1
|
Rahimnia SM, Saeedi M, Akbari J, Morteza-Semnani K, Hedayatizadeh-Omran A, Yazdian-Robati R. Development, Optimization, and in vitro Evaluation of Silybin-loaded PLGA Nanoparticles and Decoration with 5TR1 Aptamer for Targeted Delivery to Colorectal Cancer Cells. AAPS PharmSciTech 2024; 25:141. [PMID: 38898204 DOI: 10.1208/s12249-024-02858-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024] Open
Abstract
Chemotherapeutic agents often lack specificity, intratumoral accumulation, and face drug resistance. Targeted drug delivery systems based on nanoparticles (NPs) mitigate these issues. Poly (lactic-co-glycolic acid) (PLGA) is a well-studied polymer, commonly modified with aptamers (Apts) for cancer diagnosis and therapy. In this study, silybin (SBN), a natural agent with established anticancer properties, was encapsulated into PLGA NPs to control delivery and improve its poor solubility. The field-emission scanning electron microscopy (FE-SEM) showed spherical and uniform morphology of optimum SBN-PLGA NPs with 138.57±1.30nm diameter, 0.202±0.004 polydispersity index (PDI), -16.93±0.45mV zeta potential (ZP), and 70.19±1.63% entrapment efficiency (EE). The results of attenuated total reflectance-Fourier transform infrared (ATR-FTIR) showed no chemical interaction between formulation components, and differential scanning calorimetry (DSC) thermograms confirmed efficient SBN entrapment in the carrier. Then, the optimum formulation was functionalized with 5TR1 Apt for active targeted delivery of SBN to colorectal cancer (CRC) cells in vitro. The SBN-PLGA-5TR1 nanocomplex released SBN at a sustained and constant rate (zero-order kinetic), favoring passive delivery to acidic CRC environments. The MTT assay demonstrated the highest cytotoxicity of the SBN-PLGA-5TR1 nanocomplex in C26 and HT29 cells and no significant cytotoxicity in normal cells. Apoptosis analysis supported these results, showing early apoptosis induction with SBN-PLGA-5TR1 nanocomplex which indicated this agent could cause programmed death more than necrosis. This study presents the first targeted delivery of SBN to cancer cells using Apts. The SBN-PLGA-5TR1 nanocomplex effectively targeted and suppressed CRC cell proliferation, providing valuable insights into CRC treatment without harmful effects on healthy tissues.
Collapse
Affiliation(s)
- Seyyed Mobin Rahimnia
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
- Student Research Committee, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Majid Saeedi
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Jafar Akbari
- Department of Pharmaceutics, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Katayoun Morteza-Semnani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran
| | - Akbar Hedayatizadeh-Omran
- Gastrointestinal Cancer Research Center, Non-Communicable Diseases Institute, Mazandaran University of Medical Sciences, Sari, Iran
| | - Rezvan Yazdian-Robati
- Pharmaceutical Sciences Research Centre, Hemoglobinopathy Institute, Mazandaran University of Medical Sciences, Sari, Iran.
| |
Collapse
|
2
|
Fekri Kohan S, Nouhi Kararoudi A, Bazgosha M, Adelifar S, Hafezolghorani Esfahani A, Ghaderi Barmi F, Kouchakinejad R, Barzegari E, Shahriarinour M, Ranji N. Determining the potential targets of silybin by molecular docking and its antibacterial functions on efflux pumps and porins in uropathogenic E. coli. Int Microbiol 2024:10.1007/s10123-024-00488-9. [PMID: 38363383 DOI: 10.1007/s10123-024-00488-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/11/2024] [Accepted: 01/29/2024] [Indexed: 02/17/2024]
Abstract
BACKGROUND One of the causes of antibiotic resistance is the reduced accumulation of antibiotics in bacterial cells through pumping out the drugs. Silybin, a key component of the Silybum marianum plant, exhibits various beneficial properties, including anti-bacterial, anti-inflammatory, antioxidant, and hepatoprotective effects. METHODS AND RESULTS Clinical isolates of E. coli were procured from 17 Shahrivar Children's Hospital in Rasht, Guilan, located in northern Iran. Their susceptibility to six antibiotics was assessed using disc diffusion and broth dilution (MIC) methods. The antibacterial effects of silybin-loaded polymersome nanoparticles (SPNs) were investigated with broth dilution (MIC) and biofilm assays. Molecular docking was utilized to evaluate silybin's (the antibacterial component) binding affinity to efflux pumps, porins, and their regulatory elements. Additionally, qRT-PCR analysis explored the expression patterns of acrA, acrB, tolC, ompC, and ompF genes in both SPNs (sub-MIC) and ciprofloxacin (sub-MIC)-treated and untreated E. coli isolates. The combined use of SPNs and ciprofloxacin exhibited a notable reduction in bacterial growth and biofilm formation, in ciprofloxacin-resistant isolates. The study identified eight overlapping binding sites of the AcrABZ-TolC efflux pump in association with silybin, demonstrating a binding affinity ranging from -7.688 to -10.33 Kcal/mol. Furthermore, the qRT-PCR analysis showed that silybin upregulated AcrAB-TolC efflux pump genes and downregulated ompC and ompF porin genes in combination with ciprofloxacin in transcriptional level in uropathogenic E. coli. CONCLUSIONS Silybin, a safe herbal compound, exhibits potential in inhibiting antibiotic resistance within bacterial isolates, potentially through the regulation of gene expression and plausible binding to target proteins.
Collapse
Affiliation(s)
- Shirin Fekri Kohan
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Alireza Nouhi Kararoudi
- Department of Biology, Faculty of Sciences, Lahijan Branch, Islamic Azad University, Rasht, Iran
| | - Maryam Bazgosha
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Somayeh Adelifar
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Arman Hafezolghorani Esfahani
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran
| | - Fatemeh Ghaderi Barmi
- Sanford School of Medicine, University of South Dakota, Vermillion, South Dakota, USA
| | - Reyhaneh Kouchakinejad
- Department of Chemistry, Faculty of Sciences, Rasht Branch, Islamic Azad University, Rasht, Iran
| | - Ebrahim Barzegari
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mahdi Shahriarinour
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran.
| | - Najmeh Ranji
- Department of Biology, Faculty of Sciences, Rasht Branch, Islamic Azad University, P.O. Box: 41335-3516, Rasht, Iran.
| |
Collapse
|
3
|
Tartari APS, Peczek SH, Fin MT, Ziebarth J, Machado CS, Mainardes RM. Bovine Serum Albumin Nanoparticles Enhanced the Intranasal Bioavailability of Silybin in Rats. Pharmaceutics 2023; 15:2648. [PMID: 38139990 PMCID: PMC10747608 DOI: 10.3390/pharmaceutics15122648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/09/2023] [Accepted: 11/16/2023] [Indexed: 12/24/2023] Open
Abstract
Silybin (SLB), an important flavonoid from silymarin, displays significant hepatoprotective, anticancer, antioxidant, and neuroprotective effects. However, its therapeutic efficacy is limited by its low solubility and bioavailability. To address these challenges, we engineered bovine serum albumin (BSA) nanoparticles (NP) loaded with SLB (BSA-NP/SLB) using the coacervation method. BSA-SLB NP exhibited a spherical shape, a mean size of 197 nm, a polydispersity index of 0.275, a zeta potential of -34 mV, and an entrapment efficiency of 67%. X-ray diffraction analysis indicated amorphization of SLB upon encapsulation. Formulation stability was upheld over 180 days. In vitro release assays demonstrated controlled diffusion-erosion release, with approximately 40% SLB released within 0.5 h and 100% over 12 h. Intranasal administration of BSA-NP/SLB in rats improved SLB bioavailability by fourfold compared to free SLB. These findings highlight the promising potential of intranasally administered BSA-NP/SLB as an alternative approach to enhance SLB bioavailability, paving the way for innovative therapeutic applications.
