1
|
Delvallée C, Dollfus H. Retinal Degeneration Animal Models in Bardet-Biedl Syndrome and Related Ciliopathies. Cold Spring Harb Perspect Med 2023; 13:a041303. [PMID: 36596648 PMCID: PMC9808547 DOI: 10.1101/cshperspect.a041303] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Retinal degeneration due to photoreceptor ciliary-related proteins dysfunction accounts for more than 25% of all inherited retinal dystrophies. The cilium, being an evolutionarily conserved and ubiquitous organelle implied in many cellular functions, can be investigated by way of many models from invertebrate models to nonhuman primates, all these models have massively contributed to the pathogenesis understanding of human ciliopathies. Taking the Bardet-Biedl syndrome (BBS) as an emblematic example as well as other related syndromic ciliopathies, the contribution of a wide range of models has enabled to characterize the role of the BBS proteins in the archetypical cilium but also at the level of the connecting cilium of the photoreceptors. There are more than 24 BBS genes encoding for proteins that form different complexes such as the BBSome and the chaperone proteins complex. But how they lead to retinal degeneration remains a matter of debate with the possible accumulation of proteins in the inner segment and/or accumulation of unwanted proteins in the outer segment that cannot return in the inner segment machinery. Many BBS proteins (but not the chaperonins for instance) can be modeled in primitive organisms such as Paramecium, Chlamydomonas reinardtii, Trypanosoma brucei, and Caenorhabditis elegans These models have enabled clarifying the role of a subset of BBS proteins in the primary cilium as well as their relations with other modules such as the intraflagellar transport (IFT) module, the nephronophthisis (NPHP) module, or the Meckel-Gruber syndrome (MKS)/Joubert syndrome (JBTS) module mostly involved with the transition zone of the primary cilia. Assessing the role of the primary cilia structure of the connecting cilium of the photoreceptor cells has been very much studied by way of zebrafish modeling (Danio rerio) as well as by a plethora of mouse models. More recently, large animal models have been described for three BBS genes and one nonhuman primate model in rhesus macaque for BBS7 In completion to animal models, human cell models can now be used notably thanks to gene editing and the use of induced pluripotent stem cells (iPSCs). All these models are not only important for pathogenesis understanding but also very useful for studying therapeutic avenues, their pros and cons, especially for gene replacement therapy as well as pharmacological triggers.
Collapse
Affiliation(s)
- Clarisse Delvallée
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| | - Hélène Dollfus
- Laboratoire de Génétique Médicale UMRS1112, Centre de Recherche Biomédicale de Strasbourg, CRBS, Institut de Génétique Médicale d'Alsace, IGMA, Strasbourg 67000, France
| |
Collapse
|
2
|
Grudzinska Pechhacker MK, Jacobson SG, Drack AV, Scipio MD, Strubbe I, Pfeifer W, Duncan JL, Dollfus H, Goetz N, Muller J, Vincent AL, Aleman TS, Tumber A, Van Cauwenbergh C, De Baere E, Bedoukian E, Leroy BP, Maynes JT, Munier FL, Tavares E, Saleh E, Vincent A, Heon E. Comparative Natural History of Visual Function From Patients With Biallelic Variants in BBS1 and BBS10. Invest Ophthalmol Vis Sci 2021; 62:26. [PMID: 34940782 PMCID: PMC8711006 DOI: 10.1167/iovs.62.15.26] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Purpose The purpose of this study was to compare the natural history of visual function change in cohorts of patients affected with retinal degeneration due to biallelic variants in Bardet-Biedl syndrome genes: BBS1 and BBS10. Methods Patients were recruited from nine academic centers from six countries (Belgium, Canada, France, New Zealand, Switzerland, and the United States). Inclusion criteria were: (1) female or male patients with a clinical diagnosis of retinal dystrophy, (2) biallelic disease-causing variants in BBS1 or BBS10, and (3) measures of visual function for at least one visit. Retrospective data collected included genotypes, age, onset of symptoms, and best corrected visual acuity (VA). When possible, data on refractive error, fundus images and autofluorescence (FAF), optical coherence tomography (OCT), Goldmann kinetic perimetry (VF), electroretinography (ERG), and the systemic phenotype were collected. Results Sixty-seven individuals had variants in BBS1 (n = 38; 20 female patients and 18 male patients); or BBS10 (n = 29; 14 female patients and 15 male patients). Missense variants were the most common type of variants for patients with BBS1, whereas frameshift variants were most common for BBS10. When ERGs were recordable, rod-cone dystrophy (RCD) was observed in 82% (23/28) of patients with BBS1 and 73% (8/11) of patients with BBS10; cone-rod dystrophy (CORD) was seen in 18% of patients with BBS1 only, and cone dystrophy (COD) was only seen in 3 patients with BBS10 (27%). ERGs were nondetectable earlier in patients with BBS10 than in patients with BBS1. Similarly, VA and VF declined more rapidly in patients with BBS10 compared to patients with BBS1. Conclusions Retinal degeneration appears earlier and is more severe in BBS10 cases as compared to those with BBS1 variants. The course of change of visual function appears to relate to genetic subtypes of BBS.
