1
|
Aborehab NM, Abd-Elmawla MA, ElSayed AM, Sabry O, Ezzat SM. Acovenoside A as a novel therapeutic approach to boost taxol and carboplatin apoptotic and antiproliferative activities in NSCLC: Interplay of miR-630/miR-181a and apoptosis genes. Bioorg Chem 2023; 139:106743. [PMID: 37490810 DOI: 10.1016/j.bioorg.2023.106743] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 07/02/2023] [Accepted: 07/16/2023] [Indexed: 07/27/2023]
Abstract
The aim of the present study is to explore the potential anticancer effect of the cardenolide; acovenoside A against non-small cell lung cancer (NSCLC), understand its molecular mechanism in inducing apoptosis and show the effect of its combination with carboplatin and taxol. MTT assay showed that the combination of acovenoside A with taxol and carboplatin caused 78.9% cytotoxicity reflecting the synergistic effect. The triple combination showed the best growth inhibition efficiency where the number of cells at the G2/M phase was decreased and boosted up apoptotic and necrotic activity. The combination also showed the most remarkable increase in gene expression of Bax and p53 and the least level of Bcl2. The gene expression of miRNA181a and miRNA630 was significantly upregulated in cell lines treated with the combination. The present study has proven that the underlying mechanism of acovenoside A is partially attributed to the upregulation of miR-630 and miR-181a gene expressions which in turn targets the intrinsic apoptosis genes as p53, Bax and Bcl2 as well as caspase 3. The present study is the first to address the valuable effect of using acovenoside A together with carboplatin and taxol in the treatment of NSCLC via exerting apoptotic, antiproliferative, and cytotoxic effects..
Collapse
Affiliation(s)
- Nora M Aborehab
- Department of Biochemistry, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt.
| | - Mai A Abd-Elmawla
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt.
| | - Abeer M ElSayed
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt
| | - Omar Sabry
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Pharmacognosy Department, Faculty of Pharmacy, Heliopolis University for Sustainable Development
| | - Shahira M Ezzat
- Department of Pharmacognosy, Faculty of Pharmacy, Cairo University, Cairo 11562, Egypt; Department of Pharmacognosy, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza 12451, Egypt.
| |
Collapse
|
2
|
Wang W, Chen R, Droll S, Barber E, Saleh L, Corrigan-Cummins M, Trick M, Anastas V, Hawk NV, Zhao Z, Vinh DC, Hsu A, Hickstein DD, Holland SM, Calvo KR. miR-181c regulates MCL1 and cell survival in GATA2 deficient cells. J Leukoc Biol 2022; 111:805-816. [PMID: 34270823 PMCID: PMC10506419 DOI: 10.1002/jlb.2a1220-824r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
GATA2 is a transcription factor critical for hematopoiesis. Germline mutations in GATA binding protein 2 (GATA2) led to haploinsufficiency, severe cytopenias of multiple cell lineages, susceptibility to infections and strong propensity to develop myelodysplastic syndrome, and acute myeloid leukemia. Mechanisms of progressive cytopenias remain unclear. MicroRNA (miRNA) represents a unique mechanism of post-transcriptional gene regulation. In this study, miRNA profiles were evaluated and eight miRNAs were found to be differentially expressed (≥2-fold, P ≤ 0.05) in patient-derived cell lines (N = 13) in comparison to controls (N = 10). miR-9, miR-181a-2-3p, miR-181c, miR-181c-3p, miR-486-3p, and miR-582 showed increased expression, whereas miR-223 and miR-424-3p showed decreased expression. Cell death assays indicated that miR-181c potently induces cell death in lymphoid (Ly-8 and SP-53) and myeloid (HL-60) cell lines. miR-181c was predicted to target myeloid cell leukemia (MCL)1, which was confirmed by transfection assays, resulting in significantly reduced MCL1 mRNA and decreased live cell numbers. Bone marrow analysis of 34 GATA2 patients showed significantly decreased cellularity, CD34-positive cells, monocytes, dendritic cells, NK cells, B cells, and B cell precursors in comparison to healthy controls (N = 29; P < 0.001 for each), which was accompanied by decreased levels of MCL1 (P < 0.05). GATA2 expression led to significant repression of miR-181c expression in transfection experiments. Conversely, knockdown of GATA2 led to increased miR-181c expression. These findings indicate that miR-181c expression is increased and MCL1 levels decreased in GATA2 deficiency cells, and that GATA2 represses miR-181c transcription. Increased miR-181c may contribute to elevated cell death and cytopenia in GATA2 deficiency potentially through down-regulation of MCL1.
Collapse
Affiliation(s)
- Weixin Wang
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Rui Chen
- Department of Laboratory Medicine, Beijing Tong-Ren Hospital, Capital Medical University, Beijing, China
| | - Stephenie Droll
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Emily Barber
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Layla Saleh
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
- Hematology Section, Clinical Pathology Department, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Meghan Corrigan-Cummins
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Megan Trick
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Vollter Anastas
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| | - Nga Voong Hawk
- Experimental Transplantation and Immunology Branch, National Cancer Institute (NCI), NIH, Bethesda, Maryland, USA
| | - Zhen Zhao
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
- Department of Pathology & Laboratory Medicine, Weill Cornell Medical College, New York, New York, USA
| | - Donald C. Vinh
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
- Division of Infectious Diseases, McGill University Health Centre, Montreal, Canada
| | - Amy Hsu
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Dennis D. Hickstein
- Immune Deficiency Cellular Therapy Program, Center for Cancer Research, NCI, NIH, Bethesda, MD, USA
| | - Steven M. Holland
- Laboratory of Clinical Infectious Diseases, National Institute of Allergy and Infectious Diseases, NIH, Bethesda, MD, USA
| | - Katherine R. Calvo
- Department of Laboratory Medicine, National Institutes of Health (NIH) Clinical Center, Bethesda, Maryland, USA
| |
Collapse
|
3
|
Chang C, Xu L, Zhang R, Jin Y, Jiang P, Wei K, Xu L, Shi Y, Zhao J, Xiong M, Guo S, He D. MicroRNA-Mediated Epigenetic Regulation of Rheumatoid Arthritis Susceptibility and Pathogenesis. Front Immunol 2022; 13:838884. [PMID: 35401568 PMCID: PMC8987113 DOI: 10.3389/fimmu.2022.838884] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 03/02/2022] [Indexed: 12/19/2022] Open
Abstract
MicroRNAs (miRNAs) play crucial roles in regulating the transcriptome and development of rheumatoid arthritis (RA). Currently, a comprehensive map illustrating how miRNAs regulate transcripts, pathways, immune system differentiation, and their interactions with terminal cells such as fibroblast-like synoviocytes (FLS), immune-cells, osteoblasts, and osteoclasts are still laking. In this review, we summarize the roles of miRNAs in the susceptibility, pathogenesis, diagnosis, therapeutic intervention, and prognosis of RA. Numerous miRNAs are abnormally expressed in cells involved in RA and regulate target genes and pathways, including NF-κB, Fas-FasL, JAK-STAT, and mTOR pathways. We outline how functional genetic variants of miR-499 and miR-146a partly explain susceptibility to RA. By regulating gene expression, miRNAs affect T cell differentiation into diverse cell types, including Th17 and Treg cells, thus constituting promising gene therapy targets to modulate the immune system in RA. We summarize the diagnostic and prognostic potential of blood-circulating and cell-free miRNAs, highlighting the opportunity to combine these miRNAs with antibodies to cyclic citrullinated peptide (ACCP) to allow accurate diagnosis and prognosis, particularly for seronegative patients. Furthermore, we review the evidence implicating miRNAs as promising biomarkers of efficiency and response of, and resistance to, disease-modifying anti-rheumatic drugs and immunotherapy. Finally, we discuss the autotherapeutic effect of miRNA intervention as a step toward the development of miRNA-based anti-RA drugs. Collectively, the current evidence supports miRNAs as interesting targets to better understand the pathogenetic mechanisms of RA and design more efficient therapeutic interventions.
Collapse
Affiliation(s)
- Cen Chang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lingxia Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Runrun Zhang
- The Second Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yehua Jin
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ping Jiang
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kai Wei
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linshuai Xu
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yiming Shi
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianan Zhao
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Momiao Xiong
- Department of Biostatistics and Data Science, School of Public Health, University of Texas Health Science Center, Houston, TX, United States
| | - Shicheng Guo
- Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, United States
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, United States
- *Correspondence: Shicheng Guo, ; Dongyi He,
| | - Dongyi He
- Guanghua Clinical Medical College, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Department of Rheumatology, Guanghua Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
- Arthritis Institute of Integrated Traditional and Western Medicine, Shanghai Chinese Medicine Research Institute, Shanghai, China
- *Correspondence: Shicheng Guo, ; Dongyi He,
| |
Collapse
|
4
|
Shirazi-Tehrani E, Vafadar A, Keshavarzi M, Firouzabadi N. Anticancer properties of vincristine is modulated by microRNAs in acute lymphoblastic leukemia Nalm6 cell line. Anticancer Drugs 2022; 33:e680-e685. [PMID: 34459460 DOI: 10.1097/cad.0000000000001234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Precursor B-cell acute lymphoblastic leukemia (B-ALL), a highly diverse disease, is the most widespread pediatric malignancy characterized by cytogenetic and molecular abnormalities such as altered microRNA (miR) expression signatures. MiRs are a class of short noncoding RNAs. Dysregulation in the expression of miRs plays a crucial role in different types of cancers. Vincristine is an antineoplastic drug with a broad spectrum of activity against different hematologic malignancies and is the first-line treatment for B-ALL. Previous studies have proposed miR-17 and miR-181/b as oncomirs and miR-34/a as a tumor suppressor in Nalm6 cells, thus in the current study, we investigated the effects of vincristine treatment on the expression of miR-17, miR-34/a and miR-181/b expression levels. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide assay was conducted to estimate the optimal concentration of vincristine in the Nalm-6 cell line. Expression of miRs was calculated using real-time PCR. Our results showed significant downregulation of miR-17 (FC = 0.226; P < 0.0004) in Nalm6 cells after vincristine treatment. Conversely, miR-34/a (FC = 4.823; P < 0.0001) was significantly upregulated. Also, the expression of miR-181/b (FC = 0.156; P < 0.3465) was not significantly different between the vincristine treated group and the control group. In conclusion, it is proposed that one of the mechanisms by which vincristine improves B-ALL is by modulating the expression of specific miRs. These specific miRs will serve as good diagnostic and prognostic biomarkers.