Collapse
Affiliation(s)
- Ana Paula Santos Tartari
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
| | - Samila Horst Peczek
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
| | - Margani Taise Fin
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
| | - Jeferson Ziebarth
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
| | - Christiane Schineider Machado
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
| | - Rubiana Mara Mainardes
- Laboratory of Nanostructured Formulations, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
- Department of Pharmacy, Universidade Estadual do Centro-Oeste, Alameda Élio Antonio Dalla Vecchia St., 838, Guarapuava 85040-167, Brazil
| |
Collapse
|
4
|
Lephatsi MM, Choene MS, Kappo AP, Madala NE, Tugizimana F. An Integrated Molecular Networking and Docking Approach to Characterize the Metabolome of Helichrysum splendidum and Its Pharmaceutical Potentials. Metabolites 2023; 13:1104. [PMID: 37887429 PMCID: PMC10609414 DOI: 10.3390/metabo13101104] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/13/2023] [Accepted: 10/16/2023] [Indexed: 10/28/2023] Open
Abstract
South Africa is rich in diverse medicinal plants, and it is reported to have over 35% of the global Helichrysum species, many of which are utilized in traditional medicine. Various phytochemical studies have offered valuable insights into the chemistry of Helichrysum plants, hinting at bioactive components that define the medicinal properties of the plant. However, there are still knowledge gaps regarding the size and diversity of the Helichrysum chemical space. As such, continuous efforts are needed to comprehensively characterize the phytochemistry of Helichrysum, which will subsequently contribute to the discovery and exploration of Helichrysum-derived natural products for drug discovery. Thus, reported herein is a computational metabolomics work to comprehensively characterize the metabolic landscape of the medicinal herb Helichrysum splendidum, which is less studied. Metabolites were methanol-extracted and analyzed on a liquid chromatography-tandem mass spectrometry (LC-MS/MS) system. Spectral data were mined using molecular networking (MN) strategies. The results revealed that the metabolic map of H. splendidum is chemically diverse, with chemical superclasses that include organic polymers, benzenoids, lipid and lipid-like molecules, alkaloids, and derivatives, phenylpropanoids and polyketides. These results point to a vastly rich chemistry with potential bioactivities, and the latter was demonstrated through computationally assessing the binding of selected metabolites with CDK-2 and CCNB1 anti-cancer targets. Molecular docking results showed that flavonoids (luteolin, dihydroquercetin, and isorhamnetin) and terpenoids (tiliroside and silybin) interact strongly with the CDK-2 and CCNB1 targets. Thus, this work suggests that these flavonoid and terpenoid compounds from H. splendidum are potentially anti-cancer agents through their ability to interact with these proteins involved in cancer pathways and progression. As such, these actionable insights are a necessary step for further exploration and translational studies for H. splendidum-derived compounds for drug discovery.
Collapse
Affiliation(s)
- Motseoa Mariam Lephatsi
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (M.S.C.); (A.P.K.)
| | - Mpho Susan Choene
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (M.S.C.); (A.P.K.)
| | - Abidemi Paul Kappo
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (M.S.C.); (A.P.K.)
| | - Ntakadzeni Edwin Madala
- Department of Biochemistry and Microbiology, University of Venda, Thohoyandou 0950, South Africa;
| | - Fidele Tugizimana
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg 2006, South Africa; (M.M.L.); (M.S.C.); (A.P.K.)
- International Research and Development Division, Omnia Group, Ltd., Bryanston, Johannesburg 2021, South Africa
| |
Collapse
|
5
|
Rahnama S, Tehrankhah ZM, Mohajerani F, Mohammadi FS, Yeganeh ZY, Najafi F, Babashah S, Sadeghizadeh M. Milk thistle nano-micelle formulation promotes cell cycle arrest and apoptosis in hepatocellular carcinoma cells through modulating miR-155-3p /SOCS2 /PHLDA1 signaling axis. BMC Complement Med Ther 2023; 23:337. [PMID: 37749575 PMCID: PMC10521506 DOI: 10.1186/s12906-023-04168-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 09/13/2023] [Indexed: 09/27/2023] Open
Abstract
BACKGROUND Hepatocellular Carcinoma (HCC) is a prevalent form of liver cancer that causes significant mortality in numerous individuals worldwide. This study compared the effects of milk thistle (MT) and nano-milk thistle (N-MT) on the expression of the genes that participate in apoptosis and cell cycle pathways in Huh-7 and HepG2 cells. METHODS IC50 values of MT and N-MT were determined using the MTT assay. Huh-7 and HepG2 cell lines (containing mutant and wild-type TP53 gene, respectively) were incubated with MT and N-MT for 24h and 48h and the impact of MT and N-MT on the proliferation of these cell lines was evaluated through a comparative analysis. Cell cycle and apoptosis were assessed by flow cytometry after 24h and 48h treatment in the cell lines mentioned. Real-time PCR was used to analyze miR-155-3p, PHLDA1, SOCS2, TP53, P21, BAX, and BCL-2 expression in the cell lines that were being treated. RESULTS N-MT reduces cancer cell growth in a time and concentration-dependent manner, which is more toxic compared to MT. Huh-7 was observed to have IC50 values of 2.35 and 1.7 μg/ml at 24h and 48h, and HepG2 was observed to have IC50 values of 3.4 and 2.6 μg/ml at 24 and 48h, respectively. N-MT arrested Huh-7 and HepG2 cells in the Sub-G1 phase and induced apoptosis. N-MT led to a marked reduction in the expression of miR-155-3p and BCL-2 after 24h and 48h treatments. Conversely, PHLDA1, SOCS2, BAX, and P21 were upregulated in the treated cells compared to untreated cells, which suggests that milk thistle has the potential to regulate these genes. N-MT reduced the expression of TP53 in Huh-7 cells after mentioned time points, while there was a significant increase in the expression of the TP53 gene in HepG2 cells. No gene expression changes were observed in MT-treated cells after 24h and 48h. CONCLUSION N-MT can regulate cancer cell death by arresting cell cycle and inducing apoptosis. This occurs through the alteration of apoptotic genes expression. A reduction in the expression of miR-155-3p and increase in the expression of SOCS2 and PHLDA1 after N-MT treatment showed the correlation between miR-155-3p and PHLDA1/SOCS2 found in bioinformatics analysis. While N-MT increased TP53 expression in HepG2, reduced it in Huh-7. The findings indicate that N-MT can function intelligently in cancer cells and can be a helpful complement to cancer treatment.
Collapse
Affiliation(s)
- Saghar Rahnama
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Moazezi Tehrankhah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Mohajerani
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Faezeh Shah Mohammadi
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Zahra Yousefi Yeganeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Farhood Najafi
- Department of Resin and Additives, Institute for Color Science and Technology, Tehran, Iran
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
6
|
Silybin Showed Higher Cytotoxic, Antiproliferative, and Anti-Inflammatory Activities in the CaCo Cancer Cell Line while Retaining Viability and Proliferation in Normal Intestinal IPEC-1 Cells. Life (Basel) 2023; 13:life13020492. [PMID: 36836848 PMCID: PMC9964225 DOI: 10.3390/life13020492] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/04/2023] [Accepted: 02/08/2023] [Indexed: 02/12/2023] Open
Abstract
The anticancer potential of silymarin is well known, including its anti-inflammatory as well as antiproliferative effect mediated by influencing the cell cycle, suppression of apoptosis, and inhibition of cell-survival kinases. However, less is known about silybin, the main component of the silymarin complex, where studies indicate its dual effect on the proliferation and immune response of various cell types in a dose-dependent manner. Moreover, there is a lack of studies comparing the effect of silybin on the same type of healthy and tumor cells, especially intestinal ones. Therefore, our study aimed to investigate the concentration-dependent effect of silybin on the normal intestinal porcine epithelial cell line-1 (IPEC-1) and the human epithelial colorectal adenocarcinoma cell line (CaCo-2). The metabolic viability, cell cycle, mitochondrial membrane potential, apoptosis, and the relative gene expression for pro- and anti-inflammatory cytokines were monitored in cells treated with silybin. Silybin stimulates metabolic viability as well as proliferation in IPEC-1 cells, protects the mitochondrial membrane, and thus exerts a cytoprotective effect, and has only a minimal effect on the gene expression of pro-inflammatory cytokines but significantly increases the expression of anti-inflammatory TGF-β. In contrast, it inhibits metabolic viability in tumor intestinal CaCo-2 cells, has an antiproliferative effect accompanied by increased apoptosis, and significantly reduces the expression of genes for pro-inflammatory interleukins as well as TGF-β. The antiproliferative and anti-inflammatory effect of silybin on tumor intestinal cells without a negative effect on healthy cells is a prerequisite for its potential use in the adjuvant therapy of colon cancer; however, further studies are necessary.
Collapse
|
7
|
Gilabadi S, Stanyon H, DeCeita D, Pendry BA, Galante E. Simple and effective method for the extraction of silymarin from Silybum marianum (L.) gaertner seeds. J Herb Med 2023. [DOI: 10.1016/j.hermed.2022.100619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Wu H, Zeng J, Wu Q, Dong J, Liang C, Wei X, Chen J, Shi S, Yang Z, Lan T. Synthesis and in vitro Anticancer Efficacy of Novel Silibinin Derivatives. HETEROCYCLES 2022. [DOI: 10.3987/com-21-14606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
9
|
Wu S, Chen G, Zhang Q, Wang G, Chen QH. 3- O-Carbamoyl-5,7,20- O-trimethylsilybins: Synthesis and Preliminary Antiproliferative Evaluation. Molecules 2021; 26:6421. [PMID: 34770829 PMCID: PMC8588252 DOI: 10.3390/molecules26216421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/20/2021] [Accepted: 10/21/2021] [Indexed: 11/17/2022] Open
Abstract
To search for novel androgen receptor (AR) modulators for the potential treatment of castration-resistant prostate cancer (CRPC), naturally occurring silibinin was sought after as a lead compound because it possesses a moderate potency towards AR-positive prostate cancer cells and its chemical scaffold is dissimilar to all currently marketed AR antagonists. On the basis of the structure-activity relationships that we have explored, this study aims to incorporate carbamoyl groups to the alcoholic hydroxyl groups of silibinin to improve its capability in selectively suppressing AR-positive prostate cancer cell proliferation together with water solubility. To this end, a feasible approach was developed to regioselectively introduce a carbamoyl group to the secondary alcoholic hydroxyl group at C-3 without causing the undesired oxidation at C2-C3, providing an avenue for achieving 3-O-carbamoyl-5,7,20-O-trimethylsilybins. The application of the synthetic method can be extended to the synthesis of 3-O-carbamoyl-3',4',5,7-O-tetramethyltaxifolins. The antiproliferative potency of 5,7,20-O-trimethylsilybin and its nine 3-carbamoyl derivatives were assessed in an AR-positive LNCaP prostate cancer cell line and two AR-null prostate cancer cell lines (PC-3 and DU145). Our preliminary bioassay data imply that 5,7,20-O-trimethylsilybin and four 3-O-carbamoyl-5,7,20-O-trimethylsilybins emerge as very promising lead compounds due to the fact that they can selectively suppress AR-positive LNCaP cell proliferation. The IC50 values of these five 5,7,20-O-trimethylsilybins against the LNCaP cells fall into the range of 0.11-0.83 µM, which exhibit up to 660 times greater in vitro antiproliferative potency than silibinin. Our findings suggest that carbamoylated 5,7,20-O-trimethylsilybins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Sitong Wu
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (S.W.); (G.C.)
| | - Guanglin Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (S.W.); (G.C.)
