1
|
Chuang YM, Dong Y, Stone H, Abouneameh S, Tang XD, Raduwan H, Dimopoulos G, Fikrig E. Anopheles gambiae lacking AgTRIO probe inefficiently on a mammalian host. Cell Rep 2024; 43:114600. [PMID: 39126653 PMCID: PMC11407849 DOI: 10.1016/j.celrep.2024.114600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 08/12/2024] Open
Abstract
Malaria is initiated as Plasmodium sporozoites are injected into the dermis when an infected mosquito probes on a vertebrate host for a blood meal. Factors in the mosquito saliva, such as AgTRIO, can alter the ability of Anopheles gambiae to transmit Plasmodium. We therefore used CRISPR-Cas9-mediated genome editing to generate AgTRIO knockout (KO) A. gambiae and examined the ability of these mosquitoes to probe on a vertebrate host. AgTRIO KO mosquitoes showed a diminished host probing capacity and required repetitive probing to locate a blood resource to complete a blood meal. This increased probing resulted in enhanced Plasmodium transmission to the vertebrate host. Our data demonstrate the importance of the A. gambiae saliva protein AgTRIO in probing and its influence on the ability of mosquitoes to transmit malaria.
Collapse
Affiliation(s)
- Yu-Min Chuang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA.
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Helen Stone
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Selma Abouneameh
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xu-Dong Tang
- Jiangsu Key Laboratory of Sericultural Biology and Biotechnology, School of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang, Jiangsu 212018, China
| | - Hamidah Raduwan
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD 21205, USA
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT 06520, USA
| |
Collapse
|
2
|
Tng PYL, Carabajal Paladino LZ, Anderson MAE, Adelman ZN, Fragkoudis R, Noad R, Alphey L. Intron-derived small RNAs for silencing viral RNAs in mosquito cells. PLoS Negl Trop Dis 2022; 16:e0010548. [PMID: 35737714 PMCID: PMC9258879 DOI: 10.1371/journal.pntd.0010548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 07/06/2022] [Accepted: 06/01/2022] [Indexed: 11/21/2022] Open
Abstract
Aedes aegypti and Ae. albopictus are the main vectors of mosquito-borne viruses of medical and veterinary significance. Many of these viruses have RNA genomes. Exogenously provided, e.g. transgene encoded, small RNAs could be used to inhibit virus replication, breaking the transmission cycle. We tested, in Ae. aegypti and Ae. albopictus cell lines, reporter-based strategies for assessing the ability of two types of small RNAs to inhibit a chikungunya virus (CHIKV) derived target. Both types of small RNAs use a Drosophila melanogaster pre-miRNA-1 based hairpin for their expression, either with perfect base-pairing in the stem region (shRNA-like) or containing two mismatches (miRNA-like). The pre-miRNA-1 stem loop structure was encoded within an intron; this allows co-expression of one or more proteins, e.g. a fluorescent protein marker tracking the temporal and spatial expression of the small RNAs in vivo. Three reporter-based systems were used to assess the relative silencing efficiency of ten shRNA-like siRNAs and corresponding miRNA-like designs. Two systems used a luciferase reporter RNA with CHIKV RNA inserted either in the coding sequence or within the 3’ UTR. A third reporter used a CHIKV derived split replication system. All three reporters demonstrated that while silencing could be achieved with both miRNA-like and shRNA-like designs, the latter were substantially more effective. Dcr-2 was required for the shRNA-like siRNAs as demonstrated by loss of inhibition of the reporters in Dcr-2 deficient cell lines. These positive results in cell culture are encouraging for the potential use of this pre-miRNA-1-based system in transgenic mosquitoes. Mosquitoes are important globally, spreading viral diseases worldwide. Chikungunya virus causes epidemics of disease in people. Here we have investigated using two types of small RNAs and pathways inherent in Aedes aegypti mosquitoes to target a piece of the chikungunya virus’s genome, potentially preventing viral replication. We express these small RNAs using a pre-miRNA-1 based system, inserted into the intron within a commonly used promoter. We have used reporter systems in cell lines which can give preliminary indications of how these systems might work in mosquitoes. Our results indicate that short-hairpin-like designs are more effective than micro-RNA-like designs at knocking down expression of their targets. This knock-down requires Dcr-2 indicating that the short-hairpin-like RNAs are likely using the endo-siRNA pathway to degrade mRNA which contains their complementary RNA.
Collapse
Affiliation(s)
- Priscilla Y. L. Tng
- Arthropod Genetics Group, The Pirbright Institute, Pirbright, United Kingdom
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | | | | | - Zach N. Adelman
- Department of Entomology, Texas A&M University, College Station, Texas, United States of America
| | - Rennos Fragkoudis
- Arbovirus Pathogenesis Group, The Pirbright Institute, Pirbright, United Kingdom
| | - Rob Noad
- Pathobiology and Population Sciences, The Royal Veterinary College, Hatfield, United Kingdom
| | - Luke Alphey
- Arthropod Genetics Group, The Pirbright Institute, Pirbright, United Kingdom
- * E-mail:
| |
Collapse
|
3
|
Simões ML, Dong Y, Mlambo G, Dimopoulos G. C-type lectin 4 regulates broad-spectrum melanization-based refractoriness to malaria parasites. PLoS Biol 2022; 20:e3001515. [PMID: 35025886 PMCID: PMC8791531 DOI: 10.1371/journal.pbio.3001515] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 01/26/2022] [Accepted: 12/15/2021] [Indexed: 01/02/2023] Open
Abstract
Anopheles gambiae melanization-based refractoriness to the human malaria parasite Plasmodium falciparum has rarely been observed in either laboratory or natural conditions, in contrast to the rodent model malaria parasite Plasmodium berghei that can become completely melanized by a TEP1 complement-like system-dependent mechanism. Multiple studies have shown that the rodent parasite evades this defense by recruiting the C-type lectins CTL4 and CTLMA2, while permissiveness to the human malaria parasite was not affected by partial depletion of these factors by RNAi silencing. Using CRISPR/Cas9-based CTL4 knockout, we show that A. gambiae can mount melanization-based refractoriness to the human malaria parasite, which is independent of the TEP1 complement-like system and the major anti-Plasmodium immune pathway Imd. Our study indicates a hierarchical specificity in the control of Plasmodium melanization and proves CTL4 as an essential host factor for P. falciparum transmission and one of the most potent mosquito-encoded malaria transmission-blocking targets. One way to block the spread of malaria is to modify the mosquito vectors so that they are unable to transmit the parasite. This study shows that the Anopheles mosquito can be engineered to block the human malaria parasite by melanizing it while in the mosquito’s midgut.