Collapse
Affiliation(s)
- Monika K Grudzinska Pechhacker
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada
| | - Samuel G Jacobson
- Department of Ophthalmology, Scheie Eye Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States
| | - Arlene V Drack
- Department of Ophthalmology, Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Matteo Di Scipio
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Ine Strubbe
- Department of Ophthalmology, Ghent University Hospital & Department of Head and Skin, Ghent University, Ghent, Belgium
| | - Wanda Pfeifer
- Department of Ophthalmology, Institute for Vision Research, University of Iowa, Iowa City, Iowa, United States
| | - Jacque L Duncan
- Department of Ophthalmology, University of California, San Francisco, San Francisco, California, United States
| | - Helene Dollfus
- CARGO ( Centre de référence pour les affections rares génétiques ), IGMA Institut de Génétqiue Médicale d'Alsace , Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,UMRS_1112, IGMA ( Institut de génétique Médicale d'Alsace ) Université de Strasbourg, Strasbourg, France
| | - Nathalie Goetz
- UMRS_1112, IGMA ( Institut de génétique Médicale d'Alsace ) Université de Strasbourg, Strasbourg, France
| | - Jean Muller
- CARGO ( Centre de référence pour les affections rares génétiques ), IGMA Institut de Génétqiue Médicale d'Alsace , Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,UMRS_1112, IGMA ( Institut de génétique Médicale d'Alsace ) Université de Strasbourg, Strasbourg, France.,Laboratoire de diagnostique génétique, IGMA ( Institut de génétique Médicale d'Alsace ) Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Andrea L Vincent
- Department of Ophthalmology, New Zealand National Eye Centre, University of Auckland, Auckland, New Zealand.,Eye Department, Greenlane Clinical Centre, Auckland District Health Board, Auckland, New Zealand
| | - Tomas S Aleman
- Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States.,Scheie Eye Institute at the Perelman Center for Advanced Medicine, Philadelphia, Pennsylvania, United States.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Anupreet Tumber
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada
| | - Caroline Van Cauwenbergh
- Department of Ophthalmology, Ghent University Hospital & Department of Head and Skin, Ghent University, Ghent, Belgium.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Elfride De Baere
- Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium
| | - Emma Bedoukian
- Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Bart P Leroy
- Department of Ophthalmology, Ghent University Hospital & Department of Head and Skin, Ghent University, Ghent, Belgium.,Center for Advanced Retinal and Ocular Therapeutics, Perelman School of Medicine, Philadelphia, Pennsylvania, United States.,Division of Ophthalmology, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States.,Center for Medical Genetics, Ghent University and Ghent University Hospital, Ghent, Belgium.,Center for Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, United States
| | - Jason T Maynes
- Department of Anesthesia and Pain Medicine, The Hospital for Sick Children, Toronto, Ontario, Canada.,Departments of Biochemistry and Anesthesiology and Pain Medicine, University of Toronto, Program in Molecular Medicine, The Hospital for Sick Children, Toronto, Canada
| | - Francis L Munier
- Jules-Gonin Eye Hospital, Fondation Asile des Aveugles, University of Lausanne, Lausanne, Switzerland
| | - Erika Tavares
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Eman Saleh
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Ajoy Vincent
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| | - Elise Heon
- Department of Ophthalmology and Vision Sciences, The Hospital for Sick Children, Toronto, Canada.,Department of Ophthalmology and Vision Sciences, University of Toronto, Toronto, Canada.,Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Canada
| |
Collapse
|
3
|
Husson H, Bukanov NO, Moreno S, Smith MM, Richards B, Zhu C, Picariello T, Park H, Wang B, Natoli TA, Smith LA, Zanotti S, Russo RJ, Madden SL, Klinger KW, Modur V, Ibraghimov-Beskrovnaya O. Correction of cilia structure and function alleviates multi-organ pathology in Bardet-Biedl syndrome mice. Hum Mol Genet 2021; 29:2508-2522. [PMID: 32620959 PMCID: PMC7471507 DOI: 10.1093/hmg/ddaa138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2020] [Revised: 06/22/2020] [Accepted: 07/01/2020] [Indexed: 12/21/2022] Open
Abstract
Bardet–Biedl syndrome (BBS) is a pleiotropic autosomal recessive ciliopathy affecting multiple organs. The development of potential disease-modifying therapy for BBS will require concurrent targeting of multi-systemic manifestations. Here, we show for the first time that monosialodihexosylganglioside accumulates in Bbs2−/− cilia, indicating impairment of glycosphingolipid (GSL) metabolism in BBS. Consequently, we tested whether BBS pathology in Bbs2−/− mice can be reversed by targeting the underlying ciliary defect via reduction of GSL metabolism. Inhibition of GSL synthesis with the glucosylceramide synthase inhibitor Genz-667161 decreases the obesity, liver disease, retinal degeneration and olfaction defect in Bbs2−/− mice. These effects are secondary to preservation of ciliary structure and signaling, and stimulation of cellular differentiation. In conclusion, reduction of GSL metabolism resolves the multi-organ pathology of Bbs2−/− mice by directly preserving ciliary structure and function towards a normal phenotype. Since this approach does not rely on the correction of the underlying genetic mutation, it might translate successfully as a treatment for other ciliopathies.