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA; (Q.Z.); (G.W.)
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA 70125, USA; (Q.Z.); (G.W.)
| | - Qiao-Hong Chen
- Department of Chemistry and Biochemistry, California State University, Fresno, CA 93740, USA; (S.W.); (G.C.)
| |
Collapse
|
10
|
Křen V. Chirality Matters: Biological Activity of Optically Pure Silybin and Its Congeners. Int J Mol Sci 2021; 22:ijms22157885. [PMID: 34360650 PMCID: PMC8346157 DOI: 10.3390/ijms22157885] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 07/19/2021] [Indexed: 12/31/2022] Open
Abstract
This review focuses on the specific biological effects of optically pure silymarin flavo-nolignans, mainly silybins A and B, isosilybins A and B, silychristins A and B, and their 2,3-dehydro derivatives. The chirality of these flavonolignans is also discussed in terms of their analysis, preparative separation and chemical reactions. We demonstrated the specific activities of the respective diastereomers of flavonolignans and also the enantiomers of their 2,3-dehydro derivatives in the 3D anisotropic systems typically represented by biological systems. In vivo, silymarin flavonolignans do not act as redox antioxidants, but they play a role as specific ligands of biological targets, according to the "lock-and-key" concept. Estrogenic, antidiabetic, anticancer, antiviral, and antiparasitic effects have been demonstrated in optically pure flavonolignans. Potential application of pure flavonolignans has also been shown in cardiovascular and neurological diseases. Inhibition of drug-metabolizing enzymes and modulation of multidrug resistance activity by these compounds are discussed in detail. The future of "silymarin applications" lies in the use of optically pure components that can be applied directly or used as valuable lead structures, and in the exploration of their true molecular effects.
Collapse
Affiliation(s)
- Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague, Czech Republic
| |
Collapse
|
11
|
Treatment for liver cancer: From sorafenib to natural products. Eur J Med Chem 2021; 224:113690. [PMID: 34256124 DOI: 10.1016/j.ejmech.2021.113690] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 05/14/2021] [Accepted: 07/04/2021] [Indexed: 12/12/2022]
Abstract
Liver cancer most commonly develops in patients with chronic liver disease, the etiology of which includes viral hepatitis (B and C), alcohol, obesity, dietary carcinogens, and so forth. The current treatment modalities, including surgical resection and liver transplantation, have been found far from effective. Hence, there is an obvious critical need to develop alternative strategies for the treatment of it. In this review, we discuss the formation process and therapeutic targets of liver cancer. Currently, targeted therapy is limited to sorafenib, lenvatinib, regorafenib, ramucirumab and cabozantinib which leads to a survival benefit in patients, but on the other hand is hampered by the occurrence of drug resistance. Pleasingly and importantly, there are multiple natural products undergoing clinical evaluation in liver cancer, such as polyphenols like icaritin, resveratrol, and silybin, saponins including ginsenoside Rg3 and glycyrrhizinate, alkaloid containing irinotecan and berberine and inorganic compound arsenic trioxide at present. Preclinical and clinical studies have shown that these compounds inhibit liver cancer formation owing to the influence on the anti-viral, anti-inflammation, anti-oxidant, anti-angiogenesis and anti-metastasis activity. Furthermore, a series of small molecule derivatives inspired by the aforementioned compounds are designed and synthesized according to structure-activity relationship studies. Drug combination and novel type of drug-targeted delivery system thereof have been well developed. This article is ended by a perspective remark of futuristic development of natural product-based therapeutic regimen for liver cancer treatment. We expect that this review is an account for current status of natural products as promising anti-liver cancer treatments and should contribute to its understanding.
Collapse
|
12
|
Hussain Y, Luqman S, Meena A. Research Progress in Flavonoids as Potential Anticancer Drug Including Synergy with Other Approaches. Curr Top Med Chem 2021; 20:1791-1809. [PMID: 32357817 DOI: 10.2174/1568026620666200502005411] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Revised: 03/13/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND In chemotherapy for cancer, conventional drugs aim to target the rapidly growing and dividing cells at the early stages. However, at an advanced stage, cancer cells become less susceptible because of the multidrug resistance and the recruitment of alternative salvage pathways for their survival. Besides, owing to target non-selectivity, healthy proliferating cells also become vulnerable to the damage. The combination therapies offered using flavonoids to cure cancer not only exert an additive effect against cancer cells by targetting supplementary cell carnage pathways but also hampers the drug resistance mechanisms. Thus, the review aims to discuss the potential and pharmacokinetic limitations of flavonoids in cancer treatment. Further successful synergistic studies reported using flavonoids to treat cancer has been described along with potential drug delivery systems. METHODS A literature search was done by exploring various online databases like Pubmed, Scopus, and Google Scholar with the specific keywords like "Anticancer drugs", "flavonoids", "oncology research", and "pharmacokinetics". RESULTS Dietary phytochemicals, mainly flavonoids, hinder cell signalling responsible for multidrug resistance and cancer progression, primarily targeting cancer cells sparing normal cells. Such properties establish flavonoids as a potential candidate for synergistic therapy. However, due to low absorption and high metabolism rates, the bioavailability of flavonoids becomes a challenge. Such challenges may be overcome using novel approaches like derivatization, and single or co-delivery nano-complexes of flavonoids with conventional drugs. These new approaches may improve the pharmacokinetic and pharmacodynamic of flavonoids. CONCLUSION This review highlights the application of flavonoids as a potential anticancer phytochemical class in combination with known anti-cancer drugs/nanoparticles. It also discusses flavonoid's pharmacokinetics and pharmacodynamics issues and ways to overcome such issues. Moreover, it covers successful methodologies employed to establish flavonoids as a safe and effective phytochemical class for cancer treatment.
Collapse
Affiliation(s)
- Yusuf Hussain
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Suaib Luqman
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| | - Abha Meena
- Molecular Bioprospection Department of Biotechnology Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow-226015, Uttar Pradesh, India
| |
Collapse
|
13
|
Dehydroflavonolignans from Silymarin Potentiate Transition Metal Toxicity In Vitro but Are Protective for Isolated Erythrocytes Ex Vivo. Antioxidants (Basel) 2021; 10:antiox10050679. [PMID: 33925336 PMCID: PMC8146032 DOI: 10.3390/antiox10050679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/16/2021] [Accepted: 04/23/2021] [Indexed: 11/25/2022] Open
Abstract
2,3-Dehydrosilybin (DHS) was previously shown to chelate and reduce both copper and iron ions. In this study, similar experiments with 2,3-dehydrosilychristin (DHSCH) showed that this congener of DHS also chelates and reduces both metals. Statistical analysis pointed to some differences between both compounds: in general, DHS appeared to be a more potent iron and copper chelator, and a copper reducing agent under acidic conditions, while DHSCH was a more potent copper reducing agent under neutral conditions. In the next step, both DHS and DHSCH were tested for metal-based Fenton chemistry in vitro using HPLC with coulometric detection. Neither of these compounds were able to block the iron-based Fenton reaction and, in addition, they mostly intensified hydroxyl radical production. In the copper-based Fenton reaction, the effect of DHSCH was again prooxidant or neutral, while the effect of DHS was profoundly condition-dependent. DHS was even able to attenuate the reaction under some conditions. Interestingly, both compounds were strongly protective against the copper-triggered lysis of red blood cells, with DHSCH being more potent. The results from this study indicated that, notwithstanding the prooxidative effects of both dehydroflavonolignans, their in vivo effect could be protective.
Collapse
|
14
|
Ullah A, Munir S, Badshah SL, Khan N, Ghani L, Poulson BG, Emwas AH, Jaremko M. Important Flavonoids and Their Role as a Therapeutic Agent. Molecules 2020; 25:molecules25225243. [PMID: 33187049 PMCID: PMC7697716 DOI: 10.3390/molecules25225243] [Citation(s) in RCA: 403] [Impact Index Per Article: 100.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 10/25/2020] [Accepted: 11/01/2020] [Indexed: 12/14/2022] Open
Abstract
Flavonoids are phytochemical compounds present in many plants, fruits, vegetables, and leaves, with potential applications in medicinal chemistry. Flavonoids possess a number of medicinal benefits, including anticancer, antioxidant, anti-inflammatory, and antiviral properties. They also have neuroprotective and cardio-protective effects. These biological activities depend upon the type of flavonoid, its (possible) mode of action, and its bioavailability. These cost-effective medicinal components have significant biological activities, and their effectiveness has been proved for a variety of diseases. The most recent work is focused on their isolation, synthesis of their analogs, and their effects on human health using a variety of techniques and animal models. Thousands of flavonoids have been successfully isolated, and this number increases steadily. We have therefore made an effort to summarize the isolated flavonoids with useful activities in order to gain a better understanding of their effects on human health.
