1
|
Chiliquinga AJ, Acosta B, Ogonaga-Borja I, Villarruel-Melquiades F, de la Garza J, Gariglio P, Ocádiz-Delgado R, Ramírez A, Sánchez-Pérez Y, García-Cuellar CM, Bañuelos C, Camacho J. Ion Channels as Potential Tools for the Diagnosis, Prognosis, and Treatment of HPV-Associated Cancers. Cells 2023; 12:1376. [PMID: 37408210 PMCID: PMC10217072 DOI: 10.3390/cells12101376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 04/19/2023] [Accepted: 05/05/2023] [Indexed: 07/07/2023] Open
Abstract
The human papilloma virus (HPV) group comprises approximately 200 genetic types that have a special affinity for epithelial tissues and can vary from producing benign symptoms to developing into complicated pathologies, such as cancer. The HPV replicative cycle affects various cellular and molecular processes, including DNA insertions and methylation and relevant pathways related to pRb and p53, as well as ion channel expression or function. Ion channels are responsible for the flow of ions across cell membranes and play very important roles in human physiology, including the regulation of ion homeostasis, electrical excitability, and cell signaling. However, when ion channel function or expression is altered, the channels can trigger a wide range of channelopathies, including cancer. In consequence, the up- or down-regulation of ion channels in cancer makes them attractive molecular markers for the diagnosis, prognosis, and treatment of the disease. Interestingly, the activity or expression of several ion channels is dysregulated in HPV-associated cancers. Here, we review the status of ion channels and their regulation in HPV-associated cancers and discuss the potential molecular mechanisms involved. Understanding the dynamics of ion channels in these cancers should help to improve early diagnosis, prognosis, and treatment in the benefit of HPV-associated cancer patients.
Collapse
Affiliation(s)
| | - Brenda Acosta
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ingrid Ogonaga-Borja
- Grupo de Investigación de Ciencias en Red, Universidad Técnica del Norte, Ibarra 100105, Ecuador
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Fernanda Villarruel-Melquiades
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Jaime de la Garza
- Unidad de Oncología Torácica y Laboratorio de Medicina Personalizada, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Patricio Gariglio
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Rodolfo Ocádiz-Delgado
- Departamento de Genética y Biología Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Ana Ramírez
- Facultad de Ciencias Químicas e Ingeniería, Universidad Autónoma de Baja California, Calzada Universidad 14418, Tijuana 22390, Mexico
| | - Yesennia Sánchez-Pérez
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Claudia M. García-Cuellar
- Subdirección de Investigación Básica, Instituto Nacional de Cancerología (INCan), Tlalpan, Ciudad de Mexico CP 14080, Mexico
| | - Cecilia Bañuelos
- Programa Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| | - Javier Camacho
- Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico CP 07360, Mexico
| |
Collapse
|
2
|
Fan Y, Han Q, Li J, Ye G, Zhang X, Xu T, Li H. Revealing potential diagnostic gene biomarkers of septic shock based on machine learning analysis. BMC Infect Dis 2022; 22:65. [PMID: 35045818 PMCID: PMC8772133 DOI: 10.1186/s12879-022-07056-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 01/07/2022] [Indexed: 12/26/2022] Open
Abstract
Background Sepsis is an inflammatory response caused by infection with pathogenic microorganisms. The body shock caused by it is called septic shock. In view of this, we aimed to identify potential diagnostic gene biomarkers of the disease. Material and methods Firstly, mRNAs expression data sets of septic shock were retrieved and downloaded from the GEO (Gene Expression Omnibus) database for differential expression analysis. Functional enrichment analysis was then used to identify the biological function of DEmRNAs (differentially expressed mRNAs). Machine learning analysis was used to determine the diagnostic gene biomarkers for septic shock. Thirdly, RT-PCR (real-time polymerase chain reaction) verification was performed. Lastly, GSE65682 data set was utilized to further perform diagnostic and prognostic analysis of identified superlative diagnostic gene biomarkers. Results A total of 843 DEmRNAs, including 458 up-regulated and 385 down-regulated DEmRNAs were obtained in septic shock. 15 superlative diagnostic gene biomarkers (such as RAB13, KIF1B, CLEC5A, FCER1A, CACNA2D3, DUSP3, HMGN3, MGST1 and ARHGEF18) for septic shock were identified by machine learning analysis. RF (random forests), SVM (support vector machine) and DT (decision tree) models were used to construct classification models. The accuracy of the DT, SVM and RF models were very high. Interestingly, the RF model had the highest accuracy. It is worth mentioning that ARHGEF18 and FCER1A were related to survival. CACNA2D3 and DUSP3 participated in MAPK signaling pathway to regulate septic shock. Conclusion Identified diagnostic gene biomarkers may be helpful in the diagnosis and therapy of patients with septic shock. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07056-4.
Collapse
|
3
|
Cutliffe AL, McKenna SL, Chandrashekar DS, Ng A, Devonshire G, Fitzgerald RC, O’Donovan TR, Mackrill JJ. Alterations in the Ca2+ toolkit in oesophageal adenocarcinoma. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2021; 2:543-575. [PMID: 36046118 PMCID: PMC9400700 DOI: 10.37349/etat.2021.00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/08/2021] [Indexed: 11/24/2022] Open
Abstract
Aim: To investigate alterations in transcription of genes, encoding Ca2+ toolkit proteins, in oesophageal adenocarcinoma (OAC) and to assess associations between gene expression, tumor grade, nodal-metastatic stage, and patient survival. Methods: The expression of 275 transcripts, encoding components of the Ca2+ toolkit, was analyzed in two OAC datasets: the Cancer Genome Atlas [via the University of Alabama Cancer (UALCAN) portal] and the oesophageal-cancer, clinical, and molecular stratification [Oesophageal Cancer Clinical and Molecular Stratification (OCCAMS)] dataset. Effects of differential expression of these genes on patient survival were determined using Kaplan-Meier log-rank tests. OAC grade- and metastatic-stage status was investigated for a subset of genes. Adjustment for the multiplicity of testing was made throughout. Results: Of the 275 Ca2+-toolkit genes analyzed, 75 displayed consistent changes in expression between OAC and normal tissue in both datasets. The channel-encoding genes, N-methyl-D-aspartate receptor 2D (GRIN2D), transient receptor potential (TRP) ion channel classical or canonical 4 (TRPC4), and TRP ion channel melastatin 2 (TRPM2) demonstrated the greatest increase in expression in OAC in both datasets. Nine genes were consistently upregulated in both datasets and were also associated with improved survival outcomes. The 6 top-ranking genes for the weighted significance of altered expression and survival outcomes were selected for further analysis: voltage-gated Ca2+ channel subunit α 1D (CACNA1D), voltage-gated Ca2+ channel auxiliary subunit α2 δ4 (CACNA2D4), junctophilin 1 (JPH1), acid-sensing ion channel 4 (ACCN4), TRPM5, and secretory pathway Ca2+ ATPase 2 (ATP2C2). CACNA1D, JPH1, and ATP2C2 were also upregulated in advanced OAC tumor grades and nodal-metastatic stages in both datasets. Conclusions: This study has unveiled alterations of the Ca2+ toolkit in OAC, compared to normal tissue. Such Ca2+ signalling findings are consistent with those from studies on other cancers. Genes that were consistently upregulated in both datasets might represent useful markers for patient diagnosis. Genes that were consistently upregulated, and which were associated with improved survival, might be useful markers for patient outcome. These survival-associated genes may also represent targets for the development of novel chemotherapeutic agents.