Collapse
Affiliation(s)
- Maria L. Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Godfree Mlambo
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
4
|
Matinyan N, Karkhanis MS, Gonzalez Y, Jain A, Saltzman A, Malovannaya A, Sarrion-Perdigones A, Dierick HA, Venken KJT. Multiplexed drug-based selection and counterselection genetic manipulations in Drosophila. Cell Rep 2021; 36:109700. [PMID: 34525356 PMCID: PMC8480232 DOI: 10.1016/j.celrep.2021.109700] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 06/10/2021] [Accepted: 08/20/2021] [Indexed: 01/27/2023] Open
Abstract
The power of Drosophila melanogaster as a model system relies on tractable germline genetic manipulations. Despite Drosophila's expansive genetics toolbox, such manipulations are still accomplished one change at a time and depend predominantly on phenotypic screening. We describe a drug-based genetic platform consisting of four selection and two counterselection markers, eliminating the need to screen for modified progeny. These markers work reliably individually or in combination to produce specific genetic outcomes. We demonstrate three example applications of multiplexed drug-based genetics by generating (1) transgenic animals, expressing both components of binary overexpression systems in a single transgenesis step; (2) dual selectable and counterselectable balancer chromosomes; and (3) selectable, fluorescently tagged P[acman] bacterial artificial chromosome (BAC) strains. We perform immunoprecipitation followed by proteomic analysis on one tagged BAC line, demonstrating our platform's applicability to biological discovery. Lastly, we provide a plasmid library resource to facilitate custom transgene design and technology transfer to other model systems.
Collapse
Affiliation(s)
- Nick Matinyan
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA
| | - Mansi S Karkhanis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Yezabel Gonzalez
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Antrix Jain
- Advanced Technology Cores, Mass Spectrometry Proteomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alexander Saltzman
- Advanced Technology Cores, Mass Spectrometry Proteomics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Anna Malovannaya
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Advanced Technology Cores, Mass Spectrometry Proteomics, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Alejandro Sarrion-Perdigones
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Herman A Dierick
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA.
| | - Koen J T Venken
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA; Integrative Molecular Biomedical Sciences Graduate Program, Baylor College of Medicine, Houston, TX 77030, USA; Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pharmacology and Chemical Biology, Baylor College of Medicine, Houston, TX 77030, USA; McNair Medical Institute at The Robert and Janice McNair Foundation, Baylor College of Medicine, Houston, TX 77030, USA.
| |
Collapse
|
5
|
Hammond A, Karlsson X, Morianou I, Kyrou K, Beaghton A, Gribble M, Kranjc N, Galizi R, Burt A, Crisanti A, Nolan T. Regulating the expression of gene drives is key to increasing their invasive potential and the mitigation of resistance. PLoS Genet 2021; 17:e1009321. [PMID: 33513149 PMCID: PMC7886172 DOI: 10.1371/journal.pgen.1009321] [Citation(s) in RCA: 52] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 02/16/2021] [Accepted: 12/22/2020] [Indexed: 12/27/2022] Open
Abstract
Homing-based gene drives use a germline source of nuclease to copy themselves at specific target sites in a genome and bias their inheritance. Such gene drives can be designed to spread and deliberately suppress populations of malaria mosquitoes by impairing female fertility. However, strong unintended fitness costs of the drive and a propensity to generate resistant mutations can limit a gene drive’s potential to spread. Alternative germline regulatory sequences in the drive element confer improved fecundity of carrier individuals and reduced propensity for target site resistance. This is explained by reduced rates of end-joining repair of DNA breaks from parentally deposited nuclease in the embryo, which can produce heritable mutations that reduce gene drive penetrance. We tracked the generation and selection of resistant mutations over the course of a gene drive invasion of a population. Improved gene drives show faster invasion dynamics, increased suppressive effect and later onset of target site resistance. Our results show that regulation of nuclease expression is as important as the choice of target site when developing a robust homing-based gene drive for population suppression. Gene drives are selfish genetic elements that are able to drastically bias their own inheritance. They can rapidly invade populations, even starting from a very low frequency. Recent advances have allowed the engineering of gene drives deliberately designed to spread genetic traits of choice into populations of malaria-transmitting mosquito species–for example traits that impair a mosquito’s ability to reproduce or its ability to transmit parasites. The class of gene drive in question uses a very precise cutting and copying mechanism, termed ‘homing’, that allows it to increase its numbers in the cells that go on to form sperm or eggs, thereby increasing the chances that a copy of the gene drive is transmitted to offspring. However, while this type of gene drive can rapidly invade a mosquito population, mosquitoes can also eventually become resistant to the gene drive in some cases. Here we show that restricting the cutting activity of the gene drive to the germline tissue is crucial to maintaining its potency and we illustrate how failure to restrict this activity can lead to the generation of mutations that can make mosquitoes resistant to the gene drive.
Collapse
Affiliation(s)
- Andrew Hammond
- Department of Life Sciences, Imperial College London, London, United Kingdom
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Xenia Karlsson
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Ioanna Morianou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Kyros Kyrou
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Beaghton
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Matthew Gribble
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Nace Kranjc
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Roberto Galizi
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Austin Burt
- Department of Life Sciences, Imperial College London, London, United Kingdom
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, London, United Kingdom
- University of Padova, Padova, Italy
- * E-mail: (AC); (TN)
| | - Tony Nolan
- Liverpool School of Tropical Medicine, Liverpool, United Kingdom
- * E-mail: (AC); (TN)
| |
Collapse
|
6
|
Ahmed HMM, Heese F, Wimmer EA. Improvement on the genetic engineering of an invasive agricultural pest insect, the cherry vinegar fly, Drosophila suzukii. BMC Genet 2020; 21:139. [PMID: 33339511 PMCID: PMC7747376 DOI: 10.1186/s12863-020-00940-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background The invasive fly Drosophila suzukii has become an established fruit pest in Europe, the USA, and South America with no effective and safe pest management. Genetic engineering enables the development of transgene-based novel genetic control strategies against insect pests and disease vectors. This, however, requires the establishment of reliable germline transformation techniques. Previous studies have shown that D. suzukii is amenable to transgenesis using the transposon-based vectors piggyBac and Minos, site-specific recombination (lox/Cre), and CRISPR/Cas9 genome editing. Results We experienced differences in the usability of piggyBac-based germline transformation in different strains of D. suzukii: we obtained no transgenic lines in a US strain, a single rare transgenic line in an Italian strain, but observed a reliable transformation rate of 2.5 to 11% in a strain from the French Alps. This difference in efficiency was confirmed by comparative examination of these three strains. In addition, we used an attP landing site line to successfully established φC31-integrase-mediated plasmid integration at a rate of 10% and generated landing site lines with two attP sequences to effectively perform φC31-Recombinase Mediated Cassette Exchange (φC31-RMCE) with 11% efficiency. Moreover, we isolated and used the endogenous regulatory regions of Ds nanos to express φC31 integrase maternally to generate self-docking lines for φC31-RMCE. Besides, we isolated the promoter/enhancer of Ds serendipity α to drive the heterologous tetracycline-controlled transactivator (tTA) during early embryonic development and generated a testes-specific tTA driver line using the endogenous beta-2-tubulin (β2t) promoter/enhancer. Conclusion Our results provide evidence that the D. suzukii strain AM derived from the French Alps is more suitable for piggyBac germline transformation than other strains. We demonstrated the feasibility of using φC31-RMCE in the cherry vinegar fly and generated a set of lines that can be used for highly efficient integration of larger constructs. The φC31-based integration will facilitate modification and stabilization of previously generated transgenic lines that carry at least one attP site in the transgene construction. An early embryo-specific and a spermatogenesis-specific driver line were generated for future use of the binary expression system tet-off to engineer tissue- and stage-specific effector gene expression for genetic pest control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12863-020-00940-5.