Collapse
Affiliation(s)
- Hervé Husson
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Nikolay O Bukanov
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Sarah Moreno
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Mandy M Smith
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | | | - Cheng Zhu
- Translational Sciences, Sanofi, Framingham, MA 01701, USA
| | - Tyler Picariello
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Hyejung Park
- Pre-Development Sciences, Sanofi, Waltham, MA 02451, USA
| | - Bing Wang
- Pre-Development Sciences, Sanofi, Waltham, MA 02451, USA
| | - Thomas A Natoli
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Laurie A Smith
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Stefano Zanotti
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | - Ryan J Russo
- Rare and Neurologic Diseases Research, Sanofi, Framingham, MA 01701, USA
| | | | | | - Vijay Modur
- Rare Diseases Development, Sanofi, Cambridge, MA 02142, USA
| | | |
Collapse
|
4
|
Aleman TS, O'Neil EC, O'Connor K, Jiang YY, Aleman IA, Bennett J, Morgan JIW, Toussaint BW. Bardet-Biedl syndrome-7 ( BBS7) shows treatment potential and a cone-rod dystrophy phenotype that recapitulates the non-human primate model. Ophthalmic Genet 2021; 42:252-265. [PMID: 33729075 DOI: 10.1080/13816810.2021.1888132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Purpose: To provide a detailed ophthalmic phenotype of two male patients with Bardet-Biedl Syndrome (BBS) due to mutations in the BBS7 geneMethods: Two brothers ages 26 (Patient 1, P1) and 23 (P2) underwent comprehensive ophthalmic evaluations over three years. Visual function was assessed with full-field electroretinograms (ffERGs), kinetic and chromatic perimetry, multimodal imaging with spectral domain optical coherence tomography (SD-OCT), fundus autofluorescence (FAF) with short- (SW) and near-infrared (NIR) excitation lights and adaptive optics scanning light ophthalmoscopy (AOSLO).Results: Both siblings had a history of obesity and postaxial polydactyly; P2 had diagnoses of type 1 Diabetes Mellitus, Addison's disease, high-functioning autism-spectrum disorder and -12D myopia. Visual acuities were better than 20/30. Kinetic fields were moderately constricted. Cone-mediated ffERGs were undetectable, rod ERGs were ~80% of normal mean. Static perimetry showed severe central cone and rod dysfunction. Foveal to parafoveal hypoautofluorescence, most obvious on NIR-FAF, co-localized with outer segment shortening/loss and outer nuclear layer thinning by SD-OCT, and with reduced photoreceptors densities by AOSLO. A structural-functional dissociation was confirmed for cone- and rod-mediated parameters. Worsening of the above abnormalities was documented by SD-OCT and FAF in P2 at 3 years. Gene screening identified compound heterozygous mutations in BBS7 (p.Val266Glu: c.797 T > A of maternal origin; c.1781_1783delCAT, paternal) in both patients.Conclusions: BBS7-associated retinal degeneration may present as a progressive cone-rod dystrophy pattern, reminiscent of both the murine and non-human primate models of the disease. Predominantly central retinal abnormalities in both cone and rod photoreceptors showed a structural-functional dissociation, an ideal scenario for gene augmentation treatments.
Collapse
Affiliation(s)
- Tomas S Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Erin C O'Neil
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Division of Ophthalmology of the Children's Hospital of Philadelphia, Department of Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Keli O'Connor
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yu You Jiang
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Isabella A Aleman
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jean Bennett
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica I W Morgan
- Scheie Eye Institute at the Perelman Center for Advanced Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.,Center for Advanced Retinal and Ocular Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Brian W Toussaint
- Christiana Care Health System, Wilmington, Delaware, USA.,Department of Ophthalmology, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
5
|
BBS4 Is Essential for Nuclear Transport of Transcription Factors Mediating Neuronal ER Stress Response. Mol Neurobiol 2020; 58:78-91. [PMID: 32894499 DOI: 10.1007/s12035-020-02104-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2020] [Accepted: 08/27/2020] [Indexed: 11/09/2022]
Abstract
Bardet-Biedl syndrome (BBS) is an autosomal recessive syndrome presenting with retinal dystrophy, cognitive impairment, and obesity. BBS is characterized by elevated endoplasmic reticulum (ER) stress in the early stages of adipocyte and retinal development. BBS expression in the CNS and indications of hippocampal dysgenesis suggest neural development abnormalities. However, the role of BBS in ER stress in neuronal cells has not yet been studied. Therefore, we aimed at studying the role of BBS4 in neuronal development under normal and ER stress conditions. ER stress and unfolded protein response (UPR) were studied in BBS4-silenced (SiBBS4) SH-SY5Y cells during differentiation under normal and stress states, using molecular and biochemical markers. ER stress was demonstrated at early neural differentiation, with significantly augmented expression of UPR markers corresponding to BBS4 expression. In the undifferentiated state, BBS4 silencing resulted in significantly reduced ER-stress markers' expression under normal and ER-stress states. Independent of ER stress, SiBBS4 cells demonstrated significant reduction in activated phospho-IRE1α. Under BBS4 silencing, both sXBP-1 and activated ATF6α p50 failed to translocate to the nucleus. Transcript levels of apoptosis markers were upregulated under BBS4 depletion and ER-stress induction, corresponding to decreased viability. BBS4 depletion in neuronal cells results in reduced sensitivity to ER stress during differentiation and under ER-stress induction, partly due to failure in translocation of ER-transcription factors (TF) sXBP-1 and ATF6α p50 to the nucleus. Hence, BBS4 is essential for nuclear transport under ER-stress response in neuronal cells during early differentiation. Our studies shed light on molecular mechanisms through which BBS4 malfunction alters neuronal ER stress response.