Collapse
Affiliation(s)
- Alana L. Cutliffe
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| | - Sharon L. McKenna
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - Darshan S. Chandrashekar
- Department of Pathology, Molecular & Cellular, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alvin Ng
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Ginny Devonshire
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Rebecca C. Fitzgerald
- Cancer Research UK Cambridge Institute, University of Cambridge Li Ka Shing Centre, Robinson Way, CB2 0RE Cambridge, UK
| | - Tracey R. O’Donovan
- Cancer Research, UCC, Western Gateway Building, University College Cork, T12 XF62 Cork, Ireland
| | - John J. Mackrill
- Department of Physiology, University College Cork, BioSciences Institute, T12 YT20 Cork, Ireland
| |
Collapse
|
4
|
He S, Xu J, Liu X, Zhen Y. Advances and challenges in the treatment of esophageal cancer. Acta Pharm Sin B 2021; 11:3379-3392. [PMID: 34900524 PMCID: PMC8642427 DOI: 10.1016/j.apsb.2021.03.008] [Citation(s) in RCA: 120] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/24/2021] [Accepted: 02/06/2021] [Indexed: 12/18/2022] Open
Abstract
Esophageal cancer (EC) is one of the most common cancers with high morbidity and mortality rates. EC includes two histological subtypes, namely esophageal squamous cell carcinoma (ESCC) and esophageal adenocarcinoma (EAC). ESCC primarily occurs in East Asia, whereas EAC occurs in Western countries. The currently available treatment strategies for EC include surgery, chemotherapy, radiation therapy, molecular targeted therapy, and combinations thereof. However, the prognosis remains poor, and the overall five-year survival rate is very low. Therefore, achieving the goal of effective treatment remains challenging. In this review, we discuss the latest developments in chemotherapy and molecular targeted therapy for EC, and comprehensively analyze the application prospects and existing problems of immunotherapy. Collectively, this review aims to provide a better understanding of the currently available drugs through in-depth analysis, promote the development of new therapeutic agents, and eventually improve the treatment outcomes of patients with EC.
Collapse
Affiliation(s)
- Shiming He
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Jian Xu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Xiujun Liu
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| | - Yongsu Zhen
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100050, China
| |
Collapse
|
5
|
Shiozaki A, Marunaka Y, Otsuji E. Roles of Ion and Water Channels in the Cell Death and Survival of Upper Gastrointestinal Tract Cancers. Front Cell Dev Biol 2021; 9:616933. [PMID: 33777930 PMCID: PMC7991738 DOI: 10.3389/fcell.2021.616933] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 02/22/2021] [Indexed: 02/06/2023] Open
Abstract
Ion and water channels were recently shown to be involved in cancer cell functions, and various transporter types have been detected in upper gastrointestinal tract (UGI) cancers. Current information on the expression and roles of these channels and transporters in the death and survival of UGI cancer cells was reviewed herein, and the potential of their regulation for cancer management was investigated. Esophageal cancer (EC) and gastric cancer (GC) cells and tissues express many different types of ion channels, including voltage-gated K+, Cl-, and Ca2+, and transient receptor potential (TRP) channels, which regulate the progression of cancer. Aquaporin (AQP) 1, 3, and 5 are water channels that contribute to the progression of esophageal squamous cell carcinoma (ESCC) and GC. Intracellular pH regulators, including the anion exchanger (AE), sodium hydrogen exchanger (NHE), and vacuolar H+-ATPases (V-ATPase), also play roles in the functions of UGI cancer cells. We have previously conducted gene expression profiling and revealed that the regulatory mechanisms underlying apoptosis in ESCC cells involved various types of Cl- channels, Ca2+ channels, water channels, and pH regulators (Shimizu et al., 2014; Ariyoshi et al., 2017; Shiozaki et al., 2017, 2018a; Kobayashi et al., 2018; Yamazato et al., 2018; Konishi et al., 2019; Kudou et al., 2019; Katsurahara et al., 2020, 2021; Matsumoto et al., 2021; Mitsuda et al., 2021). We have also previously demonstrated the clinicopathological and prognostic significance of their expression in ESCC patients, and shown that their pharmacological blockage and gene silencing had an impact on carcinogenesis, indicating their potential as targets for the treatment of UGI cancers. A more detailed understanding of the molecular regulatory mechanisms underlying cell death and survival of UGI cancers may result in the application of cellular physiological methods as novel therapeutic approaches.
Collapse
Affiliation(s)
- Atsushi Shiozaki
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yoshinori Marunaka
- Department of Molecular Cell Physiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan.,Research Institute for Clinical Physiology, Kyoto Industrial Health Association, Kyoto, Japan.,Research Center for Drug Discovery and Pharmaceutical Development Science, Research Organization of Science and Technology, Ritsumeikan University, Kusatsu, Japan
| | - Eigo Otsuji
- Division of Digestive Surgery, Department of Surgery, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
6
|
Mighri N, Hamdi Y, Boujemaa M, Othman H, Ben Nasr S, El Benna H, Mejri N, Labidi S, Ayari J, Jaidene O, Bouaziz H, Ben Rekaya M, M'rad R, Haddaoui A, Rahal K, Boussen H, Boubaker S, Abdelhak S. Identification of Novel BRCA1 and RAD50 Mutations Associated With Breast Cancer Predisposition in Tunisian Patients. Front Genet 2020; 11:552971. [PMID: 33240314 PMCID: PMC7677579 DOI: 10.3389/fgene.2020.552971] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 10/16/2020] [Indexed: 12/12/2022] Open
Abstract
Background Deleterious mutations on BRCA1/2 genes are known to confer high risk of developing breast and ovarian cancers. The identification of these mutations not only helped in selecting high risk individuals that need appropriate prevention approaches but also led to the development of the PARP-inhibitors targeted therapy. This study aims to assess the prevalence of the most frequent BRCA1 mutation in Tunisia, c.211dupA, and provide evidence of its common origin as well as its clinicopathological characteristics. We also aimed to identify additional actionable variants using classical and next generation sequencing technologies (NGS) which would allow to implement cost-effective genetic testing in limited resource countries. Patients and Methods Using sanger sequencing, 112 breast cancer families were screened for c.211dupA. A set of patients that do not carry this mutation were investigated using NGS. Haplotype analysis was performed to assess the founder effect and to estimate the age of this mutation. Correlations between genetic and clinical data were also performed. Results The c.211dupA mutation was identified in 8 carriers and a novel private BRCA1 mutation, c.2418dupA, was identified in one carrier. Both mutations are likely specific to North-Eastern Tunisia. Haplotype analysis supported the founder effect of c.211dupA and showed its recent origin. Phenotype-genotype correlation showed that both BRCA1 mutations seem to be associated with a severe phenotype. Whole Exome Sequencing (WES) analysis of a BRCA negative family revealed a Variant of Unknown Significance, c.3647C > G on RAD50. Molecular modeling showed that this variant could be classified as deleterious as it is responsible for destabilizing the RAD50 protein structure. Variant prioritization and pathway analysis of the WES data showed additional interesting candidate genes including MITF and ANKS6. Conclusion We recommend the prioritization of BRCA1-c.211dupA screening in high risk breast cancer families originating from the North-East of Tunisia. We also highlighted the importance of NGS in detecting novel mutations, such as RAD50-c.3647C > G. In addition, we strongly recommend using data from different ethnic groups to review the pathogenicity of this variant and reconsider its classification in ClinVar.