Collapse
Affiliation(s)
- Asad Ullah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Sidra Munir
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Syed Lal Badshah
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
- Correspondence: (S.L.B.); (M.J.)
| | - Noreen Khan
- Department of Chemistry, Islamia College University Peshawar, Peshawar 25120, Pakistan; (A.U.); (S.M.); (N.K.)
| | - Lubna Ghani
- Department of Chemistry, The University of Azad Jammu and Kashmir, Muzaffarabad, Azad Kashmir 13230, Pakistan;
| | - Benjamin Gabriel Poulson
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
| | - Mariusz Jaremko
- Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia;
- Correspondence: (S.L.B.); (M.J.)
| |
Collapse
|
15
|
Mashhadi Akbar Boojar M, Mashhadi Akbar Boojar M, Golmohammad S. Overview of Silibinin anti-tumor effects. J Herb Med 2020. [DOI: 10.1016/j.hermed.2020.100375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Vrba J, Papoušková B, Kosina P, Lněničková K, Valentová K, Ulrichová J. Identification of Human Sulfotransferases Active towards Silymarin Flavonolignans and Taxifolin. Metabolites 2020; 10:metabo10080329. [PMID: 32806559 PMCID: PMC7465014 DOI: 10.3390/metabo10080329] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 08/04/2020] [Accepted: 08/10/2020] [Indexed: 12/17/2022] Open
Abstract
Natural phenolic compounds are known to be metabolized by phase II metabolic reactions. In this study, we examined the in vitro sulfation of the main constituents of silymarin, an herbal remedy produced from the fruits of the milk thistle. The study focused on major flavonolignan constituents, including silybin A, silybin B, isosilybin A, isosilybin B, silychristin, and silydianin, as well as the flavonoid taxifolin. Using ultra-high-performance liquid chromatography coupled with tandem mass spectrometry (UHPLC-MS), individual flavonolignans and taxifolin were found to be sulfated by human liver and human intestinal cytosols. Moreover, experiments with recombinant enzymes revealed that human sulfotransferases (SULTs) 1A1*1, 1A1*2, 1A2, 1A3, 1B1, 1C4, and 1E1 catalyzed the sulfation of all of the tested compounds, with the exception of silydianin, which was not sulfated by SULT1B1 and SULT1C4. The sulfation products detected were monosulfates, of which some of the major ones were identified as silybin A 20-O-sulfate, silybin B 20-O-sulfate, and isosilybin A 20-O-sulfate. Further, we also observed the sulfation of the tested compounds when they were tested in the silymarin mixture. Sulfates of flavonolignans and of taxifolin were produced by incubating silymarin with all of the above SULT enzymes, with human liver and intestinal cytosols, and also with human hepatocytes, even though the spectrum and amount of the sulfates varied among the metabolic models. Considering our results and the expression patterns of human sulfotransferases in metabolic tissues, we conclude that flavonolignans and taxifolin can potentially undergo both intestinal and hepatic sulfation, and that SULTs 1A1, 1A3, 1B1, and 1E1 could be involved in the biotransformation of the constituents of silymarin.
Collapse
Affiliation(s)
- Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
- Correspondence:
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. Listopadu 12, 77146 Olomouc, Czech Republic;
| | - Pavel Kosina
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
| | - Kateřina Lněničková
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 14220 Prague, Czech Republic;
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, 77515 Olomouc, Czech Republic; (P.K.); (K.L.); (J.U.)
| |
Collapse
|
17
|
Assessment of α-amanitin toxicity and effects of silibinin and penicillin in different in vitro models. Toxicol In Vitro 2020; 67:104921. [PMID: 32599260 DOI: 10.1016/j.tiv.2020.104921] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 06/15/2020] [Accepted: 06/17/2020] [Indexed: 01/26/2023]
Abstract
Silibinin (Sil) is used as hepatoprotective drug and is approved for therapeutic use in amanitin poisoning. In our study we compared Sil-bis-succinate (SilBS), a water-soluble drug approved for i.v.-administration, with Sil solved in ethanol (SilEtOH), which is normally used in research. We challenged monocultures or 3D-microtissues consisting of HepG2 cells or primary hepatocytes with α-amanitin and treated with SILBS, SILEtOH, penicillin and combinations thereof. Cell viability and the integrity of the microtissues was monitored. Finally, the expression of the transporters OATP1B1 and B3 was analyzed by qRT-PCR. We demonstrated that primary hepatocytes were more sensitive to α-amanitin compared to HepG2. Primary hepatocytes cultures were protected by SilBS and SilEtOH independent of penicillin from the cytotoxic effects of α-amanitin. Subsequent studies of the expression profile of the transporters OATP1B1/B3 revealed that primary hepatocytes do express both whereas in HepG2 cells they were hardly detectable. Our study showed that SilBS has significant advantage over SilEtOH with no additional benefit of penicillin. Moreover, HepG2 cells may not represent an appropriate model to investigate Amanita phalloides poisoning in vitro with focus on OATP transporters since these cells are lacking sensitivity towards α-amanitin probably due to missing cytotoxicity-associated transporters suggesting that primary hepatocytes should be preferred in this context.
Collapse
|
18
|
Dobiasová S, Řehořová K, Kučerová D, Biedermann D, Káňová K, Petrásková L, Koucká K, Václavíková R, Valentová K, Ruml T, Macek T, Křen V, Viktorová J. Multidrug Resistance Modulation Activity of Silybin Derivatives and Their Anti-inflammatory Potential. Antioxidants (Basel) 2020; 9:antiox9050455. [PMID: 32466263 PMCID: PMC7278776 DOI: 10.3390/antiox9050455] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/18/2020] [Accepted: 05/21/2020] [Indexed: 12/19/2022] Open
Abstract
Silybin is considered to be the main biologically active component of silymarin. Its oxidized derivative 2,3-dehydrosilybin typically occurs in silymarin in small, but non-negligible amounts (up to 3%). Here, we investigated in detail complex biological activities of silybin and 2,3-dehydrosilybin optical isomers. Antioxidant activities of pure stereomers A and B of silybin and 2,3-dehydrosilybin, as well as their racemic mixtures, were investigated by using oxygen radical absorption capacity (ORAC) and cellular antioxidant activity (CAA) assay. All substances efficiently reduced nitric oxide production and cytokines (TNF-α, IL-6) release in a dose-dependent manner. Multidrug resistance (MDR) modulating potential was evaluated as inhibition of P-glycoprotein (P-gp) ATPase activity and regulation of ATP-binding cassette (ABC) protein expression. All the tested compounds showed strong dose-dependent inhibition of P-gp pump. Moreover, 2,3-dehydrosilybin A (30 µM) displayed the strongest sensitization of doxorubicin-resistant ovarian carcinoma. Despite these significant effects, silybin B was the only compound acting directly upon P-gp in vitro and also downregulating the expression of respective MDR genes. This compound altered the expression of P-glycoprotein (P-gp, ABCB1), multidrug resistance-associated protein 1 (MRP1, ABCC1) and breast cancer resistance protein (BCRP, ABCG2). 2,3-Dehydrosilybin AB exhibited the most effective inhibition of acetylcholinesterase activity. We can clearly postulate that silybin derivatives could serve well as modulators of a cancer drug-resistant phenotype.
Collapse
Affiliation(s)
- Simona Dobiasová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - Kateřina Řehořová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - Denisa Kučerová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - David Biedermann
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Kristýna Káňová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Lucie Petrásková
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Kamila Koucká
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, CZ 100 00 Prague, Czech Republic; (K.K.); (R.V.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, CZ 323 00 Pilsen, Czech Republic
| | - Radka Václavíková
- Toxicogenomics Unit, National Institute of Public Health, Šrobárova 49, CZ 100 00 Prague, Czech Republic; (K.K.); (R.V.)
- Laboratory of Pharmacogenomics, Biomedical Center, Faculty of Medicine in Pilsen, Charles University, Alej Svobody 1655, CZ 323 00 Pilsen, Czech Republic
| | - Kateřina Valentová
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Tomáš Ruml
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - Tomáš Macek
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
| | - Vladimír Křen
- Laboratory of Biotransformation, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ 142 20 Prague, Czech Republic; (D.B.); (L.P.); (K.V.); (V.K.)
| | - Jitka Viktorová
- Department of Biochemistry and Microbiology, University of Chemistry and Technology Prague, Technická 5, CZ 166 28 Prague, Czech Republic; (S.D.); (K.Ř.); (D.K.); (K.K.); (T.R.); (T.M.)