Collapse
Affiliation(s)
- Hassan M M Ahmed
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.,Department of Crop Protection, Faculty of Agriculture-University of Khartoum, P.O. Box 32, 13314, Khartoum North, Khartoum, Sudan
| | - Fabienne Heese
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany
| | - Ernst A Wimmer
- Department of Developmental Biology, Johann-Friedrich-Blumenbach-Institute of Zoology and Anthropology, Göttingen Center for Molecular Biosciences, Georg-August-University Göttingen, 37077, Göttingen, Germany.
| |
Collapse
|
7
|
Next-generation gene drive for population modification of the malaria vector mosquito, Anopheles gambiae. Proc Natl Acad Sci U S A 2020; 117:22805-22814. [PMID: 32839345 PMCID: PMC7502704 DOI: 10.1073/pnas.2010214117] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Genetic systems for controlling transmission of vector-borne diseases are moving from discovery-stage demonstrations of proofs-of-principle to the next phases of development. A successful transition requires meeting safety and efficacy criteria defined in target product profiles. We show here that the Cas9/guide RNA-based gene-drive components of a genetically-engineered malaria mosquito vector, Anopheles gambiae, achieve key target product profile requirements for efficacy and performance. This system is designed to achieve mosquito population modification when coupled with genes encoding antiparasite effector molecules and result in stable and sustainable blocking of malaria parasite transmission. A Cas9/guide RNA-based gene drive strain, AgNosCd-1, was developed to deliver antiparasite effector molecules to the malaria vector mosquito, Anopheles gambiae. The drive system targets the cardinal gene ortholog producing a red-eye phenotype. Drive can achieve 98 to 100% in both sexes and full introduction was observed in small cage trials within 6 to 10 generations following a single release of gene-drive males. No genetic load resulting from the integrated transgenes impaired drive performance in the trials. Potential drive-resistant target-site alleles arise at a frequency <0.1, and five of the most prevalent polymorphisms in the guide RNA target site in collections of colonized and wild-derived African mosquitoes do not prevent cleavage in vitro by the Cas9/guide RNA complex. Only one predicted off-target site is cleavable in vitro, with negligible deletions observed in vivo. AgNosCd-1 meets key performance criteria of a target product profile and can be a valuable component of a field-ready strain for mosquito population modification to control malaria transmission.
Collapse
|
8
|
Yang J, Schleicher TR, Dong Y, Park HB, Lan J, Cresswell P, Crawford J, Dimopoulos G, Fikrig E. Disruption of mosGILT in Anopheles gambiae impairs ovarian development and Plasmodium infection. J Exp Med 2020; 217:e20190682. [PMID: 31658986 PMCID: PMC7037243 DOI: 10.1084/jem.20190682] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 08/06/2019] [Accepted: 10/25/2019] [Indexed: 11/04/2022] Open
Abstract
Plasmodium infection in Anopheles is influenced by mosquito-derived factors. We previously showed that a protein in saliva from infected Anopheles, mosquito gamma-interferon-inducible lysosomal thiol reductase (mosGILT), inhibits the ability of sporozoites to traverse cells and readily establish infection of the vertebrate host. To determine whether mosGILT influences Plasmodium within the mosquito, we generated Anopheles gambiae mosquitoes carrying mosaic mutations in the mosGILT gene using CRISPR/CRISPR associated protein 9 (Cas9). Here, we show that female mosaic mosGILT mutant mosquitoes display defects in ovarian development and refractoriness to Plasmodium. Following infection by either Plasmodium berghei or Plasmodium falciparum, mutant mosquitoes have significantly reduced oocyst numbers as a result of increased thioester-containing protein 1 (TEP1)-dependent parasite killing. Expression of vitellogenin (Vg), the major yolk protein that can reduce the parasite-killing efficiency of TEP1, is severely impaired in mutant mosquitoes. MosGILT is a mosquito factor that is essential for ovarian development and indirectly protects both human and rodent Plasmodium species from mosquito immunity.
Collapse
Affiliation(s)
- Jing Yang
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Tyler R. Schleicher
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
| | - Yuemei Dong
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Hyun Bong Park
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
| | - Jiangfeng Lan
- College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Peter Cresswell
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT
- Department of Cell Biology, Yale University School of Medicine, New Haven, CT
| | - Jason Crawford
- Department of Chemistry, Yale University, New Haven, CT
- Chemical Biology Institute, Yale University, West Haven, CT
- Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, CT
| | - George Dimopoulos
- Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Erol Fikrig
- Section of Infectious Diseases, Department of Internal Medicine, Yale University School of Medicine, New Haven, CT
- Howard Hughes Medical Institute, Chevy Chase, MD
| |
Collapse
|
9
|
Abstract
Vector control programs based on population reduction by matings with mass-released sterile insects require the release of only male mosquitoes, as the release of females, even if sterile, would increase the number of biting and potentially disease-transmitting individuals. While small-scale releases demonstrated the applicability of sterile males releases to control the yellow fever mosquito Aedes aegypti, large-scale programs for mosquitoes are currently prevented by the lack of efficient sexing systems in any of the vector species.Different approaches of sexing are pursued, including classical genetic and mechanical methods of sex separation. Another strategy is the development of transgenic sexing systems. Such systems already exist in other insect pests. Genome modification tools could be used to apply similar strategies to mosquitoes. Three major tools to modify mosquito genomes are currently used: transposable elements, site-specific recombination systems, and genome editing via TALEN or CRISPR/Cas. All three can serve the purpose of developing sexing systems and vector control strains in mosquitoes in two ways: first, via their use in basic research. A better understanding of mosquito biology, including the sex-determining pathways and the involved genes can greatly facilitate the development of sexing strains. Moreover, basic research can help to identify other regulatory elements and genes potentially useful for the construction of transgenic sexing systems. Second, these genome modification tools can be used to apply the gained knowledge to build and test mosquito sexing strains for vector control.
Collapse
Affiliation(s)
- Irina Häcker
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany.
| | - Marc F Schetelig
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392, Giessen, Germany
| |
Collapse
|
10
|
Adolfi A, Lycett GJ. Opening the toolkit for genetic analysis and control of Anopheles mosquito vectors. CURRENT OPINION IN INSECT SCIENCE 2018; 30:8-18. [PMID: 30553490 DOI: 10.1016/j.cois.2018.07.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/24/2018] [Indexed: 06/09/2023]
Abstract
Anopheles is the only genus of mosquitoes that transmit human malaria and consequently the focus of large scale genome and transcriptome-wide association studies. Genetic tools to define the function of the candidate genes arising from these analyses are vital. Moreover, genome editing offers the potential to modify Anopheles population structure at local and global scale to provide complementary tools towards the ultimate goal of malaria elimination. Major breakthroughs in Anopheles genetic analysis came with the development of germline transformation and RNA interference technology. Yet, the field has been revolutionised again by precise genome editing now possible through site-specific nucleases. Here we review the components of the current genetic toolkit available to study Anopheles, focusing particularly on how these technical advances are used to gain insight into malaria transmission and the design of genetic methods to control Anopheles vectors.
