1
|
Hatch ND, Ouellette SP. Identification of the alternative sigma factor regulons of Chlamydia trachomatis using multiplexed CRISPR interference. mSphere 2023; 8:e0039123. [PMID: 37747235 PMCID: PMC10597470 DOI: 10.1128/msphere.00391-23] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/07/2023] [Indexed: 09/26/2023] Open
Abstract
Chlamydia trachomatis is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early- and mid-cycle development as the infectious elementary body (EB) transitions to the non-infectious reticulate body (RB) that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date; however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs. As the process of secondary differentiation itself is poorly characterized, clarifying the function of these alternative sigma factors by identifying the genes regulated by them will further our understanding of chlamydial differentiation. We hypothesize that σ54 and σ28 have non-redundant and essential functions for initiating late gene transcription thus mediating secondary differentiation in Chlamydia. Here, we demonstrate the necessity of each minor sigma factor in successfully completing the developmental cycle. We have implemented and validated multiplexed Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) interference techniques, novel to the chlamydial field to examine the effects of knocking down each alternative sigma factor individually and simultaneously. In parallel, we also overexpressed each sigma factor. Altering transcript levels for either or both alternative sigma factors resulted in a severe defect in EB production as compared to controls. Furthermore, RNA sequencing identified differentially expressed genes during alternative sigma factor dysregulation, indicating the putative regulons of each. These data demonstrate that the levels of alternative sigma factors must be carefully regulated to facilitate chlamydial growth and differentiation. IMPORTANCE Chlamydia trachomatis is a significant human pathogen in both developed and developing nations. Due to the organism's unique developmental cycle and intracellular niche, basic research has been slow and arduous. However, recent advances in chlamydial genetics have allowed the field to make significant progress in experimentally interrogating the basic physiology of Chlamydia. Broadly speaking, the driving factors of chlamydial development are poorly understood, particularly regarding how the later stages of development are regulated. Here, we employ a novel genetic tool for use in Chlamydia while investigating the effects of dysregulating the two alternative sigma factors in the organism that help control transcription initiation. We provide further evidence for both sigma factors' essential roles in late-stage development and their potential regulons, laying the foundation for deeper experimentation to uncover the molecular pathways involved in chlamydial differentiation.
Collapse
Affiliation(s)
- Nathan D. Hatch
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| | - Scot P. Ouellette
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, Nebraska, USA
| |
Collapse
|
2
|
Hatch ND, Ouellette SP. Identification of the alternative sigma factor regulons of Chlamydia trachomatis using multiplexed CRISPR interference. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.27.538638. [PMID: 37162869 PMCID: PMC10168357 DOI: 10.1101/2023.04.27.538638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
C. trachomatis is a developmentally regulated, obligate intracellular bacterium that encodes three sigma factors: σ66, σ54, and σ28. σ66 is the major sigma factor controlling most transcription initiation during early and mid-cycle development as the infectious EB transitions to the non-infectious RB that replicates within an inclusion inside the cell. The roles of the minor sigma factors, σ54 and σ28, have not been well characterized to date - however, there are data to suggest each functions in late-stage development and secondary differentiation as RBs transition to EBs. As the process of secondary differentiation itself is poorly characterized, clarifying the function of these alternative sigma factors by identifying the genes regulated by them will further our understanding of chlamydial differentiation. We hypothesize that σ54 and σ28 have non-redundant and essential functions for initiating late gene transcription thus mediating secondary differentiation in Chlamydia . Here, we demonstrate the necessity of each minor sigma factor in successfully completing the developmental cycle. We have implemented and validated multiplexed CRISPRi techniques novel to the chlamydial field to examine effects of knocking down each alternative sigma factor individually and simultaneously. In parallel, we also overexpressed each sigma factor. Altering transcript levels for either or both alternative sigma factors resulted in a severe defect in EB production as compared to controls. Furthermore, RNA sequencing identified differentially expressed genes during alternative sigma factor dysregulation, indicating the putative regulons of each. These data demonstrate the levels of alternative sigma factors must be carefully regulated to facilitate chlamydial growth and differentiation. Importance Chlamydia trachomatis is a significant human pathogen in both developed and developing nations. Due to the organism's unique developmental cycle and intracellular niche, basic research has been slow and arduous. However, recent advances in chlamydial genetics have allowed the field to make significant progress in experimentally interrogating the basic physiology of Chlamydia . Broadly speaking, the driving factors of chlamydial development are poorly understood, particularly regarding how the later stages of development are regulated. Here, we employ a novel genetic tool for use in Chlamydia while investigating the effects of dysregulating the two alternative sigma factors in the organism that help control transcription initiation. We provide further evidence for both sigma factors' essential roles in late-stage development and their potential regulons, laying the foundation for deeper experimentation to uncover the molecular pathways involved in chlamydial differentiation.
Collapse
|
3
|
O'Neill CE, Skilton RJ, Forster J, Cleary DW, Pearson SA, Lampe DJ, Thomson NR, Clarke IN. An inducible transposon mutagenesis approach for the intracellular human pathogen Chlamydia trachomatis. Wellcome Open Res 2021; 6:312. [PMID: 35087955 PMCID: PMC8767425 DOI: 10.12688/wellcomeopenres.16068.1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/04/2021] [Indexed: 11/20/2022] Open
Abstract
Background: Chlamydia trachomatis is a prolific human pathogen that can cause serious long-term conditions if left untreated. Recent developments in Chlamydia genetics have opened the door to conducting targeted and random mutagenesis experiments to identify gene function. In the present study, an inducible transposon mutagenesis approach was developed for C. trachomatis using a self-replicating vector to deliver the transposon-transposase cassette - a significant step towards our ultimate aim of achieving saturation mutagenesis of the Chlamydia genome. Methods: The low transformation efficiency of C. trachomatis necessitated the design of a self-replicating vector carrying the transposon mutagenesis cassette (i.e. the Himar-1 transposon containing the beta lactamase gene as well as a hyperactive transposase gene under inducible control of the tet promoter system with the addition of a riboswitch). Chlamydia transformed with this vector (pSW2-RiboA-C9Q) were induced at 24 hours post-infection. Through dual control of transcription and translation, basal expression of transposase was tightly regulated to stabilise the plasmid prior to transposition. Results: Here we present the preliminary sequencing results of transposon mutant pools of both C. trachomatis biovars, using two plasmid-free representatives: urogenital strain C. trachomatis SWFP- and the lymphogranuloma venereum isolate L2(25667R). DNA sequencing libraries were generated and analysed using Oxford Nanopore Technologies' MinION technology. This enabled 'proof of concept' for the methods as an initial low-throughput screen of mutant libraries; the next step is to employ high throughput sequencing to assess saturation mutagenesis. Conclusions: This significant advance provides an efficient method for assaying C. trachomatis gene function and will enable the identification of the essential gene set of C. trachomatis. In the long-term, the methods described herein will add to the growing knowledge of chlamydial infection biology leading to the discovery of novel drug or vaccine targets.
Collapse
Affiliation(s)
- Colette E. O'Neill
- Clinical and Experimental Sciences, University of Southampton, Southampton, Hampshire, SO166YD, UK
| | - Rachel J. Skilton
- Clinical and Experimental Sciences, University of Southampton, Southampton, Hampshire, SO166YD, UK
| | - Jade Forster
- Cancer Sciences, University of Southampton, Southampton, SO16 6YD, UK
| | - David W. Cleary
- Clinical and Experimental Sciences, University of Southampton, Southampton, Hampshire, SO166YD, UK
| | - Sarah A. Pearson
- Clinical and Experimental Sciences, University of Southampton, Southampton, Hampshire, SO166YD, UK
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, Pittsburgh, Pennsylvania, 15116, USA
| | - Nicholas R. Thomson
- Bacterial Genomics and Evolution, Wellcome Trust Sanger Institute, Hinxton, Cambridgeshire, CB10 1SA, UK
| | - Ian N. Clarke
- Clinical and Experimental Sciences, University of Southampton, Southampton, Hampshire, SO166YD, UK
| |
Collapse
|
4
|
Skilton RJ, O'Neill C, Thomson NR, Lampe DJ, Clarke IN. Progress towards an inducible, replication-proficient transposon delivery vector for Chlamydia trachomatis. Wellcome Open Res 2021; 6:82. [PMID: 33997299 PMCID: PMC8097735 DOI: 10.12688/wellcomeopenres.16665.1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 11/25/2022] Open
Abstract
Background Genetic systems have been developed for Chlamydia but the extremely low transformation frequency remains a significant bottleneck. Our goal is to develop a self-replicating transposon delivery vector for C. trachomatis which can be expanded prior to transposase induction. Methods We made E. coli/ C. trachomatis shuttle vectors bearing the Himar1 C9 transposase under control of the tet promoter and a novel rearrangement of the Himar1 transposon with the β-lactamase gene. Activity of the transposase was monitored by immunoblot and by DNA sequencing. Results We constructed pSW2-mCh-C9, a C. trachomatis plasmid designed to act as a self-replicating vector carrying both the Himar1 C9 transposase under tet promoter control and its transposon. However, we were unable to recover this plasmid in C. trachomatis following multiple attempts at transformation. Therefore, we assembled two new deletion plasmids pSW2-mCh-C9-ΔTpon carrying only the Himar1 C9 transposase (under tet promoter control) and a sister vector (same sequence backbone) pSW2-mCh-C9-ΔTpase carrying its cognate transposon. We demonstrated that the biological components that make up both pSW2-mCh-C9-ΔTpon and pSW2-mCh-C9-ΔTpase are active in E. coli. Both these plasmids could be independently recovered in C. trachomatis. We attempted to perform lateral gene transfer by transformation and mixed infection with C. trachomatis strains bearing pSW2-mCh-C9-ΔTpon and pSW2-RSGFP-Tpon (a green fluorescent version of pSW2-mCh-C9-ΔTpase). Despite success in achieving mixed infections, it was not possible to recover progeny bearing both versions of these plasmids. Conclusions We have designed a self-replicating plasmid vector pSW2-mCh-C9 for C. trachomatis carrying the Himar1 C9 transposase under tet promoter control. Whilst this can be transformed into E. coli it cannot be recovered in C. trachomatis. Based on selected deletions and phenotypic analyses we conclude that low level expression from the tet inducible promoter is responsible for premature transposition and hence plasmid loss early on in the transformation process.