- Correspondence:
| |
Collapse
|
19
|
Dual SMO/BRAF Inhibition by Flavonolignans from Silybum marianum †. Antioxidants (Basel) 2020; 9:antiox9050384. [PMID: 32380762 PMCID: PMC7278695 DOI: 10.3390/antiox9050384] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 04/30/2020] [Accepted: 04/30/2020] [Indexed: 12/17/2022] Open
Abstract
Silymarin is the standardized extract from the fruits of Silybum marianum (L.) Gaertn., a well-known hepatoprotectant and antioxidant. Recently, bioactive compounds of silymarin, i.e., silybins and their 2,3-dehydro derivatives, have been shown to exert anticancer activities, yet with unclear mechanisms. This study combines in silico and in vitro methods to reveal the potential interactions of optically pure silybins and dehydrosilybins with novel protein targets. The shape and chemical similarity with approved drugs were evaluated in silico, and the potential for interaction with the Hedgehog pathway receptor Smoothened (SMO) and BRAF kinase was confirmed by molecular docking. In vitro studies on SMO and BRAF V600E kinase activity and in BRAF V600E A-375 human melanoma cell lines were further performed to examine their effects on these proteins and cancer cell lines and to corroborate computational predictions. Our in silico results direct to new potential targets of silymarin constituents as dual inhibitors of BRAF and SMO, two major targets in anticancer therapy. The experimental studies confirm that BRAF kinase and SMO may be involved in mechanisms of anticancer activities, demonstrating dose-dependent profiles, with dehydrosilybins showing stronger effects than silybins. The results of this work outline the dual SMO/BRAF effect of flavonolignans from Silybum marianum with potential clinical significance. Our approach can be applied to other natural products to reveal their potential targets and mechanism of action.
Collapse
|
20
|
Jiang Z, Sekhon A, Oka Y, Chen G, Alrubati N, Kaur J, Orozco A, Zhang Q, Wang G, Chen QH. 23- O-Substituted-2,3-Dehydrosilybins Selectively Suppress Androgen Receptor-Positive LNCaP Prostate Cancer Cell Proliferation. Nat Prod Commun 2020. [DOI: 10.1177/1934578x20922326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
As part of our ongoing project to search for natural product-based antiandrogens, nine derivatives of 2,3-dehydrosilybin have been synthesized for the evaluation of its antiproliferative activity in an androgen receptor-positive prostate cancer cell model. Specifically, 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin was synthesized through two approaches, and eight 23- O-substituted-3,5,7,20- O-tetramethyl-2,3-dehydrosilybins were achieved from 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin. The antiproliferative potency of 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin and its eight derivatives were assessed in an androgen receptor (AR)-positive LNCaP prostate cancer cell line, as well as in two AR-negative (PC-3 and DU145) prostate cancer cell models as a comparison. Our WST cell proliferation assay data indicate 3,5,7,20- O-tetramethyl-2,3-dehydrosilybin and most of its 23- O-substituents can selectively inhibit AR-positive LNCaP prostate cancer cell proliferation. Our data suggest that 3,5,7,20- O-tetramethyl-2,3-dehydrosilibins could serve as a natural product-based scaffold for new antiandrogens for lethal castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Ziran Jiang
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Arman Sekhon
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Yogeshwari Oka
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Nagat Alrubati
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Jasleen Kaur
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Alexia Orozco
- Department of Chemistry, California State University, Fresno, CA, USA
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, New Orleans, LA, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, CA, USA
| |
Collapse
|
21
|
Vue B, Zhang S, Vignau A, Chen G, Zhang X, Diaz W, Zhang Q, Zheng S, Wang G, Chen QH. O-Aminoalkyl- O-Trimethyl-2,3-Dehydrosilybins: Synthesis and In Vitro Effects Towards Prostate Cancer Cells. Molecules 2018; 23:molecules23123142. [PMID: 30501133 PMCID: PMC6320956 DOI: 10.3390/molecules23123142] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Revised: 11/26/2018] [Accepted: 11/29/2018] [Indexed: 01/08/2023] Open
Abstract
As part of our ongoing silybin project, this study aims to introduce a basic nitrogen-containing group to 7-OH of 3,5,20-O-trimethyl-2,3-dehydrosilybin or 3-OH of 5,7,20-O-trimethyl-2,3-dehydrosilybin via an appropriate linker for in vitro evaluation as potential anti-prostate cancer agents. The synthetic approaches to 7-O-substituted-3,5,20-O-trimethyl-2,3-dehydrosilybins through a five-step procedure and to 3-O-substituted-5,7,20-O-trimethyl-2,3- dehydrosilybins via a four-step transformation have been developed. Thirty-two nitrogen-containing derivatives of silybin have been achieved through these synthetic methods for the evaluation of their antiproliferative activities towards both androgen-sensitive (LNCaP) and androgen-insensitive prostate cancer cell lines (PC-3 and DU145) using the WST-1 cell proliferation assay. These derivatives exhibited greater in vitro antiproliferative potency than silibinin. Among them, 11, 29, 31, 37, and 40 were identified as five optimal derivatives with IC50 values in the range of 1.40⁻3.06 µM, representing a 17- to 52-fold improvement in potency compared to silibinin. All these five optimal derivatives can arrest the PC-3 cell cycle in the G₀/G₁ phase and promote PC-3 cell apoptosis. Derivatives 11, 37, and 40 are more effective than 29 and 31 in activating PC-3 cell apoptosis.
Collapse
Affiliation(s)
- Bao Vue
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Sheng Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Andre Vignau
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - William Diaz
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| | - Qiang Zhang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Shilong Zheng
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Guangdi Wang
- Department of Chemistry and RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA.
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenues, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
22
|
Schramm S, Gunesch S, Lang F, Saedtler M, Meinel L, Högger P, Decker M. Investigations into neuroprotectivity, stability, and water solubility of 7-O
-cinnamoylsilibinin, its hemisuccinate and dehydro derivatives. Arch Pharm (Weinheim) 2018; 351:e1800206. [DOI: 10.1002/ardp.201800206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 09/05/2018] [Accepted: 09/05/2018] [Indexed: 11/10/2022]
Affiliation(s)
- Simon Schramm
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Sandra Gunesch
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Florian Lang
- Klinische Pharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Marco Saedtler
- Pharmazeutische Technologie und Biopharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Lorenz Meinel
- Pharmazeutische Technologie und Biopharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Petra Högger
- Klinische Pharmazie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| | - Michael Decker
- Pharmazeutische und Medizinische Chemie, Institut für Pharmazie und Lebensmittelchemie, Julius-Maximilians-Universität Würzburg; Würzburg Germany
| |
Collapse
|
23
|
Silibinin Ameliorates O-GlcNAcylation and Inflammation in a Mouse Model of Nonalcoholic Steatohepatitis. Int J Mol Sci 2018; 19:ijms19082165. [PMID: 30042374 PMCID: PMC6121629 DOI: 10.3390/ijms19082165] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/13/2018] [Accepted: 07/19/2018] [Indexed: 02/06/2023] Open
Abstract
The mechanisms underlying the progression to non-alcoholic steatohepatitis (NASH) remain to be elucidated. In the present study, we aimed to identify the proteins involved in the pathogenesis of liver tissue inflammation and to investigate the effects of silibinin, a natural polyphenolic flavonoid, on steatohepatitis. We performed comparative proteomic analysis using methionine and choline-deficient (MCD) diet-induced NASH model mice. Eighteen proteins were identified from the two-dimensional proteomic analysis, which are not only differentially expressed, but also significantly improved, by silibinin treatment. Interestingly, seven of these proteins, including keratin cytoskeletal 8 and 18, peroxiredoxin-4, and protein disulfide isomerase, are known to undergo GlcNAcylation modification, most of which are related to structural and stress-related proteins in NASH model animals. Thus, we primarily focused on how the GlcNAc modification of these proteins is involved in the progression to NASH. Remarkably, silibinin treatment alleviates the severity of hepatic inflammation along with O-GlcNAcylation in steatohepatitis. In particular, the reduction of inflammation by silibinin is due to the inhibition of the O-GlcNAcylation-dependent NF-κB-signaling pathway. Therefore, silibinin is a promising therapeutic agent for hyper-O-GlcNAcylation as well as NASH.
Collapse
|
24
|
Effects of Silymarin-Loaded Nanoparticles on HT-29 Human Colon Cancer Cells. ACTA ACUST UNITED AC 2018; 54:medicina54010001. [PMID: 30344232 PMCID: PMC6037238 DOI: 10.3390/medicina54010001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 02/26/2018] [Accepted: 02/26/2018] [Indexed: 12/26/2022]
Abstract
Background and objective: Previous studies have demonstrated the anti-cancer effects of silymarin (SLM). However, the low bioavailability of SLM has restricted its use. This study investigated the toxic effect of nanostructured SLM encapsulated in micelles (Nano-SLM) on the growth of the HT-29 human colon cancer cell line. Materials and methods: HT-29 cells were treated with 25 μM/mL of SLM or Nano-SLM for 48 h. MTT and colony formation assays were used to assess the cytotoxicity and proliferation of HT-29 cells, respectively. The cells were stained with annexin V/PI for assessment of apoptosis. Results: MTT assays revealed that Nano-SLM treatment was able to exert a more pronounced toxic effect on the HT-29 cells as compared to free SLM treatment (p < 0.01). In the Nano-SLM-treated cells, colony numbers were significantly reduced in comparison to the free SLM-treated cells (p < 0.01). Apoptotic and necrotic indexes of Nano-SLM-treated HT-29 cells were also significantly increased in comparison to those of the free SLM-treated cells (p < 0.01). The viability, proliferation and apoptosis of healthy cells (NIH-3T3 cells) were not changed in response to Nano-SLM or SLM. Conclusions: Our results indicate that Nano-SLM enhances the anti-cancer effects of SLM against human colon cancer cells.
