI: 10.1093/jxb/eru286] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
The structural characteristics and component differences of proanthocyanidins in brown and white cotton fibres were identified by nuclear magnetic resonance (NMR) and matrix-assisted laser desorption/ionization time of flight mass spectrometry (MALDI-TOF MS) analyses. Proanthocyanidins in brown and white cotton fibres were found to contain mainly procyanidin (PC) and prodelphidin (PD) units with 2, 3-cis form (epigallocatechin and epicatechin). However, part of the proanthocyanidins in the white cotton fibres were modified by acylation and were constitutively different from the proanthocyanidins in brown cotton fibres. The relative amount of PD was similar to that of PC in white cotton fibres, while proanthocyanidins in brown cotton fibres consisted mainly of PD units with a relative ratio of 9:1. In brown cotton fibres, the proanthocyanidin monomeric composition was consistent with the expression profiles of proanthocyanidin synthase genes, suggesting that anthocyanidin reductase represented the major flow of the proanthocyanidin biosynthesis pathway. In addition, the structural characteristics and component differences of proanthocanidins in brown and white cotton fibres suggested that quinones, the oxidation products of proanthocyanidins, were the direct contributors to colour development in brown cotton fibre. This was demonstrated by vanillin-HCl staining and Borntrager's test. Collectively, these data demonstrated that the biosynthesis of proanthocyanidins is a crucial pigmentation process in brown cotton fibre, and that quinones may represent the main pigments contributing to formation of the the brown colour. This study revealed the molecular basis of pigmentation in brown cotton fibres, and provided important insights for genetic manipulation of pigment production in cotton fibres.
Collapse
Affiliation(s)
- Hongjie Feng
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Yanjun Li
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Shaofang Wang
- Centre for Legumes in Mediterranean Agriculture, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Liangliang Zhang
- Institute of Chemical Industry of Forest Products of Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Yongchuang Liu
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Fei Xue
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| | - Yuqiang Sun
- College of Life and Environmental Science, Hangzhou Normal University, Hangzhou 310036, Zhejiang Province, China
| | - Yongmei Wang
- Institute of Chemical Industry of Forest Products of Chinese Academy of Forestry, Nanjing 210042, Jiangsu Province, China
| | - Jie Sun
- College of Agriculture/The Key Laboratory of Oasis Eco-agriculture, Shihezi University, Shihezi 832000, Xinjiang Province, China
| |
Collapse
|
31
|
Transcriptome and biochemical analyses revealed a detailed proanthocyanidin biosynthesis pathway in brown cotton fiber. PLoS One 2014; 9:e86344. [PMID: 24466041 PMCID: PMC3897678 DOI: 10.1371/journal.pone.0086344] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 12/10/2013] [Indexed: 02/02/2023] Open
Abstract
Brown cotton fiber is the major raw material for colored cotton industry. Previous studies have showed that the brown pigments in cotton fiber belong to proanthocyanidins (PAs). To clarify the details of PA biosynthesis pathway in brown cotton fiber, gene expression profiles in developing brown and white fibers were compared via digital gene expression profiling and qRT-PCR. Compared to white cotton fiber, all steps from phenylalanine to PA monomers (flavan-3-ols) were significantly up-regulated in brown fiber. Liquid chromatography mass spectrometry analyses showed that most of free flavan-3-ols in brown fiber were in 2, 3-trans form (gallocatechin and catechin), and the main units of polymeric PAs were trihydroxylated on B ring. Consistent with monomeric composition, the transcript levels of flavonoid 3′, 5′-hydroxylase and leucoanthocyanidin reductase in cotton fiber were much higher than their competing enzymes acting on the same substrates (dihydroflavonol 4-reductase and anthocyanidin synthase, respectively). Taken together, our data revealed a detailed PA biosynthesis pathway wholly activated in brown cotton fiber, and demonstrated that flavonoid 3′, 5′-hydroxylase and leucoanthocyanidin reductase represented the primary flow of PA biosynthesis in cotton fiber.
Collapse
|
32
|
Yoo MJ, Wendel JF. Comparative evolutionary and developmental dynamics of the cotton (Gossypium hirsutum) fiber transcriptome. PLoS Genet 2014; 10:e1004073. [PMID: 24391525 PMCID: PMC3879233 DOI: 10.1371/journal.pgen.1004073] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 11/15/2013] [Indexed: 01/05/2023] Open
Abstract
The single-celled cotton (Gossypium hirsutum) fiber provides an excellent model to investigate how human selection affects phenotypic evolution. To gain insight into the evolutionary genomics of cotton domestication, we conducted comparative transcriptome profiling of developing cotton fibers using RNA-Seq. Analysis of single-celled fiber transcriptomes from four wild and five domesticated accessions from two developmental time points revealed that at least one-third and likely one-half of the genes in the genome are expressed at any one stage during cotton fiber development. Among these, ∼5,000 genes are differentially expressed during primary and secondary cell wall synthesis between wild and domesticated cottons, with a biased distribution among chromosomes. Transcriptome data implicate a number of biological processes affected by human selection, and suggest that the domestication process has prolonged the duration of fiber elongation in modern cultivated forms. Functional analysis suggested that wild cottons allocate greater resources to stress response pathways, while domestication led to reprogrammed resource allocation toward increased fiber growth, possibly through modulating stress-response networks. This first global transcriptomic analysis using multiple accessions of wild and domesticated cottons is an important step toward a more comprehensive systems perspective on cotton fiber evolution. The understanding that human selection over the past 5,000+ years has dramatically re-wired the cotton fiber transcriptome sets the stage for a deeper understanding of the genetic architecture underlying cotton fiber synthesis and phenotypic evolution. Ever since Darwin biologists have recognized that comparative study of crop plants and their wild relatives offers a powerful framework for generating insights into the mechanisms that underlie evolutionary change. Here, we study the domestication process in cotton, Gossypium hirsutum, an allopolyploid species (containing two different genomes) which initially was domesticated approximately 5000 years ago, and which primarily is grown for its single-celled seed fibers. Strong directional selection over the millennia was accompanied by transformation of the short, coarse, and brown fibers of wild plants into the long, strong, and fine white fibers of the modern cotton crop plant. To explore the evolutionary genetics of cotton domestication, we conducted transcriptome profiling of developing cotton fibers from multiple accessions of wild and domesticated cottons. Comparative analysis revealed that the domestication process dramatically rewired the transcriptome, affecting more than 5,000 genes, and with a more evenly balanced usage of the duplicated copies arising from genome doubling. We identify many different biological processes that were involved in this transformation, including those leading to a prolongation of fiber elongation and a reallocation of resources toward increased fiber growth in modern forms. The data provide a rich resource for future functional analyses targeting crop improvement and evolutionary objectives.
Collapse
Affiliation(s)
- Mi-Jeong Yoo
- Department of Biology, University of Florida, Gainesville, Florida, United States of America
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal Biology, Iowa State University, Ames, Iowa, United States of America
- * E-mail:
| |
Collapse
|