Collapse
Affiliation(s)
- Najah Mighri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Yosr Hamdi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Maroua Boujemaa
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Houcemeddine Othman
- Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa
| | - Sonia Ben Nasr
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,The Military Hospital of Tunis, Department of Medical Oncology, Tunis, Tunisia
| | - Houda El Benna
- Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Nesrine Mejri
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Soumaya Labidi
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Jihen Ayari
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,The Military Hospital of Tunis, Department of Medical Oncology, Tunis, Tunisia
| | - Olfa Jaidene
- Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | - Hanen Bouaziz
- Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | - Mariem Ben Rekaya
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Ridha M'rad
- Service des Maladies Congénitales et Héréditaires, Hôpital Charles Nicolle, Tunis, Tunisia
| | - Abderrazek Haddaoui
- The Military Hospital of Tunis, Department of Medical Oncology, Tunis, Tunisia
| | - Khaled Rahal
- Department of Carcinological Surgery, Salah Azaiez Institute, Tunis, Tunisia
| | - Hamouda Boussen
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia.,Department of Medical Oncology, Abderrahmane Mami Hospital, Ariana, Tunisia
| | - Samir Boubaker
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| | - Sonia Abdelhak
- Laboratory of Biomedical Genomics and Oncogenetics, LR16IPT05, Institut Pasteur de Tunis, University of Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
7
|
Becskeházi E, Korsós MM, Erőss B, Hegyi P, Venglovecz V. OEsophageal Ion Transport Mechanisms and Significance Under Pathological Conditions. Front Physiol 2020; 11:855. [PMID: 32765303 PMCID: PMC7379034 DOI: 10.3389/fphys.2020.00855] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/25/2020] [Indexed: 12/20/2022] Open
Abstract
Ion transporters play an important role in several physiological functions, such as cell volume regulation, pH homeostasis and secretion. In the oesophagus, ion transport proteins are part of the epithelial resistance, a mechanism which protects the oesophagus against reflux-induced damage. A change in the function or expression of ion transporters has significance in the development or neoplastic progression of Barrett’s oesophagus (BO). In this review, we discuss the physiological and pathophysiological roles of ion transporters in the oesophagus, highlighting transport proteins which serve as therapeutic targets or prognostic markers in eosinophilic oesophagitis, BO and esophageal cancer. We believe that this review highlights important relationships which might contribute to a better understanding of the pathomechanisms of esophageal diseases.
Collapse
Affiliation(s)
- Eszter Becskeházi
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| | | | - Bálint Erőss
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary
| | - Péter Hegyi
- Institute for Translational Medicine, Szentágothai Research Centre, Medical School, University of Pécs, Pécs, Hungary.,Division of Gastroenterology, First Department of Medicine, Medical School, University of Pécs, Pécs, Hungary.,First Department of Medicine, University of Szeged, Szeged, Hungary
| | - Viktória Venglovecz
- Department of Pharmacology and Pharmacotherapy, University of Szeged, Szeged, Hungary
| |
Collapse
|
8
|
Liu Y, Gu Y, Su M, Liu H, Zhang S, Zhang Y. An analysis about heterogeneity among cancers based on the DNA methylation patterns. BMC Cancer 2019; 19:1259. [PMID: 31888612 PMCID: PMC6937830 DOI: 10.1186/s12885-019-6455-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND It is generally believed that DNA methylation, as one of the most important epigenetic modifications, participates in the regulation of gene expression and plays an important role in the development of cancer, and there exits epigenetic heterogeneity among cancers. Therefore, this study tried to screen for reliable prognostic markers for different cancers, providing further explanation for the heterogeneity of cancers, and more targets for clinical transformation studies of cancer from epigenetic perspective. METHODS This article discusses the epigenetic heterogeneity of cancer in detail. Firstly, DNA methylation data of seven cancer types were obtained from Illumina Infinium HumanMethylation 450 K platform of TCGA database. Then, differential methylation analysis was performed in the promotor region. Secondly, pivotal gene markers were obtained by constructing the DNA methylation correlation network and the gene interaction network in the KEGG pathway, and 317 marker genes obtained from two networks were integrated as candidate markers for the prognosis model. Finally, we used the univariate and multivariate COX regression models to select specific independent prognostic markers for each cancer, and studied the risk factor of these genes by doing survival analysis. RESULTS First, the cancer type-specific gene markers were obtained by differential methylation analysis and they were found to be involved in different biological functions by enrichment analysis. Moreover, specific and common diagnostic markers for each type of cancer was sorted out and Kaplan-Meier survival analysis showed that there was significant difference in survival between the two risk groups. CONCLUSIONS This study screened out reliable prognostic markers for different cancers, providing a further explanation for the heterogeneity of cancer at the DNA methylation level and more targets for clinical conversion studies of cancer.
Collapse
Affiliation(s)
- Yang Liu
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, 150001, China
| | - Yue Gu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Mu Su
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, 150001, China
| | - Hui Liu
- College of Bioinformatics Science and Technology, Harbin Medical University, Harbin, 150081, China
| | - Shumei Zhang
- College of Information and Computer Engineering, Northeast Forestry University, Harbin, 150040, China.
| | - Yan Zhang
- School of Life Science and Technology, Computational Biology Research Center, Harbin Institute of Technology, Harbin, 150001, China.