Collapse
|
25
|
Vrba J, Papoušková B, Roubalová L, Zatloukalová M, Biedermann D, Křen V, Valentová K, Ulrichová J, Vacek J. Metabolism of flavonolignans in human hepatocytes. J Pharm Biomed Anal 2018; 152:94-101. [PMID: 29414024 DOI: 10.1016/j.jpba.2018.01.048] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/22/2018] [Accepted: 01/23/2018] [Indexed: 12/11/2022]
Abstract
This study examined the in vitro biotransformation of eight structurally related flavonolignans, namely silybin, 2,3-dehydrosilybin, silychristin, 2,3-dehydrosilychristin, silydianin, 2,3-dehydrosilydianin, isosilybin A and isosilybin B. The metabolic transformations were performed using primary cultures of human hepatocytes and recombinant human cytochromes P450 (CYPs 1A2, 2A6, 2B6, 2C8, 2C9, 2C19, 2D6, 2E1 and 3A4). The metabolites produced were analyzed by ultra-performance liquid chromatography coupled with tandem mass spectrometry. We found that each of the tested compounds was metabolized in vitro by one or more CYP enzymes, which catalyzed O-demethylation, hydroxylation, hydrogenation and dehydrogenation reactions. In human hepatocytes, silybin, 2,3-dehydrosilybin, silychristin, 2,3-dehydrosilychristin, and isosilybins A and B were directly conjugated by sulfation or glucuronidation. Moreover, isosilybin A was also converted to a methyl derivative, while isosilybin B was hydroxylated and methylated. Silydianin and 2,3-dehydrosilydianin were found to undergo hydrogenation and/or glucuronidation. In addition, 2,3-dehydrosilydianin was found to be metabolically the least stable flavonolignan in human hepatocytes, and its main metabolite was a cleavage product corresponding to a loss of CO. We conclude that the hepatic biotransformation of flavonolignans primarily involves the phase II conjugation reactions, however in some cases the phase I reactions may also occur. These results are highly relevant for research focused on flavonolignan metabolism and pharmacology.
Collapse
Affiliation(s)
- Jiří Vrba
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Barbora Papoušková
- Regional Centre of Advanced Technologies and Materials, Department of Analytical Chemistry, Faculty of Science, Palacký University, 17. listopadu 12, Olomouc 77146, Czech Republic
| | - Lenka Roubalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Martina Zatloukalová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - David Biedermann
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, Prague 14220, Czech Republic
| | - Vladimír Křen
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, Prague 14220, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology of the Czech Academy of Sciences, Laboratory of Biotransformation, Vídeňská 1083, Prague 14220, Czech Republic
| | - Jitka Ulrichová
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic; Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic
| | - Jan Vacek
- Department of Medical Chemistry and Biochemistry, Faculty of Medicine and Dentistry, Palacký University, Hněvotínská 3, Olomouc 77515, Czech Republic.
| |
Collapse
|
26
|
Pendry BA, Kemp V, Hughes MJ, Freeman J, Nuhu HK, Sanchez-Medina A, Corcoran O, Galante E. Silymarin content in Silybum marianum extracts as a biomarker for the quality of commercial tinctures. J Herb Med 2017. [DOI: 10.1016/j.hermed.2017.07.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
27
|
Vue B, Zhang X, Lee T, Nair N, Zhang S, Chen G, Zhang Q, Zheng S, Wang G, Chen QH. 5- or/and 20-O-alkyl-2,3-dehydrosilybins: Synthesis and biological profiles on prostate cancer cell models. Bioorg Med Chem 2017; 25:4845-4854. [PMID: 28756013 PMCID: PMC5568090 DOI: 10.1016/j.bmc.2017.07.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Revised: 07/13/2017] [Accepted: 07/17/2017] [Indexed: 02/03/2023]
Abstract
To investigate the effects of alkylation at 5-OH and 20-OH of 2,3-dehydrosilybin on prostate cancer cell proliferation, the synthetic approaches to 5- or/and 20-O-alkyl-2,3-dehydrosilybins, through a multi-step sequence from commercially available silybin, have been successfully developed. The first three reactions in the syntheses were completed through a one-pot procedure by managing anaerobic and aerobic conditions. With these synthetic methods in hand, twenty-one 2,3-dehydrosilybins, including seven 20-O-alkyl, seven 5,20-O-dialkyl, and seven 5-O-alkyl-2,3-dehydrosilybins, have been achieved for the evaluation of their biological profiles. Our WST-1 cell proliferation assay data indicate that nineteen out of the twenty-one 2,3-dehydrosilybins possess significantly improved antiproliferative potency as compared with silybin toward both androgen-sensitive (LNCaP) and androgen-insensitive prostate cancer cell lines (PC-3 and DU145). 5-O-Alkyl-2,3-dehydrosilybins were identified as the optimal subgroup that can consistently inhibit cell proliferation in three prostate cancer cell models with all IC50 values lower than 8µM. Our flow cytometry-based assays also demonstrate that 5-O-heptyl-2,3-dehydrosilybin effectively arrests the cell cycle in the G0/G1 phase and activates PC-3 cell apoptosis.
Collapse
Affiliation(s)
- Bao Vue
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Timmy Lee
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Nandini Nair
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Sheng Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Guanglin Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Shilong Zheng
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- RCMI Cancer Research Center, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
28
|
Silymarin induces a multi-targeted cell death process in the human colon cancer cell line HT-29. Biomed Pharmacother 2017; 94:890-897. [PMID: 28810529 DOI: 10.1016/j.biopha.2017.08.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 07/31/2017] [Accepted: 08/02/2017] [Indexed: 12/16/2022] Open
Abstract
This study investigated the Silymarin (SM) effects on growth of HT-29 human colon cancer cell line and its cellular death mechanism. HT-29 cells were treated by 25μM/ml of SM for 48h. HT-29 cells were also pretreated with 10mmol zVAD (apoptosis inhibitor), 10mmol 3-MA (autophagy inhibitor) and 3mmol Nec (necroptosis inhibitor) for evaluation cell death induced by apoptosis, outophagy and necroptosis. MTT and clonogenicity assays revealed that the SM without inhibitors induced a significant decrease in cell viability and proliferation of HT-29 cells (p<0.05). SM in presence of Nec and 3-MA significantly decreased viability and proliferation of HT-29 cells. Apoptotic indexes were significantly increased compare to other groups. SM in presence of zVAD and 3-MA significantly decreased viability and proliferation of HT-29 cells, and expression of RIPK1 and RIPK3 in compare to absence the inhibitors. Necroptotic index was also increased. zVAD could not completely blocked apoptosis. This indicate that SM may stimulate both caspase-dependent and caspase-independent apoptotic pathways. SM in presence of zVAD and Nec significantly decreased cell viability and proliferation of HT-29 cells in compare to control and other experimental groups. LC3-II positive cells were significantly increased in this group in compare to the control and SM without inhibitors treatment. Our results revealed that the high SM toxicity to HT-29 cells depends on multiple cell death pathways, which involved mainly autophagy.
Collapse
|
29
|
Galloylation of polyphenols alters their biological activity. Food Chem Toxicol 2017; 105:223-240. [DOI: 10.1016/j.fct.2017.04.021] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 03/23/2017] [Accepted: 04/15/2017] [Indexed: 01/08/2023]
|
30
|
Yazdi Rouholamini SE, Moghassemi S, Maharat Z, Hakamivala A, Kashanian S, Omidfar K. Effect of silibinin-loaded nano-niosomal coated with trimethyl chitosan on miRNAs expression in 2D and 3D models of T47D breast cancer cell line. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2017; 46:524-535. [DOI: 10.1080/21691401.2017.1326928] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Seyede Elmira Yazdi Rouholamini
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeid Moghassemi
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Zahra Maharat
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Susan Kashanian
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Manivannan E, Amawi H, Hussein N, Karthikeyan C, Fetcenko A, Narayana Moorthy NSH, Trivedi P, Tiwari AK. Design and discovery of silybin analogues as antiproliferative compounds using a ring disjunctive - Based, natural product lead optimization approach. Eur J Med Chem 2017; 133:365-378. [PMID: 28411546 DOI: 10.1016/j.ejmech.2017.03.033] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/10/2017] [Accepted: 03/15/2017] [Indexed: 10/19/2022]
Abstract
The present study reports the synthesis and anticancer activity evaluation of twelve novel silybin analogues designed using a ring disjunctive-based natural product lead (RDNPL) optimization approach. All twelve compounds were tested against a panel of cancer cells (i.e. breast, prostate, pancreatic, and ovarian) and compared with normal cells. While all of the compounds had significantly greater efficacy than silybin, derivative 15k was found to be highly potent (IC50 < 1 μM) and selective against ovarian cancer cell lines, as well as other cancer cell lines, compared to normal cells. Preliminary mechanistic studies indicated that the antiproliferative efficacy of 15k was mediated by its induction of apoptosis, loss of mitochondrial membrane potential and cell cycle arrest at the sub-G1 phase. Furthermore, 15k inhibited cellular microtubules dynamic and assembly by binding to tubulin and inhibiting its expression and function. Overall, the results of the study establish 15k as a novel tubulin inhibitor with significant activity against ovarian cancer cells.