Collapse
Affiliation(s)
- Elham Shirazi-Tehrani
- Department of Pharmacology & Toxicology, School of Pharmacy
- Pharmaceutical Sciences Research Center
| | - Asma Vafadar
- Diagnostic Laboratory Sciences and Technology Research Center
- Department of Medical Biotechnology, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Negar Firouzabadi
- Department of Pharmacology & Toxicology, School of Pharmacy
- Pharmaceutical Sciences Research Center
| |
Collapse
|
5
|
Liu Y, Li C, Su R, Yin Z, Huang G, Yang J, Li Z, Zhang K, Fei J. Targeting SOS1 overcomes imatinib resistance with BCR-ABL independence through uptake transporter SLC22A4 in CML. Mol Ther Oncolytics 2021; 23:560-570. [PMID: 34938856 PMCID: PMC8654699 DOI: 10.1016/j.omto.2021.11.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 11/16/2021] [Indexed: 12/28/2022] Open
Abstract
Resistance to the BCR-ABL inhibitor imatinib mesylate poses a major problem for the treatment of chronic myeloid leukemia. Imatinib resistance often results from a secondary mutation in BCR-ABL that interferes with drug binding. However, sometimes there is no mutation in BCR-ABL, and the basis of such BCR-ABL-independent imatinib mesylate resistance remains to be elucidated. SOS1, a guanine nucleotide exchange factor for Ras protein, affects drug sensitivity and resistance to imatinib. The depletion of SOS1 markedly inhibits cell growth either in vitro or in vivo and significantly increases the sensitivity of chronic myeloid leukemia cells to imatinib. Furthermore, LC-MS/MS and RNA-seq assays reveal that SOS1 negatively regulates the expression of SLC22A4, a member of the carnitine/organic cation transporter family, which mediates the active uptake of imatinib into chronic myeloid leukemia cells. HPLC assay confirms that intracellular accumulation of imatinib is accompanied by upregulation of SLC22A4 through SOS1 inhibition in both sensitive and resistant chronic myeloid leukemia cells. BAY-293, an inhibitor of SOS1/Ras, was found to depress proliferation and colony formation in chronic myeloid leukemia cells with resistance and BCR-ABL independence. Altogether these findings indicate that targeting SOS1 inhibition promotes imatinib sensitivity and overcomes resistance with BCR-ABL independence by SLC22A4-mediated uptake transport.
Collapse
Affiliation(s)
- Yanjun Liu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Chuting Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Rui Su
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Guiping Huang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| | - Zhendong Li
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou 510632, Guangdong, China
| | - Keda Zhang
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, Guangdong, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Engineering Technology Research Center of Guangdong Province for Small Nucleic Acids Drug Development, Guangzhou 510632, China.,Antisense Biopharmaceutical Technology Co., Ltd., Guangzhou 510632, China
| |
Collapse
|
6
|
Morales-Martinez M, Vega MI. Participation of different miRNAs in the regulation of YY1: Their role in pathogenesis, chemoresistance, and therapeutic implication in hematologic malignancies. YY1 IN THE CONTROL OF THE PATHOGENESIS AND DRUG RESISTANCE OF CANCER 2021:171-198. [DOI: 10.1016/b978-0-12-821909-6.00010-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
7
|
Abstract
PURPOSE OF REVIEW MiRNAs are critical regulators for gene expression. Numerous studies have revealed how miRNAs contribute to the pathogenesis of hematologic malignancies. RECENT FINDINGS The identification of novel miRNA regulatory factors and pathways crucial for miRNA dysregulation has been linked to hematologic malignancies. miRNA expression profiling has shown their potential to predict outcomes and treatment responses. Recently, targeting miRNA biogenesis or pathways has become a promising therapeutic strategy with recent miRNA-therapeutics being developed. SUMMARY We provide a comprehensive overview of the role of miRNAs for diagnosis, prognosis, and therapeutic potential in hematologic malignancies.
Collapse
Affiliation(s)
- Zhen Han
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Steven T. Rosen
- Dept of Hematology and Hematopoietic Cell Transplantation, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| | - Christiane Querfeld
- Division of Dermatology, City of Hope, Duarte, CA, USA
- Department of Pathology, City of Hope, Duarte, CA, USA
- Beckman Research Institute, City of Hope, Duarte, CA, USA
| |
Collapse
|
8
|
Egyed B, Kutszegi N, Sági JC, Gézsi A, Rzepiel A, Visnovitz T, Lőrincz P, Müller J, Zombori M, Szalai C, Erdélyi DJ, Kovács GT, Semsei ÁF. MicroRNA-181a as novel liquid biopsy marker of central nervous system involvement in pediatric acute lymphoblastic leukemia. J Transl Med 2020; 18:250. [PMID: 32571344 PMCID: PMC7310470 DOI: 10.1186/s12967-020-02415-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Accepted: 06/15/2020] [Indexed: 12/16/2022] Open
Abstract
Background Refractory central nervous system (CNS) involvement is among the major causes of therapy failure in childhood acute leukemia. Applying contemporary diagnostic methods, CNS disease is often underdiagnosed. To explore more sensitive and less invasive CNS status indicators, we examined microRNA (miR) expressions and extracellular vesicle (EV) characteristics. Methods In an acute lymphoblastic leukemia (ALL) discovery cohort, 47 miRs were screened using Custom TaqMan Advanced Low-Density Array gene expression cards. As a validation step, a candidate miR family was further scrutinized with TaqMan Advanced miRNA Assays on serial cerebrospinal fluid (CSF), bone marrow (BM) and peripheral blood samples with different acute leukemia subtypes. Furthermore, small EV-rich fractions were isolated from CSF and the samples were processed for immunoelectron microscopy with anti-CD63 and anti-CD81 antibodies, simultaneously. Results Regarding the discovery study, principal component analysis identified the role of miR-181-family (miR-181a-5p, miR-181b-5p, miR-181c-5p) in clustering CNS-positive (CNS+) and CNS-negative (CNS‒) CSF samples. We were able to validate miR-181a expression differences: it was about 52 times higher in CSF samples of CNS+ ALL patients compared to CNS‒ cases (n = 8 vs. n = 10, ΔFC = 52.30, p = 1.5E−4), and CNS+ precursor B cell subgroup also had ninefold higher miR-181a levels in their BM (p = 0.04). The sensitivity of CSF miR-181a measurement in ALL highly exceeded those of conventional cytospin in the initial diagnosis of CNS leukemia (90% vs. 54.5%). Pellet resulting from ultracentrifugation of CNS+ CSF samples of ALL patients showed atypical CD63−/CD81− small EVs in high density by immunoelectron microscopy. Conclusions After validating in extensive cohorts, quantification of miR-181a or a specific EV subtype might provide novel tools to monitor CNS disease course and further adjust CNS-directed therapy in pediatric ALL.
Collapse
Affiliation(s)
- Bálint Egyed
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary.,Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - Nóra Kutszegi
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - András Gézsi
- MTA-SE Immune-Proteogenomics Extracellular Vesicle Research Group, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.,Department of Measurements and Information Systems, Budapest University of Technology and Economics, 2 Magyar tudosok korutja, Budapest, 1117, Hungary
| | - Andrea Rzepiel
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Tamás Visnovitz
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary
| | - Péter Lőrincz
- Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, 1/c Pázmány Promenade, Budapest, 1117, Hungary
| | - Judit Müller
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Marianna Zombori
- Heim Pal National Pediatric Institute, 86 Üllői Str, Budapest, 1089, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.,Heim Pal National Pediatric Institute, 86 Üllői Str, Budapest, 1089, Hungary
| | - Dániel J Erdélyi
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Gábor T Kovács
- 2nd Department of Pediatrics, Semmelweis University, 7-9 Tűzoltó Str, Budapest, 1094, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 4 Nagyvárad Sqr, Budapest, 1089, Hungary.
| |
Collapse
|
9
|
Sabarimurugan S, Kumarasamy C, Royam Madhav M, Samiappan S, Jayaraj R. The Significance of miRNAs as a Prognostic Biomarker for Survival Outcome in T Cell - Acute Lymphoblastic Leukemia Patients: A Systematic Review and Meta-Analysis. Cancer Manag Res 2020; 12:819-839. [PMID: 32104065 PMCID: PMC7008181 DOI: 10.2147/cmar.s200687] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Accepted: 04/11/2019] [Indexed: 12/20/2022] Open
Abstract
Purpose T-cell acute lymphoblastic leukemia (T-ALL) affects lymphoid cells. Previous studies have reported that miRNAs play a significant role in T-ALL prognosis and have the potential to function as biomarkers in T-ALL. Therefore, this systematic review and meta-analysis study was designed to evaluate the overall prognostic impact of miRNAs in T-ALL patients. Methods Eligible studies published between Jan 2010 and April 2018 were retrieved from online bibliographic databases based on multiple keywords to generate search strings. Meta-analysis was performed using the outcome measure, Hazard Ratio (HR). A survival analysis of all studies was conducted and a subsequent forest plot was generated to evaluate the pooled effect size, across all T-ALL patients. Subgroup analysis was conducted based on demographic characteristics and commonly represented miRNAs among the included studies. Results A total of 17 studies were included for systematic review, among which 16 studies were eligible for meta-analysis, which, in total discussed 32 different miRNAs. The mean effect size of HR value was 0.929 (CI 0.878–0984), which indicates a decrease in risk of death by 7.1%. The analysis was based on the random effects model with the heterogeneity measure index (I2) being 84.92%. The pooled effect size (HR) of upregulated and downregulated miRNA expressions on survival outcome in the T-ALL patient was 0.787 (CI 0.732–0.845) and 1.225 (CI 1.110–1.344) respectively. The subgroup analysis was performed based on demographic characteristics (age, gender, lactate dehydrogenase, WBC count) and expression of miR221 and miR46a. Conclusion Our systematic review and meta-analysis findings suggest that the overall miRNA expression is potentially associated with a decreased likelihood of death in T-ALL patients. Although our findings are inconclusive, the results point toward miRNA expression allowing for prognostic evaluation of T-ALL patients.