| |
Collapse
|
9
|
HERES, a lncRNA that regulates canonical and noncanonical Wnt signaling pathways via interaction with EZH2. Proc Natl Acad Sci U S A 2019; 116:24620-24629. [PMID: 31732666 PMCID: PMC6900598 DOI: 10.1073/pnas.1912126116] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Aberrant lncRNA expression is responsible for cancer progression and metastasis, positioning lncRNAs not only as biomarkers but also as promising therapeutic targets for curing cancer. A number of lncRNAs have been reported in ESCC but their mechanistic roles largely remain unknown. Wnt signaling pathways are often dysregulated in ESCC; however, the role of lncRNAs in such dysregulation was also undetermined. We found 6 lncRNAs that are significantly dysregulated and correlated with outcomes in ESCC patients. The most upregulated lncRNA, HERES, promotes cancer progression and epigenetically regulates canonical and noncanonical Wnt signaling pathways simultaneously through interaction with EZH2. These results show that HERES represents an early diagnostic and therapeutic target for squamous-cell-type cancers caused by defects in Wnt signaling pathways. Wnt signaling through both canonical and noncanonical pathways plays a core role in development. Dysregulation of these pathways often causes cancer development and progression. Although the pathways independently contribute to the core processes, a regulatory molecule that commonly activates both of them has not yet been reported. Here, we describe a long noncoding RNA (lncRNA), HERES, that epigenetically regulates both canonical and noncanonical Wnt signaling pathways in esophageal squamous cell carcinoma (ESCC). For this study, we performed RNA-seq analysis on Korean ESCC patients and validated these results on a larger ESCC cohort to identify lncRNAs commonly dysregulated in ESCCs. Six of the dysregulated lncRNAs were significantly associated with the clinical outcomes of ESCC patients and defined 4 ESCC subclasses with different prognoses. HERES reduction repressed cell proliferation, migration, invasion, and colony formation in ESCC cell lines and tumor growth in xenograft models. HERES appears to be a transacting factor that regulates CACNA2D3, SFRP2, and CXXC4 simultaneously to activate Wnt signaling pathways through an interaction with EZH2 via its G-quadruple structure-like motif. Our results suggest that HERES holds substantial potential as a therapeutic target for ESCC and probably other cancers caused by defects in Wnt signaling pathways.
Collapse
|
10
|
Haworth AS, Brackenbury WJ. Emerging roles for multifunctional ion channel auxiliary subunits in cancer. Cell Calcium 2019; 80:125-140. [PMID: 31071485 PMCID: PMC6553682 DOI: 10.1016/j.ceca.2019.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/16/2019] [Accepted: 04/16/2019] [Indexed: 02/07/2023]
Abstract
Several superfamilies of plasma membrane channels which regulate transmembrane ion flux have also been shown to regulate a multitude of cellular processes, including proliferation and migration. Ion channels are typically multimeric complexes consisting of conducting subunits and auxiliary, non-conducting subunits. Auxiliary subunits modulate the function of conducting subunits and have putative non-conducting roles, further expanding the repertoire of cellular processes governed by ion channel complexes to processes such as transcellular adhesion and gene transcription. Given this expansive influence of ion channels on cellular behaviour it is perhaps no surprise that aberrant ion channel expression is a common occurrence in cancer. This review will focus on the conducting and non-conducting roles of the auxiliary subunits of various Ca2+, K+, Na+ and Cl- channels and the burgeoning evidence linking such auxiliary subunits to cancer. Several subunits are upregulated (e.g. Cavβ, Cavγ) and downregulated (e.g. Kvβ) in cancer, while other subunits have been functionally implicated as oncogenes (e.g. Navβ1, Cavα2δ1) and tumour suppressor genes (e.g. CLCA2, KCNE2, BKγ1) based on in vivo studies. The strengthening link between ion channel auxiliary subunits and cancer has exposed these subunits as potential biomarkers and therapeutic targets. However further mechanistic understanding is required into how these subunits contribute to tumour progression before their therapeutic potential can be fully realised.
Collapse
Affiliation(s)
- Alexander S Haworth
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK
| | - William J Brackenbury
- Department of Biology, University of York, Heslington, York, YO10 5DD, UK; York Biomedical Research Institute, University of York, Heslington, York, YO10 5DD, UK.
| |
Collapse
|
11
|
Nie C, Qin X, Li X, Tian B, Zhao Y, Jin Y, Li Y, Wang Q, Zeng D, Hong A, Chen X. CACNA2D3 Enhances the Chemosensitivity of Esophageal Squamous Cell Carcinoma to Cisplatin via Inducing Ca 2+-Mediated Apoptosis and Suppressing PI3K/Akt Pathways. Front Oncol 2019; 9:185. [PMID: 31001468 PMCID: PMC6454090 DOI: 10.3389/fonc.2019.00185] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 03/04/2019] [Indexed: 12/24/2022] Open
Abstract
Resistance to platinum-based combination chemotherapy is the main cause of poor prognosis in patients with advanced esophageal squamous cell carcinoma (ESCC). Previously, we showed that CACNA2D3 (voltage-dependent subunit alpha 2 delta 3 of a calcium channel complex) was significantly downregulated and functioned as a tumor suppressor in ESCC, but its role in the chemosensitivity of ESCC to cisplatin remained unknown. Here, we found that the expression of CACNA2D3 was significantly associated with poor platinum response in ESCC patients from the Gene Expression Omnibus database. Overexpression of CACNA2D3 increased sensitivity to cisplatin in ESCC in vitro, whereas knockdown of CACNA2D3 increased cisplatin resistance. CACNA2D3 promoted cisplatin-induced apoptosis by modulating intracellular Ca2+ stores. In vivo experiments further showed that overexpression of CACNA2D3 enhanced cisplatin anti-tumor effects in a xenograft mouse model. CACNA2D3 overexpression also resulted in the attenuation of PI3K and Akt phosphorylation. Treatment with the PI3K/Akt inhibitor LY294002 restored the chemosensitivity of CACAN2D3-knockdown cells to cisplatin. In conclusion, the results of the current study indicate that CACAN2D3 enhances the chemosensitivity of ESCC to cisplatin via inducing Ca2+-mediated apoptosis and suppressing PI3K/Akt pathways. Therefore, regulating the expression of CACNA2D3 is a potential new strategy to increase the efficacy of cisplatin in ESCC patients.
Collapse
Affiliation(s)
- Changjun Nie
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China.,Department of Medical Genetics, Liuzhou Maternal and Children Healthcare Hospital, Liuzhou, China
| | - Xiaohui Qin
- Department of Medical Genetics, Liuzhou Maternal and Children Healthcare Hospital, Liuzhou, China
| | - Xiaoyan Li
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Baoqing Tian
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Ying Zhao
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Yuan Jin
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Yadan Li
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Qiang Wang
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Dingyuan Zeng
- Department of Medical Genetics, Liuzhou Maternal and Children Healthcare Hospital, Liuzhou, China
| | - An Hong
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| | - Xiaojia Chen
- Department of Cell Biology, Institute of Biomedicine, Jinan University, Guangzhou, China.,National Engineering Research Center of Genetic Medicine, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bioengineering Medicine, Guangzhou, China
| |
Collapse
|
12
|
Sadeghpour S, Ghorbian S. Evaluation of the potential clinical prognostic value of lncRNA-BANCR gene in esophageal squamous cell carcinoma. Mol Biol Rep 2018; 46:991-995. [PMID: 30552615 DOI: 10.1007/s11033-018-4556-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 12/04/2018] [Indexed: 01/28/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is the seventh most common cause of cancer death in worldwide. LncRNA-BANCR is a long non-coding RNA (lncRNA), which has made new windows in cancer investigations. The aim of this survey was to determine the lncRNA-BANCR gene expression changes in patients with ESCC. In case-control investigation was performed on 150 formalin fixed-paraffin embedded tissues (75 cancerous and 75 non-cancerous tissues) of ESCC patients. The lncRNA-BANCR gene expression alteration was assessed by Real-Time PCR technique. Our findings revealed that lncRNA-BANCR gene expression was increased significantly in tumor tissues compared with the non-cancerous tissues (p = 0.0025). In addition, lncRNA-BANCR gene expression changes was positively associated with the lymph node metastasis (p = 0.013), tumor differentiation (p = 0.019) and tumor stage (p = 0.017). Our results suggest a possible role of lncRNA-BANCR in proliferation of esophageal tissues and may be considered as a potential prognostic value for ESCC metastasis.