Collapse
Affiliation(s)
| | - Haneen Amawi
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Noor Hussein
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - Chandrabose Karthikeyan
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, MP 462036, India
| | - Aubry Fetcenko
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA
| | - N S Hari Narayana Moorthy
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, MP 462036, India
| | - Piyush Trivedi
- School of Pharmaceutical Sciences, Rajiv Gandhi Proudyogiki Vishwavidyalaya, Airport Bypass Road, Gandhi Nagar, Bhopal, MP 462036, India
| | - Amit K Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy & Pharmaceutical Sciences, University of Toledo, OH, USA.
| |
Collapse
|
32
|
Hosseini SY, Kalantar K, Shahin K, Ghayour M, Rajabi Bazl M, Fattahi MR, Moini M, Amirghofran Z. Comparison of the In Vitro Antifibrogenic Effects of Silymarin, Silybin A and 18α-Glycyrrhizin on Activated Hepatic Stellate Cells. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-40285] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
|
33
|
DebRoy S, Hiraga N, Imamura M, Hayes CN, Akamatsu S, Canini L, Perelson AS, Pohl RT, Persiani S, Uprichard SL, Tateno C, Dahari H, Chayama K. Hepatitis C virus dynamics and cellular gene expression in uPA-SCID chimeric mice with humanized livers during intravenous silibinin monotherapy. J Viral Hepat 2016; 23:708-17. [PMID: 27272497 PMCID: PMC4974116 DOI: 10.1111/jvh.12551] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Accepted: 04/04/2016] [Indexed: 12/15/2022]
Abstract
Legalon SIL (SIL) is a chemically hydrophilized version of silibinin, an extract of milk thistle (Silybum marianum) seeds that has exhibited hepatoprotective and antiviral effectiveness against hepatitis C virus (HCV) in patients leading to viral clearance in combination with ribavirin. To elucidate the incompletely understood mode of action of SIL against HCV, mathematical modelling of HCV kinetics and human hepatocyte gene expression studies were performed in uPA-SCID-chimeric mice with humanized livers. Chronically HCV-infected mice (n = 15) were treated for 14 days with daily intravenous SIL at 469, 265 or 61.5 mg/kg. Serum HCV and human albumin (hAlb) were measured frequently, and liver HCV RNA was analysed at days 3 and 14. Microarray analysis of human hepatocyte gene expression was performed at days 0, 3 and 14 of treatment. While hAlb remained constant, a biphasic viral decline in serum was observed consisting of a rapid 1st phase followed by a second slower phase (or plateau with the two lower SIL dosings). SIL effectiveness in blocking viral production was similar among dosing groups (median ε = 77%). However, the rate of HCV-infected hepatocyte decline, δ, was dose-dependent. Intracellular HCV RNA levels correlated (r = 0.66, P = 0.01) with serum HCV RNA. Pathway analysis revealed increased anti-inflammatory and antiproliferative gene expression in human hepatocytes in SIL-treated mice. The results suggest that SIL could lead to a continuous second-phase viral decline, that is potentially viral clearance, in the absence of adaptive immune response along with increased anti-inflammatory and antiproliferative gene expression in human hepatocytes.
Collapse
Affiliation(s)
- Swati DebRoy
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA,Department of Mathematics and Computational Science, University of South Carolina-Beaufort, Bluffton, SC, USA
| | - Nobuhiko Hiraga
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Michio Imamura
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - C. Nelson Hayes
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Sakura Akamatsu
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Laetitia Canini
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA,Centre for Immunity, Infection and Evolution, University of Edinburgh, Edinburgh, United Kingdom
| | - Alan S. Perelson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM, USA
| | - Ralf T. Pohl
- German Association of Phytotherapy, Nachtigallenweg 46, Speyer 67346, Germany
| | | | - Susan L. Uprichard
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | | | - Harel Dahari
- The Program for Experimental & Theoretical Modeling, Division of Hepatology, Department of Medicine, Loyola University Medical Center, Maywood, IL, USA
| | - Kazuaki Chayama
- Department of Gastroenterology and Metabolism, Applied Life Sciences, Institute of Biomedical & Health Sciences, Hiroshima University, Hiroshima, Japan
| |
Collapse
|
34
|
3-O-Alkyl-2,3-dehydrosilibinins: Two synthetic approaches and in vitro effects toward prostate cancer cells. Bioorg Med Chem Lett 2016; 26:3226-3231. [PMID: 27261177 DOI: 10.1016/j.bmcl.2016.05.069] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2016] [Accepted: 05/21/2016] [Indexed: 02/03/2023]
Abstract
Eight 3-O-alkyl-2,3-dehydrosilibinins have been synthesized from commercially available silibinin through two synthetic approaches. A one-pot reaction, starting with aerobic oxidation of silibinin followed by direct alkylation of the phenolic hydroxyl group in the subsequent 2,3-dehydrosilibinin, furnishes the desired derivatives in 11-16% yields. The three-step procedure employing benzyl ether to protect 7-OH in silibinin generates the desired derivatives in 30-46% overall yields. The antiproliferative activity of the 2,3-dehydrosilibinin derivatives against both androgen-sensitive and androgen-insensitive prostate cancer cells have been assessed using a WST-1 cell proliferation assay. All derivatives exhibited greater antiproliferative potency than silibinin, with 2,3-dehydrosilibinins each possessing a three- to five-carbon linear alkyl group to 3-OH (IC50 values in a range of 1.71-3.06μM against PC-3 and LNCaP cells) as the optimal derivatives. The optimal potency was reached with three- to five-carbon alkyl groups. Our findings suggest that 3-O-propyl-2,3-dehydrosilibinin effectively inhibits the growth of PC-3 prostate cancer cells by arresting cell cycle in the G0/G1 phase, but not by activating PC-3 cell apoptosis.
Collapse
|
35
|
Karas D, Gažák R, Valentová K, Chambers CS, Pivodová V, Biedermann D, Křenková A, Oborná I, Kuzma M, Cvačka J, Ulrichová J, Křen V. Effects of 2,3-Dehydrosilybin and Its Galloyl Ester and Methyl Ether Derivatives on Human Umbilical Vein Endothelial Cells. JOURNAL OF NATURAL PRODUCTS 2016; 79:812-820. [PMID: 27015547 DOI: 10.1021/acs.jnatprod.5b00905] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The effects in vitro of 2,3-dehydrosilybin and several galloyl esters and methyl ethers on the viability, proliferation, and migration of human umbilical vein endothelial cells (HUVECs) were evaluated. The monogalloyl esters were synthesized by a chemoselective esterification method or by Steglich esterification of suitably protected 2,3-dehydrosilybin (1) with protected gallic acid. 2,3-Dehydrosilybin (1) displayed more potent cytotoxic, antiproliferative, and antimigratory activities (IC50 12.0, 5.4, and 12.2 μM, respectively) than silybin. The methylated derivatives were less active, with the least potent being 3,7-di-O-methyl-2,3-dehydrosilybin (6). On the other hand, galloylation at C-7 OH and C-23 OH markedly increased the cytotoxicity and the effects on the proliferation and migration of HUVECs. The most active derivative was 7-O-galloyl-2,3-dehydrosilybin (13; IC50 value of 3.4, 1.6, and 4.7 μM in the cytotoxicity, inhibition of proliferation, and antimigratory assays, respectively). Overall, this preliminary structure-activity relationship study demonstrated the importance of a 2,3-double bond, a C-7 OH group, and a galloyl moiety in enhancing the activity of flavonolignans toward HUVECs.