Collapse
|
6
|
Functional analysis of new human Bardet-Biedl syndrome loci specific variants in the zebrafish model. Sci Rep 2019; 9:12936. [PMID: 31506453 PMCID: PMC6736949 DOI: 10.1038/s41598-019-49217-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Accepted: 08/16/2019] [Indexed: 11/09/2022] Open
Abstract
The multiple genetic approaches available for molecular diagnosis of human diseases have made possible to identify an increasing number of pathogenic genetic changes, particularly with the advent of next generation sequencing (NGS) technologies. However, the main challenge lies in the interpretation of their functional impact, which has resulted in the widespread use of animal models. We describe here the functional modelling of seven BBS loci variants, most of them novel, in zebrafish embryos to validate their in silico prediction of pathogenicity. We show that target knockdown (KD) of known BBS (BBS1, BB5 or BBS6) loci leads to developmental defects commonly associated with ciliopathies, as previously described. These KD pleiotropic phenotypes were rescued by co-injecting human wild type (WT) loci sequence but not with the equivalent mutated mRNAs, providing evidence of the pathogenic effect of these BBS changes. Furthermore, direct assessment of cilia located in Kupffer's vesicle (KV) showed a reduction of ciliary length associated with all the studied variants, thus confirming a deleterious effect. Taken together, our results seem to prove the pathogenicity of the already classified and unclassified new BBS variants, as well as highlight the usefulness of zebrafish as an animal model for in vivo assays in human ciliopathies.
Collapse
|
7
|
Wheway G, Mitchison HM. Opportunities and Challenges for Molecular Understanding of Ciliopathies-The 100,000 Genomes Project. Front Genet 2019; 10:127. [PMID: 30915099 PMCID: PMC6421331 DOI: 10.3389/fgene.2019.00127] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 02/05/2019] [Indexed: 01/11/2023] Open
Abstract
Cilia are highly specialized cellular organelles that serve multiple functions in human development and health. Their central importance in the body is demonstrated by the occurrence of a diverse range of developmental disorders that arise from defects of cilia structure and function, caused by a range of different inherited mutations found in more than 150 different genes. Genetic analysis has rapidly advanced our understanding of the cell biological basis of ciliopathies over the past two decades, with more recent technological advances in genomics rapidly accelerating this progress. The 100,000 Genomes Project was launched in 2012 in the UK to improve diagnosis and future care for individuals affected by rare diseases like ciliopathies, through whole genome sequencing (WGS). In this review we discuss the potential promise and medical impact of WGS for ciliopathies and report on current progress of the 100,000 Genomes Project, reviewing the medical, technical and ethical challenges and opportunities that new, large scale initiatives such as this can offer.
Collapse
Affiliation(s)
- Gabrielle Wheway
- Human Development and Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Hannah M. Mitchison
- Genetics and Genomic Medicine, University College London, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
8
|
Uytingco CR, Williams CL, Xie C, Shively DT, Green WW, Ukhanov K, Zhang L, Nishimura DY, Sheffield VC, Martens JR. BBS4 is required for intraflagellar transport coordination and basal body number in mammalian olfactory cilia. J Cell Sci 2019; 132:jcs222331. [PMID: 30665891 PMCID: PMC6432715 DOI: 10.1242/jcs.222331] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/11/2019] [Indexed: 12/16/2022] Open
Abstract
Bardet-Beidl syndrome (BBS) manifests from genetic mutations encoding for one or more BBS proteins. BBS4 loss impacts olfactory ciliation and odor detection, yet the cellular mechanisms remain unclear. Here, we report that Bbs4-/- mice exhibit shorter and fewer olfactory sensory neuron (OSN) cilia despite retaining odorant receptor localization. Within Bbs4-/- OSN cilia, we observed asynchronous rates of IFT-A/B particle movements, indicating miscoordination in IFT complex trafficking. Within the OSN dendritic knob, the basal bodies are dynamic, with incorporation of ectopically expressed centrin-2 and γ-tubulin occurring after nascent ciliogenesis. Importantly, BBS4 loss results in the reduction of basal body numbers separate from cilia loss. Adenoviral expression of BBS4 restored OSN cilia lengths and was sufficient to re-establish odor detection, but failed to rescue ciliary and basal body numbers. Our results yield a model for the plurality of BBS4 functions in OSNs that includes intraciliary and periciliary roles that can explain the loss of cilia and penetrance of ciliopathy phenotypes in olfactory neurons.