Collapse
Affiliation(s)
- Shiva Sadeghpour
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran
| | - Saeid Ghorbian
- Department of Molecular Genetics, Ahar Branch, Islamic Azad University, Ahar, Iran.
| |
Collapse
|
13
|
Wu ZJ, Zhao X, Banaszak LG, Gutierrez-Rodrigues F, Keyvanfar K, Gao SG, Quinones Raffo D, Kajigaya S, Young NS. CRISPR/Cas9-mediated ASXL1 mutations in U937 cells disrupt myeloid differentiation. Int J Oncol 2018. [PMID: 29532865 PMCID: PMC5843401 DOI: 10.3892/ijo.2018.4290] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Additional sex combs-like 1 (ASXL1) is a well‑known tumor suppressor gene and epigenetic modifier. ASXL1 mutations are frequent in myeloid malignances; these mutations are risk factors for the development of myelodysplasia and also appear as small clones during normal aging. ASXL1 appears to act as an epigenetic regulator of cell survival and myeloid differentiation; however, the molecular mechanisms underlying the malignant transformation of cells with ASXL1 mutations are not well defined. Using Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 nuclease (Cas9) genome editing, heterozygous and homozygous ASXL1 mutations were introduced into human U937 leukemic cells. Comparable cell growth and cell cycle progression were observed between wild-type (WT) and ASXL1-mutated U937 cells. Drug-induced cytotoxicity, as measured by growth inhibition and apoptosis in the presence of the cell-cycle active agent 5-fluorouracil, was variable among the mutated clones but was not significantly different from WT cells. In addition, ASXL1-mutated cells exhibited defects in monocyte/macrophage differentiation. Transcriptome analysis revealed that ASXL1 mutations altered differentiation of U937 cells by disturbing genes involved in myeloid differentiation, including cytochrome B-245 β chain and C-type lectin domain family 5, member A. Dysregulation of numerous gene sets associated with cell death and survival were also observed in ASXL1-mutated cells. These data provide evidence regarding the underlying molecular mechanisms induced by mutated ASXL1 in leukemogenesis.
Collapse
Affiliation(s)
- Zhi-Jie Wu
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Xin Zhao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Lauren G Banaszak
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Fernanda Gutierrez-Rodrigues
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Keyvan Keyvanfar
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Shou-Guo Gao
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Diego Quinones Raffo
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Sachiko Kajigaya
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| | - Neal S Young
- Hematology Branch, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1202, USA
| |
Collapse
|
14
|
You HL, Huang WT, Liu TT, Weng SW, Eng HL. Mutations of candidate tumor suppressor genes at chromosome 3p in intrahepatic cholangiocarcinoma. Exp Mol Pathol 2017; 103:249-254. [PMID: 29122566 DOI: 10.1016/j.yexmp.2017.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 11/01/2017] [Indexed: 12/30/2022]
Abstract
The genetic status of candidate tumor suppressor genes (TSGs) at chromosome 3p has not yet been elucidated in intrahepatic cholangiocarcinoma (iCCA). Herein, we retrospectively investigated 32 fresh iCCA case samples from a single medical institution to clarify mutations of 11 TSGs by next-generation sequencing. Validation of the mutations was performed on the MassARRAY platform or by high-resolution melting curve analysis. We then integrated the gene mutations into copy number alterations at chromosome 3p that had been generated in a previous study using the same fresh iCCA samples, and correlated the integration results with the clinicopathologic features. Nine of the 32 (28.1%) iCCA patients had gene mutations at chromosome 3p, totaling 11 mutations across five genes. Those included five (15.6%) BAP1 mutations, two each (6.3%) of CACNA2D3 and RASSF1 mutations, and one each (3.1%) of ATG7 and PLCD1 mutations. Six (18.8%) cases had concurrent loss of chromosome 3p and gene mutations. Patients with TSG mutations had shorter disease-free and survival times than those without the mutations. Our data showed that iCCA patients with TSG mutations at chromosome 3p faced an adverse prognosis. BAP1 was the common target of mutational inactivation and may be a principal driver of 3p21 losses.
Collapse
Affiliation(s)
- Huey-Ling You
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Taiwan
| | - Wan-Ting Huang
- Department of Laboratory Medicine, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan; Department of Medical Laboratory Sciences and Biotechnology, Fooyin University, Taiwan.
| | - Ting-Ting Liu
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | | | - Hock-Liew Eng
- Department of Pathology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| |
Collapse
|
15
|
DHRS2 inhibits cell growth and motility in esophageal squamous cell carcinoma. Oncogene 2017; 37:1086-1094. [PMID: 29106393 PMCID: PMC5851108 DOI: 10.1038/onc.2017.383] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 08/19/2017] [Accepted: 09/08/2017] [Indexed: 02/06/2023]
Abstract
Esophageal squamous cell carcinoma (ESCC) is highly prevailing in Asia and it is ranked in the most aggressive squamous cell carcinomas. High-frequency loss of heterozygosity occurred in chromosome 14q11.2 in many tumors including ESCC, suggesting that one or more tumor-suppressor genes might exist within this region. In this study, we identified the tumor-suppressing role of DHRS2 (short-chain dehydrogenase/reductase family, member 2) at 14q11.2 in ESCCs. Downregulation of DHRS2 occurred in 30.8% of primary ESCC tumor tissues vs paired non-tumorous tissues. DHRS2 downregulation was associated significantly with ESCC invasion, lymph nodes metastasis and clinical staging (P<0.001). Survival analysis revealed that DHRS2 downregulation was significantly associated with worse outcome of patients with ESCC. In vitro and in vivo studies indicated that both DHRS2 variants could suppress cell proliferation and cell motility. Moreover, we demonstrated that DHRS2 could reduce reactive oxygen species and decrease nicotinamide adenine dinucleotide phosphate (oxidized/reduced), increase p53 stability and decrease Rb phosphorylation; it also decreased p38 mitogen-activated protein kinase phosphorylation and matrix metalloproteinase 2. In summary, these findings demonstrated that DHRS2 had an important part in ESCC development and progression.