Collapse
Affiliation(s)
| | - Chellan Kumarasamy
- University of Adelaide, North Terrace Campus, Adelaide, SA 5005, Australia
| | - Madurantakam Royam Madhav
- School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, India 632014
| | - Suja Samiappan
- Department of Biochemistry, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Rama Jayaraj
- Clinical Sciences, College of Health and Human Sciences, Charles Darwin University, Darwin, Northern Territory 0909, Australia
| |
Collapse
|
10
|
Desoky AE, Badrawy H, Razik DIAE, Riad KF, Abdelhamid ON, Hassan E. Predictive Value of miRNA-181a in Pediatric Acute Lymphoblastic Leukemia. JOURNAL OF CANCER THERAPY 2020; 11:673-682. [DOI: 10.4236/jct.2020.1111057] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
11
|
Drokow EK, Sun K, Ahmed HAW, Akpabla GS, Song J, Shi M. Circulating microRNA as diagnostic biomarkers for haematological cancers: a systematic review and meta-analysis. Cancer Manag Res 2019; 11:4313-4326. [PMID: 31190996 PMCID: PMC6520596 DOI: 10.2147/cmar.s199126] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2018] [Accepted: 03/10/2019] [Indexed: 12/31/2022] Open
Abstract
Purpose: Recent studies have validated microRNAs (miRNAs) as a diagnostic biomarker for haematological cancers. This study aimed to estimate the overall diagnostic accuracy of circulating miRNAs in haematological malignancies. Materials and Methods: Multiple databases (Google Scholar, PubMed, EMBASE, Cochrane Library,) were searched until 19th August 2017. Results: The meta-analysis included 50 studies from 20 publications. The diagnostic accuracy was assessed by pooled specificity, sensitivity, positive likelihood ratio (PLR), negative likelihood ratio (NLR), diagnostic odds ratio (DOR) and area under the curve area (AUC) by random effect model. We used QUADAS (Quality Assessment for diagnostic accuracy studies) to evaluate the quality of the included studies. To perform the meta-analysis, we used Meta-Disk 1.4, Revman 5.3 and Stata 12.0 software. High diagnostic accuracy was demonstrated, with a sensitivity of 0.81, a specificity of 0.85, a PLR of 5.28, an NLR of 0.22, a DOR of 30.39, and an AUC of 0.91. Subgroup analyses showed better outcomes for the African population, combined miRNAs and leukaemia patients compared with other subgroups. Conclusion: Our results indicated that circulating miRNAs especially combined miRNA can be used as a diagnostic marker in haematological cancers.
Collapse
Affiliation(s)
- Emmanuel Kwateng Drokow
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Kai Sun
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Hafiz Abdul Waqas Ahmed
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Gloria Selorm Akpabla
- Department of Pathophysiology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, People’s Republic of China
| | - Juanjuan Song
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| | - Mingyue Shi
- Department of Haematology, Zhengzhou University People’s Hospital & Henan Provincial People’s Hospital Henan, Zhengzhou, People’s Republic of China
| |
Collapse
|
12
|
Discovery of the Oncogenic Parp1, a Target of bcr-abl and a Potential Therapeutic, in mir-181a/PPFIA1 Signaling Pathway. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:1-14. [PMID: 30825668 PMCID: PMC6393709 DOI: 10.1016/j.omtn.2019.01.015] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 01/26/2019] [Accepted: 01/30/2019] [Indexed: 02/06/2023]
Abstract
miR-181a is downregulated in leukemia and affects its progression, drug resistance, and prognosis. However, the exact mechanism of its targets in leukemia, particularly in chronic myelogenous leukemia (CML), has not previously been established. Here, we use a multi-omics approach to demonstrate that protein tyrosine phosphatase, receptor type, f polypeptide, leukocyte common antigen (LAR) interacting protein (liprin), alpha 1 (PPFIA1) is a direct target for miR-181a in CML. Phospho-array assay shows that multiple phosphorylated proteins, particularly KIT signaling molecules, were downregulated in PPFIA1 inhibition. Additionally, PPFIA1 bound PARP1, a common molecule downstream of both PPFIA1 and BCR/ABL, to upregulate KIT protein through activation of nuclear factor kappa B (NF-κB)-P65 expression. Targeted inhibition of PPFIA1 and PARP1 downregulated c-KIT level, inhibited CML cell growth, and prolonged mouse survival. Overall, we report a critical regulatory miR-181a/PPFIA1/PARP1/NF-κB-P65/KIT axis in CML, and our preclinical study supports that targeted PPFIA1 and PARP1 may serve as a potential CML therapy.
Collapse
|
13
|
Chen X, Lv C, Zhu X, Lin W, Wang L, Huang Z, Yang S, Sun J. MicroRNA-504 modulates osteosarcoma cell chemoresistance to cisplatin by targeting p53. Oncol Lett 2018; 17:1664-1674. [PMID: 30675226 PMCID: PMC6341607 DOI: 10.3892/ol.2018.9749] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 09/13/2018] [Indexed: 12/15/2022] Open
Abstract
Chemoresistance implicates the therapeutic value of cisplatin and remains a primary obstacle to its clinical use. MicroRNAs (miRs) negatively modulate the expression of their target genes and are associated with the occurrence and progression of various types of tumor. The abnormal expression of miR-504 has been reported in certain types of human tumor and has been associated with tumor prognosis. However, the association between miR-504 and cisplatin in human osteosarcoma remains unclear. The present study therefore aimed to assess the in vitro effects and possible mechanism of miR-504 in cell proliferation, apoptosis and cisplatin resistance in MG63 osteosarcoma cells. The results demonstrated that miR-504 was overexpressed in osteosarcoma tissues and cells. This overexpression also induced cell proliferation, as determined by MTT and EdU staining assays. Furthermore, miR-504 suppressed cisplatin-induced apoptosis, which was demonstrated via MTT, cell morphology analysis and flow cytometry. Cisplatin-induced G1 arrest was also suppressed, which was determined by flow cytometry. The potential target genes of miR-504 were predicted using bioinformatics. p53 was confirmed to be a direct target of miR-504 using a luciferase reporter assay and western blot analysis revealed that miR-504 negatively regulated p53 expression at a molecular level. These results indicate that miR-504 contributes to cisplatin resistance in MG63 osteosarcoma cells by suppressing p53. miR-504 may therefore be a potential biomarker for cisplatin resistance in patients with osteosarcoma.
Collapse
Affiliation(s)
- Xin Chen
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China.,Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Chen Lv
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Xiongbai Zhu
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjun Lin
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Lu Wang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Zhengxiang Huang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Shengwu Yang
- Department of Orthopaedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325000, P.R. China
| | - Junying Sun
- Department of Orthopaedics and Traumatology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, P.R. China
| |
Collapse
|
14
|
Liu Q, Geng P, Shi L, Wang Q, Wang P. miR-29 promotes osteosarcoma cell proliferation and migration by targeting PTEN. Oncol Lett 2018; 17:883-890. [PMID: 30655843 PMCID: PMC6313002 DOI: 10.3892/ol.2018.9646] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 10/10/2018] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma (OS) is an aggressive malignant neoplasm that arises from primitively transformed cells of mesenchymal origin, and that exhibits osteoblastic differentiation and produces malignant osteoid. MicroRNAs (miRNAs) have been widely reported to have important regulatory roles in various human tumors, including OS. However, the potential mechanism of miR-29 in OS remains largely unknown. miR-29 was highly expressed in OS and overexpression of miR-29 promoted OS cell proliferation, as well as proliferating cell nuclear antigen (PCNA) expression and migration, whereas lower expression of miR-29 inhibited OS cell proliferation, PCNA expression and migration. In the present study, a dual-luciferase reporter system supporting phosphatase and tensin homolog (PTEN) was a target of miR-29 and its expression was inhibited by miR-29 mimic, but increased by miR-29 inhibitor. Overexpression of PTEN inhibited OS cell proliferation and migration and it could attenuate miR-29 promotion effect on OS progression. Overall, the results revealed that miR-29, as a tumor promoter, is involved in OS progression and metastasis by targeting PTEN, indicating that the miR-29/PTEN pathway is a potential therapeutic target for the treatment of OS.
Collapse
Affiliation(s)
- Qiuliang Liu
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Peishuo Geng
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Longyan Shi
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Qi Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| | - Pengliang Wang
- Department of Pediatric Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, P.R. China
| |
Collapse
|
15
|
Liu H, Wei W, Wang X, Guan X, Chen Q, Pu Z, Xu X, Wei A. miR‑23b‑3p promotes the apoptosis and inhibits the proliferation and invasion of osteosarcoma cells by targeting SIX1. Mol Med Rep 2018; 18:5683-5692. [PMID: 30387818 DOI: 10.3892/mmr.2018.9611] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Accepted: 09/04/2018] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma (OS) is the most common primary malignant bone tumor and the third most common cancer that occurs during childhood and adolescence. Increasing evidence has suggested that microRNA (miR)‑23b‑3p has an important role in OS tumorigenesis; however, the underlying molecular mechanisms remain unknown. The aim of the present study was to investigate the expression levels of miR‑23b‑3p and sine oculis homeobox homolog 1 (SIX1) in OS tissues and cell lines (MG‑63, SaOS‑2 and U2OS), as well as to observe the effects of miR‑23b‑3p on U2OS cell viability, cell cycle, apoptosis and invasive ability. The results revealed that the expression levels of miR‑23b‑3p were significantly decreased in OS tissues and cell lines compared with tumor‑adjacent normal tissues and a non‑cancerous human fetal osteoblastic cell line (hFOB1.19). To investigate the underlying mechanisms of miR‑23b‑3p in OS tumorigenesis and progression, human U2OS cell lines over‑ or under expressing miR‑23b‑3p were established. The effects of miR‑23b‑3p on U2OS cell viability, cell cycle, apoptosis and invasion properties were determined by performing Cell Counting Kit‑8, flow cytometry and Transwell invasion assays. miR‑23b‑3p was revealed to suppress cell viability, proliferation and invasion, and to enhance the levels of cell apoptosis. Furthermore, SIX1 mRNA and protein expression levels in OS tissues and cell lines were significantly upregulated when compared with tumor‑adjacent normal tissues and hFOB 1.19 cells, which suggested that SIX1 expression levels may be inversely associated with miR‑23b‑3p levels in OS. Luciferase reporter system analysis demonstrated that miR‑23b‑3p binds to the SIX1 3'‑untranslated region. miR‑23b‑3p downregulation contributed to SIX1 upregulation, which facilitated the potentiation of cyclin D1 and vascular endothelial growth factor‑C expression levels, as well as the inhibition of caspase‑3 expression. Collectively, these results suggested that miR‑23b‑3p is downregulated and SIX1 is upregulated in OS cells, and that miR‑23b‑3p inhibition may suppress the proliferation and invasion of OS cells, and contribute to cell apoptosis via negative regulation of SIX1. miR‑23b‑3p/SIX1 may therefore represent a potential target for the treatment of OS.
Collapse
Affiliation(s)
- Hua Liu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Wei Wei
- Department of Orthopedics, Jiangsu Provincial Hospital of Traditional Chinese Medicine, Nanjing, Jiangsu 210001, P.R. China
| | - Xiaojian Wang
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Xiaojun Guan
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Qingqing Chen
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Zhongjin Pu
- Department of Tumor, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Xudong Xu
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| | - Aichun Wei
- Department of Orthopedics, Haian Hospital of Traditional Chinese Medicine, Haian, Jiangsu 226600, P.R. China
| |
Collapse
|
16
|
Targeting the RAS/MAPK pathway with miR-181a in acute myeloid leukemia. Oncotarget 2018; 7:59273-59286. [PMID: 27517749 PMCID: PMC5312311 DOI: 10.18632/oncotarget.11150] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2016] [Accepted: 07/19/2016] [Indexed: 12/13/2022] Open
Abstract
Deregulation of microRNAs' expression frequently occurs in acute myeloid leukemia (AML). Lower miR-181a expression is associated with worse outcomes, but the exact mechanisms by which miR-181a mediates this effect remain elusive. Aberrant activation of the RAS pathway contributes to myeloid leukemogenesis. Here, we report that miR-181a directly binds to 3′-untranslated regions (UTRs); downregulates KRAS, NRAS and MAPK1; and decreases AML growth. The delivery of miR-181a mimics to target AML cells using transferrin-targeting lipopolyplex nanoparticles (NP) increased mature miR-181a; downregulated KRAS, NRAS and MAPK1; and resulted in decreased phosphorylation of the downstream RAS effectors. NP-mediated upregulation of miR-181a led to reduced proliferation, impaired colony formation and increased sensitivity to chemotherapy. Ectopic expression of KRAS, NRAS and MAPK1 attenuated the anti-leukemic activity of miR-181a mimics, thereby validating the relevance of the deregulated miR-181a-RAS network in AML. Finally, treatment with miR-181a-NP in a murine AML model resulted in longer survival compared to mice treated with scramble-NP control. These data support that targeting the RAS-MAPK-pathway by miR-181a mimics represents a novel promising therapeutic approach for AML and possibly for other RAS-driven cancers.