Collapse
Affiliation(s)
- Cedric R Uytingco
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Corey L Williams
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Dana T Shively
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Warren W Green
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA
- Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, Gainesville, FL 32610, USA
- Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| |
Collapse
|
9
|
Williams CL, Uytingco CR, Green WW, McIntyre JC, Ukhanov K, Zimmerman AD, Shively DT, Zhang L, Nishimura DY, Sheffield VC, Martens JR. Gene Therapeutic Reversal of Peripheral Olfactory Impairment in Bardet-Biedl Syndrome. Mol Ther 2017; 25:904-916. [PMID: 28237838 DOI: 10.1016/j.ymthe.2017.02.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/02/2017] [Accepted: 02/05/2017] [Indexed: 12/22/2022] Open
Abstract
Olfactory dysfunction is a pervasive but underappreciated health concern that affects personal safety and quality of life. Patients with olfactory dysfunctions have limited therapeutic options, particularly those involving congenital diseases. Bardet-Biedl syndrome (BBS) is one such disorder, where olfactory loss and other symptoms manifest from defective cilium morphology and/or function in various cell types/tissues. Olfactory sensory neurons (OSNs) of BBS mutant mice lack the capacity to build/maintain cilia, rendering the cells incapable of odor detection. Here we examined OSN cilium defects in Bbs1 mutant mice and assessed the utility of gene therapy to restore ciliation and function in young and adult mice. Bbs1 mutant mice possessed short residual OSN cilia in which BBSome protein trafficking and odorant detection were defective. Gene therapy with an adenovirus-delivered wild-type Bbs1 gene restored OSN ciliation, corrected BBSome cilium trafficking defects, and returned acute odor responses. Finally, using clinically approved AAV serotypes, we demonstrate, for the first time, the capacity of AAVs to restore ciliation and odor detection in OSNs of Bbs1 mutants. Together, our data demonstrate that OSN ciliogenesis can be promoted in differentiated cells of young and adult Bbs1 mutants and highlight the potential of gene therapy as a viable restorative treatment for congenital olfactory disorders.
Collapse
Affiliation(s)
- Corey L Williams
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Cedric R Uytingco
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Warren W Green
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Jeremy C McIntyre
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Kirill Ukhanov
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Arthur D Zimmerman
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Dana T Shively
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | - Lian Zhang
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | - Val C Sheffield
- Department of Pediatrics, University of Iowa, Iowa City, IA 52242, USA; Howard Hughes Medical Institute, University of Iowa, Iowa City, IA 52242, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, University of Florida College of Medicine, Gainesville, FL 32610, USA; Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL 32610, USA.
| |
Collapse
|
10
|
Control of Hedgehog Signalling by the Cilia-Regulated Proteasome. J Dev Biol 2016; 4:jdb4030027. [PMID: 29615591 PMCID: PMC5831775 DOI: 10.3390/jdb4030027] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2016] [Revised: 08/25/2016] [Accepted: 08/29/2016] [Indexed: 12/31/2022] Open
Abstract
The Hedgehog signalling pathway is evolutionarily highly conserved and essential for embryonic development of invertebrates and vertebrates. Consequently, impaired Hedgehog signalling results in very severe human diseases, ranging from holoprosencephaly to Pallister-Hall syndrome. Due to this great importance for human health, the focus of numerous research groups is placed on the investigation of the detailed mechanisms underlying Hedgehog signalling. Today, it is known that tiny cell protrusions, known as primary cilia, are necessary to mediate Hedgehog signalling in vertebrates. Although the Hedgehog pathway is one of the best studied signalling pathways, many questions remain. One of these questions is: How do primary cilia control Hedgehog signalling in vertebrates? Recently, it was shown that primary cilia regulate a special kind of proteasome which is essential for proper Hedgehog signalling. This review article will cover this novel cilia-proteasome association in embryonic Hedgehog signalling and discuss the possibilities provided by future investigations on this topic.
Collapse
|
11
|
Reish O, Aspit L, Zouella A, Roth Y, Polak-Charcon S, Baboushkin T, Benyamini L, Scheetz TE, Mussaffi H, Sheffield VC, Parvari R. A Homozygous Nme7 Mutation Is Associated with Situs Inversus Totalis. Hum Mutat 2016; 37:727-31. [PMID: 27060491 DOI: 10.1002/humu.22998] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2015] [Revised: 02/25/2016] [Accepted: 03/09/2016] [Indexed: 02/06/2023]
Abstract
We investigated the cause of situs inversus totalis (SIT) in two siblings from a consanguineous family. Genotyping and whole-exome analysis revealed a homozygous change in NME7, resulting in deletion of an exon causing an in-frame deletion of 34 amino acids located in the second NDK domain of the protein and segregated with the defective lateralization in the family. NME7 is an important developmental gene, and NME7 protein is a component of the γ-tubulin ring complex. This mutation is predicted to affect the interaction of NME7 protein with this complex as it deletes the amino acids crucial for the binding. SIT associated with homozygous deletion in our patients is in line with Nme7(-/-) mutant mice phenotypes consisting of congenital hydrocephalus and SIT, indicating a novel human laterality patterning role for NME7. Further cases are required to elaborate the full human phenotype associated with NME7 mutations.