Collapse
|
16
|
Bustamante M, Hernandez-Ferrer C, Sarria Y, Harrison GI, Nonell L, Kang W, Friedländer MR, Estivill X, González JR, Nieuwenhuijsen M, Young AR. The acute effects of ultraviolet radiation on the blood transcriptome are independent of plasma 25OHD 3. ENVIRONMENTAL RESEARCH 2017; 159:239-248. [PMID: 28822308 DOI: 10.1016/j.envres.2017.07.045] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 07/05/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
The molecular basis of many health outcomes attributed to solar ultraviolet radiation (UVR) is unknown. We tested the hypothesis that they may originate from transcriptional changes in blood cells. This was determined by assessing the effect of fluorescent solar simulated radiation (FSSR) on the transcriptional profile of peripheral blood pre- and 6h, 24h and 48h post-exposure in nine healthy volunteers. Expression of 20 genes was down-regulated and one was up-regulated at 6h after FSSR. All recovered to baseline expression at 24h or 48h. These genes have been associated with immune regulation, cancer and blood pressure; health effects attributed to vitamin D via solar UVR exposure. Plasma 25-hydroxyvitamin D3 [25OHD3] levels increased over time after FSSR and were maximal at 48h. The increase was more pronounced in participants with low basal 25OHD3 levels. Mediation analyses suggested that changes in gene expression due to FSSR were independent of 25OHD3 and blood cell subpopulations.
Collapse
Affiliation(s)
- Mariona Bustamante
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain.
| | - Carles Hernandez-Ferrer
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Yaris Sarria
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Graham I Harrison
- King's College London (KCL), St John's Institute of Dermatology, London, UK
| | - Lara Nonell
- Servei d'Anàlisi de Microarrays, IMIM (Hospital del Mar Medical Research Institute), Barcelona, Spain
| | - Wenjing Kang
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Marc R Friedländer
- Science for Life Laboratory, Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm University, Stockholm, Sweden
| | - Xavier Estivill
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Juan R González
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Mark Nieuwenhuijsen
- ISGlobal, Centre for Research in Environmental Epidemiology (CREAL), Barcelona, Spain; Universitat Pompeu Fabra (UPF), Barcelona, Spain; CIBER Epidemiología y Salud Pública (CIBERESP), Barcelona, Spain
| | - Antony R Young
- King's College London (KCL), St John's Institute of Dermatology, London, UK.
| |
Collapse
|
17
|
A systems medicine approach for finding target proteins affecting treatment outcomes in patients with non-Hodgkin lymphoma. PLoS One 2017; 12:e0183969. [PMID: 28892521 PMCID: PMC5593188 DOI: 10.1371/journal.pone.0183969] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/15/2017] [Indexed: 02/07/2023] Open
Abstract
Autoantibody profiling with a systems medicine approach can help identify critical dysregulated signaling pathways (SPs) in cancers. In this way, immunoglobulins G (IgG) purified from the serum samples of 92 healthy controls, 10 pre-treated (PR) non-Hodgkin lymphoma (NHL) patients, and 20 NHL patients who underwent chemotherapy (PS) were screened with a phage-displayed random peptide library. Protein-protein interaction networks of the PR and PS groups were analyzed and visualized by Gephi. The results indicated AXIN2, SENP2, TOP2A, FZD6, NLK, HDAC2, HDAC1, and EHMT2, in addition to CAMK2A, PLCG1, PLCG2, GRM5, GRIN2B, GRIN2D, CACNA2D3, and SPTAN1 as hubs in 11 and 7 modules of PR and PS networks, respectively. PR- and PS-specific hubs were evaluated in the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Reactome databases. The PR-specific hubs were involved in Wnt SP, signaling by Notch1 in cancer, telomere maintenance, and transcriptional misregulation. In contrast, glutamate receptor SP, Fc receptor-related pathways, growth factors-related SPs, and Wnt SP were statistically significant enriched pathways, based on the pathway analysis of PS hubs. The results revealed that the most PR-specific proteins were associated with events involved in tumor development, while chemotherapy in the PS group was associated with side effects of drugs and/or cancer recurrence. As the findings demonstrated, PR- and PS-specific proteins in this study can be promising therapeutic targets in future studies.
Collapse
|
18
|
Jin Y, Cui D, Ren J, Wang K, Zeng T, Gao L. CACNA2D3 is downregulated in gliomas and functions as a tumor suppressor. Mol Carcinog 2016; 56:945-959. [PMID: 27583705 DOI: 10.1002/mc.22548] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/22/2016] [Accepted: 08/29/2016] [Indexed: 01/08/2023]
Abstract
CACNA2D3, an auxiliary member of the alpha-2/delta subunit three family of the voltage-dependent calcium channel complex, plays a critical role in tumor suppression. However, its role in glioma carcinogenesis remains largely unknown. Here, we investigated the putative tumor suppressive role of CACNA2D3 in gliomas. Downregulation of CACNA2D3 was frequently detected in glioma tissues and cells compared with their non-tumorigenic counterparts, and correlated with poor survival. To investigate the underlying mechanism of CACNA2D3 in the development and progression of glioma, we performed CACNA2D3 ectopic expression in glioma cells (U87 and U251) and knockdown of CACNA2D3 in LN229 cells and conducted in vitro and in vivo functional assays. Our findings showed that increased intracellular calcium (Ca2+ ) mediated by overexpression of CACNA2D3 induced mitochondrial-mediated apoptosis, upregulation of NLK (through the Wnt/Ca2+ pathway) and inhibition of the epithelial-to-mesenchymal transition. Ectopic expression of CACNA2D3 inhibited cell proliferation, migration, invasion, and tumor growth in vitro and in vivo, whereas CACNA2D3 depletion inhibited cell viability and invasion. Furthermore, we confirmed that CACNA2D3 increased NLK expression in vitro by immunostaining and found that downregulation of CACNA2D3 in glioma cells and high-grade glioma tissue was accompanied by increased methylation. A reporter assay showed increased luciferase activity in NLK knockdown glioma cells and transcriptional activity of β-cantenin/TCF was remarkably enhanced, which further confirmed that NLK antagonizes Wnt signaling-mediated anchorage-dependent and independent cell proliferation and invasion. This mechanism may contribute to a better understanding of glioma cancer pathogenesis and facilitate the development of new therapeutic strategies for the treatment of this disease. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Yi Jin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Daming Cui
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Jie Ren
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Ke Wang
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Tao Zeng
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| | - Liang Gao
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
19
|
Differences in metabolic biomarkers in the blood and gene expression profiles of peripheral blood mononuclear cells among normal weight, mildly obese and moderately obese subjects. Br J Nutr 2016; 116:1022-32. [DOI: 10.1017/s0007114516002993] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
AbstractWe compared metabolic biomarkers in the blood and peripheral blood mononuclear cell (PBMC) gene expression profiles among normal weight (BMI, 18·5–23 kg/m2), mildly obese (BMI, 25–27·5 kg/m2) and moderately obese Korean adult men (BMI, 27·5–30 kg/m2). High leptin, lipids (except LDL- and HDL-cholesterol) and apoB levels and low adiponectin and HDL-cholesterol levels were present in the plasma of both mildly and moderately obese subjects. Circulating levels of inflammatory cytokines and markers of insulin resistance, oxidative stress and liver damage were altered in moderately obese subjects but not in mildly obese subjects. PBMC transcriptome data showed enrichment of pathways involved in energy metabolism, insulin resistance, bone metabolism, cancer, inflammation and fibrosis in both mildly and moderately obese subjects. Signalling pathways involved in oxidative phosphorylation, TAG synthesis, carbohydrate metabolism and insulin production; mammalian target of rapamycin, forkhead box O, ras-proximate-1, RAS and transforming growth factor-β signalling; as well as extracellular matrix–receptor interaction were enriched only in moderately obese subjects, indicating that changes in PBMC gene expression profiles, according to metabolic disturbances, were associated with the development and/or aggravation of obesity. In particular, fourteen and fifteen genes differentially expressed only in mildly obese subjects and in both mildly and moderately obese subjects, respectively, could be used as early or stable biomarkers for diagnosing and treating obesity-associated metabolic disturbance. We characterised BMI-associated metabolic and molecular biomarkers in the blood and provided clues about potential blood-based targets for preventing or treating obesity-related complications.