Collapse
Affiliation(s)
- Rachel J. Skilton
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Colette O'Neill
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambs, CB10 1RQ, UK
- London School of Hygiene and Tropical Medicine, London School of Hygiene and Tropical Medicine, London, WC1E 7HT, UK
| | - David J. Lampe
- Department of Biological Sciences, Duquesne University, 600 Forbes Ave., Pittsburgh, Pennsylvania, 15116, USA
| | - Ian N. Clarke
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton, Hants, SO16 6YD, UK
| |
Collapse
|
5
|
Szabo KV, O’Neill CE, Clarke IN. Diversity in Chlamydial plasmids. PLoS One 2020; 15:e0233298. [PMID: 32469898 PMCID: PMC7259575 DOI: 10.1371/journal.pone.0233298] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Accepted: 05/01/2020] [Indexed: 11/30/2022] Open
Abstract
Background Evolutionary studies have been conducted that have investigated the chromosomal variance in the genus of Chlamydia. However, no all-encompassing genus-wide comparison has been performed on the plasmid. Therefore, there is a gap in the current knowledge on Chlamydia plasmid diversity. Aims This project is aimed to investigate and establish the nature and extent of diversity across the entire genus of Chlamydia, by comparing the sequences of all currently available plasmid carrying strains. Methods The PUBMED database was used to identify plasmid sequences from all available strains that met the set quality criteria for their inclusion in the study. Alignments were performed on the 51 strains that fulfilled the criteria using MEGA X software. Following that Maximum Likelihood estimation was used to construct 11 phylogenetic trees of the whole plasmid sequence, the individual 8 coding sequences, the iteron and a chromosomal gene ompA as a comparator. Results The genus-wide plasmid phylogeny produced three distinct lineages labelled as alpha, beta and gamma. Nineteen genotypes were found in the initial whole plasmid analysis. Their distribution was allocated as six C. pecorum, two C. pneumoniae, one C. gallinacea, one C. avium, one C. caviae, one C. felis, two C. psittaci, one C. trachomatis, one C. muridarum, and two C. suis. The chromosomal comparative gene ompA supported this distribution, with the same number of primary clades with the same species distribution. However, ompA sequence comparison resulted in fewer genotypes due to a reduced amount of available sequences (33 out of 51). All results were statistically significant. Conclusion The results of this study indicate that the common bacterial ancestor of all the species had a plasmid, which has diverged over time. Moreover, it suggests that there is a strong evolutionary selection towards these species retaining their plasmids due to its high level of conservation across the genus, with the notable exception of C. pneumoniae. Furthermore, the evolutionary analysis showed that the plasmid and the chromosome have co-evolved.
Collapse
Affiliation(s)
- Kolos V. Szabo
- Faculty of Medicine, University of Southampton, Southampton, Hampshire, United Kingdom
- * E-mail:
| | - Colette E. O’Neill
- Molecular Microbiology Group, Clinical and Experimental Sciences, University Hospital Southampton, Southampton, Hampshire, United Kingdom
| | - Ian N. Clarke
- Molecular Microbiology Group, Clinical and Experimental Sciences, University Hospital Southampton, Southampton, Hampshire, United Kingdom
| |
Collapse
|
6
|
Jones CA, Hadfield J, Thomson NR, Cleary DW, Marsh P, Clarke IN, O’Neill CE. The Nature and Extent of Plasmid Variation in Chlamydia trachomatis. Microorganisms 2020; 8:microorganisms8030373. [PMID: 32155798 PMCID: PMC7143637 DOI: 10.3390/microorganisms8030373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 03/02/2020] [Accepted: 03/03/2020] [Indexed: 01/03/2023] Open
Abstract
Chlamydia trachomatis is an obligate intracellular pathogen of humans, causing both the sexually transmitted infection, chlamydia, and the most common cause of infectious blindness, trachoma. The majority of sequenced C. trachomatis clinical isolates carry a 7.5-Kb plasmid, and it is becoming increasingly evident that this is a key determinant of pathogenicity. The discovery of the Swedish New Variant and the more recent Finnish variant highlight the importance of understanding the natural extent of variation in the plasmid. In this study we analysed 524 plasmid sequences from publicly available whole-genome sequence data. Single nucleotide polymorphisms (SNP) in each of the eight coding sequences (CDS) were identified and analysed. There were 224 base positions out of a total 7550 bp that carried a SNP, which equates to a SNP rate of 2.97%, nearly three times what was previously calculated. After normalising for CDS size, CDS8 had the highest SNP rate at 3.97% (i.e., number of SNPs per total number of nucleotides), whilst CDS6 had the lowest at 1.94%. CDS5 had the highest total number of SNPs across the 524 sequences analysed (2267 SNPs), whereas CDS6 had the least SNPs with only 85 SNPs. Calculation of the genetic distances identified CDS6 as the least variable gene at the nucleotide level (d = 0.001), and CDS5 as the most variable (d = 0.007); however, at the amino acid level CDS2 was the least variable (d = 0.001), whilst CDS5 remained the most variable (d = 0.013). This study describes the largest in-depth analysis of the C. trachomatis plasmid to date, through the analysis of plasmid sequence data mined from whole genome sequences spanning 50 years and from a worldwide distribution, providing insights into the nature and extent of existing variation within the plasmid as well as guidance for the design of future diagnostic assays. This is crucial at a time when single-target diagnostic assays are failing to detect natural mutants, putting those infected at risk of a serious long-term and life-changing illness.
Collapse
Affiliation(s)
- Charlotte A. Jones
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - James Hadfield
- Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109-1024, USA;
| | - Nicholas R. Thomson
- Pathogen Genomics, The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK;
| | - David W. Cleary
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Peter Marsh
- Public Health England, Porton Down, Wiltshire SP40JG, UK;
| | - Ian N. Clarke
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
| | - Colette E. O’Neill
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton SO166YD, UK; (C.A.J.); (D.W.C.); (I.N.C.)
- Correspondence:
| |
Collapse
|
7
|
Chronic Chlamydia infection in human organoids increases stemness and promotes age-dependent CpG methylation. Nat Commun 2019; 10:1194. [PMID: 30886143 PMCID: PMC6423033 DOI: 10.1038/s41467-019-09144-7] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 02/22/2019] [Indexed: 01/12/2023] Open
Abstract
Chronic infections of the fallopian tubes with Chlamydia trachomatis (Ctr) cause scarring and can lead to infertility. Here we use human fallopian tube organoids and genital Ctr serovars D, K and E for long-term in vitro analysis. The epithelial monolayer responds with active expulsion of the bacteria into the lumen and with compensatory cellular proliferation—demonstrating a role of epithelial homeostasis in the defense against this pathogen. In addition, Ctr infection activates LIF signaling, which we find to be an essential regulator of stemness in the organoids. Infected organoids exhibit a less differentiated phenotype with higher stemness potential, as confirmed by increased organoid forming efficiency. Moreover, Ctr increases hypermethylation of DNA, which is an indicator of accelerated molecular aging. Thus, the chronic organoid infection model suggests that Ctr has a long-term impact on the epithelium. These heritable changes might be a contributing factor in the development of tubal pathologies, including the initiation of high grade serous ovarian cancer. Chronic infections of the fallopian tubes with Chlamydia trachomatis can cause scarring and infertility. Here, the authors show that the pathogen alters stem cell differentiation and DNA methylation in human fallopian tube organoids, suggesting a potential link to cellular ageing and malignant transformation.