Collapse
Affiliation(s)
- Adriana Adolfi
- Department of Microbiology and Molecular Genetics, School of Medicine, University of California, Irvine, CA 92697-4500, USA
| | - Gareth John Lycett
- Vector Biology Department, Liverpool School of Tropical Medicine, Liverpool, L3 5QA, UK
| |
Collapse
|
11
|
Rami A, Raz A, Zakeri S, Dinparast Djadid N. Isolation and identification of Asaia sp. in Anopheles spp. mosquitoes collected from Iranian malaria settings: steps toward applying paratransgenic tools against malaria. Parasit Vectors 2018; 11:367. [PMID: 29950179 PMCID: PMC6022440 DOI: 10.1186/s13071-018-2955-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Accepted: 06/15/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In recent years, the genus Asaia (Rhodospirillales: Acetobacteraceae) has been isolated from different Anopheles species and presented as a promising tool to combat malaria. This bacterium has unique features such as presence in different organs of mosquitoes (midgut, salivary glands and reproductive organs) of female and male mosquitoes and vertical and horizontal transmission. These specifications lead to the possibility of introducing Asaia as a robust candidate for malaria vector control via paratransgenesis technology. Several studies have been performed on the microbiota of Anopheles mosquitoes (Diptera: Culicidae) in Iran and the Middle East to find a suitable candidate for controlling the malaria based on paratransgenesis approaches. The present study is the first report of isolation, biochemical and molecular characterization of the genus Asaia within five different Anopheles species which originated from different zoogeographical zones in the south, east, and north of Iran. METHODS Mosquitoes originated from field-collected and laboratory-reared colonies of five Anopheles spp. Adult mosquitoes were anesthetized; their midguts were isolated by dissection, followed by grinding the midgut contents which were then cultured in enrichment broth media and later in CaCO3 agar plates separately. Morphological, biochemical and physiological characterization were carried out after the appearance of colonies. For molecular confirmation, selected colonies were cultured, their DNAs were extracted and PCR was performed on the 16S ribosomal RNA gene using specific newly designed primers. RESULTS Morphological, biochemical, physiological and molecular results indicated that all isolates are members of the genus Asaia. CONCLUSIONS Contrary to previous opinions, our findings show that Asaia bacteria are present in both insectary-reared colonies and field-collected mosquitoes and can be isolated by simple and specific methods. Furthermore, with respect to the fact that we isolated Asaia within the different Anopheles specimens from distinct climatic and zoogeographical regions, it is promising and may be concluded that species of this genus can tolerate the complicated environmental conditions of the vector-borne diseases endemic regions. Therefore, it can be considered as a promising target in paratransgenesis and vector control programs. However, we suggest that introducing the new technologies such as next generation sequencing and robust in silico approaches may pave the way to find a unique biomarker for rapid and reliable differentiation of the Asaia species.
Collapse
Affiliation(s)
- Abbas Rami
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Abbasali Raz
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
12
|
Adolfi A, Pondeville E, Lynd A, Bourgouin C, Lycett GJ. Multi-tissue GAL4-mediated gene expression in all Anopheles gambiae life stages using an endogenous polyubiquitin promoter. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2018; 96:1-9. [PMID: 29578046 DOI: 10.1016/j.ibmb.2018.03.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 03/12/2018] [Accepted: 03/19/2018] [Indexed: 06/08/2023]
Abstract
The ability to manipulate the Anopheles gambiae genome and alter gene expression effectively and reproducibly is a prerequisite for functional genetic analysis and for the development of novel control strategies in this important disease vector. However, in vivo transgenic analysis in mosquitoes is limited by the lack of promoters active ubiquitously. To address this, we used the GAL4/UAS system to investigate the promoter of the An. gambiae Polyubiquitin-c (PUBc) gene and demonstrated its ability to drive expression in mosquito cell culture before incorporation into An. gambiae transgenic driver lines. To generate such lines, piggyBac-mediated insertion was used to identify genomic regions able to sustain widespread expression and to create φC31 docking lines at these permissive sites. Patterns of expression induced by PUBc-GAL4 drivers carrying single intergenic insertions were assessed by crossing with a novel responder UAS-mCD8:mCherry line that was created by φC31-mediated integration. Amongst the drivers created at single, unique chromosomal integration loci, two were isolated that induced differential expression levels in a similar multiple-tissue spatial pattern throughout the mosquito life cycle. This work expands the tools available for An. gambiae functional analysis by providing a novel promoter for investigating phenotypes resulting from widespread multi-tissue expression, as well as identifying and tagging genomic sites that sustain broad transcriptional activity.
Collapse
Affiliation(s)
- Adriana Adolfi
- Liverpool School of Tropical Medicine, Vector Biology Department, Liverpool, UK.
| | - Emilie Pondeville
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS Unit URA3012, Paris, France.
| | - Amy Lynd
- Liverpool School of Tropical Medicine, Vector Biology Department, Liverpool, UK
| | - Catherine Bourgouin
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS Unit URA3012, Paris, France
| | - Gareth J Lycett
- Liverpool School of Tropical Medicine, Vector Biology Department, Liverpool, UK.
| |
Collapse
|
13
|
Dong Y, Simões ML, Marois E, Dimopoulos G. CRISPR/Cas9 -mediated gene knockout of Anopheles gambiae FREP1 suppresses malaria parasite infection. PLoS Pathog 2018. [PMID: 29518156 PMCID: PMC5843335 DOI: 10.1371/journal.ppat.1006898] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Plasmodium relies on numerous agonists during its journey through the mosquito vector, and these agonists represent potent targets for transmission-blocking by either inhibiting or interfering with them pre- or post-transcriptionally. The recently developed CRISPR/Cas9-based genome editing tools for Anopheles mosquitoes provide new and promising opportunities for the study of agonist function and for developing malaria control strategies through gene deletion to achieve complete agonist inactivation. Here we have established a modified CRISPR/Cas9 gene editing procedure for the malaria vector Anopheles gambiae, and studied the effect of inactivating the fibrinogen-related protein 1 (FREP1) gene on the mosquito’s susceptibility to Plasmodium and on mosquito fitness. FREP1 knockout mutants developed into adult mosquitoes that showed profound suppression of infection with both human and rodent malaria parasites at the oocyst and sporozoite stages. FREP1 inactivation, however, resulted in fitness costs including a significantly lower blood-feeding propensity, fecundity and egg hatching rate, a retarded pupation time, and reduced longevity after a blood meal. The causative agent of malaria, Plasmodium, has to complete a complex infection cycle in the Anopheles gambiae mosquito vector in order to reach the salivary gland from where it can be transmitted to a human host. The parasite’s development in the mosquito relies on numerous host factors (agonists), and their inhibition or inactivation can thereby result in suppression of infection and consequently malaria transmission. The recently developed CRISPR/Cas9-based genome editing tools for Anopheles mosquitoes provide new and promising opportunities to delete (inactivate) Plasmodium agonists to better understand their function and for blocking malaria transmission. Here we have established a modified CRISPR/Cas9 genome editing technique for malaria vector A. gambiae mosquitoes. Through this approach we have inactivated the fibrinogen-related protein 1 (FREP1) gene, via CRISPR/Cas9 genome editing, and the impact of this manipulation on the mosquito’s susceptibility to Plasmodium and on mosquito fitness. FREP1 knockout mutants showed a profound suppression of infection with both human and rodent malaria parasites, while it also resulted in fitness costs: a significantly lower blood-feeding propensity, fecundity and egg hatching rate, and a retarded larval development and pupation time, and reduced longevity after a blood meal.