Collapse
|
17
|
Gu C, Feng M, Yin Z, Luo X, Yang J, Li Y, Li T, Wang R, Fei J. RalA, a GTPase targeted by miR-181a, promotes transformation and progression by activating the Ras-related signaling pathway in chronic myelogenous leukemia. Oncotarget 2018; 7:20561-73. [PMID: 26967392 PMCID: PMC4991475 DOI: 10.18632/oncotarget.7987] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 02/16/2016] [Indexed: 12/26/2022] Open
Abstract
BCR/ABL is a well-known activator of multiple signaling pathways. RalA, a Ras downstream signaling molecule and a small GTPase, plays an important role in Bcr-Abl-induced leukemogenesis but the exact mechanism remains elusive. Here, we show that RalA GTPase activity is commonly high in chronic myelogenous leukemia (CML) cell lines and patient samples. Overexpression of RalA results in malignant transformation and progression, and induces resistance to imatinib (IM) in BaF3 and K562 cell lines. RalA reduced survival and led to IM resistance in a xenografted mouse model. Ablation of RalA by either siRNA or miR-181a, a RalA targeting microRNA, attenuated the malignant phenotypes in K562 cells. RBC8, a selective Ral inhibitor, enhanced the inhibitory effects of IM in K562, KCL22 and BaF3-P210 cells. Interestingly, the phospho-specific protein microarray assay revealed that multiple phosphorylation signal proteins were decreased by RalA inhibition, including SAPK, JNK, SRC, VEGFR2, P38 MAPK, c-Kit, JunB, and Keratin18. Among them, P38 MAPK and SAPK/JNK are Ras downstream signaling kinases. Taken together, RalA GTPase might be an important oncogene activating the Ras-related signaling pathway in CML.
Collapse
Affiliation(s)
- Chunming Gu
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Insititute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou 510632, China
| | - Maoxiao Feng
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
| | - Zhao Yin
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
| | - Xiaochuang Luo
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
| | - Juhua Yang
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
| | - Yumin Li
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China
| | - Tianfu Li
- Department of Clinical Medicine, Medical College of Jinan University, Guangzhou 510632, China
| | - Ruirui Wang
- Department of Clinical Medicine, Medical College of Jinan University, Guangzhou 510632, China
| | - Jia Fei
- Department of Biochemistry and Molecular Biology, Medical College of Jinan University, Guangzhou 510632, China.,Insititute of Chinese Integrative Medicine, Medical College of Jinan University, Guangzhou 510632, China
| |
Collapse
|
18
|
|
19
|
Gu X, Jin R, Mao X, Wang J, Yuan J, Zhao G. Prognostic value of miRNA-181a/b in colorectal cancer: a meta-analysis. Biomark Med 2017; 12:299-308. [PMID: 28841043 DOI: 10.2217/bmm-2016-0222] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
AIMS miR-181a and miR-181b have been investigated as prognostic biomarkers of colorectal cancer (CRC). However, there is controversy about the role of miR-181a and miR-181b in predicting CRC prognosis. Therefore, we performed this meta-analysis to evaluate prognostic values of miR-181a and miR-181b in CRC patients. MATERIALS & METHODS Studies were systemically searched from publications and analyzed, and 999 CRC cases in nine studies were examined in this meta-analysis. RESULTS Hazard ratio for overall survival of high miR-181a and miR-181b expression in CRC was 1.65. More prominent predictive effects were observed in black people, miR-181b group and small-sample-size group. CONCLUSION High levels of miR-181a and miR-181b predict poor overall survival in CRC patients. miR-181a and miR-181b are promising biomarkers for CRC prognosis.
Collapse
Affiliation(s)
- Xingwei Gu
- Department of General Surgery, Danyang People's Hospital of Jiangsu Province, Danyang affiliated Hospital of Nantong University, Danyang 213000, PR China
| | - Rong Jin
- Department of Obstetrics & Gynecology, Danyang People's Hospital of Jiangsu Province, Danyang affiliated Hospital of Nantong University, Danyang 213000, PR China
| | - Xuping Mao
- Department of General Surgery, Danyang People's Hospital of Jiangsu Province, Danyang affiliated Hospital of Nantong University, Danyang 213000, PR China
| | - Jun Wang
- Department of General Surgery, The Second People's Hospital of Taizhou, Taizhou 225300, PR China
| | - Jintao Yuan
- Department of Clinical Laboratory, Danyang People's Hospital of Jiangsu Province, Danyang affiliated Hospital of Nantong University, Danyang 213000, RP China
| | - Guodong Zhao
- Department of General Surgery, Danyang People's Hospital of Jiangsu Province, Danyang affiliated Hospital of Nantong University, Danyang 213000, PR China
| |
Collapse
|
20
|
Fu L, Fu H, Qiao J, Pang Y, Xu K, Zhou L, Wu Q, Li Z, Ke X, Xu K, Shi J. High expression of CPNE3 predicts adverse prognosis in acute myeloid leukemia. Cancer Sci 2017; 108:1850-1857. [PMID: 28670859 PMCID: PMC5581509 DOI: 10.1111/cas.13311] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 01/17/2023] Open
Abstract
CPNE3, a member of a Ca2+‐dependent phospholipid‐binding protein family, was identified as a ligand of ERBB2 and has a more general role in carcinogenesis. Here, we identified the prognostic significance of CPNE3 expression in acute myeloid leukemia (AML) patients based on two datasets. In the first microarray dataset (n = 272), compared to low CPNE3 expression (CPNE3low), high CPNE3 expression (CPNE3high) was associated with adverse overall survival (OS, P < 0.001) and event‐free survival (EFS, P < 0.001). In the second independent group of AML patients (TCGA dataset, n = 179), CPNE3high was also associated with adverse OS and EFS (OS, P = 0.01; EFS, P = 0.036). Notably, among CPNE3high patients, those received allogenic hematopoietic cell transplantation (HCT) had longer OS and EFS than those with chemotherapy alone (allogeneic HCT, n = 40 vs chemotherapy, n = 46), but treatment modules played an insignificant role in the survival of CPNE3low patients (allogeneic HCT, n = 32 vs chemotherapy, n = 54). These results indicated that CPNE3high is an independent, adverse prognostic factor in AML and might guide treatment decisions towards allogeneic HCT. To understand its inherent mechanisms, we investigated genome‐wide gene/microRNA expression signatures and cell signaling pathways associated with CPNE3 expression. In conclusion, CPNE3high is an adverse prognostic biomarker for AML. Its effect may be attributed to the distinctive genome‐wide gene/microRNA expression and related cell signaling pathways.
Collapse
Affiliation(s)
- Lin Fu
- Department of Hematology and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China.,Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| | - Huaping Fu
- Departments of Nuclear Medicine, Chinese PLA General Hospital, Beijing, China
| | - Jianlin Qiao
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yifan Pang
- Department of Medicine, William Beaumont Hospital, Royal Oak, MI, USA
| | - Keman Xu
- Northeastern University, Boston, MA, USA
| | - Lei Zhou
- Department of Hematology, Chinese PLA General Hospital, Beijing, China
| | - Qingyun Wu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Zhenyu Li
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Third Hospital, Peking University, Beijing, China
| | - Kailin Xu
- Department of Hematology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Jinlong Shi
- Departments of Biomedical Engineering, Chinese PLA General Hospital, Beijing, China.,Departments of Medical Big Data, Chinese PLA General Hospital, Beijing, China.,Department of Hematology, Huaihe Hospital of Henan University, Kaifeng, China
| |
Collapse
|
21
|
Nabhan M, Louka ML, Khairy E, Tash F, Ali-Labib R, El-Habashy S. MicroRNA-181a and its target Smad 7 as potential biomarkers for tracking child acute lymphoblastic leukemia. Gene 2017; 628:253-258. [PMID: 28732737 DOI: 10.1016/j.gene.2017.07.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 05/10/2017] [Accepted: 07/17/2017] [Indexed: 01/11/2023]
Abstract
Acute lymphoblastic leukemia (ALL) is the most common pediatric hematologic tumor. MiR-181a was expected to have a role in the development of hematological malignancies; it might act as tumor suppressor or oncogene. Smad7 was selected as miR-181a target pair. It is a negative regulator for the TGF-β1 signaling pathway. In this study, relative expression levels of miR-181a by quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), both Smad 7 and TGF-β1 proteins levels by enzyme linked immunosorbent assay (ELISA) were all measured in serum of 60 child, 30 with ALL and 30 age and sex matched healthy child as control group. MiR-181a expression showed highly significant decrease; plus a significant increase and decrease of Smad7 and TGF-β1 protein levels respectively, in serum samples of ALL as compared to control group. MiR-181a expression achieved a highly significant positive and a significant negative correlation with TGF-β1 and Smad7 respectively. Furthermore, the levels of Smad7 and TGF-β1 were negatively correlated with each other (p<0.05). Although, positivity rate of both Smad7 and TGF-β1 in ALL group increased with presence of hepatosplenomegaly, still there was no statistical significance. In conclusion, miR-181a could act as a tumor suppressor in pediatric ALL with over expression of its target pair, Smad7. Smad7 regulates TGF-β1 signaling via a negative feedback loop and mediates the interaction between TGF-β1 and other signaling pathways; suggesting that Smad7 over expression may have therapeutic potential in ALL.