Collapse
|
8
|
O'Neill CE, Skilton RJ, Pearson SA, Filardo S, Andersson P, Clarke IN. Genetic Transformation of a C. trachomatis Ocular Isolate With the Functional Tryptophan Synthase Operon Confers an Indole-Rescuable Phenotype. Front Cell Infect Microbiol 2018; 8:434. [PMID: 30619780 PMCID: PMC6302012 DOI: 10.3389/fcimb.2018.00434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 11/30/2018] [Indexed: 11/13/2022] Open
Abstract
Chlamydia trachomatis is the leading cause of preventable blindness and the most common bacterial sexually transmitted infection. Different strains are associated with ocular or urogenital infections, and a proposed mechanism that may explain this tissue tropism is the active tryptophan biosynthesis pathway encoded by the genomic trpRBA operon in urogenital strains. Here we describe genetic complementation studies that are essential to confirm the role of tryptophan synthase in the context of an ocular C. trachomatis genomic background. Ocular strain A2497 was transformed with the (urogenital) pSW2::GFP shuttle vector showing that there is no strain tropism barrier to this plasmid vector; moreover, transformation had no detrimental effect on the growth kinetics of A2497, which is important given the low transformation efficiency of C. trachomatis. A derivative of the pSW2::GFP vector was used to deliver the active tryptophan biosynthesis genes from a urogenital strain of C. trachomatis (Soton D1) to A2497 with the aim of complementing the truncated trpA gene common to most ocular strains. After confirmation of intact TrpA protein expression in the transformed A2497, the resulting transformants were cultivated in tryptophan-depleted medium with and without indole or tryptophan, showing that complementation of the truncated trpA gene by the intact and functional urogenital trpRBA operon was sufficient to bestow an indole rescuable phenotype upon A2497. This study proves that pSW2::GFP derived vectors do not conform to the cross-strain transformation barrier reported for other chlamydia shuttle vectors, suggesting these as a universal vector for transformation of all C. trachomatis strains. This vector promiscuity enabled us to test the indole rescue hypothesis by transforming ocular strain A2497 with the functional urogenital trpRBA operon, which complemented the non-functional tryptophan synthase. These data confirm that the trpRBA operon is necessary and sufficient for chlamydia to survive in tryptophan-limited environments such as the female urogenital tract.
Collapse
Affiliation(s)
- Colette Elizabeth O'Neill
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Rachel Jane Skilton
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Sarah Ann Pearson
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| | - Simone Filardo
- Section of Microbiology, Department of Public Health and Infectious Diseases, Sapienza University, Rome, Italy
| | - Patiyan Andersson
- Global and Tropical Health Division, Menzies School of Health Research, Charles Darwin University, Darwin, NT, Australia
| | - Ian Nicholas Clarke
- Molecular Microbiology Group, Department of Clinical and Experimental Science, Southampton General Hospital, University Medical School, Southampton, United Kingdom
| |
Collapse
|
9
|
Shima K, Wanker M, Skilton RJ, Cutcliffe LT, Schnee C, Kohl TA, Niemann S, Geijo J, Klinger M, Timms P, Rattei T, Sachse K, Clarke IN, Rupp J. The Genetic Transformation of Chlamydia pneumoniae. mSphere 2018; 3:e00412-18. [PMID: 30305318 PMCID: PMC6180227 DOI: 10.1128/msphere.00412-18] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 09/11/2018] [Indexed: 11/26/2022] Open
Abstract
We demonstrate the genetic transformation of Chlamydia pneumoniae using a plasmid shuttle vector system which generates stable transformants. The equine C. pneumoniae N16 isolate harbors the 7.5-kb plasmid pCpnE1. We constructed the plasmid vector pRSGFPCAT-Cpn containing a pCpnE1 backbone, plus the red-shifted green fluorescent protein (RSGFP), as well as the chloramphenicol acetyltransferase (CAT) gene used for the selection of plasmid shuttle vector-bearing C. pneumoniae transformants. Using the pRSGFPCAT-Cpn plasmid construct, expression of RSGFP in koala isolate C. pneumoniae LPCoLN was demonstrated. Furthermore, we discovered that the human cardiovascular isolate C. pneumoniae CV-6 and the human community-acquired pneumonia-associated C. pneumoniae IOL-207 could also be transformed with pRSGFPCAT-Cpn. In previous studies, it was shown that Chlamydia spp. cannot be transformed when the plasmid shuttle vector is constructed from a different plasmid backbone to the homologous species. Accordingly, we confirmed that pRSGFPCAT-Cpn could not cross the species barrier in plasmid-bearing and plasmid-free C. trachomatis, C. muridarum, C. caviae, C. pecorum, and C. abortus However, contrary to our expectation, pRSGFPCAT-Cpn did transform C. felis Furthermore, pRSGFPCAT-Cpn did not recombine with the wild-type plasmid of C. felis Taken together, we provide for the first time an easy-to-handle transformation protocol for C. pneumoniae that results in stable transformants. In addition, the vector can cross the species barrier to C. felis, indicating the potential of horizontal pathogenic gene transfer via a plasmid.IMPORTANCE The absence of tools for the genetic manipulation of C. pneumoniae has hampered research into all aspects of its biology. In this study, we established a novel reproducible method for C. pneumoniae transformation based on a plasmid shuttle vector system. We constructed a C. pneumoniae plasmid backbone shuttle vector, pRSGFPCAT-Cpn. The construct expresses the red-shifted green fluorescent protein (RSGFP) fused to chloramphenicol acetyltransferase in C. pneumoniaeC. pneumoniae transformants stably retained pRSGFPCAT-Cpn and expressed RSGFP in epithelial cells, even in the absence of chloramphenicol. The successful transformation in C. pneumoniae using pRSGFPCAT-Cpn will advance the field of chlamydial genetics and is a promising new approach to investigate gene functions in C. pneumoniae biology. In addition, we demonstrated that pRSGFPCAT-Cpn overcame the plasmid species barrier without the need for recombination with an endogenous plasmid, indicating the potential probability of horizontal chlamydial pathogenic gene transfer by plasmids between chlamydial species.
Collapse
Affiliation(s)
- Kensuke Shima
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
| | - Maximilian Wanker
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
| | - Rachel J Skilton
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Lesley T Cutcliffe
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Christiane Schnee
- Institute of Molecular Pathogenesis, Friedrich-Loeffler-lnstitute (Federal Research Institute for Animal Health), Jena, Germany
| | - Thomas A Kohl
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Stefan Niemann
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Javier Geijo
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
| | | | - Peter Timms
- University of Sunshine Coast, Maroochydore, Australia
| | - Thomas Rattei
- Division of Computational Systems Biology, University Vienna, Vienna, Austria
| | - Konrad Sachse
- RNA Bioinformatics and High-Throughput Analysis, Faculty of Mathematics and Computer Science, Friedrich-Schiller-Universität Jena, Jena, Germany
| | - Ian N Clarke
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, United Kingdom
| | - Jan Rupp
- Department of Infectious Diseases and Microbiology, University of Luebeck, Luebeck, Germany
- German Center for Infection Research (DZIF), Partner Site, Hamburg-Luebeck-Borstel-Riems, Germany
| |
Collapse
|
10
|
Skilton RJ, Wang Y, O'Neill C, Filardo S, Marsh P, Bénard A, Thomson NR, Ramsey KH, Clarke IN. The Chlamydia muridarum plasmid revisited : new insights into growth kinetics. Wellcome Open Res 2018; 3:25. [PMID: 29657985 PMCID: PMC5871946 DOI: 10.12688/wellcomeopenres.13905.1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2018] [Indexed: 11/23/2022] Open
Abstract
Background: Research in chlamydial genetics is challenging because of its obligate intracellular developmental cycle.
In vivo systems exist that allow studies of different aspects of basic biology of chlamydiae, the murine
Chlamydia muridarum model is one of great importance and thus an essential research tool.
C. muridarum carries a plasmid that has a role in virulence. Our aim was to compare and contrast the
C. muridarum plasmid-free phenotype with that of a chromosomally isogenic plasmid-bearing strain, through the inclusion phase of the developmental cycle. Methods: We measured infectivity for plasmid bearing and plasmid-cured
C. muridarum by inclusion forming assays in McCoy cells and in parallel bacterial chromosome replication by quantitative PCR, throughout the developmental cycle. In addition to these studies, we have carefully monitored chlamydial inclusion formation by confocal microscopy and transmission electron microscopy. A new
E.coli/chlamydial shuttle vector (pNigg::GFP) was constructed using standard cloning technology and used to transform
C. muridarum for further phenotypic studies. Results: We have advanced the definition of the chlamydial phenotype away from the simple static observation of mature inclusions and redefined the
C. muridarum plasmid-based phenotype on growth profile and inclusion morphology. Our observations on the growth properties of plasmid-cured
C. muridarum challenge the established interpretations, especially with regard to inclusion growth kinetics. Introduction of the shuttle plasmid pNigg::GFP into plasmid-cured
C. muridarum restored the wild-type plasmid-bearing phenotype and confirmed that loss of the plasmid was the sole cause for the changes in growth and chromosomal replication. Conclusions: Accurate growth curves and sampling at multiple time points throughout the developmental cycle is necessary to define plasmid phenotypes. There are subtle but important (previously unnoticed) differences in the overall growth profile of plasmid-bearing and plasmid-free
C. muridarum. We have proven that the differences described are solely due to the plasmid pNigg.
Collapse
Affiliation(s)
- Rachel J Skilton
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Yibing Wang
- Division of Allergy and Infectious Diseases, Department of Medicine, University of Washington, Seattle, WA, USA
| | - Colette O'Neill
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Simone Filardo
- Department of Public Health and Infectious Diseases, Section of Microbiology, Sapienza University, Rome, Italy
| | - Peter Marsh
- Public Health England, Public Health Laboratory Southampton, Southampton General Hospital, Southampton, UK
| | - Angèle Bénard
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Nicholas R Thomson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK.,London School of Hygiene and Tropical Medicine, London, UK
| | - Kyle H Ramsey
- Department of Microbiology & Immunology, Chicago College of Osteopathic Medicine, Midwestern University, Downers Grove, IL, USA
| | - Ian N Clarke
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| |
Collapse
|
11
|
Transformation of Chlamydia: current approaches and impact on our understanding of chlamydial infection biology. Microbes Infect 2018; 20:445-450. [PMID: 29409975 DOI: 10.1016/j.micinf.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2017] [Revised: 01/04/2018] [Accepted: 01/05/2018] [Indexed: 12/11/2022]
Abstract
The intonation "The king is dead, long live the king" aptly describes the state of Chlamydia research. Genetic-based approaches are rapidly replacing correlative strategies to provide new insights. We describe how current transformation technologies are enhancing progress in understanding Chlamydia infection biology and present key opportunities for further development.