Collapse
Affiliation(s)
- Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Maria L. Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Eric Marois
- Inserm, CNRS, Université de Strasbourg, Strasbourg, France
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Malaria Research Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
- * E-mail:
| |
Collapse
|
14
|
Macias VM, Jimenez AJ, Burini-Kojin B, Pledger D, Jasinskiene N, Phong CH, Chu K, Fazekas A, Martin K, Marinotti O, James AA. nanos-Driven expression of piggyBac transposase induces mobilization of a synthetic autonomous transposon in the malaria vector mosquito, Anopheles stephensi. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2017; 87:81-89. [PMID: 28676355 PMCID: PMC5580807 DOI: 10.1016/j.ibmb.2017.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 06/29/2017] [Accepted: 06/30/2017] [Indexed: 06/07/2023]
Abstract
Transposons are a class of selfish DNA elements that can mobilize within a genome. If mobilization is accompanied by an increase in copy number (replicative transposition), the transposon may sweep through a population until it is fixed in all of its interbreeding members. This introgression has been proposed as the basis for drive systems to move genes with desirable phenotypes into target species. One such application would be to use them to move a gene conferring resistance to malaria parasites throughout a population of vector mosquitos. We assessed the feasibility of using the piggyBac transposon as a gene-drive mechanism to distribute anti-malarial transgenes in populations of the malaria vector, Anopheles stephensi. We designed synthetic gene constructs that express the piggyBac transposase in the female germline using the control DNA of the An. stephensi nanos orthologous gene linked to marker genes to monitor inheritance. Two remobilization events were observed with a frequency of one every 23 generations, a rate far below what would be useful to drive anti-pathogen transgenes into wild mosquito populations. We discuss the possibility of optimizing this system and the impetus to do so.
Collapse
Affiliation(s)
- Vanessa M Macias
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Alyssa J Jimenez
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Bianca Burini-Kojin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - David Pledger
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Nijole Jasinskiene
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Celine Hien Phong
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Karen Chu
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Aniko Fazekas
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Kelcie Martin
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Osvaldo Marinotti
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States.
| | - Anthony A James
- Department of Molecular Biology and Biochemistry, University of California, Irvine, 3205 McGaugh Hall, Irvine, CA 92697-3900, United States; Department of Microbiology and Molecular Genetics, B240 Med Sci Bldg., School of Medicine, University of California, Irvine, CA 92697-4025, United States.
| |
Collapse
|
15
|
Häcker I, Harrell Ii RA, Eichner G, Pilitt KL, O'Brochta DA, Handler AM, Schetelig MF. Cre/lox-Recombinase-Mediated Cassette Exchange for Reversible Site-Specific Genomic Targeting of the Disease Vector, Aedes aegypti. Sci Rep 2017; 7:43883. [PMID: 28266580 PMCID: PMC5339718 DOI: 10.1038/srep43883] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/30/2017] [Indexed: 12/26/2022] Open
Abstract
Site-specific genome modification (SSM) is an important tool for mosquito functional genomics and comparative gene expression studies, which contribute to a better understanding of mosquito biology and are thus a key to finding new strategies to eliminate vector-borne diseases. Moreover, it allows for the creation of advanced transgenic strains for vector control programs. SSM circumvents the drawbacks of transposon-mediated transgenesis, where random transgene integration into the host genome results in insertional mutagenesis and variable position effects. We applied the Cre/lox recombinase-mediated cassette exchange (RMCE) system to Aedes aegypti, the vector of dengue, chikungunya, and Zika viruses. In this context we created four target site lines for RMCE and evaluated their fitness costs. Cre-RMCE is functional in a two-step mechanism and with good efficiency in Ae. aegypti. The advantages of Cre-RMCE over existing site-specific modification systems for Ae. aegypti, phiC31-RMCE and CRISPR, originate in the preservation of the recombination sites, which 1) allows successive modifications and rapid expansion or adaptation of existing systems by repeated targeting of the same site; and 2) provides reversibility, thus allowing the excision of undesired sequences. Thereby, Cre-RMCE complements existing genomic modification tools, adding flexibility and versatility to vector genome targeting.
Collapse
Affiliation(s)
- Irina Häcker
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| | - Robert A Harrell Ii
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland 20850, USA.,Insect Transformation Facility, University of Maryland, College Park, Rockville, Maryland 20850, USA
| | - Gerrit Eichner
- Mathematical Institute, Justus-Liebig-University Giessen, Arndtstrasse 2, 35392 Giessen, Germany
| | - Kristina L Pilitt
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland 20850, USA
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, Rockville, Maryland 20850, USA.,Department of Entomology, University of Maryland, College Park, Rockville, Maryland 20850, USA
| | - Alfred M Handler
- USDA/ARS, Center for Medical, Agricultural and Veterinary Entomology, 1700 SW 23rd Drive, Gainesville, FL 32608, USA
| | - Marc F Schetelig
- Institute for Insect Biotechnology, Justus-Liebig-University Giessen, Heinrich-Buff-Ring 26-32, 35392 Giessen, Germany
| |
Collapse
|
16
|
Simões ML, Dong Y, Hammond A, Hall A, Crisanti A, Nolan T, Dimopoulos G. The Anopheles FBN9 immune factor mediates Plasmodium species-specific defense through transgenic fat body expression. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 67:257-265. [PMID: 27667688 DOI: 10.1016/j.dci.2016.09.012] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2016] [Revised: 09/20/2016] [Accepted: 09/21/2016] [Indexed: 06/06/2023]
Abstract
Mosquitoes have a multifaceted innate immune system that is actively engaged in warding off various pathogens, including the protozoan malaria parasite Plasmodium. Various immune signaling pathways and effectors have been shown to mediate a certain degree of defense specificity against different Plasmodium species. A key pattern recognition receptor of the Anopheles gambiae immune system is the fibrinogen domain-containing immunolectin FBN9, which has been shown to be transcriptonally induced by Plasmodium infection, and to mediate defense against both rodent and human malaria parasites and bacteria. Here we have further studied the defense specificity of FBN9 using a transgenic approach, in which FBN9 is overexpressed in the fat body tissue after a blood meal through a vitellogenin promoter. Interestingly, the Vg-FBN9 transgenic mosquitoes showed increased resistance only to the rodent parasite P. berghei, and not to the human parasite P. falciparum, pointing to differences in the mosquito's defense mechanisms against the two parasite species. The Vg-FBN9 transgenic mosquitoes were also more resistant to infection with both Gram-positive and Gram-negative bacteria and showed increased longevity when infected with P. berghei. Our study points to the importance of both experimentally depleting and enriching candidate anti-Plasmodium effectors in functional studies in order to ascertain their suitability for the development of transgenic mosquito-based malaria control strategies.