Collapse
Affiliation(s)
- Marwa Nabhan
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Manal L Louka
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Eman Khairy
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt.
| | - Fathy Tash
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Randa Ali-Labib
- Medical Biochemistry and Molecular Biology Department, Faculty of Medicine, Ain Shams University, Abbassia, Cairo, P.O. Box 11381, Egypt
| | - Safinaz El-Habashy
- Pediatrics Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| |
Collapse
|
22
|
Guo Q, Luan J, Li N, Zhang Z, Zhu X, Zhao L, Wei R, Sun L, Shi Y, Yin X, Ding N, Jiang G, Li X. MicroRNA-181 as a prognostic biomarker for survival in acute myeloid leukemia: a meta-analysis. Oncotarget 2017; 8:89130-89141. [PMID: 29179505 PMCID: PMC5687675 DOI: 10.18632/oncotarget.19195] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Accepted: 06/28/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has indicated that microRNA-181 (miR-181) is dysregulated in hematological malignancies, and associates with the clinical outcomes. However, the association of miR-181 expression levels with acute myeloid leukemia (AML) remains inconclusive, as publications from different groups have reported contradictory results. In this manuscript, a meta-analysis was performed to assess the prognostic significance of miR-181 in AML patients. Eligible studies were retrieved from PubMed, Embase and Cochrane Library databases, and a total of 6 studies including 815 AML patients were included in the final analysis. Hazard ratios (HRs) and their corresponding 95% confidence intervals (CIs) were extracted and pooled to investigate the correlation between miR-181 and the survival of AML patients. Our results showed that elevated miR-181 expression was associated with increased survival in 395 American patients, and reduced survival in 325 Chinese patients. Both subgroup analyses and meta-regression indicated that the origin of AML patients contributed to the heterogeneity in the datasets evaluating the correlation between overall survival (OS) and miR-181. These results indicate that miR-181 can be used as a promising prognostic biomarker in AML patients, which may depend on the origin of patient population.
Collapse
Affiliation(s)
- Qiang Guo
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Junwen Luan
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Ni Li
- Muping Hospital of Traditional Chinese Medicine, Yantai 264100, Shandong, China
| | - Zhen Zhang
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Xiaoxiao Zhu
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Lin Zhao
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Ran Wei
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Linlin Sun
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Yin Shi
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Xunqiang Yin
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China.,School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Na Ding
- Shandong Institute of Scientific and Technical Information, Jinan 250101, Shandong, China
| | - Guosheng Jiang
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| | - Xia Li
- Laboratory for TCM Immunology and Epigenetics, Institute of Basic Medicine, Shandong Academy of Medical Sciences, Jinan 250062, Shandong, China
| |
Collapse
|
23
|
Lin W, Zhu X, Yang S, Chen X, Wang L, Huang Z, Ding Y, Huang L, Lv C. MicroRNA-203 inhibits proliferation and invasion, and promotes apoptosis of osteosarcoma cells by targeting Runt-related transcription factor 2. Biomed Pharmacother 2017; 91:1075-1084. [PMID: 28525948 DOI: 10.1016/j.biopha.2017.05.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 04/29/2017] [Accepted: 05/06/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence indicates that microRNA-203 (miR-203) is abnormally expressed in many human tumor tissues and significantly associated with the occurrence, development and clinical outcomes of human tumors. The aim of this study was to determine the target genes and functional significance of miR-203 in osteosarcoma cells. We found reduced expression of miR-203 in osteosarcoma tissues and cells (MG63 and U2-OS) compared with the adjacent normal tissues and normal osteoblastic cells (hFOB1.19), respectively. In vitro studies further demonstrated that exogenous miR-203 overexpression inhibited osteosarcoma cell proliferation and invasion, and promoted apoptosis. At the molecular level, our results confirmed that apoptosis, cell cycle and invasion-related proteins were regulated by miR-203. Our findings also revealed that Runt-related transcription factor 2 (RUNX2) was directly negatively regulated by miR-203. These results suggested that miR-203 may function as a tumor suppressor and may therefore have therapeutic potential in the treatment of human osteosarcoma.
Collapse
Affiliation(s)
- Wenjun Lin
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xiongbai Zhu
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Shengwu Yang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Xin Chen
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lu Wang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Zhengxiang Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Yewei Ding
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Lintuo Huang
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China
| | - Chen Lv
- Department of Orthopedics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, Zhejiang, China.
| |
Collapse
|
24
|
Zhou G, Cao Y, Dong W, Lin Y, Wang Q, Wu W, Hua X, Ling Y, Xie X, Hu S, Cen J, Gu W. The clinical characteristics and prognostic significance of AID, miR-181b, and miR-155 expression in adult patients with de novo B-cell acute lymphoblastic leukemia. Leuk Lymphoma 2017; 58:1-9. [PMID: 28140712 DOI: 10.1080/10428194.2017.1283028] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
This study aimed to investigate clinical characteristics and prognostic significance of activation-induced cytidine deaminase (AID) gene, miR-181b and miR-155 expression in de novo adult B-cell acute lymphoblastic leukemia (B-ALL) patients. Results showed that AID and miR-155 expression were higher in B-ALL patients than healthy controls, while miR-181b expression was lower in B-ALL patients. In addition, Ph+ B-ALLs had higher AID expression than Ph- B-ALLs, and its high expression was associated with BCR-ABL. Moreover, B-ALL patients with AIDhigh or miR-181blow expression had a shorter overall survival (OS). AIDhigh with miR-181blow, AIDhigh with miR-155low, miR-181blow, miR-155low, AIDhigh with miR-181blow and miR-155low expression were associated with shorter OS. Combination of the three molecules are more accurate predictors for unfavorable OS compared with univariate group. Therefore, AID, miR-181b and miR-155 provide clinical prognosis of adult de novo B-ALL patients and may refine their molecular risk classification.
Collapse
Affiliation(s)
- Guangquan Zhou
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Yang Cao
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Weimin Dong
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Yan Lin
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Qi Wang
- b Laboratory of Oncology, The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Wei Wu
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Xiaoying Hua
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Yun Ling
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Xiaobao Xie
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| | - Shaoyan Hu
- c Department of Hematology , Children's Hospital of Suzhou University , Suzhou , Jiangsu Province , PR China
| | - Jiannong Cen
- d Laboratory of Leukemia, Jiangsu Institute of Hematology, The First Affiliated Hospital of Suzhou University , Suzhou , Jiangsu Province , PR China
| | - Weiying Gu
- a Department of Hematology , The Third Affiliated Hospital of Suzhou University, The First People's Hospital of Changzhou , Changzhou , Jiangsu Province , PR China
| |
Collapse
|
25
|
Regulatory network analysis of microRNAs and genes in imatinib-resistant chronic myeloid leukemia. Funct Integr Genomics 2016; 17:263-277. [PMID: 27638632 DOI: 10.1007/s10142-016-0520-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Revised: 08/20/2016] [Accepted: 08/30/2016] [Indexed: 12/24/2022]
Abstract
Targeted therapy in the form of selective breakpoint cluster region-abelson (BCR/ABL) tyrosine kinase inhibitor (imatinib mesylate) has successfully been introduced in the treatment of the chronic myeloid leukemia (CML). However, acquired resistance against imatinib mesylate (IM) has been reported in nearly half of patients and has been recognized as major issue in clinical practice. Multiple resistance genes and microRNAs (miRNAs) are thought to be involved in the IM resistance process. These resistance genes and miRNAs tend to interact with each other through a regulatory network. Therefore, it is crucial to study the impact of these interactions in the IM resistance process. The present study focused on miRNA and gene network analysis in order to elucidate the role of interacting elements and to understand their functional contribution in therapeutic failure. Unlike previous studies which were centered only on genes or miRNAs, the prime focus of the present study was on relationships. To this end, three regulatory networks including differentially expressed, related, and global networks were constructed and analyzed in search of similarities and differences. Regulatory associations between miRNAs and their target genes, transcription factors and miRNAs, as well as miRNAs and their host genes were also macroscopically investigated. Certain key pathways in the three networks, especially in the differentially expressed network, were featured. The differentially expressed network emerged as a fault map of IM-resistant CML. Theoretically, the IM resistance process could be prevented by correcting the included errors. The present network-based approach to study resistance miRNAs and genes might help in understanding the molecular mechanisms of IM resistance in CML as well as in the improvement of CML therapy.
Collapse
|
26
|
Cao Y, Chen J, Wang D, Peng H, Tan X, Xiong D, Huang A, Tang H. Upregulated in Hepatitis B virus-associated hepatocellular carcinoma cells, miR-331-3p promotes proliferation of hepatocellular carcinoma cells by targeting ING5. Oncotarget 2016; 6:38093-106. [PMID: 26497554 PMCID: PMC4741986 DOI: 10.18632/oncotarget.5642] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/02/2015] [Indexed: 02/07/2023] Open
Abstract
Hepatitis B virus (HBV) is a major risk factor for development and progression of hepatocellular carcinoma (HCC). It has been reported that viral infection can interfere with cellular microRNA (miRNA) expression and participate in the pathogenesis of oncogenicity. Our miRNAs array data indicated that miR-331-3p expression in HCC cell lines increased, but the relationship between miR-331-3p expression and HBV activity is unclear. Here, we observed elevated expression of miR-331-3p in different HCC cell lines expressing HBV. HBV, especially HBx, promotes miR-331-3p expression by enhancing its promoter activity. Using a miRNA target prediction database miRBase, we identified ING5 to be a novel target gene of miR-331-3p. miR-331-3p could inhibit ING5 expression by directly targeting its 3′-untranslated region (3′-UTR). As predicted, HBV was confirmed to repress ING5 at both mRNA and protein levels by promoting miR-331-3p expression. Our result indicated that miR-331-3p expression promotes proliferation of SMMC7721 cells by inhibiting ING5. ING5 overexpression promoted cell apoptosis in HCC cell lines. We also found ING5 expression was decreased in tumor tissue of HCC patient with HBV infection compared to its expression in para-carcinoma tissues. Conclusion: These results showed that miR-331-3p is upregulated by HBV and promotes proliferation of HCC cells though repression of ING5 expression. These data provide new insights for understanding the mechanisms of HBV-related HCC pathogenesis.
Collapse
Affiliation(s)
- Yiyi Cao
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Juan Chen
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dan Wang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Hong Peng
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Xixi Tan
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Dongmei Xiong
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| | - Ailong Huang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China.,Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang University, Hangzhou, China
| | - Hua Tang
- Key Laboratory of Molecular Biology on Infectious Diseases, Ministry of Education, Second Affiliated Hospital, Chongqing Medical University, Chongqing, China
| |
Collapse
|
27
|
Prasad G, Seers C, Reynolds E, McCullough MJ. The assessment of the robustness of microRNAs from oral cytological scrapings. J Oral Pathol Med 2016; 46:359-364. [PMID: 27560550 DOI: 10.1111/jop.12489] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/01/2016] [Indexed: 11/28/2022]
Abstract
BACKGROUND Sampling of suspect oral lesions in the general dental clinic may increase early carcinoma detection thus oral cancer survival rates. One means of lesion sampling that is an alternative to incisional biopsy is cytological scraping. MicroRNA alterations are also being explored as a means of diagnosing carcinoma as an alternative to histopathology. METHODS We obtained cytological scrapings using 10 strokes ('light') or 40 strokes ('heavy') from the buccal mucosa of one healthy subject using a dermatological curette. MicroRNA was isolated from oral cytological scrapings immediately, or the scrapings were stored in buffer or RNA later, at 4°C, room temperature or 36°C, from 1 to 7 days prior to RNA isolation. All scrape comparisons and test conditions were conducted in triplicate. MicroRNAs were measured using qRT-PCR. RESULTS MicroRNAs can be obtained from cytological scrapings independent of the number of strokes and can be measured using qRT-PCR after storage under all conditions tested. CONCLUSION MicroRNAs are robust to a wide range of storage conditions that bodes well for use of cytological scrapings to be of use in a clinical setting as a chair side sampling method for suspect oral lesions.