Collapse
|
12
|
Abstract
Species of Chlamydia are the etiologic agent of endemic blinding trachoma, the leading cause of bacterial sexually transmitted diseases, significant respiratory pathogens, and a zoonotic threat. Their dependence on an intracellular growth niche and their peculiar developmental cycle are major challenges to elucidating their biology and virulence traits. The last decade has seen tremendous advances in our ability to perform a molecular genetic analysis of Chlamydia species. Major achievements include the generation of large collections of mutant strains, now available for forward- and reverse-genetic applications, and the introduction of a system for plasmid-based transformation enabling complementation of mutations; expression of foreign, modified, or reporter genes; and even targeted gene disruptions. This review summarizes the current status of the molecular genetic toolbox for Chlamydia species and highlights new insights into their biology and new challenges in the nascent field of Chlamydia genetics.
Collapse
Affiliation(s)
- Barbara S Sixt
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710; .,Centre de Recherche des Cordeliers, INSERM U1138, Paris 75006, France.,Université Paris Descartes, Sorbonne Paris Cité, Paris 75006, France.,Université Pierre et Marie Curie, Paris 75005, France
| | - Raphael H Valdivia
- Department for Molecular Genetics and Microbiology, Duke University, Durham, North Carolina 27710;
| |
Collapse
|
13
|
Exploiting induced pluripotent stem cell-derived macrophages to unravel host factors influencing Chlamydia trachomatis pathogenesis. Nat Commun 2017; 8:15013. [PMID: 28440293 PMCID: PMC5414054 DOI: 10.1038/ncomms15013] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Accepted: 02/21/2017] [Indexed: 02/07/2023] Open
Abstract
Chlamydia trachomatis remains a leading cause of bacterial sexually transmitted infections and preventable blindness worldwide. There are, however, limited in vitro models to study the role of host genetics in the response of macrophages to this obligate human pathogen. Here, we describe an approach using macrophages derived from human induced pluripotent stem cells (iPSdMs) to study macrophage–Chlamydia interactions in vitro. We show that iPSdMs support the full infectious life cycle of C. trachomatis in a manner that mimics the infection of human blood-derived macrophages. Transcriptomic and proteomic profiling of the macrophage response to chlamydial infection highlighted the role of the type I interferon and interleukin 10-mediated responses. Using CRISPR/Cas9 technology, we generated biallelic knockout mutations in host genes encoding IRF5 and IL-10RA in iPSCs, and confirmed their roles in limiting chlamydial infection in macrophages. This model can potentially be extended to other pathogens and tissue systems to advance our understanding of host-pathogen interactions and the role of human genetics in influencing the outcome of infections. In vitro models to study the role of host genetics in the response to chlamydial infection are limited. Here, Yeung et al. show that macrophages derived from human induced pluripotent stem cells (which can be genetically manipulated) support chlamydial infection and can be used for this purpose.
Collapse
|
14
|
Seth-Smith HM, Wanninger S, Bachmann N, Marti H, Qi W, Donati M, di Francesco A, Polkinghorne A, Borel N. The Chlamydia suis Genome Exhibits High Levels of Diversity, Plasticity, and Mobile Antibiotic Resistance: Comparative Genomics of a Recent Livestock Cohort Shows Influence of Treatment Regimes. Genome Biol Evol 2017; 9:750-760. [PMID: 28338777 PMCID: PMC5381551 DOI: 10.1093/gbe/evx043] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/01/2017] [Indexed: 12/18/2022] Open
Abstract
Chlamydia suis is an endemic pig pathogen, belonging to a fascinating genus of obligate intracellular pathogens. Of particular interest, this is the only chlamydial species to have naturally acquired genes encoding for tetracycline resistance. To date, the distribution and mobility of the Tet-island are not well understood. Our study focused on whole genome sequencing of 29 C. suis isolates from a recent porcine cohort within Switzerland, combined with data from USA tetracycline-resistant isolates. Our findings show that the genome of C. suis is very plastic, with unprecedented diversity, highly affected by recombination and plasmid exchange. A large diversity of isolates circulates within Europe, even within individual Swiss farms, suggesting that C. suis originated around Europe. New World isolates have more restricted diversity and appear to derive from European isolates, indicating that historical strain transfers to the United States have occurred. The architecture of the Tet-island is variable, but the tetA(C) gene is always intact, and recombination has been a major factor in its transmission within C. suis. Selective pressure from tetracycline use within pigs leads to a higher number of Tet-island carrying isolates, which appear to be lost in the absence of such pressure, whereas the loss or gain of the Tet-island from individual strains is not observed. The Tet-island appears to be a recent import into the genome of C. suis, with a possible American origin.
Collapse
Affiliation(s)
- Helena M.B. Seth-Smith
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Sabrina Wanninger
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Nathan Bachmann
- Centre for Animal Health Innovation, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Hanna Marti
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| | - Weihong Qi
- Functional Genomics Centre Zurich, University of Zurich, Switzerland
| | - Manuela Donati
- DIMES, Microbiology, Policlinico S. Orsola, University of Bologna, Italy
| | - Antonietta di Francesco
- Department of Veterinary Medical Sciences, University of Bologna, Ozzano Emilia, Bologna, Italy
| | - Adam Polkinghorne
- Centre for Animal Health Innovation, University of the Sunshine Coast, Maroochydore DC, Queensland, Australia
| | - Nicole Borel
- Institute for Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Switzerland
| |
Collapse
|
15
|
Wali S, Gupta R, Yu JJ, Lanka GKK, Chambers JP, Guentzel MN, Zhong G, Murthy AK, Arulanandam BP. Chlamydial protease-like activity factor mediated protection against C. trachomatis in guinea pigs. Immunol Cell Biol 2016; 95:454-460. [PMID: 27990018 PMCID: PMC5449249 DOI: 10.1038/icb.2016.122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2015] [Revised: 12/02/2016] [Accepted: 12/06/2016] [Indexed: 01/30/2023]
Abstract
We have comprehensively demonstrated using the mouse model that intranasal immunization with recombinant chlamydial protease-like activity factor (rCPAF) leads to a significant reduction in bacterial burden, genital tract pathology and preserves fertility following intravaginal genital chlamydial challenge. In the present report, we evaluated the protective efficacy of rCPAF immunization in guinea pigs, a second animal model for genital chlamydial infection. Using a vaccination strategy similar to the mouse model, we intranasally immunized female guinea pigs with rCPAF plus CpG deoxynucleotides (CpG; as an adjuvant), and challenged intravaginally with C. trachomatis serovar D (CT-D). Immunization with rCPAF/CpG significantly reduced vaginal CT-D shedding and induced resolution of infection by day 24, compared to day 33 in CpG alone treated and challenged animals. Immunization induced robust anti-rCPAF serum IgG 2 weeks following the last immunization, and was sustained at a high level 4 weeks post challenge. Upregulation of antigen specific IFN-γ gene expression was observed in rCPAF/CpG vaccinated splenocytes. Importantly, a significant reduction in inflammation in the genital tissue in rCPAF/CpG-immunized guinea pigs compared to CpG-immunized animals was observed. Taken together, this study provides evidence of the protective efficacy of rCPAF as a vaccine candidate in a second animal model of genital chlamydial infection.
Collapse
Affiliation(s)
- Shradha Wali
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Jieh-Juen Yu
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Gopala Krishna Koundinya Lanka
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - James P Chambers
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - M Neal Guentzel
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Ashlesh K Murthy
- Department of Pathology, Midwestern University, Downers Grove, IL, USA
| | - Bernard P Arulanandam
- South Texas Center for Emerging Infectious Diseases and Center for Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, USA
| |
Collapse
|
16
|
Paes W, Brown N, Brzozowski AM, Coler R, Reed S, Carter D, Bland M, Kaye PM, Lacey CJN. Recombinant polymorphic membrane protein D in combination with a novel, second-generation lipid adjuvant protects against intra-vaginal Chlamydia trachomatis infection in mice. Vaccine 2016; 34:4123-4131. [PMID: 27389169 PMCID: PMC4967447 DOI: 10.1016/j.vaccine.2016.06.081] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 06/23/2016] [Accepted: 06/29/2016] [Indexed: 12/13/2022]
Abstract
rPmpD in combination with SLA elicits significant protection against intra-vaginal Ct challenge. Antibodies induced by immunisation with rPmpD recognise Ct elementary bodies. SLA is a novel adjuvant class that may be widely used in future preclinical Ct vaccine development.