Collapse
Affiliation(s)
- Orit Reish
- Genetic Institute, Assaf Harofeh Medical Center, Zerifin, Israel.,The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Liam Aspit
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Arielle Zouella
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Yehudah Roth
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Otolaryngology - Head and Neck Surgery, Edith Wolfson Medical Center, Holon, Israel
| | - Sylvie Polak-Charcon
- Department of Pathology, The Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - Tatiana Baboushkin
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Department of Pathology, The Sheba Medical Center at Tel Hashomer, Ramat Gan, Israel
| | - Lilach Benyamini
- Genetic Institute, Assaf Harofeh Medical Center, Zerifin, Israel
| | - Todd E Scheetz
- Stephen A Wynn Institute for Vision Research and Department of Ophthalmology and Visual Sciences, University of Iowa, Iowa City, Iowa
| | - Huda Mussaffi
- The Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel.,Pediatric Pulmunology Institute, Schneider Children's Medical Center of Israel, Petach Tikva, Israel
| | - Val C Sheffield
- Department of Pediatrics, Division of Medical Genetics, University of Iowa, Iowa City, Iowa
| | - Ruti Parvari
- Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.,National Institute of Biotechnology in the Negev, Ben-Gurion University of the Negev, Beer Sheva, Israel
| |
Collapse
|
12
|
Song Z, Zhang X, Jia S, Yelick PC, Zhao C. Zebrafish as a Model for Human Ciliopathies. J Genet Genomics 2016; 43:107-20. [DOI: 10.1016/j.jgg.2016.02.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 12/22/2022]
|
13
|
Veleri S, Lazar CH, Chang B, Sieving PA, Banin E, Swaroop A. Biology and therapy of inherited retinal degenerative disease: insights from mouse models. Dis Model Mech 2015; 8:109-29. [PMID: 25650393 PMCID: PMC4314777 DOI: 10.1242/dmm.017913] [Citation(s) in RCA: 179] [Impact Index Per Article: 17.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Retinal neurodegeneration associated with the dysfunction or death of photoreceptors is a major cause of incurable vision loss. Tremendous progress has been made over the last two decades in discovering genes and genetic defects that lead to retinal diseases. The primary focus has now shifted to uncovering disease mechanisms and designing treatment strategies, especially inspired by the successful application of gene therapy in some forms of congenital blindness in humans. Both spontaneous and laboratory-generated mouse mutants have been valuable for providing fundamental insights into normal retinal development and for deciphering disease pathology. Here, we provide a review of mouse models of human retinal degeneration, with a primary focus on diseases affecting photoreceptor function. We also describe models associated with retinal pigment epithelium dysfunction or synaptic abnormalities. Furthermore, we highlight the crucial role of mouse models in elucidating retinal and photoreceptor biology in health and disease, and in the assessment of novel therapeutic modalities, including gene- and stem-cell-based therapies, for retinal degenerative diseases.
Collapse
Affiliation(s)
- Shobi Veleri
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Csilla H Lazar
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Molecular Biology Center, Interdisciplinary Research Institute on Bio-Nano Sciences, Babes-Bolyai-University, Cluj-Napoca, 400271, Romania
| | - Bo Chang
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | - Paul A Sieving
- National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Eyal Banin
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA. Center for Retinal and Macular Degenerations, Department of Ophthalmology, Hadassah-Hebrew University Medical Center, Jerusalem 91120, Israel
| | - Anand Swaroop
- Neurobiology-Neurodegeneration and Repair Laboratory, National Eye Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
14
|
|
15
|
Lipina TV, Roder JC. Disrupted-In-Schizophrenia-1 (DISC1) interactome and mental disorders: impact of mouse models. Neurosci Biobehav Rev 2014; 45:271-94. [PMID: 25016072 DOI: 10.1016/j.neubiorev.2014.07.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Revised: 06/09/2014] [Accepted: 07/01/2014] [Indexed: 02/06/2023]
Abstract
Disrupted-In-Schizophrenia-1 (DISC1) has captured much attention because it predisposes individuals to a wide range of mental illnesses. Notably, a number of genes encoding proteins interacting with DISC1 are also considered to be relevant risk factors of mental disorders. We reasoned that the understanding of DISC1-associated mental disorders in the context of network principles will help to address fundamental properties of DISC1 as a disease gene. Systematic integration of behavioural phenotypes of genetic mouse lines carrying perturbation in DISC1 interacting proteins would contribute to a better resolution of neurobiological mechanisms of mental disorders associated with the impaired DISC1 interactome and lead to a development of network medicine. This review also makes specific recommendations of how to assess DISC1 associated mental disorders in mouse models and discuss future directions.
Collapse
Affiliation(s)
- Tatiana V Lipina
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada.
| | - John C Roder
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario M5G 1X5, Canada; Departments of Medical Biophysics and Molecular & Medical Genetics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
16
|
Renkema KY, Stokman MF, Giles RH, Knoers NVAM. Next-generation sequencing for research and diagnostics in kidney disease. Nat Rev Nephrol 2014; 10:433-44. [PMID: 24914583 DOI: 10.1038/nrneph.2014.95] [Citation(s) in RCA: 72] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The advent of next-generation sequencing technologies has enabled genetic nephrology research to move beyond single gene analysis to the simultaneous investigation of hundreds of genes and entire pathways. These new sequencing approaches have been used to identify and characterize causal factors that underlie inherited heterogeneous kidney diseases such as nephronophthisis and congenital anomalies of the kidney and urinary tract. In this Review, we describe the development of next-generation sequencing in basic and clinical research and discuss the implementation of this novel technology in routine patient management. Widespread use of targeted and nontargeted approaches for gene identification in clinical practice will require consistent phenotyping, appropriate disease modelling and collaborative efforts to combine and integrate data analyses. Next-generation sequencing is an exceptionally promising technique that has the potential to improve the management of patients with inherited kidney diseases. However, identifying the molecular mechanisms that lead to renal developmental disorders and ciliopathies is difficult. A major challenge in the near future will be how best to integrate data obtained using next-generation sequencing with personalized medicine, including use of high-throughput disease modelling as a tool to support the clinical diagnosis of kidney diseases.