Collapse
Affiliation(s)
- Gareema Prasad
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia.,Oral Health Cooperative Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Christine Seers
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia.,Oral Health Cooperative Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Eric Reynolds
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia.,Oral Health Cooperative Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| | - Michael J McCullough
- Melbourne Dental School, The University of Melbourne, Melbourne, VIC, Australia.,Oral Health Cooperative Research Centre, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
28
|
Xu H, Zhu J, Hu C, Song H, Li Y. Inhibition of microRNA-181a may suppress proliferation and invasion and promote apoptosis of cervical cancer cells through the PTEN/Akt/FOXO1 pathway. J Physiol Biochem 2016; 72:721-732. [PMID: 27534652 DOI: 10.1007/s13105-016-0511-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 08/01/2016] [Indexed: 02/06/2023]
Abstract
MicroRNAs (miRNAs) are endogenous, non-coding, small RNAs, which play a critical role in regulating varieties of the biological and pathologic processes. miR-181a has been reported to participate in tumorigenic progression. However, the roles of miR-181a in cervical cancer (CC) are still unknown. The aim of this research was to explore the effects and molecular mechanism of miR-181a in CC cells. In this paper, the levels of miR-181a in CC cell lines were determined by real-time PCR. We found that the levels of miR-181a were evidently enhanced in CC cell lines compared with normal cervical epithelium cells. Then, the miR-181a inhibitor was transiently transfected into HeLa and CaSKi cells using Lipofectamine 2000 reagent. Subsequently, the Cell Counting Kit-8 (CCK-8) and BrdU-ELISA results showed that down-regulation of miR-181a inhibited the cell viability and proliferation. Our data also demonstrated that miR-181a inhibitor arrested cell cycle progression of HeLa and CaSKi cells by up-regulation of p21 and p27 expressions. In addition, inhibition of miR-181a promoted apoptosis of HeLa and CaSKi cells due to increasing Bax expression and decreasing Bcl-2 expression. Ultimately, the effect of miR-181a inhibitor on the PTEN/Akt/FOXO1 signaling pathway was investigated by Western blot. From our results, down-regulation of miR-181a increased the expression of PTEN and decreased phosphorylation of Akt and FOXO1. Altogether, miR-181a might be an oncogene in CC cells. The potential mechanism was that inhibition of miR-181a might suppress proliferation and invasion and promote apoptosis of HeLa and CaSKi cells by modulating the PTEN/Akt/FOXO1 signaling pathway.
Collapse
Affiliation(s)
- Hongmei Xu
- Department of Obstetrics, the First Hospital of Jilin University, Changchun, 130021, China
| | - Jihong Zhu
- Section I, Department of General Gynecology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, China
| | - Cong Hu
- Reproductive Center, the First Hospital of Jilin University, Changchun, 130021, China
| | - Hua Song
- Department of Gynecology and Obstetrics, Qianwei Hospital of Jilin Province, Changchun, 130012, China
| | - Yiyang Li
- Section I, Department of General Gynecology, the First Hospital of Jilin University, No. 71, Xinmin Street, Changchun, 130021, China.
| |
Collapse
|
29
|
Gupta A, Sharma A, Yadav A, Rastogi N, Agrawal S, Kumar A, Kumar V, Misra S, Mittal B. Evaluation of miR-27a, miR-181a, and miR-570 genetic variants with gallbladder cancer susceptibility and treatment outcome in a North Indian population. Mol Diagn Ther 2016; 19:317-27. [PMID: 26288960 DOI: 10.1007/s40291-015-0159-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
INTRODUCTION miR-27a, miR-181a, and miR-570 genetic variants have been found to play an important role in many cancers, but their contribution in gallbladder carcinoma (GBC) has not been explored. Therefore, we investigated the role of these micro RNA (miRNA) genetic variants in terms of GBC susceptibility, therapeutic response, toxicities associated with chemo-radiotherapy and survival outcome. METHODS This study included 606 GBC patients and 200 healthy controls. From among the larger study cohort, 219 patients receiving adjuvant or palliative chemo-radiotherapy as per disease status were followed up for toxicity profile. Treatment response was recorded in 159 patients who received palliative chemo-radiotherapy. Genotypes were determined using allelic discrimination assay. Statistical analysis was carried out with SPSS version 16. Generalized multifactor dimensionality reduction (GMDR) analysis was performed for gene-gene interactions. Survival analysis was performed using Kaplan-Meier and Cox regression tests. RESULTS In univariate logistic regression analysis, no association with any of the studied polymorphisms was found in overall GBC susceptibility. Furthermore, univariate and multivariate analyses revealed no significant association with response to chemo-radiotherapy. In GMDR analysis, miR-27ars895819, miR-570rs4143815, and miR-181ars12537 combination was found as the best gene-gene interaction model for susceptibility and treatment response. Furthermore, miR-27ars895819miR-181ars12537 was associated with neutropenia toxicity in patients undergoing chemo-radiotherapy. However, miRNA variants had no influence over the survival outcomes of GBC patients (locally advanced, metastatic). CONCLUSION In conclusion, the miRNA variants cumulatively influence GBC susceptibility and treatment outcomes.
Collapse
Affiliation(s)
- Annapurna Gupta
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Aarti Sharma
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Anu Yadav
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India
| | - Neeraj Rastogi
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Sushma Agrawal
- Department of Radiotherapy, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Ashok Kumar
- Department of Surgical Gastroenterology, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, India
| | - Vijay Kumar
- Department of Surgical Oncology, King George's Medical University, Lucknow, India
| | - Sanjeev Misra
- Department of Surgical Oncology, King George's Medical University, Lucknow, India
| | - Balraj Mittal
- Department of Genetics, Sanjay Gandhi Post Graduate Institute of Medical Sciences (SGPGIMS), Lucknow, Uttar Pradesh, 226014, India.
| |
Collapse
|
30
|
Fu L, Shi J, Hu K, Wang J, Wang W, Ke X. Mitogen-activated protein kinase binding protein 1 (MAPKBP1) is an unfavorable prognostic biomarker in cytogenetically normal acute myeloid leukemia. Oncotarget 2016; 6:8144-54. [PMID: 25924238 PMCID: PMC4480741 DOI: 10.18632/oncotarget.3519] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 02/03/2015] [Indexed: 11/25/2022] Open
Abstract
Mitogen-activated protein kinase binding protein 1 (MAPKBP1) is a key transcription factor in the NF-κB signalling pathway. In this study, associations between MAPKBP1 expression and molecular and clinical characteristics were evaluated by several microarray datasets. We found that MAPKBP1 was over-expressed in cytogenetically normal AML (CN-AML) patients compared to normal bone marrow. High MAPKBP1 expression (MAPKBP1high) was associated with significantly shorter event-free survival (EFS; P = 0.0004) and overall survival (OS; P = 0.0006) than low MAPKBP1 expression (MAPKBP1low) in a cohort of 157 CN-AML patients. In multivariable analyses, MAPKBP1high remained associated with shorter EFS (P = 0.003) and OS (P = 0.01). Validation in an independent cohort of 162 CN-AML patients further confirmed the prognostic value of MAPKBP1 (OS, P = 0.00172). Gene-expression profiling revealed that some important oncogenes, including MYCN, MYB, CDK6 and CCND2, etc, were up-regulated, while cell signalling pathways leading to apoptosis, antigen processing, and natural killer cell-mediated cytotoxicity were down-regulated in MAPKBP1high patients with CN-AML. MicroRNA expression profiling revealed thatsome oncogenic microRNAsincluding miR-155 and miR-126 were up-regulated, whilst anti-oncogenic microRNAsincluding miR-148a and miR-193a were down-regulated in MAPKBP1high patients with CN-AML, which may underlie the pathological processes in this malignancy. Taken together, these findings suggest MAPKBP1highis a novel, unfavourably prognostic biomarker for CN-AML risk-stratification.
Collapse
Affiliation(s)
- Lin Fu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Jinlong Shi
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing, China
| | - Kai Hu
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Jijun Wang
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| | - Weidong Wang
- Medical Engineering Support Center, Chinese PLA General Hospital, Beijing, China
| | - Xiaoyan Ke
- Department of Hematology and Lymphoma Research Center, Peking University, Third Hospital, Beijing, China
| |
Collapse
|
31
|
Benzene-Induced Aberrant miRNA Expression Profile in Hematopoietic Progenitor Cells in C57BL/6 Mice. Int J Mol Sci 2015; 16:27058-71. [PMID: 26569237 PMCID: PMC4661859 DOI: 10.3390/ijms161126001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 12/24/2022] Open
Abstract
Benzene is a common environmental pollutant that causes hematological alterations. MicroRNAs (miRNAs) may play a role in benzene-induced hematotoxicity. In this study, C57BL/6 mice showed significant hematotoxicity after exposure to 150 mg/kg benzene for 4 weeks. Benzene exposure decreased not only the number of cells in peripheral blood but also hematopoietic progenitor cells in the bone marrow. Meanwhile, RNA from Lin− cells sorted from the bone marrow was applied to aberrant miRNA expression profile using Illumina sequencing. We found that 5 miRNAs were overexpressed and 45 miRNAs were downregulated in the benzene exposure group. Sequencing results were confirmed through qRT-PCR. Furthermore, we also identified five miRNAs which significantly altered in Lin−c-Kit+ cells obtained from benzene-exposed mice, including mmu-miR-34a-5p; mmu-miR-342-3p; mmu-miR-100-5p; mmu-miR-181a-5p; and mmu-miR-196b-5p. In summary, we successfully established a classical animal model to induce significant hematotoxicity by benzene injection. Benzene exposure may cause severe hematotoxicity not only to blood cells in peripheral circulation but also to hematopoietic cells in bone marrow. Benzene exposure also alters miRNA expression in hematopoietic progenitor cells. This study suggests that benzene induces alteration in hematopoiesis and hematopoiesis-associated miRNAs.