The development of a chlamydial vaccine that elicits protective mucosal immunity is of paramount importance in combatting the global spread of sexually transmitted Chlamydia trachomatis (Ct) infections. While the identification and prioritization of chlamydial antigens is a crucial prerequisite for efficacious vaccine design, it is likely that novel adjuvant development and selection will also play a pivotal role in the translational potential of preclinical Ct vaccines. Although the molecular nature of the immuno-modulatory component is of primary importance, adjuvant formulation and delivery systems may also govern vaccine efficacy and potency. Our study provides the first preclinical evaluation of recombinant Ct polymorphic membrane protein D (rPmpD) in combination with three different formulations of a novel second-generation lipid adjuvant (SLA). SLA was rationally designed in silico by modification of glucopyranosyl lipid adjuvant (GLA), a TLR4 agonistic precursor molecule currently in Phase II clinical development. We demonstrate robust protection against intra-vaginal Ct challenge in mice, evidenced by significantly enhanced resistance to infection and reduction in mean bacterial load. Strikingly, protection was found to correlate with the presence of robust anti-rPmpD serum and cervico-vaginal IgG titres, even in the absence of adjuvant-induced Th1-type cellular immune responses elicited by each SLA formulation, and we further show that anti-rPmpD antibodies recognize Ct EBs. These findings highlight the utility of SLA and rational molecular design of adjuvants in preclinical Ct vaccine development, but also suggest an important role for anti-rPmpD antibodies in protection against urogenital Ct infection.
Collapse
Affiliation(s)
- Wayne Paes
- Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom; York Structural Biology Laboratory, University of York, York YO10 5DD, United Kingdom.
| | - Naj Brown
- Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| | - Andrzej M Brzozowski
- York Structural Biology Laboratory, University of York, York YO10 5DD, United Kingdom
| | - Rhea Coler
- Infectious Disease Research Institute, Seattle, WA 98102, United States
| | - Steve Reed
- Infectious Disease Research Institute, Seattle, WA 98102, United States
| | - Darrick Carter
- Infectious Disease Research Institute, Seattle, WA 98102, United States
| | - Martin Bland
- Department of Health Sciences, University of York, York YO10 5DD, United Kingdom
| | - Paul M Kaye
- Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| | - Charles J N Lacey
- Centre for Immunology and Infection, University of York, York YO10 5DD, United Kingdom
| |
Collapse
|
17
|
Emancipating Chlamydia: Advances in the Genetic Manipulation of a Recalcitrant Intracellular Pathogen. Microbiol Mol Biol Rev 2016; 80:411-27. [PMID: 27030552 DOI: 10.1128/mmbr.00071-15] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Chlamydia species infect millions of individuals worldwide and are important etiological agents of sexually transmitted disease, infertility, and blinding trachoma. Historically, the genetic intractability of this intracellular pathogen has hindered the molecular dissection of virulence factors contributing to its pathogenesis. The obligate intracellular life cycle of Chlamydia and restrictions on the use of antibiotics as selectable markers have impeded the development of molecular tools to genetically manipulate these pathogens. However, recent developments in the field have resulted in significant gains in our ability to alter the genome of Chlamydia, which will expedite the elucidation of virulence mechanisms. In this review, we discuss the challenges affecting the development of molecular genetic tools for Chlamydia and the work that laid the foundation for recent advancements in the genetic analysis of this recalcitrant pathogen.
Collapse
|
18
|
Abstract
Chlamydia spp. are ubiquitous, obligate, intracellular Gram-negative bacterial pathogens that undergo a unique biphasic developmental cycle transitioning between the infectious, extracellular elementary body and the replicative, intracellular reticulate body. The primary Chlamydia species associated with human disease are C. trachomatis, which is the leading cause of both reportable bacterial sexually transmitted infections and preventable blindness, and C. pneumoniae, which infects the respiratory tract and is associated with cardiovascular disease. Collectively, these pathogens are a significant source of morbidity and pose a substantial financial burden on the global economy. Past efforts to elucidate virulence mechanisms of these unique and important pathogens were largely hindered by an absence of genetic methods. Watershed studies in 2011 and 2012 demonstrated that forward and reverse genetic approaches were feasible with Chlamydia and that shuttle vectors could be selected and maintained within the bacterium. While these breakthroughs have led to a steady expansion of the chlamydial genetic tool kit, there are still roads left to be traveled. This minireview provides a synopsis of the currently available genetic methods for Chlamydia along with a comparison to the methods used in other obligate intracellular bacteria. Limitations and advantages of these techniques will be discussed with an eye toward the methods still needed, and how the current state of the art for genetics in obligate intracellular bacteria could direct future technological advances for Chlamydia.
Collapse
|
19
|
|
20
|
Derrick T, Roberts CH, Last AR, Burr SE, Holland MJ. Trachoma and Ocular Chlamydial Infection in the Era of Genomics. Mediators Inflamm 2015; 2015:791847. [PMID: 26424969 PMCID: PMC4573990 DOI: 10.1155/2015/791847] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/19/2022] Open
Abstract
Trachoma is a blinding disease usually caused by infection with Chlamydia trachomatis (Ct) serovars A, B, and C in the upper tarsal conjunctiva. Individuals in endemic regions are repeatedly infected with Ct throughout childhood. A proportion of individuals experience prolonged or severe inflammatory episodes that are known to be significant risk factors for ocular scarring in later life. Continued scarring often leads to trichiasis and in-turning of the eyelashes, which causes pain and can eventually cause blindness. The mechanisms driving the chronic immunopathology in the conjunctiva, which largely progresses in the absence of detectable Ct infection in adults, are likely to be multifactorial. Socioeconomic status, education, and behavior have been identified as contributing to the risk of scarring and inflammation. We focus on the contribution of host and pathogen genetic variation, bacterial ecology of the conjunctiva, and host epigenetic imprinting including small RNA regulation by both host and pathogen in the development of ocular pathology. Each of these factors or processes contributes to pathogenic outcomes in other inflammatory diseases and we outline their potential role in trachoma.
Collapse
Affiliation(s)
- Tamsyn Derrick
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Chrissy h. Roberts
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Anna R. Last
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Sarah E. Burr
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| | - Martin J. Holland
- Department of Clinical Research, Faculty of Infectious Tropical Diseases, London School of Hygiene and Tropical Medicine, London WC1E 7HT, UK
| |
Collapse
|
21
|
de Barsy M, Bertelli C, Jacquier N, Kebbi-Beghdadi C, Greub G. ESCCAR international congress on Rickettsia and other intracellular bacteria. Microbes Infect 2015; 17:680-8. [PMID: 26297854 DOI: 10.1016/j.micinf.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/08/2015] [Indexed: 11/17/2022]
Abstract
The European Society for the study of Chlamydia, Coxiella, Anaplasma and Rickettsia (ESCCAR) held his triennial international meeting in Lausanne. This meeting gathered 165 scientists from 28 countries and all 5 continents, allowing efficient networking and major scientific exchanges. Topics covered include molecular and cellular microbiology, genomics, as well as epidemiology, veterinary and human medicine. Several breakthroughs have been revealed at the meeting, such as (i) the presence of CRISPR (the "prokaryotic immune system") in chlamydiae, (ii) an Anaplasma effector involved in host chromatin remodelling, (iii) the polarity of the type III secretion system of chlamydiae during the entry process revealed by cryo-electron tomography. Moreover, the ESCCAR meeting was a unique opportunity to be exposed to cutting-edge science and to listen to comprehensive talks on current hot topics.
Collapse
Affiliation(s)
- Marie de Barsy
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Nicolas Jacquier
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Carole Kebbi-Beghdadi
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University Hospital Center and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
22
|
Gupta R, Wali S, Yu JJ, Chambers JP, Zhong G, Murthy AK, Bakar SA, Guentzel MN, Arulanandam BP. In vivo whole animal body imaging reveals colonization of Chlamydia muridarum to the lower genital tract at early stages of infection. Mol Imaging Biol 2015; 16:635-41. [PMID: 24723309 DOI: 10.1007/s11307-014-0732-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
PURPOSE The leading cause of sexually transmitted bacterial infection is Chlamydia trachomatis. The aim of this study is to investigate the early events in colonization of this bacterium within the murine genital tract. PROCEDURES An in vivo animal body imaging technology was used to track fluorophore labeled C. muridarum elementary bodies (EBs) inoculated intravaginally in C57BL/6 mice during the first 24 h of infection. RESULTS Ascension of viable EBs was observed (1) to be localized to the lower regions of the murine genital tract within the first 24 h post challenge and (2) was dose independent during this early exposure period. Molecular detection revealed enhanced bacterial load in lower regions of the genital tract with increasing bacterial load in the upper region beginning 12 h post inoculation. CONCLUSION This study provides additional insight into chlamydial colonization in the murine genital tract during the first 12-24 h following inoculation.