Collapse
Affiliation(s)
- Kirsten Y Renkema
- Department of Medical Genetics, University Medical Center Utrecht, KC04.048.02, PO Box 85090, Utrecht, 3508 AB, Netherlands
| | - Marijn F Stokman
- Department of Medical Genetics, University Medical Center Utrecht, KC04.048.02, PO Box 85090, Utrecht, 3508 AB, Netherlands
| | - Rachel H Giles
- Department of Nephrology and Hypertension, University Medical Center Utrecht, KC04.048.02, PO Box 85090, Utrecht, 3508 AB, Netherlands
| | - Nine V A M Knoers
- Department of Medical Genetics, University Medical Center Utrecht, KC04.048.02, PO Box 85090, Utrecht, 3508 AB, Netherlands
| |
Collapse
|
17
|
Agassandian K, Patel M, Agassandian M, Steren KE, Rahmouni K, Sheffield VC, Card JP. Ciliopathy is differentially distributed in the brain of a Bardet-Biedl syndrome mouse model. PLoS One 2014; 9:e93484. [PMID: 24695551 PMCID: PMC3973560 DOI: 10.1371/journal.pone.0093484] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Accepted: 03/06/2014] [Indexed: 01/21/2023] Open
Abstract
Bardet-Biedl syndrome (BBS) is a genetically heterogeneous inherited human disorder displaying a pleotropic phenotype. Many of the symptoms characterized in the human disease have been reproduced in animal models carrying deletions or knock-in mutations of genes causal for the disorder. Thinning of the cerebral cortex, enlargement of the lateral and third ventricles, and structural changes in cilia are among the pathologies documented in these animal models. Ciliopathy is of particular interest in light of recent studies that have implicated primary neuronal cilia (PNC) in neuronal signal transduction. In the present investigation, we tested the hypothesis that areas of the brain responsible for learning and memory formation would differentially exhibit PNC abnormalities in animals carrying a deletion of the Bbs4 gene (Bbs4-/-). Immunohistochemical localization of adenylyl cyclase-III (ACIII), a marker restricted to PNC, revealed dramatic alterations in PNC morphology and a statistically significant reduction in number of immunopositive cilia in the hippocampus and amygdala of Bbs4-/- mice compared to wild type (WT) littermates. Western blot analysis confirmed the decrease of ACIII levels in the hippocampus and amygdala of Bbs4-/- mice, and electron microscopy demonstrated pathological alterations of PNC in the hippocampus and amygdala. Importantly, no neuronal loss was found within the subregions of amygdala and hippocampus sampled in Bbs4-/- mice and there were no statistically significant alterations of ACIII immunopositive cilia in other areas of the brain not known to contribute to the BBS phenotype. Considered with data documenting a role of cilia in signal transduction these findings support the conclusion that alterations in cilia structure or neurochemical phenotypes may contribute to the cognitive deficits observed in the Bbs4-/- mouse mode.
Collapse
Affiliation(s)
- Khristofor Agassandian
- Department of Neuroscience, the University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| | - Milan Patel
- Department of Neuroscience, the University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Marianna Agassandian
- Department of Medicine, the University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Karina E. Steren
- Department of Neuroscience, the University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Kamal Rahmouni
- Departments of Pharmacology and Internal Medicine, the University of Iowa, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics, the University of Iowa, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, University of Iowa, Iowa City, Iowa, United States of America
| | - J. Patrick Card
- Department of Neuroscience, the University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| |
Collapse
|
18
|
Chamling X, Seo S, Searby CC, Kim G, Slusarski DC, Sheffield VC. The centriolar satellite protein AZI1 interacts with BBS4 and regulates ciliary trafficking of the BBSome. PLoS Genet 2014; 10:e1004083. [PMID: 24550735 PMCID: PMC3923683 DOI: 10.1371/journal.pgen.1004083] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2013] [Accepted: 11/19/2013] [Indexed: 11/28/2022] Open
Abstract
Bardet-Biedl syndrome (BBS) is a well-known ciliopathy with mutations reported in 18 different genes. Most of the protein products of the BBS genes localize at or near the primary cilium and the centrosome. Near the centrosome, BBS proteins interact with centriolar satellite proteins, and the BBSome (a complex of seven BBS proteins) is believed to play a role in transporting ciliary membrane proteins. However, the precise mechanism by which BBSome ciliary trafficking activity is regulated is not fully understood. Here, we show that a centriolar satellite protein, AZI1 (also known as CEP131), interacts with the BBSome and regulates BBSome ciliary trafficking activity. Furthermore, we show that AZI1 interacts with the BBSome through BBS4. AZI1 is not involved in BBSome assembly, but accumulation of the BBSome in cilia is enhanced upon AZI1 depletion. Under conditions in which the BBSome does not normally enter cilia, such as in BBS3 or BBS5 depleted cells, knock down of AZI1 with siRNA restores BBSome trafficking to cilia. Finally, we show that azi1 knockdown in zebrafish embryos results in typical BBS phenotypes including Kupffer's vesicle abnormalities and melanosome transport delay. These findings associate AZI1 with the BBS pathway. Our findings provide further insight into the regulation of BBSome ciliary trafficking and identify AZI1 as a novel BBS candidate gene. Bardet-Biedl syndrome (BBS) is a genetically heterogeneous autosomal recessive ciliopathy with 18 causative genes reported to date. The syndrome is characterized by obesity, polydactyly, renal defects, hypogenitalism and retinal degeneration. Previous work has illustrated a role for BBS proteins in the trafficking of ciliary cargo proteins including MCHR1, SSTR3, and dopamine receptor 1. In addition, interaction of BBS proteins with other centriolar satellite proteins has been reported. In order to identify novel BBS interacting proteins and novel BBS candidate genes we generated a transgenic BBS4 mouse. In this study, we utilized the transgenic mice to identify a novel BBSome (a complex of eight BBS proteins) interacting protein, AZI1. We show that AZI1 physically binds to the BBSome via BBS4. We also suggest a negative role of AZI1 in ciliary trafficking of the BBSome: when AZI1 is depleted, more BBSome localizes to cilia. Using zebrafish as a model, we show that azi1 morphants are similar to bbs morphants, a finding that further implicates AZI1 with the BBS pathway. Our findings provide further insight into the regulation of BBSome ciliary trafficking and identify AZI1 as a BBS candidate gene.