Collapse
|
20
|
Melchers LJ, Clausen MJAM, Mastik MF, Slagter-Menkema L, van der Wal JE, Wisman GBA, Roodenburg JLN, Schuuring E. Identification of methylation markers for the prediction of nodal metastasis in oral and oropharyngeal squamous cell carcinoma. Epigenetics 2016. [PMID: 26213212 DOI: 10.1080/15592294.2015.1075689] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hypermethylation is an important mechanism for the dynamic regulation of gene expression, necessary for metastasizing tumour cells. Our aim is to identify methylation tumour markers that have a predictive value for the presence of regional lymph node metastases in patients with oral and oropharyngeal squamous cell carcinoma (OOSCC). Significantly differentially expressed genes were retrieved from four reported microarray expression profiles comparing pN0 and pN+ head-neck tumours, and one expression array identifying functionally hypermethylated genes. Additional metastasis-associated genes were included from the literature. Thus genes were selected that influence the development of nodal metastases and might be regulated by methylation. Methylation-specific PCR (MSP) primers were designed and tested on 8 head-neck squamous cell carcinoma cell lines and technically validated on 10 formalin-fixed paraffin-embedded (FFPE) OOSCC cases. Predictive value was assessed in a clinical series of 70 FFPE OOSCC with pathologically determined nodal status. Five out of 28 methylation markers (OCLN, CDKN2A, MGMT, MLH1 and DAPK1) were frequently differentially methylated in OOSCC. Of these, MGMT methylation was associated with pN0 status (P = 0.02) and with lower immunoexpression (P = 0.02). DAPK1 methylation was associated with pN+ status (P = 0.008) but did not associate with protein expression. In conclusion, out of 28 candidate genes, two (7%) showed a predictive value for the pN status. Both genes, DAPK1 and MGMT, have predictive value for nodal metastasis in a clinical group of OOSCC. Therefore DNA methylation markers are capable of contributing to diagnosis and treatment selection in OOSCC. To efficiently identify additional new methylation markers, genome-wide methods are needed.
Collapse
Affiliation(s)
- L J Melchers
- a Dept. of Oral & Maxillofacial Surgery ; University of Groningen; University Medical Center Groningen ; Groningen , The Netherlands
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Yang JZ, Ji AF, Wang JS, Chen ZY, Wen SW. Association between Ras association domain family 1A promoter methylation and esophageal squamous cell carcinoma: a meta-analysis. Asian Pac J Cancer Prev 2016; 15:3921-5. [PMID: 24935575 DOI: 10.7314/apjcp.2014.15.9.3921] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
RASSF1A has been reported to be a candidate tumor suppressor in esophageal squamous cell carcinoma (ESCC). However, the association between RASSF1A promoter methylation and ESCC remains unclear. Eligible studies were identified through searching PubMed, Medline, Web of Science, and the China National Knowledge Infrastucture database. Studies were pooled and odds ratios (ORs) with corresponding confidence intervals (CIs) were calculated. Funnel plots were also performed to evaluate publication bias. Twelve studies involving 859 cases and 675 controls were included in this meta-analysis. A significant association was observed between RASSF1A methylation and ESCC overall (OR = 11.7, 95% CI: 6.59-20.9, z=8.36, P<0.00001). Subgroup analysis showed that the OR for heterogeneous tissues was 5.35 (95% CI = 2.95-9.71) while for autologous tissues it was 16.0 (8.31-30.96). For patient sample size, the OR for the <50 subgroup was 9.92 (95% CI = 2.88-34.2) and for the 50 case group was 13.1 (95% CI = 6.59-25.91). The OR for a relationship between RASSF1A methylation and TNM stages was 0.27 (95% CI=0.10-0.77), whereas there were no significant differences in RASSF1A methylation in relation to gender and differentiation among ESCC cases. This meta-analysis suggests a significant association between RASSF1A methylation and ESCC.
Collapse
Affiliation(s)
- Jian-Zhou Yang
- School of Public Health, Central South University, Changzhi, China E-mail : ;
| | | | | | | | | |
Collapse
|
22
|
Rao VR, Perez-Neut M, Kaja S, Gentile S. Voltage-gated ion channels in cancer cell proliferation. Cancers (Basel) 2015; 7:849-75. [PMID: 26010603 PMCID: PMC4491688 DOI: 10.3390/cancers7020813] [Citation(s) in RCA: 130] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Changes of the electrical charges across the surface cell membrane are absolutely necessary to maintain cellular homeostasis in physiological as well as in pathological conditions. The opening of ion channels alter the charge distribution across the surface membrane as they allow the diffusion of ions such as K+, Ca++, Cl.
Collapse
Affiliation(s)
- Vidhya R Rao
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1s tAve, Maywood, IL 60153, USA.
| | - Mathew Perez-Neut
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1s tAve, Maywood, IL 60153, USA.
| | - Simon Kaja
- Department of Ophthalmology and Vision Research Center, School of Medicine, University of Missouri-Kansas City, 2411 Holmes St., Kansas City, MO 64108, USA.
| | - Saverio Gentile
- Department of Molecular Pharmacology and Therapeutics, Loyola University Chicago 2160 S. 1s tAve, Maywood, IL 60153, USA.
| |
Collapse
|
23
|
Yu F, Fu WM. Identification of differential splicing genes in gliomas using exon expression profiling. Mol Med Rep 2014; 11:843-50. [PMID: 25351872 PMCID: PMC4262513 DOI: 10.3892/mmr.2014.2775] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Accepted: 09/12/2014] [Indexed: 12/29/2022] Open
Abstract
Diffuse gliomas are the most common type of malignant primary brain tumor, and their initiation and/or progression are often associated with alternative splicing. They produce an enormous economic burden on society and greatly impair the quality of life of those affected. The aim of the current study was to explore the differentially expressed genes (DEGs) observed in glioblastoma (GBM) and oligodendroglioma (OD) at the splicing level, and to analyze their functions in order to identify the underlying molecular mechanisms of gliomas. The exon‑level expression profile data GSE9385 was downloaded from the Gene Expression Omnibus database, and included 26 GBM samples, 22 OD samples and 6 control brain samples. The differentially expressed exon‑level probes were analyzed using the microarray detection of alternative splicing algorithm combined with the splicing index method, and the corresponding DEGs were identified. Next, a Gene Ontology enrichment analysis of the DEGs was performed. Additionally, the protein‑protein interaction (PPI) networks were constructed based on the depth‑first search algorithm. A total of 300 DEGs were identified to be shared by GBM and OD, including 97 upregulated and 203 downregulated DEGs. Furthermore, screening with a defined threshold identified 6 genes that were highly expressed in GBM, including AFF2, CACNA2D3 and ARPP21, while the 6 highly expressed genes in OD notably included CNTN2. The TP53 and HIST1H3A genes were the hub nodes in the PPI network of DEGs from GBM, while CNTN2 was linked to the highest degree in the OD PPI network. The present study provides a comprehensive bioinformatics analysis of DEGs in GBM and OD, which may provide a basis for understanding the initiation and/or progression of glioma development.