Collapse
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Disease and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mirrashidi KM, Elwell CA, Verschueren E, Johnson JR, Frando A, Von Dollen J, Rosenberg O, Gulbahce N, Jang G, Johnson T, Jäger S, Gopalakrishnan AM, Sherry J, Dunn JD, Olive A, Penn B, Shales M, Cox JS, Starnbach MN, Derre I, Valdivia R, Krogan NJ, Engel J. Global Mapping of the Inc-Human Interactome Reveals that Retromer Restricts Chlamydia Infection. Cell Host Microbe 2015; 18:109-21. [PMID: 26118995 DOI: 10.1016/j.chom.2015.06.004] [Citation(s) in RCA: 138] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 04/28/2015] [Accepted: 06/05/2015] [Indexed: 01/02/2023]
Abstract
Chlamydia trachomatis is a leading cause of genital and ocular infections for which no vaccine exists. Upon entry into host cells, C. trachomatis resides within a membrane-bound compartment—the inclusion—and secretes inclusion membrane proteins (Incs) that are thought to modulate the host-bacterium interface. To expand our understanding of Inc function(s), we subjected putative C. trachomatis Incs to affinity purification-mass spectroscopy (AP-MS). We identified Inc-human interactions for 38/58 Incs with enrichment in host processes consistent with Chlamydia's intracellular life cycle. There is significant overlap between Inc targets and viral proteins, suggesting common pathogenic mechanisms among obligate intracellular microbes. IncE binds to sorting nexins (SNXs) 5/6, components of the retromer, which relocalizes SNX5/6 to the inclusion membrane and augments inclusion membrane tubulation. Depletion of retromer components enhances progeny production, revealing that retromer restricts Chlamydia infection. This study demonstrates the value of proteomics in unveiling host-pathogen interactions in genetically challenging microbes.
Collapse
Affiliation(s)
- Kathleen M Mirrashidi
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Cherilyn A Elwell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Erik Verschueren
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jeffrey R Johnson
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Andrew Frando
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - John Von Dollen
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Oren Rosenberg
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Natali Gulbahce
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Gwendolyn Jang
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Tasha Johnson
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Stefanie Jäger
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA
| | | | - Jessica Sherry
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Joe Dan Dunn
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Andrew Olive
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
| | - Bennett Penn
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Michael Shales
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA
| | - Jeffery S Cox
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA
| | | | - Isabelle Derre
- Department of Microbial Pathogenesis, Yale School of Medicine, New Haven, CT 06510, USA
| | - Raphael Valdivia
- Department of Molecular Genetics and Microbiology, Duke University, Durham, NC 27710, USA
| | - Nevan J Krogan
- QB3, California Institute for Quantitative Biosciences, San Francisco, CA 94148, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Joanne Engel
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
24
|
Abstract
In a screen for compounds that inhibit infectivity of the obligate intracellular pathogen Chlamydia trachomatis, we identified the 2-pyridone amide KSK120. A fluorescent KSK120 analogue was synthesized and observed to be associated with the C. trachomatis surface, suggesting that its target is bacterial. We isolated KSK120-resistant strains and determined that several resistance mutations are in genes that affect the uptake and use of glucose-6-phosphate (G-6P). Consistent with an effect on G-6P metabolism, treatment with KSK120 blocked glycogen accumulation. Interestingly, KSK120 did not affect Escherichia coli or the host cell. Thus, 2-pyridone amides may represent a class of drugs that can specifically inhibit C. trachomatis infection. Chlamydia trachomatis is a bacterial pathogen of humans that causes a common sexually transmitted disease as well as eye infections. It grows only inside cells of its host organism, within a parasitophorous vacuole termed the inclusion. Little is known, however, about what bacterial components and processes are important for C. trachomatis cellular infectivity. Here, by using a visual screen for compounds that affect bacterial distribution within the chlamydial inclusion, we identified the inhibitor KSK120. As hypothesized, the altered bacterial distribution induced by KSK120 correlated with a block in C. trachomatis infectivity. Our data suggest that the compound targets the glucose-6-phosphate (G-6P) metabolism pathway of C. trachomatis, supporting previous indications that G-6P metabolism is critical for C. trachomatis infectivity. Thus, KSK120 may be a useful tool to study chlamydial glucose metabolism and has the potential to be used in the treatment of C. trachomatis infections.
Collapse
|
25
|
Dumoux M, Nans A, Saibil HR, Hayward RD. Making connections: snapshots of chlamydial type III secretion systems in contact with host membranes. Curr Opin Microbiol 2014; 23:1-7. [PMID: 25461566 DOI: 10.1016/j.mib.2014.09.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/23/2014] [Accepted: 09/29/2014] [Indexed: 12/17/2022]
Abstract
Chlamydiae are obligate intracellular bacterial pathogens with an unusual biphasic lifecycle, which is underpinned by two bacterial forms of distinct structure and function. Bacterial entry and replication require a type III secretion system (T3SS), a widely conserved nanomachine responsible for the translocation of virulence effectors into host cells. Recent cell biology experiments supported by electron and cryo-electron tomography have provided fresh insights into Chlamydia-host interactions. In this review, we highlight some of the recent advances, particularly the in situ analysis of T3SSs in contact with host membranes during chlamydial entry and intracellular replication, and the role of the host rough endoplasmic reticulum (rER) at the recently described intracellular 'pathogen synapse'.
Collapse
Affiliation(s)
- Maud Dumoux
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK
| | - Andrea Nans
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Helen R Saibil
- Crystallography, Institute of Structural and Molecular Biology, Birkbeck College, University of London, Malet Street, London WC1E 7HX, UK
| | - Richard D Hayward
- Institute of Structural and Molecular Biology, University College London & Birkbeck, Malet Street, London WC1E 7HX, UK.
| |
Collapse
|
26
|
Gupta R, Guentzel MN, Arulanandam BP. Reply to letter to the editor RE: "in vivo whole animal body imaging reveals colonization of Chlamydia muridarum to the lower genital tract at early stages of infection". Mol Imaging Biol 2014; 16:606-7. [PMID: 25082537 DOI: 10.1007/s11307-014-0778-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Rishein Gupta
- South Texas Center for Emerging Infectious Diseases and Center of Excellence in Infection Genomics, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | | | | |
Collapse
|
27
|
Plasmid CDS5 influences infectivity and virulence in a mouse model of Chlamydia trachomatis urogenital infection. Infect Immun 2014; 82:3341-9. [PMID: 24866804 DOI: 10.1128/iai.01795-14] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The native plasmid of both Chlamydia muridarum and Chlamydia trachomatis has been shown to control virulence and infectivity in mice and in lower primates. We recently described the development of a plasmid-based genetic transformation protocol for Chlamydia trachomatis that for the first time provides a platform for the molecular dissection of the function of the chlamydial plasmid and its individual genes or coding sequences (CDS). In the present study, we transformed a plasmid-free lymphogranuloma venereum isolate of C. trachomatis, serovar L2, with either the original shuttle vector (pGFP::SW2) or a derivative of pGFP::SW2 carrying a deletion of the plasmid CDS5 gene (pCDS5KO). Female mice were inoculated with these strains either intravaginally or transcervically. We found that transformation of the plasmid-free isolate with the intact pGFP::SW2 vector significantly enhanced infectivity and induction of host inflammatory responses compared to the plasmid-free parental isolate. Transformation with pCDS5KO resulted in infection courses and inflammatory responses not significantly different from those observed in mice infected with the plasmid-free isolate. These results indicate a critical role of plasmid CDS5 in in vivo fitness and in induction of inflammatory responses. To our knowledge, these are the first in vivo observations ascribing infectivity and virulence to a specific plasmid gene.
Collapse
|
28
|
Wang Y, Cutcliffe LT, Skilton RJ, Ramsey KH, Thomson NR, Clarke IN. The genetic basis of plasmid tropism between Chlamydia trachomatis and Chlamydia muridarum. Pathog Dis 2014; 72:19-23. [PMID: 24700815 PMCID: PMC4314687 DOI: 10.1111/2049-632x.12175] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2014] [Revised: 03/26/2014] [Accepted: 03/26/2014] [Indexed: 11/30/2022] Open
Abstract
The development of genetic transformation technology for Chlamydia trachomatis using its endogenous plasmid has recently been described. Chlamydia muridarum cannot be transformed by the C. trachomatis plasmid, indicating a barrier between chlamydial species. To determine which regions of the plasmid conferred the species specificity, we used the novel approach of transforming wild-type C. muridarum carrying the endogenous plasmid pNigg and forced recombination with the C. trachomatis vector pGFP::SW2 which carries the complete C. trachomatis plasmid (pSW2). Penicillin and chloramphenicol-resistant transformants expressing the green fluorescent protein were selected. Recovery of plasmids from these transformants showed they were recombinants. The differences between the pSW2 and pNigg allowed identification of the recombination breakpoints and showed that pGFP::SW2 had exchanged a ∼ 1 kbp region with pNigg covering CDS 2. The recombinant plasmid (pSW2NiggCDS2) is maintained under antibiotic selection when transformed into plasmid-cured C. muridarum. The ability to select for recombinants in C. muridarum shows that the barrier is not at transformation, but at the level of plasmid replication or maintenance. Our studies show that CDS 2, together with adjoining sequences, is the main determinant of plasmid tropism.