Collapse
|
32
|
Zhu J, Liu F, Wu Q, Liu X. MiR-221 increases osteosarcoma cell proliferation, invasion and migration partly through the downregulation of PTEN. Int J Mol Med 2015; 36:1377-83. [PMID: 26397386 DOI: 10.3892/ijmm.2015.2352] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 08/25/2015] [Indexed: 11/06/2022] Open
Abstract
Increasing evidence has demonstrated that microRNAs (miRNAs or miRs) are involved in cancer initiation and progression. Previous studies have indicated that miR-221 is one of the most consistently overexpressed miRNAs in multiple types of cancer. However, the role of miR-221 in osteosarcoma carcinogenesis and progression is not yet fully understood. Thus, the aim of the present study was to examine the expression of miR-221 in osteosarcoma and to determine the effects of miR-221 on the biological behavior of osteosarcoma cells. RT-qPCR revealed that the expression of miR-221 was significantly upregulated in the osteosarcoma tissues and osteosarcoma cell lines (p<0.05). In order to explore the role of miR-221 in osteosarcoma, the expression of miR-221 in the human osteosarcoma cell line MG‑63 was upregulated or downregulated by transfection with miR-221 mimic or miR-221 inhibitor, respectively. The results from RT-qPCR revealed that we had successfully generated MG‑63 cells in which miR-221 was either overexpressed or depleted. To investigate the effects of miR-221 on osteosarcoma cell proliferation, invasion and migration, a tetrazolium-based colorimetric assay, propidium iodide (PI) staining, a transwell migration assay and a wound healing assay were used in the present study. The results revealed that the proliferation, invasion and migration ability of the MG‑63 cells in which miR-221 was overexpressed was enhanced, and the proliferation, invasion and migration ability of the MG‑63 cells in which miR-221 was depleted was suppressed. The correlation between miR-221 and phosphatase and tensin homolog (PTEN) expression was investigated by RT-qPCR and western blot analysis. The results revealed that the downregulation of miR-221 significantly increased the expression of PTEN, whereas the upregulation of miR-221 significantly reduced the expression of PTEN. Taken together, our results suggest that miR-221 enhances the proliferation, invasion and migration ability of osteosarcoma cells partly by suppressing PTEN.
Collapse
Affiliation(s)
- Jianwei Zhu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Fan Liu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Quanming Wu
- Department of Orthopedics, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| | - Xiancheng Liu
- Department of Oncology, Affiliated Hospital of Nantong University, Nantong, Jiangsu 226001, P.R. China
| |
Collapse
|
33
|
He S, Zeng S, Zhou ZW, He ZX, Zhou SF. Hsa-microRNA-181a is a regulator of a number of cancer genes and a biomarker for endometrial carcinoma in patients: a bioinformatic and clinical study and the therapeutic implication. DRUG DESIGN DEVELOPMENT AND THERAPY 2015; 9:1103-75. [PMID: 25733820 PMCID: PMC4342183 DOI: 10.2147/dddt.s73551] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The aberrant expression of human microRNA-181a-1 (hsa-miR-181a) has been implicated in the pathogenesis of various cancers, serving as an oncogene or a tumor suppressor. However, the role of hsa-miR-181a in the pathogenesis of endometrial carcinoma (EC) and its clinical significance are unclear. This study aimed to search for the molecular targets of hsa-miR-181a using bioinformatic tools and then determine the expression levels of hsa-miR-181a in normal, hyperplasia, and EC samples from humans. To predict the targets of hsa-miR-181a, ten different algorithms were used, including miRanda-mirSVR, DIANA microT v5.0, miRDB, RNA22 v2, TargetMiner, TargetScan 6.2, PicTar, MicroCosm Targets v5, and miRWALK. Two algorithms, TarBase 6.0 and miRTarBase, were used to identify the validated targets of hsa-miR-181a-5p (a mature product of hsa-miR-181a), and the web-based Database for Annotation, Visualization and Integrated Discovery (DAVID) 6.7 was used to provide biological functional interpretation of the validated targets of hsa-miR-181a-5p. A total of 78 formalin-fixed, paraffin-embedded tissue specimens from 65 patients and 13 healthy subjects were collected and examined, including normal endometrium (n=13), endometrial hyperplasia (n=18), and EC (37 type I and 10 type II EC cases). Our bioinformatic studies have showed that hsa-miR-181a might regulate a large number of target genes that are important in the regulation of critical cell processes, such as cell fate, cell survival, metabolism, and cell death. To date, 313 targets of hsa-miR-181a have been validated, and 22 of these targets are cancer genes. The precision of predictions by all the algorithms for hsa-miR-181a-1’s targets was low. Many of these genes are involved in tumorigenesis of various cancers, including EC, based on the DAVID and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis. In comparison with normal endometrial tissue, the expression level of hsa-miR-181a was significantly increased in type I and type II EC (P<0.05), and type II EC exhibited a significant higher expression level of hsa-miR-181a than that in type I EC (P<0.05). In addition, there was a significant increase in the expression level of hsa-miR-181a in type II EC compared with endometrial hyperplasia (P<0.05). Taken together, these results suggest that hsa-miR-181a may serve as an oncogene in endometrial tumorigenesis and that hsa-miR-181a might be used as a new biomarker in the prediction of prognosis of EC in clinical practice. More functional and mechanistic studies are needed to validate the role of hsa-miR-181a in the development, progression, and metastasis of EC.
Collapse
Affiliation(s)
- Shuming He
- Department of Obstetrics and Gynecology, Xiaolan People's Hospital affiliated to Southern Medical University, Zhongshan, Guangdong, People's Republic of China
| | - Shumei Zeng
- Department of Obstetrics and Gynecology, Xiaolan People's Hospital affiliated to Southern Medical University, Zhongshan, Guangdong, People's Republic of China
| | - Zhi-Wei Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Zhi-Xu He
- Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| | - Shu-Feng Zhou
- Department of Pharmaceutical Sciences, College of Pharmacy, University of South Florida, Tampa, FL, USA ; Guizhou Provincial Key Laboratory for Regenerative Medicine, Stem Cell and Tissue Engineering Research Center and Sino-US Joint Laboratory for Medical Sciences, Guiyang Medical University, Guiyang, Guizhou, People's Republic of China
| |
Collapse
|
34
|
Ma QL, Wang JH, Wang YG, Hu C, Mu QT, Yu MX, Wang L, Wang DM, Yang M, Yin XF, Chen FF, Lu SS, Chen J, Zhu ZJ, Chen SJ, Jin J. High IDH1 expression is associated with a poor prognosis in cytogenetically normal acute myeloid leukemia. Int J Cancer 2015; 137:1058-65. [PMID: 25523507 DOI: 10.1002/ijc.29395] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Accepted: 12/04/2014] [Indexed: 12/31/2022]
Abstract
The prognostic value of IDH1 mutations has been systematically evaluated in acute myeloid leukemia (AML) patients recently. However, the role of IDH1 expression in AML is still under exploration. To investigate the clinical significance, we analyzed the IDH1/2 expression in 320 patients with cytogenetically normal AML (CN-AML) by quantitative real-time reverse-transcription polymerase chain reaction. High expression of IDH1 was predominant in patients with FLT3-ITD and DNMT3A mutations and less prevalent in cases with CEBPA double allele mutations. Strong association was observed between high IDH1 expression and low expression of microRNA 181 family. Prognosis was adversely affected by high IDH1 expression, with shorter overall survival and event-free survival in the context of clinical characteristics, including age, WBC count, and gene mutations of NPM1, FLT3-ITD, CEBPA, IDH1, IDH2 and DNMT3A in CN-AML. Moreover, the clinical outcome of IDH1 expression in terms of overall survival, event-free survival and complete remission rate still remained in multivariate models in CN-AML. Importantly, the prognostic value was validated using the published microarray data from 79 adult patients treated according to the German AMLCG-1999 protocol. Our results demonstrated that high IDH1 expression is associated with a poor prognosis of CN-AML.
Collapse
Affiliation(s)
- Qiu-Ling Ma
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China.,Department of Hematology, The Second Affiliated Hospital of Henan College of Traditional Chinese Medicine, Zhengzhou, China
| | - Jing-Han Wang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China
| | - Yun-Gui Wang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Chao Hu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Qi-Tian Mu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Meng-Xia Yu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Lei Wang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Dong-Mei Wang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Min Yang
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Xiu-Feng Yin
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Fei-Fei Chen
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Sha-Sha Lu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Jian Chen
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhi-Juan Zhu
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Sai-Juan Chen
- State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated to SJTU School of Medicine and Key Laboratory of Systems Biomedicine Ministry of Education, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University (SJTU), Shanghai, China
| | - Jie Jin
- Department of Hematology and Institute of Hematology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China.,Key Laboratory of Hematopoietic Malignancies, Hangzhou, Zhejiang Province, People's Republic of China
| |
Collapse
|
35
|
Marques SC, Laursen MB, Bødker JS, Kjeldsen MK, Falgreen S, Schmitz A, Bøgsted M, Johnsen HE, Dybkaer K. MicroRNAs in B-cells: from normal differentiation to treatment of malignancies. Oncotarget 2015; 6:7-25. [PMID: 25622103 PMCID: PMC4381575 DOI: 10.18632/oncotarget.3057] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/09/2014] [Indexed: 12/12/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that play important post-transcriptional regulatory roles in a wide range of biological processes. They are fundamental to the normal development of cells, and evidence suggests that the deregulation of specific miRNAs is involved in malignant transformation due to their function as oncogenes or tumor suppressors. We know that miRNAs are involved in the development of normal B-cells and that different B-cell subsets express specific miRNA profiles according to their degree of differentiation. B-cell-derived malignancies contain transcription signatures reminiscent of their cell of origin. Therefore, we believe that normal and malignant B-cells share features of regulatory networks controlling differentiation and the ability to respond to treatment. The involvement of miRNAs in these processes makes them good biomarker candidates. B-cell malignancies are highly prevalent, and the poor overall survival of patients with these malignancies demands an improvement in stratification according to prognosis and therapy response, wherein we believe miRNAs may be of great importance. We have critically reviewed the literature, and here we sum up the findings of miRNA studies in hematological cancers, from the development and progression of the disease to the response to treatment, with a particular emphasis on B-cell malignancies.
Collapse
Affiliation(s)
- Sara Correia Marques
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aarhus University, Denmark
| | - Maria Bach Laursen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Julie Støve Bødker
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | | | - Steffen Falgreen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Alexander Schmitz
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| | - Hans Erik Johnsen
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
- Clinical Cancer Research Center, Aalborg University Hospital, Denmark
| | - Karen Dybkaer
- Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
- Department of Clinical Medicine, Aalborg University, Denmark
| |
Collapse
|
36
|
The association between abnormal microRNA-10b expression and cancer risk: a meta-analysis. Sci Rep 2014; 4:7498. [PMID: 25510966 PMCID: PMC4267202 DOI: 10.1038/srep07498] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/25/2014] [Indexed: 12/12/2022] Open
Abstract
Several studies have investigated the association between abnormal microRNA-10b expression and the risk of various developing cancers, but the results are inconsistent. We searched all publications addressing the level of microRNA-10b expression in cancer cases and noncancerous controls (Accessed: August 2014). Thirty-six studies on 14 types of cancer were included. Among them, 25 studies were subjected to the meta-analysis with a vote-counting strategy, 13 studies were estimated using odds ratio (OR) and diagnostic accuracy, and 2 studies were assessed by both methods. It was found that vestibular schwannomas ranked first among the reported cancer types with up-regulated microRNA-10b expression; melanoma ranked first among the reported cancer types with down-regulated microRNA-10b expression; while breast cancer and hepatocellular cancer presented inconsistent microRNA-10b regulation. Of 13 included studies calculated for OR and diagnostic accuracy, it was shown that high-expression of microRNA-10b could be significantly associated with cancer risk (OR = 32.80, 95% CI: 11.90–90.37, P<0.0001), and the area under the summary receiver operating characteristic (SROC) curve for microRNA-10b high-expression in the diagnosis of cancer is 0.81, which suggested that high-expression of microRNA-10b can predict worse outcomes in some types of cancer and the regular monitoring of miR-10b expression might be useful in the clinical practice.