Collapse
Affiliation(s)
- Maria L Simões
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Yuemei Dong
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA
| | - Andrew Hammond
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Ann Hall
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Andrea Crisanti
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - Tony Nolan
- Department of Life Sciences, Imperial College London, SW7 2AZ, UK
| | - George Dimopoulos
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Bloomberg School of Public Health, Johns Hopkins University, 615 N. Wolfe St., Baltimore, MD 21205, USA.
| |
Collapse
|
17
|
Huang Y, Liu Z, Rong YS. Genome Editing: From Drosophila to Non-Model Insects and Beyond. J Genet Genomics 2016; 43:263-72. [PMID: 27216295 DOI: 10.1016/j.jgg.2016.04.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Revised: 04/06/2016] [Accepted: 04/20/2016] [Indexed: 12/21/2022]
Abstract
Insect is the largest group of animals on land. Many insect species inflict economical and health losses to humans. Yet many more benefit us by helping to maintain balances in our ecosystem. The benefits that insects offer remain largely untapped, justifying our continuing efforts to develop tools to better understand their biology and to better manage their activities. Here we focus on reviewing the progresses made in the development of genome engineering tools for model insects. Instead of detailed descriptions of the molecular mechanisms underlying each technical advance, we focus our discussion on the logistics for implementing similar tools in non-model insects. Since none of the tools were developed specific for insects, similar approaches can be applied to other non-model organisms.
Collapse
Affiliation(s)
- Yueping Huang
- Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhiping Liu
- Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | - Yikang S Rong
- Institute of Entomology, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
18
|
Criscione F, O'Brochta DA, Reid W. Genetic technologies for disease vectors. CURRENT OPINION IN INSECT SCIENCE 2015; 10:90-97. [PMID: 29588019 DOI: 10.1016/j.cois.2015.04.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Revised: 04/17/2015] [Accepted: 04/20/2015] [Indexed: 06/08/2023]
Abstract
The first genetic technologies for insect vectors of disease were introduced 20 years ago. As of today there are 12 classes of genetic technologies used as functional genomic tools for insect vectors of important diseases. Although the applications of genetic technologies in insect disease vectors have been conducted primarily in mosquitoes, other insect systems could benefit from current technologies. While the various technological platforms are likely to function in diverse arthropods, the delivery of these technologies to cells and tissues of interest is the major technical constraint that limits their widespread adoption. Increased community resources of various types would enhance the adoption of these technologies and potentially eliminate technical limitations.
Collapse
Affiliation(s)
- Frank Criscione
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| | - David A O'Brochta
- Institute for Bioscience and Biotechnology Research, Department of Entomology, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| | - William Reid
- Institute for Bioscience and Biotechnology Research, University of Maryland, College Park, 9600 Gudelsky Drive, Rockville, MD 20850, United States.
| |
Collapse
|
19
|
Abstract
Transgenesis is an essential tool to investigate gene function and to introduce desired characters in laboratory organisms. Setting-up transgenesis in non-model organisms is challenging due to the diversity of biological life traits and due to knowledge gaps in genomic information. Some procedures will be broadly applicable to many organisms, and others have to be specifically developed for the target species. Transgenesis in disease vector mosquitoes has existed since the 2000s but has remained limited by the delicate biology of these insects. Here, we report a compilation of the transgenesis tools that we have designed for the malaria vector Anopheles gambiae, including new docking strains, convenient transgenesis plasmids, a puromycin resistance selection marker, mosquitoes expressing cre recombinase, and various reporter lines defining the activity of cloned promoters. This toolbox contributed to rendering transgenesis routine in this species and is now enabling the development of increasingly refined genetic manipulations such as targeted mutagenesis. Some of the reagents and procedures reported here are easily transferable to other nonmodel species, including other disease vector or agricultural pest insects.
Collapse
|
20
|
Haghighat-Khah RE, Scaife S, Martins S, St John O, Matzen KJ, Morrison N, Alphey L. Site-specific cassette exchange systems in the Aedes aegypti mosquito and the Plutella xylostella moth. PLoS One 2015; 10:e0121097. [PMID: 25830287 PMCID: PMC4382291 DOI: 10.1371/journal.pone.0121097] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 02/09/2015] [Indexed: 12/02/2022] Open
Abstract
Genetically engineered insects are being evaluated as potential tools to decrease the economic and public health burden of mosquitoes and agricultural pest insects. Here we describe a new tool for the reliable and targeted genome manipulation of pest insects for research and field release using recombinase mediated cassette exchange (RMCE) mechanisms. We successfully demonstrated the established ΦC31-RMCE method in the yellow fever mosquito, Aedes aegypti, which is the first report of RMCE in mosquitoes. A new variant of this RMCE system, called iRMCE, combines the ΦC31-att integration system and Cre or FLP-mediated excision to remove extraneous sequences introduced as part of the site-specific integration process. Complete iRMCE was achieved in two important insect pests, Aedes aegypti and the diamondback moth, Plutella xylostella, demonstrating the transferability of the system across a wide phylogenetic range of insect pests.
Collapse
Affiliation(s)
- Roya Elaine Haghighat-Khah
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxitec Limited, Oxford, United Kingdom
| | | | - Sara Martins
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxitec Limited, Oxford, United Kingdom
| | - Oliver St John
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxitec Limited, Oxford, United Kingdom
| | | | | | - Luke Alphey
- Department of Zoology, University of Oxford, Oxford, United Kingdom
- Oxitec Limited, Oxford, United Kingdom
- * E-mail: (LA); (KJM)
| |
Collapse
|
21
|
Meza JS, Díaz-Fleischer F, Sánchez-Velásquez LR, Zepeda-Cisneros CS, Handler AM, Schetelig MF. Fitness cost implications of PhiC31-mediated site-specific integrations in target-site strains of the Mexican fruit fly, Anastrepha ludens (Diptera: Tephritidae). PLoS One 2014; 9:e109690. [PMID: 25303238 PMCID: PMC4193812 DOI: 10.1371/journal.pone.0109690] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 09/10/2014] [Indexed: 01/14/2023] Open
Abstract
Site-specific recombination technologies are powerful new tools for the manipulation of genomic DNA in insects that can improve transgenesis strategies such as targeting transgene insertions, allowing transgene cassette exchange and DNA mobilization for transgene stabilization. However, understanding the fitness cost implications of these manipulations for transgenic strain applications is critical. In this study independent piggyBac-mediated attP target-sites marked with DsRed were created in several genomic positions in the Mexican fruit fly, Anastrepha ludens. Two of these strains, one having an autosomal (attP_F7) and the other a Y-linked (attP_2-M6y) integration, exhibited fitness parameters (dynamic demography and sexual competitiveness) similar to wild type flies. These strains were thus selected for targeted insertion using, for the first time in mexfly, the phiC31-integrase recombination system to insert an additional EGFP-marked transgene to determine its effect on host strain fitness. Fitness tests showed that the integration event in the int_2-M6y recombinant strain had no significant effect, while the int_F7 recombinant strain exhibited significantly lower fitness relative to the original attP_F7 target-site host strain. These results indicate that while targeted transgene integrations can be achieved without an additional fitness cost, at some genomic positions insertion of additional DNA into a previously integrated transgene can have a significant negative effect. Thus, for targeted transgene insertions fitness costs must be evaluated both previous to and subsequent to new site-specific insertions in the target-site strain.