Collapse
Affiliation(s)
- Yibing Wang
- Molecular Microbiology Group, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | | | | | | | | | | |
Collapse
|
29
|
Expression of the effector protein IncD in Chlamydia trachomatis mediates recruitment of the lipid transfer protein CERT and the endoplasmic reticulum-resident protein VAPB to the inclusion membrane. Infect Immun 2014; 82:2037-47. [PMID: 24595143 DOI: 10.1128/iai.01530-14] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chlamydia trachomatis is an obligate intracellular human pathogen responsible for ocular and genital infections. To establish its membrane-bound intracellular niche, the inclusion, C. trachomatis relies on a set of effector proteins that are injected into the host cells or inserted into the inclusion membrane. We previously proposed that insertion of the C. trachomatis effector protein IncD into the inclusion membrane contributes to the recruitment of the lipid transfer protein CERT to the inclusion. Due to the genetically intractable status of C. trachomatis at that time, this model of IncD-CERT interaction was inferred from ectopic expression of IncD and CERT in the host cell. In the present study, we investigated the impact of conditionally expressing a FLAG-tagged version of IncD in C. trachomatis. This genetic approach allowed us to establish that IncD-3×FLAG localized to the inclusion membrane and caused a massive recruitment of the lipid transfer protein CERT that relied on the PH domain of CERT. In addition, we showed that the massive IncD-dependent association of CERT with the inclusion led to an increased recruitment of the endoplasmic reticulum (ER)-resident protein VAPB, and we determined that, at the inclusion, CERT-VAPB interaction relied on the FFAT domain of CERT. Altogether, the data presented here show that expression of the C. trachomatis effector protein IncD mediates the recruitment of the lipid transfer protein CERT and the ER-resident protein VAPB to the inclusion.
Collapse
|
30
|
Nunes A, Gomes JP. Evolution, phylogeny, and molecular epidemiology of Chlamydia. INFECTION GENETICS AND EVOLUTION 2014; 23:49-64. [PMID: 24509351 DOI: 10.1016/j.meegid.2014.01.029] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2013] [Revised: 01/16/2014] [Accepted: 01/19/2014] [Indexed: 10/25/2022]
Abstract
The Chlamydiaceae are a family of obligate intracellular bacteria characterized by a unique biphasic developmental cycle. It encompasses the single genus Chlamydia, which involves nine species that affect a wide range of vertebral hosts, causing infections with serious impact on human health (mainly due to Chlamydia trachomatis infections) and on farming and veterinary industries. It is believed that Chlamydiales originated ∼700mya, whereas C. trachomatis likely split from the other Chlamydiaceae during the last 6mya. This corresponds to the emergence of modern human lineages, with the first descriptions of chlamydial infections as ancient as four millennia. Chlamydiaceae have undergone a massive genome reduction, on behalf of the deletional bias "use it or lose it", stabilizing at 1-1.2Mb and keeping a striking genome synteny. Their phylogeny reveals species segregation according to biological properties, with huge differences in terms of host range, tissue tropism, and disease outcomes. Genome differences rely on the occurrence of mutations in the >700 orthologous genes, as well as on events of recombination, gene loss, inversion, and paralogous expansion, affecting both a hypervariable region named the plasticity zone, and genes essentially encoding polymorphic and transmembrane head membrane proteins, type III secretion effectors and some metabolic pathways. Procedures for molecular typing are still not consensual but have allowed the knowledge of molecular epidemiology patterns for some species as well as the identification of outbreaks and emergence of successful clones for C. trachomatis. This manuscript intends to provide a comprehensive review on the evolution, phylogeny, and molecular epidemiology of Chlamydia.
Collapse
Affiliation(s)
- Alexandra Nunes
- Reference Laboratory of Bacterial Sexually Transmitted Infections and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal
| | - João P Gomes
- Reference Laboratory of Bacterial Sexually Transmitted Infections and Bioinformatics Unit, Department of Infectious Diseases, National Institute of Health, Av. Padre Cruz, 1649-016 Lisbon, Portugal.
| |
Collapse
|
31
|
Sturdevant GL, Zhou B, Carlson JH, Whitmire WM, Song L, Caldwell HD. Infectivity of urogenital Chlamydia trachomatis plasmid-deficient, CT135-null, and double-deficient strains in female mice. Pathog Dis 2014; 71:90-2. [PMID: 24376189 DOI: 10.1111/2049-632x.12121] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 12/04/2013] [Accepted: 12/12/2013] [Indexed: 11/28/2022] Open
Abstract
Chlamydia trachomatis is the most common cause of human bacterial sexually transmitted infections and is the world's leading cause of infectious preventable blindness. The chlamydial 7.5-kb plasmid and chromosomal gene CT135 have been shown to be important virulence factors in both nonhuman primate and mouse infection models. Chlamydia trachomatis plasmid-deficient urogenital isolates and a predicted CT135 null mutant have been evaluated independently in the female mouse genital tract model and both have been shown to reduce infectivity and virulence. However, these attenuating phenotypes have not been evaluated collectively in the murine model. Here, we test the infectivity of C. trachomatis serovar D strains in the mouse model that are plasmid-deficient, CT135 disrupted, or possess a combination of these attenuating genotypes. We find that the presence of the plasmid results in infections with higher infectious burdens, whereas CT135 facilitates a more protracted or chronic infection. Not unexpectedly, a combination of these genetic deficiencies resulted in a strain with enhanced infection attenuation characteristics.
Collapse
Affiliation(s)
- Gail L Sturdevant
- Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA
| | | | | | | | | | | |
Collapse
|
32
|
Transformation of Chlamydia muridarum reveals a role for Pgp5 in suppression of plasmid-dependent gene expression. J Bacteriol 2013; 196:989-98. [PMID: 24363344 DOI: 10.1128/jb.01161-13] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Transformation of Chlamydia trachomatis should greatly advance the chlamydial research. However, significant progress has been hindered by the failure of C. trachomatis to induce clinically relevant pathology in animal models. Chlamydia muridarum, which naturally infects mice, can induce hydrosalpinx in mice, a tubal pathology also seen in women infected with C. trachomatis. We have developed a C. muridarum transformation system and confirmed Pgp1, -2, -6, and -8 as plasmid maintenance factors, Pgp3, -5, and -7 as dispensable for in vitro growth, and Pgp4 as a positive regulator of genes that are dependent on plasmid for expression. More importantly, we have discovered that Pgp5 can negatively regulate the same plasmid-dependent genes. Deletion of Pgp5 led to a significant increase in expression of the plasmid-dependent genes, suggesting that Pgp5 can suppress the expression of these genes. Replacement of pgp5 with a mCherry gene, or premature termination of pgp5 translation, also increased expression of the plasmid-dependent genes, indicating that Pgp5 protein but not its DNA sequence is required for the inhibitory effect. Replacing C. muridarum pgp5 with a C. trachomatis pgp5 still inhibited the plasmid-dependent gene expression, indicating that the negative regulation of plasmid-dependent genes is a common feature of all Pgp5 regardless of its origin. Nevertheless, C. muridarum Pgp5 is more potent than C. trachomatis Pgp5 in suppressing gene expression. Thus, we have uncovered a novel function of Pgp5 and developed a C. muridarum transformation system for further mapping chlamydial pathogenic and protective determinants in animal models.
Collapse
|
33
|
Wood DO, Wood RR, Tucker AM. Genetic systems for studying obligate intracellular pathogens: an update. Curr Opin Microbiol 2013; 17:11-6. [PMID: 24581687 DOI: 10.1016/j.mib.2013.10.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2013] [Revised: 10/23/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022]
Abstract
Rapid advancements in the genetic manipulation of obligate intracellular bacterial pathogens have been made over the past two years. In this paper we attempt to summarize the work published since 2011 that documents these exciting accomplishments. Although each genus comprising this diverse group of pathogens poses unique problems, requiring modifications of established techniques and the introduction of new tools, all appear amenable to genetic analysis. Significantly, the field is moving forward from a focus on the identification and development of genetic techniques to their application in addressing crucial questions related to mechanisms of bacterial pathogenicity and the requirements of obligate intracellular growth.