Collapse
Affiliation(s)
- Xitiz Chamling
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
| | - Seongjin Seo
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Charles C. Searby
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
| | - GunHee Kim
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
| | - Diane C. Slusarski
- Department of Biology, University of Iowa, Iowa City, Iowa, United States of America
| | - Val C. Sheffield
- Department of Pediatrics, University of Iowa Interdisciplinary program of genetics, Iowa City, Iowa, United States of America
- Department of Ophthalmology and Visual Sciences, University of Iowa Carver College of Medicine, Iowa City, Iowa, United States of America
- Howard Hughes Medical Institute, Chevy Chase, Maryland, United States of America
- * E-mail:
| |
Collapse
|
19
|
Abstract
PURPOSE OF REVIEW An update on heritable eye disease will allow informed patient counseling and improved patient care. RECENT FINDINGS New loci and genes have been associated with identifiable heritable ocular traits. Molecular genetic analysis is available for many of these genes either as part of research or for clinical testing. The advent of gene array technologies has enabled screening of samples for known mutations in genes linked to various disorders. Exomic sequencing has proven to be particularly successful in research protocols in identifying the genetic causation of rare genetic traits by pooling patient resources and discovering new genes. Further, genetic analysis has led improvement in patient care and counselling, as exemplified by the continued advances in our treatment of retinoblastoma. SUMMARY Patients and families are commonly eager to participate in either research or clinical testing to improve their understanding of the cause and heritability of an ocular condition. Many patients hope that testing will then lead to appropriate treatments or cures. The success of gene therapy in the RPE65 form of Leber congenital amaurosis has provided a brilliant example of this hope; that a similar trial may become available to other patients and families burdened by genetic disease.
Collapse
|
20
|
Seo S, Mullins RF, Dumitrescu AV, Bhattarai S, Gratie D, Wang K, Stone EM, Sheffield V, Drack AV. Subretinal gene therapy of mice with Bardet-Biedl syndrome type 1. Invest Ophthalmol Vis Sci 2013; 54:6118-32. [PMID: 23900607 DOI: 10.1167/iovs.13-11673] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
PURPOSE To study safety and efficacy of subretinal adeno-associated virus (AAV) vector AAV-Bbs1 injection for treatment of a mouse model of Bardet-Biedl syndrome type 1 (BBS1). METHODS Constructs containing a wild-type (WT) Bbs1 gene with and without a FLAG tag in AAV2/5 vectors were generated. Viral genomes were delivered by subretinal injection to right eyes and sham injections to left eyes at postnatal day 30 (P30) to P60. Transgene expression and BBSome reconstitution were evaluated by immunohistochemistry and Western blotting following sucrose gradient ultracentrifugation. Retinal function was analyzed by electroretinogram (ERG) and structure by optical coherence tomography (OCT). Histology and immunohistochemistry were performed on selected eyes. RESULTS Expression of FLAG-tagged Bbs1 was demonstrated in photoreceptor cells using antibody directed against the FLAG tag. Coinjection of AAV-GFP demonstrated transduction of 24% to 32% of the retina. Western blotting demonstrated BBS1 protein expression and reconstitution of the BBSome. ERG dark-adapted bright flash b-wave amplitudes were higher in AAV-Bbs1-injected eyes than in sham-injected fellow eyes in more than 50% of 19 animals. Anti-rhodopsin staining demonstrated improved localization of rhodopsin in AAV-Bbs1-treated eyes. WT retinas injected with AAV-Bbs1 with or without a FLAG tag showed outer retinal degeneration on ERG, OCT, and histology. CONCLUSIONS In a knock-in model of BBS1, subretinal delivery of AAV-Bbs1 rescues BBSome formation and rhodopsin localization, and shows a trend toward improved ERG. BBS is challenging to treat with gene therapy due to the stoichiometry of the BBSome protein complex and overexpression toxicity.
Collapse
Affiliation(s)
- Seongjin Seo
- Department of Ophthalmology, University of Iowa, Iowa City, Iowa
| | | | | | | | | | | | | | | | | |
Collapse
|