Collapse
Affiliation(s)
- José S. Meza
- Programa Moscafrut, SAGARPA-IICA, Metapa de Domínguez, Chiapas, México
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México
| | - Francisco Díaz-Fleischer
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México
| | - Lázaro R. Sánchez-Velásquez
- Instituto de Biotecnología y Ecología Aplicada (INBIOTECA), Universidad Veracruzana, Xalapa, Veracruz, México
| | | | - Alfred M. Handler
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida, United States of America
| | - Marc F. Schetelig
- Center for Medical, Agricultural, and Veterinary Entomology, Agricultural Research Service, U.S. Department of Agriculture, Gainesville, Florida, United States of America
- Justus-Liebig-University Giessen, Institute for Phytopathology and Applied Zoology, Giessen, Germany
- * E-mail:
| |
Collapse
|
22
|
Grandchamp N, Altémir D, Philippe S, Ursulet S, Pilet H, Serre MC, Lenain A, Serguera C, Mallet J, Sarkis C. Hybrid lentivirus-phiC31-int-NLS vector allows site-specific recombination in murine and human cells but induces DNA damage. PLoS One 2014; 9:e99649. [PMID: 24956106 PMCID: PMC4067480 DOI: 10.1371/journal.pone.0099649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Accepted: 05/17/2014] [Indexed: 12/27/2022] Open
Abstract
Gene transfer allows transient or permanent genetic modifications of cells for experimental or therapeutic purposes. Gene delivery by HIV-derived lentiviral vector (LV) is highly effective but the risk of insertional mutagenesis is important and the random/uncontrollable integration of the DNA vector can deregulate the cell transcriptional activity. Non Integrative Lentiviral Vectors (NILVs) solve this issue in non-dividing cells, but they do not allow long term expression in dividing cells. In this context, obtaining stable expression while avoiding the problems inherent to unpredictable DNA vector integration requires the ability to control the integration site. One possibility is to use the integrase of phage phiC31 (phiC31-int) which catalyzes efficient site-specific recombination between the attP site in the phage genome and the chromosomal attB site of its Streptomyces host. Previous studies showed that phiC31-int is active in many eukaryotic cells, such as murine or human cells, and directs the integration of a DNA substrate into pseudo attP sites (pattP) which are homologous to the native attP site. In this study, we combined the efficiency of NILV for gene delivery and the specificity of phiC31-int for DNA substrate integration to engineer a hybrid tool for gene transfer with the aim of allowing long term expression in dividing and non-dividing cells preventing genotoxicity. We demonstrated the feasibility to target NILV integration in human and murine pattP sites with a dual NILV vectors system: one which delivers phiC31-int, the other which constitute the substrate containing an attB site in its DNA sequence. These promising results are however alleviated by the occurrence of significant DNA damages. Further improvements are thus required to prevent chromosomal rearrangements for a therapeutic use of the system. However, its use as a tool for experimental applications such as transgenesis is already applicable.
Collapse
Affiliation(s)
- Nicolas Grandchamp
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Dorothée Altémir
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
| | - Stéphanie Philippe
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Suzanna Ursulet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Héloïse Pilet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- Biosource, Paris, France
| | - Marie-Claude Serre
- Laboratoire de Virologie Moléculaire et Structurale, Gif-sur-Yvette, France
| | - Aude Lenain
- Commissariat à l'Energie Atomique, Laboratoire de Radiobiologie et Oncologie, Fontenay-aux-Roses, France
| | - Che Serguera
- Molecular Imaging Research Center - Modélisation des biothérapies, Fontenay-aux-Roses, France
| | - Jacques Mallet
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
| | - Chamsy Sarkis
- Unit of Biotechnology and Biotherapy, Centre de recherche de l'Institut du Cerveau et de la Moelle Epinière, Pierre-and-Marie-Curie University/Institut National de la Santé et de la Recherche Médicale, Paris, France
- NewVectys, Villebon-sur-Yvette, France
- * E-mail:
| |
Collapse
|
23
|
Pondeville E, Puchot N, Meredith JM, Lynd A, Vernick KD, Lycett GJ, Eggleston P, Bourgouin C. Efficient ΦC31 integrase-mediated site-specific germline transformation of Anopheles gambiae. Nat Protoc 2014; 9:1698-712. [PMID: 24945385 DOI: 10.1038/nprot.2014.117] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Current transgenic methodology developed for mosquitoes has not been applied widely to the major malaria vector Anopheles gambiae, which has proved more difficult to genetically manipulate than other mosquito species and dipteran insects. In this protocol, we describe ΦC31-mediated site-specific integration of transgenes into the genome of A. gambiae. The ΦC31 system has many advantages over 'classical' transposon-mediated germline transformation systems, because it allows integration of large transgenes at specific, characterized genomic locations. Starting from a general protocol, we have optimized steps from embryo collection to co-injection of transgene-containing plasmid and in vitro-produced ΦC31 integrase mRNA. We also provide tips for screening transgenic larvae. The outlined procedure provides robust transformation in A. gambiae, resulting in homozygous transgenic lines in ∼2-3 months.
Collapse
Affiliation(s)
- Emilie Pondeville
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS unit URA3012, Paris, France
| | - Nicolas Puchot
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS unit URA3012, Paris, France
| | - Janet M Meredith
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kenneth D Vernick
- Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS unit URA3012, Paris, France
| | - Gareth J Lycett
- 1] Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK. [2]
| | - Paul Eggleston
- 1] Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, UK. [2]
| | - Catherine Bourgouin
- 1] Institut Pasteur, Genetics and Genomics of Insect Vectors, CNRS unit URA3012, Paris, France. [2]
| |
Collapse
|
24
|
Gilles JR, Schetelig MF, Scolari F, Marec F, Capurro ML, Franz G, Bourtzis K. Towards mosquito sterile insect technique programmes: exploring genetic, molecular, mechanical and behavioural methods of sex separation in mosquitoes. Acta Trop 2014; 132 Suppl:S178-87. [PMID: 23994521 DOI: 10.1016/j.actatropica.2013.08.015] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/12/2013] [Accepted: 08/19/2013] [Indexed: 12/20/2022]
Abstract
When considering a mosquito release programme, one of the first issues to be addressed is how to eliminate/separate the females. The greatest number of options might eventually be available for those who can use transgenic mosquitoes, but the inherent characteristics of the target species may also provide possibilities for interim measures until more efficient methods can be developed. Differences in intrinsic size, in behaviour and in development rate between females and males are often available and useful for sexing. Efficient species-specific systems for eliminating females at the embryo stage have been developed, but most have since been discarded due to lack of use. Ideal systems specifically kill female embryos using some treatment that can be manipulated during production. Such killing systems are far more efficient than using intrinsic sexual differences, but they systems require selectable genetic markers and sex-linkage created by rare random chromosomal rearrangements. While intrinsic sexual differences should not be considered as long-term candidates for the development of robust and efficient sexing approaches, in the absence of these, the accessibility and integration of less efficient systems can provide a stop-gap measure that allows rapid start up with a minimum of investment. The International Atomic Energy Agency is funding over a 5 year period (2013-2018) a new Coordinated Research Project on "Exploring Genetic, Molecular, Mechanical and Behavioural Methods of Sex Separation in Mosquitoes" to network researchers and to address the critical need of genetic sexing strains for the implementation of the sterile insect technique (using radiation-sterilised or transgenic male mosquitoes) and for insect incompatibility technique programmes against disease-transmitting mosquitoes.