Collapse
Affiliation(s)
- David O Wood
- Laboratory of Molecular Biology, Department of Microbiology and Immunology, College of Medicine, University of South Alabama, 501 Aubrey Green Drive, Mobile, AL 36688-0002, United States.
| | - Raphael R Wood
- Laboratory of Molecular Biology, Department of Microbiology and Immunology, College of Medicine, University of South Alabama, 501 Aubrey Green Drive, Mobile, AL 36688-0002, United States
| | - Aimee M Tucker
- Laboratory of Molecular Biology, Department of Microbiology and Immunology, College of Medicine, University of South Alabama, 501 Aubrey Green Drive, Mobile, AL 36688-0002, United States
| |
Collapse
|
34
|
Ding H, Gong S, Tian Y, Yang Z, Brunham R, Zhong G. Transformation of sexually transmitted infection-causing serovars of chlamydia trachomatis using Blasticidin for selection. PLoS One 2013; 8:e80534. [PMID: 24303023 PMCID: PMC3841219 DOI: 10.1371/journal.pone.0080534] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Accepted: 10/14/2013] [Indexed: 01/06/2023] Open
Abstract
Plasmid-free Chlamydia trachomatis serovar L2 organisms have been transformed with chlamydial plasmid-based shuttle vectors pGFP::SW2 and pBRCT using β-lactamase as a selectable marker. However, the recommendation of amoxicillin, a β-lactam antibiotics, as one of the choices for treating pregnant women with cervicitis due to C. trachomatis infection has made the existing shuttle vectors unsuitable for transforming sexually transmitted infection (STI)-causing serovars of C. trachomatis. Thus, in the current study, we modified the pGFP::SW2 plasmid by fusing a blasticidin S deaminase gene to the GFP gene to establish blasticidin resistance as a selectable marker and replacing the β-lactamase gene with the Sh ble gene to eliminate the penicillin resistance. The new vector termed pGFPBSD/Z::SW2 was used for transforming plasmid-free C. trachomatis serovar D organisms. Using blasticidin for selection, stable transformants were obtained. The GFP-BSD fusion protein was detected in cultures infected with the pGFPBSD/Z::SW2-trasnformed serovar D organisms. The transformation restored the plasmid property to the plasmid-free serovar D organisms. Thus, we have successfully modified the pGFP::SW2 transformation system for studying the biology and pathogenesis of other STI-causing serovars of C. trachomatis.
Collapse
Affiliation(s)
- Honglei Ding
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Siqi Gong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Yingxin Tian
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
| | - Robert Brunham
- BC Centre for Disease Control, University of British Columbia, Vancouver, British Columbia, Canada
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, United States of America
- *
| |
Collapse
|
35
|
Song L, Carlson JH, Zhou B, Virtaneva K, Whitmire WM, Sturdevant GL, Porcella SF, McClarty G, Caldwell HD. Plasmid-mediated transformation tropism of chlamydial biovars. Pathog Dis 2013; 70:189-93. [PMID: 24214488 DOI: 10.1111/2049-632x.12104] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 10/04/2013] [Indexed: 11/28/2022] Open
Abstract
Chlamydia trachomatis and C. muridarum are human and mouse pathogens, respectively, which show high conservation of gene order and content. Both species contain a common 7.5-kb plasmid that is an important virulence factor. Recently described transformation systems have been used to characterize C. trachomatis L2 plasmid gene functions; however, similar studies have not been reported for C. trachomatis ocular tropic serovar A or the mouse strain, C. muridarum. Here, we have conducted genetic experiments with C. trachomatis serovar A and C. muridarum and report the following: (1) successful transformation of C. muridarum and C. trachomatis serovar A is restricted to a shuttle vector with a C. muridarum or C. trachomatis serovar A plasmid backbone, respectively; (2) transformation of plasmid-deficient C. muridarum with the C. muridarum-based shuttle vector complement glycogen accumulation and inclusion morphology; and (3) C. muridarum plasmid-encoded Pgp4 is a regulator of chromosomal (glgA) and plasmid (pgp3) virulence genes. In summary, our findings show a previously unrecognized and unexpected role for the chlamydial plasmid in its transformation tropism and confirm the plasmids regulatory role of virulence genes in C. muridarum.
Collapse
Affiliation(s)
- Lihua Song
- Laboratory of Intracellular Parasites, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT, USA; State Key Laboratory of Pathogen and Biosecurity, Institute of Microbiology and Epidemiology, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Wickstrum J, Sammons LR, Restivo KN, Hefty PS. Conditional gene expression in Chlamydia trachomatis using the tet system. PLoS One 2013; 8:e76743. [PMID: 24116144 PMCID: PMC3792055 DOI: 10.1371/journal.pone.0076743] [Citation(s) in RCA: 79] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Accepted: 08/23/2013] [Indexed: 01/25/2023] Open
Abstract
Chlamydia trachomatis is maintained through a complex bi-phasic developmental cycle that incorporates numerous processes that are poorly understood. This is reflective of the previous paucity of genetic tools available. The recent advent of a method for transforming Chlamydia has enabled the development of essential molecular tools to better study these medically important bacteria. Critical for the study of Chlamydia biology and pathogenesis, is a system for tightly controlled inducible gene expression. To accomplish this, a new shuttle vector was generated with gene expression controlled by the Tetracycline repressor and anhydryotetracycline. Evaluation of GFP expression by this system demonstrated tightly controlled gene regulation with rapid protein expression upon induction and restoration of transcription repression following inducer removal. Additionally, induction of expression could be detected relatively early during the developmental cycle and concomitant with conversion into the metabolically active form of Chlamydia. Uniform and strong GFP induction was observed during middle stages of the developmental cycle. Interestingly, variable induced GFP expression by individual organisms within shared inclusions during later stages of development suggesting metabolic diversity is affecting induction and/or expression. These observations support the strong potential of this molecular tool to enable numerous experimental analyses for a better understanding of the biology and pathogenesis of Chlamydia.
Collapse
Affiliation(s)
- Jason Wickstrum
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Lindsay R. Sammons
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - Keasha N. Restivo
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
| | - P. Scott Hefty
- Department of Molecular Biosciences, University of Kansas, Lawrence, Kansas, United States of America
- * E-mail:
| |
Collapse
|
37
|
Xu S, Battaglia L, Bao X, Fan H. Chloramphenicol acetyltransferase as a selection marker for chlamydial transformation. BMC Res Notes 2013; 6:377. [PMID: 24060200 PMCID: PMC3849861 DOI: 10.1186/1756-0500-6-377] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 09/11/2013] [Indexed: 12/04/2022] Open
Abstract
Background Chlamydia is a common bacterial pathogen responsible for many diseases. Methods for transforming this important organism using a β-lactamase as a selection marker have been developed very recently. However, the National Institutes of Health Guidelines for Research Involving Recombinant DNA Molecules do not permit transformation experiments with β-lactamase gene-containing vectors for certain human chlamydial pathogens. Therefore, a different selection marker is urgently needed for transformation of those chlamydiae. Results After transformation of plasmid-free Chlamydia trachomatis with pGFP:SW2, which carries a β-lactamase and a chloramphenicol acetyltransferase gene fused to a green fluorescence protein gene, transformants were obtained by selection with either ampicillin or chloramphenicol. Stable chloramphenicol-resistant, but ampicillin-sensitive, transformants were obtained using a pGFP:SW2 derivative without the β-lactamase. All transformants expressed green fluorescence protein and had glycogen synthesis activity restored. Conclusions Chloramphenicol resistance may be used as a selection marker for genetic experiments in Chlamydia. This eliminates the requirement for the use of β-lactamase, of which dissemination to some C. trachomatis serovars may jeopardize clinical treatment of chlamydial infections in pregnant women. Chloramphenicol acetyltransferase may also serve as a useful secondary selection marker for genetic analyses in β-lactamase-transformed chlamydial strains.
Collapse
Affiliation(s)
- Shuang Xu
- Department of Pharmacology, Rutgers University Robert Wood Johnson Medical School, Piscataway, NJ, USA.
| | | | | | | |
Collapse
|
38
|
Gong S, Yang Z, Lei L, Shen L, Zhong G. Characterization of Chlamydia trachomatis plasmid-encoded open reading frames. J Bacteriol 2013; 195:3819-26. [PMID: 23794619 PMCID: PMC3754608 DOI: 10.1128/jb.00511-13] [Citation(s) in RCA: 67] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/12/2013] [Indexed: 11/20/2022] Open
Abstract
The recent success in transformation of Chlamydia trachomatis represents a major advancement in Chlamydia research. Plasmid-free C. trachomatis serovar L2 organisms can be transformed with chlamydial plasmid-based shuttle vectors pGFP::SW2 and pBRCT. Deletion of plasmid genes coding for Pgp1 to Pgp8 in pBRCT led to the identification of Pgp1, -2, -6, and -8 as plasmid maintenance factors; Pgp4 as a transcriptional regulator of chlamydial virulence-associated gene expression; and Pgp3, -5, and -7 as being dispensable for chlamydial growth in vitro. Using the pGFP::SW2 vector system, we confirmed these findings in the current report. To further dissect the roles of pgp coding sequences and Pgp proteins in plasmid maintenance, we introduced premature stop codons into the pgp genes. Stable transformants were obtained with pGFP::SW2 derivatives carrying premature stop codons in pgp8 but not in pgp1, pgp2, and pgp6, suggesting that the pgp8 coding sequence but not the Pgp8 protein is required for maintaining the plasmid, while Pgp1, -2, and -6 proteins are necessary for plasmid maintenance. We also found that a minimum of 30 nucleotides in the pgp3 coding region was required for pgp4 expression. Finally, mCherry red fluorescent protein was successfully expressed when the mCherry gene was used to replace the pgp3, pgp4, or pgp5 coding region, indicating that these regions can be used to express nonchlamydial genes in chlamydial organisms. These novel observations have provided information for further use of chlamydial plasmid shuttle vectors as genetic tools to understand chlamydial biology and pathogenicity as well as to develop attenuated chlamydial vaccines.
Collapse
Affiliation(s)
- Siqi Gong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Zhangsheng Yang
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Lei Lei
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | - Li Shen
- Department of Microbiology, Immunology and Parasitology, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, Louisiana, USA
| | - Guangming Zhong
- Department of Microbiology and Immunology, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| |
Collapse
|