Collapse
|
37
|
Identification of circulating microRNAs as biomarkers in diagnosis of hematologic cancers: a meta-analysis. Tumour Biol 2014; 35:10467-78. [DOI: 10.1007/s13277-014-2364-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 07/14/2014] [Indexed: 01/08/2023] Open
|
38
|
Tong SJ, Liu J, Wang X, Qu LX. microRNA-181 promotes prostate cancer cell proliferation by regulating DAX-1 expression. Exp Ther Med 2014; 8:1296-1300. [PMID: 25187843 PMCID: PMC4151665 DOI: 10.3892/etm.2014.1846] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 05/19/2014] [Indexed: 02/01/2023] Open
Abstract
microRNAs (miRNAs) are a class of short noncoding RNA molecules that have a critical role in the initiation and progression of types of human cancer, including prostate cancer. In the present study, the expression of miR-181 in prostate cancer tissues was evaluated and was demonstrated to be significantly upregulated in prostate cancer tissues compared with that in adjacent normal tissues. The results of in vitro MTT and BrdU incorporation assays, as well as cell-cycle analysis, indicated that miR-181 overexpression markedly promoted the proliferation of LNCaP cells. Furthermore, miR-181 overexpression was found to promote the progression of LNCaP tumor growth in nude mice. Mechanistic studies demonstrated that dosage-sensitive sex reversal, adrenal hypoplasia critical region, on chromosome X, gene 1 (DAX-1), a negative regulator of androgen receptor in prostate cancer, was inhibited by miR-181 overexpression. Therefore, the results from the present study suggest that miR-181 functions as a growth-suppressive miRNA during prostate cancer development.
Collapse
Affiliation(s)
- Shi-Jun Tong
- Department of Urologic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Jun Liu
- Department of Urologic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Xiang Wang
- Department of Urologic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| | - Lian-Xi Qu
- Department of Urologic Surgery, Huashan Hospital Affiliated to Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
39
|
Fu W, Pang L, Chen Y, Yang L, Zhu J, Wei Y. The microRNAs as prognostic biomarkers for survival in esophageal cancer: a meta-analysis. ScientificWorldJournal 2014; 2014:523979. [PMID: 25097879 PMCID: PMC4109072 DOI: 10.1155/2014/523979] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 05/24/2014] [Accepted: 06/18/2014] [Indexed: 12/16/2022] Open
Abstract
OBJECTIVES We performed this meta-analysis to summarize all the results from available studies, aiming delineating the prognostic role of miRNA in esophageal cancer. DESIGN AND METHODS We searched the electronic databases PubMed, EMBASE, and ISI Web of Science without time restrictions for the correlative literature to aggregate the survival results. Relevant data were extracted from studies investigating the relationship between miRNAs expression and survival in esophageal cancer patients. Pooled hazard ratios of miR-21 and miR-375 for OS in ESCC were calculated. RESULTS A total of 25 studies involving 2,258 subjects analyzed the relationship between miRNA and prognosis of EC. In all, thirty-nine miRNAs associated with prognosis were reported in these studies. The pooled HR of higher miR-21 expression compared with lower miR-21 expression in ESCC was 1.84 (95% CI: 1.41-2.40, P < 0.001), which could significantly predict poorer OS in ESCC. Besides, higher miR-375 was also a significant predictor for OS in ESCC, with a pooled HR of 0.55 (95% CI: 0.42-0.72, P < 0.001). CONCLUSIONS Our results support that miR-21 and miR-375 have a prognostic role in ESCC and may be useful therapeutic targets for the treatment of ESCC and meticulous follow-up for early detection of recurrence.
Collapse
Affiliation(s)
- Wenbo Fu
- Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
- Department of Thoracic and Cardiovascular Surgery, Hospital of Xinjiang Production and Construction Corps, Urumchi, Xinjiang 830002, China
| | - Lijuan Pang
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yunzhao Chen
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Lan Yang
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Janbo Zhu
- Department of Pathology, Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| | - Yutao Wei
- Department of Thoracic and Cardiovascular Surgery, Hospital of Xinjiang Production and Construction Corps, Urumchi, Xinjiang 830002, China
- Department of Thoracic and Cardiovascular Surgery, First Hospital Affiliated to Medical College of Shihezi University, Shihezi, Xinjiang 832000, China
| |
Collapse
|
40
|
Zou C, Li Y, Cao Y, Zhang J, Jiang J, Sheng Y, Wang S, Huang A, Tang H. Up-regulated MicroRNA-181a induces carcinogenesis in hepatitis B virus-related hepatocellular carcinoma by targeting E2F5. BMC Cancer 2014; 14:97. [PMID: 24529171 PMCID: PMC3930291 DOI: 10.1186/1471-2407-14-97] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Accepted: 02/11/2014] [Indexed: 12/17/2022] Open
Abstract
Background Accumulating evidence showed that microRNAs are involved in development and progression of multiple tumors. Recent studies have found that miR-181a were dysregulated in several types of cancers, however, the function of miR-181a in hepatocellular carcinoma (HCC) remains unclear. In this study we assessed the potential association between miR-181a, HBV and HCC. Methods The expression of miR-181a in HBV-expressing cells was determined by using qRT-PCR. Dual-Luciferase reporter Assay, qRT-PCR and western blot were performed to investigate the target genes of miR-181a. The effects of miR-181a on HCC proliferation were analyzed by MTS and colony formation assay. Tumor growth assay was used to analyze the effect of miR-181a on tumor formation. Results HBV up-regulated miR-181a expression by enhancing its promoter activity. Overexpression of miR-181a in hepatoma cells promoted cell growth in vitro and tumor formation in vivo. Conversely, inhibition of miR-181a suppressed the proliferation of HBV-expressing cells. Mechanism investigation revealed that miR-181a inhibited the expression of transcription factor E2F5 by specifically targeting its mRNA 3′UTR. Moreover, E2F5 inhibition induced cell growth and rescued the suppressive effect of miR-181a inhibitor on the proliferation of SMMC-7721 cells. Interestingly, we also discovered that HBV could down-regulate E2F5 expression. Conclusions Those results strongly suggested that HBV down-regulated E2F5 expression, in part, by up-regulating the expression of miR-181a. Up-regulation of miR-181a by HBV in hepatoma cells may contribute to the progression of HCC possibly by targeting E2F5, suggesting miR-181a plays important role in HCC development.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Hua Tang
- Second Affiliated Hospital, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
41
|
Olivieri F, Rippo MR, Monsurrò V, Salvioli S, Capri M, Procopio AD, Franceschi C. MicroRNAs linking inflamm-aging, cellular senescence and cancer. Ageing Res Rev 2013; 12:1056-68. [PMID: 23688930 DOI: 10.1016/j.arr.2013.05.001] [Citation(s) in RCA: 147] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 01/01/2023]
Abstract
Epidemiological and experimental data demonstrate a strong correlation between age-related chronic inflammation (inflamm-aging) and cancer development. However, a comprehensive approach is needed to clarify the underlying molecular mechanisms. Chronic inflammation has mainly been attributed to continuous immune cells activation, but the cellular senescence process, which may involve acquisition of a senescence-associated secretory phenotype (SASP), can be another important contributor, especially in the elderly. MicroRNAs (miRs), a class of molecules involved in gene expression regulation, are emerging as modulators of some pathways, including NF-κB, mTOR, sirtuins, TGF-β and Wnt, that may be related to inflammation, cellular senescence and age-related diseases, cancer included. Interestingly, cancer development is largely avoided or delayed in centenarians, where changes in some miRs are found in plasma and leukocytes. We identified miRs that can be considered as senescence-associated (SA-miRs), inflammation-associated (inflamma-miRs) and cancer-associated (onco-miRs). Here we review recent findings concerning three of them, miR-21, -126 and -146a, which target mRNAs belonging to the NF-κB pathway; we discuss their ability to link cellular senescence, inflamm-aging and cancer and their changes in centenarians, and provide an update on the possibility of using miRs to block accumulation of senescent cells to prevent formation of a microenvironment favoring cancer development and progression.
Collapse
|
42
|
MicroRNA 181a improves proliferation and invasion, suppresses apoptosis of osteosarcoma cell. Tumour Biol 2013; 34:3331-7. [PMID: 23740615 DOI: 10.1007/s13277-013-0902-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2013] [Accepted: 05/27/2013] [Indexed: 02/06/2023] Open
Abstract
MicroRNA 181a (miR-181a) was found dysregulated in a variety of human cancers and significantly associated with clinical outcome of cancer patients. However, the direct role of miR-181a has not yet been characterized in osteosarcoma progression. This study was aimed at investigating the effects of miR-181a on osteosarcoma cell biological behavior. First, the expression of miR-181a in osteosarcoma cell lines (MG63, HOS, SaOS-2, and U2OS) and a human osteoblastic cell line (hFOB1.19) was detected by qRT-PCR. Results showed that miR-181a was overexpressed in osteosarcoma cell lines compared to human osteoblastic cell line (hFOB1.19). To investigate the effects of miR-181a on proliferation, apoptosis, and invasion of osteosarcoma cells, we generated human osteosarcoma MG63 cells in which miR-181a was either overexpressed or depleted. The MG63 cell viability, cycle, apoptosis, and invasive ability were analyzed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide staining, propidium iodide (PI) staining, Annexin V-FITC/PI double staining, and Transwell invasion experiment, respectively. The results showed that MG63 cell viability, proliferation, and invasive abilities were suppressed, and the apoptosis was enhanced in the group with underexpression of miR-181a. The viability, proliferation, and invasive abilities were improved, and the apoptosis was inhibited in the group with overexpression of miR-181a. The results from Western blotting indicated that miR-181a might be associated with the up-regulation of bcl-2 and matrix metalloproteinase 9 and the down-regulation of tissue inhibitor of metalloproteinases-3 and p21 in MG63 cells. Taken together, our results suggested that miR-181a might facilitate proliferation and invasion and suppress apoptosis of osteosarcoma cells, which might be a potential target for the treatment of osteosarcoma.
Collapse
|