Collapse
|
25
|
McArthur CC, Meredith JM, Eggleston P. Transgenic Anopheles gambiae expressing an antimalarial peptide suffer no significant fitness cost. PLoS One 2014; 9:e88625. [PMID: 24516671 PMCID: PMC3916423 DOI: 10.1371/journal.pone.0088625] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2013] [Accepted: 01/10/2014] [Indexed: 01/11/2023] Open
Abstract
Mosquito-borne diseases present some of the greatest health challenges faced by the world today. In many cases, existing control measures are compromised by insecticide resistance, pathogen tolerance to drugs and the lack of effective vaccines. In light of these difficulties, new genetic tools for disease control programmes, based on the deployment of genetically modified mosquitoes, are seen as having great promise. Transgenic strains may be used to control disease transmission either by suppressing vector populations or by replacing susceptible with refractory genotypes. In practice, the fitness of the transgenic strain relative to natural mosquitoes will be a critical determinant of success. We previously described a transgenic strain of Anopheles gambiae expressing the Vida3 peptide into the female midgut following a blood-meal, which exhibited significant protection against malaria parasites. Here, we investigated the fitness of this strain relative to non-transgenic controls through comparisons of various life history traits. Experiments were designed, as far as possible, to equalize genetic backgrounds and heterogeneity such that fitness comparisons focussed on the presence and expression of the transgene cassette. We also employed reciprocal crosses to identify any fitness disturbance associated with inheritance of the transgene from either the male or female parent. We found no evidence that the presence or expression of the effector transgene or associated fluorescence markers caused any significant fitness cost in relation to larval mortality, pupal sex ratio, fecundity, hatch rate or longevity of blood-fed females. In fact, fecundity was increased in transgenic strains. We did, however, observe some fitness disturbances associated with the route of inheritance of the transgene. Maternal inheritance delayed male pupation whilst paternal inheritance increased adult longevity for both males and unfed females. Overall, in comparison to controls, there was no evidence of significant fitness costs associated with the presence or expression of transgenes in this strain.
Collapse
Affiliation(s)
- Clare C. McArthur
- Centre for Applied Entomology and Parasitology, Keele University, Keele, Staffordshire, United Kingdom
| | - Janet M. Meredith
- Centre for Applied Entomology and Parasitology, Keele University, Keele, Staffordshire, United Kingdom
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, Keele University, Keele, Staffordshire, United Kingdom
- * E-mail:
| |
Collapse
|
26
|
Carter V, Underhill A, Baber I, Sylla L, Baby M, Larget-Thiery I, Zettor A, Bourgouin C, Langel Ü, Faye I, Otvos L, Wade JD, Coulibaly MB, Traore SF, Tripet F, Eggleston P, Hurd H. Killer bee molecules: antimicrobial peptides as effector molecules to target sporogonic stages of Plasmodium. PLoS Pathog 2013; 9:e1003790. [PMID: 24278025 PMCID: PMC3836994 DOI: 10.1371/journal.ppat.1003790] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 09/27/2013] [Indexed: 11/18/2022] Open
Abstract
A new generation of strategies is evolving that aim to block malaria transmission by employing genetically modified vectors or mosquito pathogens or symbionts that express anti-parasite molecules. Whilst transgenic technologies have advanced rapidly, there is still a paucity of effector molecules with potent anti-malaria activity whose expression does not cause detrimental effects on mosquito fitness. Our objective was to examine a wide range of antimicrobial peptides (AMPs) for their toxic effects on Plasmodium and anopheline mosquitoes. Specifically targeting early sporogonic stages, we initially screened AMPs for toxicity against a mosquito cell line and P. berghei ookinetes. Promising candidate AMPs were fed to mosquitoes to monitor adverse fitness effects, and their efficacy in blocking rodent malaria infection in Anopheles stephensi was assessed. This was followed by tests to determine their activity against P. falciparum in An. gambiae, initially using laboratory cultures to infect mosquitoes, then culminating in preliminary assays in the field using gametocytes and mosquitoes collected from the same area in Mali, West Africa. From a range of 33 molecules, six AMPs able to block Plasmodium development were identified: Anoplin, Duramycin, Mastoparan X, Melittin, TP10 and Vida3. With the exception of Anoplin and Mastoparan X, these AMPs were also toxic to an An. gambiae cell line at a concentration of 25 µM. However, when tested in mosquito blood feeds, they did not reduce mosquito longevity or egg production at concentrations of 50 µM. Peptides effective against cultured ookinetes were less effective when tested in vivo and differences in efficacy against P. berghei and P. falciparum were seen. From the range of molecules tested, the majority of effective AMPs were derived from bee/wasp venoms.
Collapse
Affiliation(s)
- Victoria Carter
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Ann Underhill
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Ibrahima Baber
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Lakamy Sylla
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Mounirou Baby
- Centre National de Transfusion Sanguine, Bamako, Mali
| | - Isabelle Larget-Thiery
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Agnès Zettor
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Catherine Bourgouin
- Institut Pasteur, Centre for Production and Infection of Anopheles (CEPIA), Parasitology and Mycology Department, Paris, France
| | - Ülo Langel
- Department of Neurochemistry Svante Arrhenius v. 21A, Stockholm University, Stockholm, Sweden
| | - Ingrid Faye
- Department of Molecular Bioscience, the Wenner-Gren Institute, Svante Arrhenius v. 20C, Stockholm University, Stockholm, Sweden
| | - Laszlo Otvos
- Temple University Department of Biology, Philadelphia, Pennsylvania, United States of America
| | - John D. Wade
- Howard Florey Research Laboratories, Florey Institute for Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| | - Mamadou B. Coulibaly
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Sekou F. Traore
- Malaria Research and Training Centre (MRTC), Université des Sciences, des Techniques et des Technologies de Bamako, Bamako, Mali
| | - Frederic Tripet
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| | - Paul Eggleston
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
- * E-mail:
| | - Hilary Hurd
- Centre for Applied Entomology and Parasitology, School of Life Sciences, Keele University, Keele, Staffordshire, United Kingdom
| |
Collapse
|