Collapse
Affiliation(s)
- Feng Yu
- Department of Neurosurgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| | - Wei-Ming Fu
- Department of Neurosurgery, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
| |
Collapse
|
24
|
Zhao H, Wang L, Wei R, Xiu D, Tao M, Ke J, Liu Y, Yang J, Hong T. Activation of glucagon-like peptide-1 receptor inhibits tumourigenicity and metastasis of human pancreatic cancer cells via PI3K/Akt pathway. Diabetes Obes Metab 2014; 16:850-60. [PMID: 24641303 DOI: 10.1111/dom.12291] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2013] [Revised: 01/14/2014] [Accepted: 03/11/2014] [Indexed: 01/18/2023]
Abstract
AIMS It has been reported that glucagon-like peptide-1 (GLP-1) agents are associated with an increased risk of pancreatic cancer in patients with type 2 diabetes. Reports have indicated that GLP-1 promotes pancreatic metaplasia and premalignant lesions. The aims of this study were to determine the effects of GLP-1-based therapy on pancreatic cancer cells. METHODS Immunohistochemistry was used to investigate GLP-1 receptor (GLP-1R) expression in 30 human pancreatic cancer tissues. We also analysed associated clinicopathological data and each patient's prognosis. Two human pancreatic cancer cell lines were used to evaluate the in vitro effects of the GLP-1R agonist liraglutide on cell growth, migration and invasion. Mouse xenograft models of human pancreatic cancer were established to evaluate the effects of liraglutide in vivo. RESULTS Human pancreatic cancer tissues showed lower levels or a lack of GLP-1R expression when compared with levels in the tumour-adjacent pancreatic tissues. Negative GLP-1R expression occurred more frequently in advanced tumours with larger diameters and lymphatic metastasis, and was associated with a poor prognosis. GLP-1R activation with liraglutide inhibited tumourigenicity and metastasis of human pancreatic cancer cells in vitro and in vivo. Akt activation was dose-dependently inhibited by liraglutide, and the PI3K inhibitors, LY294002 and wortmannin, displayed similar suppressive effects to liraglutide in human pancreatic cancer cells. CONCLUSIONS GLP-1R activation has an antitumour effect on human pancreatic cancers via inhibition of the PI3K/Akt pathway. This finding suggests that GLP-1-based therapies may be beneficial, rather than harmful, in treating type 2 diabetic patients with pancreatic cancer.
Collapse
Affiliation(s)
- H Zhao
- Department of Endocrinology and Metabolism, Peking University Third Hospital, Beijing, China
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Zhu H, Chen X, Chen B, Chen B, Song W, Sun D, Zhao Y. Activating transcription factor 4 promotes esophageal squamous cell carcinoma invasion and metastasis in mice and is associated with poor prognosis in human patients. PLoS One 2014; 9:e103882. [PMID: 25078779 PMCID: PMC4117569 DOI: 10.1371/journal.pone.0103882] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2013] [Accepted: 07/08/2014] [Indexed: 01/16/2023] Open
Abstract
Background Activating transcription factor 4 (ATF4) is a stress response gene that is involved in homeostasis and cellular protection. However, its expression and function in esophageal squamous cell carcinoma (ESCC) remains unknown. In this study, we aimed to determine the clinicopathologic significance of ATF4 in ESCC and its potential role in ESCC invasion and metastasis. Methodology/Principal Findings We demonstrated that ATF4 overexpression is correlated with multiple malignant characteristics and indicates poor prognosis in ESCC patients. ATF4 expression was an independent factor that affected the overall survival of patients with ESCC after surgical resection. ATF4 promoted cell invasion and metastasis by promoting matrix metalloproteinase (MMP)-2 and MMP-7 expression, while its silencing significantly attenuated these activities both in vitro and in vivo. Conclusions/Significance We report that ATF4 is a potential biomarker for ESCC prognosis and that its dysregulation may play a key role in the regulation of invasion and metastasis in ESCC cells. The targeting of ATF4 may provide a new strategy for blocking ESCC metastasis.
Collapse
Affiliation(s)
- Hongwu Zhu
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Xiong Chen
- Department of Oncology, Fuzhou General Hospital of the Nanjing Military Command of the PLA, Fuzhou, China
| | - Bin Chen
- Department of Oncology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Bei Chen
- Department of Oncology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Weibing Song
- Department of Gerontology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
| | - Dayong Sun
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
- * E-mail: (DS); (YZ)
| | - Yagang Zhao
- Department of Gastroenterology, Guangzhou General Hospital of the Guangzhou Military Command of the People's Liberation Army (PLA), Guangzhou, China
- * E-mail: (DS); (YZ)
| |
Collapse
|
26
|
Zhang Q, Xu X, Yuan Y, Gong X, Chen Z, Xu X. IPS-1 plays a dual function to directly induce apoptosis in murine melanoma cells by inactivated Sendai virus. Int J Cancer 2013; 134:224-34. [PMID: 23784981 DOI: 10.1002/ijc.28340] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2013] [Accepted: 05/28/2013] [Indexed: 12/24/2022]
Abstract
Inactivated Sendai virus (HVJ-E) directly kills cancer cells by inducing apoptosis through a mechanism mediated by Janus kinases/signal transducers and activators of transcription (JAK/STAT) signaling pathways. However, whether other signaling pathways are involved remain largely unknown. This study aimed to investigate the mechanism underlying HVJ-E-induced apoptosis in murine B16F10 melanoma cells. We found that HVJ-E induced B16F10 cell apoptosis via the caspase pathway, particularly caspase-9, which mediates the intrinsic apoptotic pathway. Mitogen-activated protein kinase (MAPK) pathway activation also contributed to HVJ-E-induced apoptosis. Whereas caspase pathway involvement depended on both IFN-β promoter stimulator-1 (IPS-1) and type I interferon (IFN), MAPK pathway activation was independent of type I IFN but involved IPS-1. In addition, intratumoral HVJ-E treatment displayed a direct oncolytic effect in an in vivo BALB/c nude mouse melanoma model. Collectively, our data provides new insights into the mechanism underlying HVJ-E-induced apoptosis in tumor cells.
Collapse
Affiliation(s)
- Quan Zhang
- Comparative Medicine Center, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | | | | | | | | | | |
Collapse
|