Collapse
Affiliation(s)
| | - Radek Gažák
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Christopher S Chambers
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | | | - David Biedermann
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Alena Křenková
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Ivana Oborná
- Department of Obstetrics and Gynecology, Faculty of Medicine and Dentistry, Palacký University and University Hospital , I.P. Pavlova 6, CZ-775 20 Olomouc, Czech Republic
| | - Marek Kuzma
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry, Czech Academy of Sciences , Flemingovo nám. 2, CZ-16610 Prague 6, Czech Republic
| | | | - Vladimír Křen
- Institute of Microbiology, Czech Academy of Sciences , Vídeňská 1083, CZ-142 20 Prague 4, Czech Republic
| |
Collapse
|
36
|
FENG NAN, LUO JIANMIN, GUO XIMIN. Silybin suppresses cell proliferation and induces apoptosis of multiple myeloma cells via the PI3K/Akt/mTOR signaling pathway. Mol Med Rep 2016; 13:3243-8. [DOI: 10.3892/mmr.2016.4887] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2015] [Accepted: 10/21/2015] [Indexed: 11/06/2022] Open
|
37
|
Pal HC, Hunt KM, Diamond A, Elmets CA, Afaq F. Phytochemicals for the Management of Melanoma. Mini Rev Med Chem 2016; 16:953-79. [PMID: 26864554 PMCID: PMC4980238 DOI: 10.2174/1389557516666160211120157] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Revised: 11/23/2015] [Accepted: 02/07/2016] [Indexed: 11/22/2022]
Abstract
Melanoma claims approximately 80% of skin cancer-related deaths. Its life-threatening nature is primarily due to a propensity to metastasize. The prognosis for melanoma patients with distal metastasis is bleak, with median survival of six months even with the latest available treatments. The most commonly mutated oncogenes in melanoma are BRAF and NRAS accounting approximately 60% and 20% of cases, respectively. In malignant melanoma, accumulating evidence suggests that multiple signaling pathways are constitutively activated and play an important role in cell proliferation, cell survival, epithelial to mesenchymal transition, metastasis and resistance to therapeutic regimens. Phytochemicals are gaining considerable attention because of their low toxicity, low cost, and public acceptance as dietary supplements. Cell culture and animals studies have elucidated several cellular and molecular mechanisms by which phytochemicals act in the prevention and treatment of metastatic melanoma. Several promising phytochemicals, such as, fisetin, epigallocatechin-3-gallate, resveratrol, curcumin, proanthocyanidins, silymarin, apigenin, capsaicin, genistein, indole-3-carbinol, and luteolin are gaining considerable attention and found in a variety of fresh fruits, vegetables, roots, and herbs. In this review, we will discuss the preventive potential, therapeutic effects, bioavailability and structure activity relationship of these selected phytochemicals for the management of melanoma.
Collapse
Affiliation(s)
| | | | | | | | - Farrukh Afaq
- Department of Dermatology, University of Alabama at Birmingham, Volker Hall, Room 501, 1670 University Blvd., Birmingham, AL, 35294, USA.
| |
Collapse
|
38
|
Mashhadi Akbar Boojar M, Hassanipour M, Ejtemaei Mehr S, Mashhadi Akbar Boojar M, Dehpour AR. New Aspects of Silibinin Stereoisomers and their 3-O-galloyl Derivatives on Cytotoxicity and Ceramide Metabolism in Hep G 2 hepatocarcinoma Cell Line. IRANIAN JOURNAL OF PHARMACEUTICAL RESEARCH : IJPR 2016; 15:421-433. [PMID: 27980577 PMCID: PMC5149029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ceramide as a second messenger is a key regulator in apoptosis and cytotoxicity. Ceramide-metabolizing enzymes are ideal target in cancer chemo-preventive studies. Neutral sphingomyelinase (NSMase), acid ceramidase (ACDase) and glucosyl ceramide synthase (GCS) are the main enzymes in ceramide metabolism. Silymarin flavonolignans are potent apoptosis inducers and silibinin is the most active component of silymarin. This study evaluated the effects of silybin A, silybin B and their 3-O-gallyl derivatives (SGA and SGB) at different concentrations (0-200 micro molar) on ceramide metabolism enzymes in Hep G2 hepatocarcinoma cell line. Cell viability, caspase-3 and 9 activities, total cell ceramide and the activities of ACDase, NSMase and GCS were evaluated. Under silibinin derivatives treatments, cell viability decreased and the activities of caspase-3 and 9 increased in a dose dependent manner among which SGB was the most effective one (P<0.05). Total cell ceramide and the activity of NSMase, the enzyme which elevates ceramide level, increased by silibinin derivatives. Furthermore, the activities of removing ceramide enzymes (ACDase and GCS) decreased efficiently. The galloyl esterification increased the activity of silibinin isomers. Consequently, this study reveals new sibilinin effects on ceramide metabolism and potential strategies to enhance the antineoplastic properties of this compound.
Collapse
Affiliation(s)
- Mahdi Mashhadi Akbar Boojar
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Mahsa Hassanipour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Physiology and Pharmacology, School of Medicine, Rafsanjan University of Medical Sciences, Kerman, Iran.
| | - Shahram Ejtemaei Mehr
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| | | | - Ahmad Reza Dehpour
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Experimental Medicine Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
39
|
Vue B, Zhang S, Zhang X, Parisis K, Zhang Q, Zheng S, Wang G, Chen QH. Silibinin derivatives as anti-prostate cancer agents: Synthesis and cell-based evaluations. Eur J Med Chem 2015; 109:36-46. [PMID: 26748997 DOI: 10.1016/j.ejmech.2015.12.041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 12/19/2015] [Accepted: 12/21/2015] [Indexed: 10/22/2022]
Abstract
This study aims to systematically explore the alkylation effect of 7-OH in silibinin and 2,3-dehydrosilibinin on the antiproliferative potency toward three prostate cancer cell lines. Eight 7-O-alkylsilibinins, eight 7-O-alkyl-2,3-dehydrosilibinins, and eight 3,7-O-dialkyl-2,3-dehydrosilibinins have been synthesized from commercially available silibinin for the in vitro cell-based evaluation. The WST-1 cell proliferation assay indicates that nineteen out of twenty-four silibinin derivatives have significantly improved antiproliferative potency when compared with silibinin. 7-O-Methylsilibinin (2) and 7-O-ethylsilibinin (3) have been identified as the most potent compounds with 98- and 123-fold enhanced potency against LNCaP human androgen-dependent prostate cancer cell line. Among 2,3-dehydrosilibinin derivatives, 7-O-methyl-2,3-dehydrosilibinin (10) and 7-O-ethyl-2,3-dehydrosilibinin (11) have been identified as the optimal compounds with the highest potency towards both androgen-dependent LNCaP and androgen-independent PC-3 prostate cancer cell lines. 7-O-Ethyl-2,3-dehydrosilibinin (11) was demonstrated to arrest PC-3 cell cycle at the G0/G1 phase and to induce PC-3 cell apoptosis. The findings in this study suggest that antiproliferative potency of silibinin and 2,3-dehydrosilibinin can be appreciably enhanced through suitable chemical modifications on the phenolic hydroxyl group at C-7 and that introduction of a chemical moiety with the potential to improve bioavailability through a linker to 7-OH in silibinin and 2,3-dehydrosilibinin would be a feasible strategy for the development of silibinin derivatives as anti-prostate cancer agents.
Collapse
Affiliation(s)
- Bao Vue
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Sheng Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Xiaojie Zhang
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Konstantinos Parisis
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA
| | - Qiang Zhang
- RCMI Cancer Research Center Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Shilong Zheng
- RCMI Cancer Research Center Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Guangdi Wang
- RCMI Cancer Research Center Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA; Department of Chemistry, Xavier University of Louisiana, 1 Drexel Drive, New Orleans, LA 70125, USA
| | - Qiao-Hong Chen
- Department of Chemistry, California State University, Fresno, 2555 E. San Ramon Avenue, M/S SB70, Fresno, CA 93740, USA.
| |
Collapse
|
40
|
Pessoa JC, Etcheverry S, Gambino D. Vanadium compounds in medicine. Coord Chem Rev 2015; 301:24-48. [PMID: 32226091 PMCID: PMC7094629 DOI: 10.1016/j.ccr.2014.12.002] [Citation(s) in RCA: 337] [Impact Index Per Article: 37.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Revised: 11/18/2014] [Accepted: 12/02/2014] [Indexed: 12/02/2022]
Abstract
Vanadium is a transition metal that, being ubiquitously distributed in soil, crude oil, water and air, also found roles in biological systems and is an essential element in most living beings. There are also several groups of organisms which accumulate vanadium, employing it in their biological processes. Vanadium being a biological relevant element, it is not surprising that many vanadium based therapeutic drugs have been proposed for the treatment of several types of diseases. Namely, vanadium compounds, in particular organic derivatives, have been proposed for the treatment of diabetes, of cancer and of diseases caused by parasites. In this work we review the medicinal applications proposed for vanadium compounds with particular emphasis on the more recent publications. In cells, partly due to the similarity of vanadate and phosphate, vanadium compounds activate numerous signaling pathways and transcription factors; this by itself potentiates application of vanadium-based therapeutics. Nevertheless, this non-specific bio-activity may also introduce several deleterious side effects as in addition, due to Fenton's type reactions or of the reaction with atmospheric O2, VCs may also generate reactive oxygen species, thereby introducing oxidative stress with consequences presently not well evaluated, particularly for long-term administration of vanadium to humans. Notwithstanding, the potential of vanadium compounds to treat type 2 diabetes is still an open question and therapies using vanadium compounds for e.g. antitumor and anti-parasitic related diseases remain promising.
Collapse
Affiliation(s)
- Joao Costa Pessoa
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Susana Etcheverry
- Cátedra de Bioquímica Patológica and CEQUINOR, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 1900 La Plata, Argentina
| | - Dinorah Gambino
- Cátedra de Química Inorgánica, Facultad de Química, Universidad de la República, Gral. Flores 2124, 11800 Montevideo, Uruguay
| |
Collapse
|
41
|
Srinivas NR. Recent trends in preclinical drug-drug interaction studies of flavonoids--Review of case studies, issues and perspectives. Phytother Res 2015; 29:1679-91. [PMID: 26343418 DOI: 10.1002/ptr.5447] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2015] [Revised: 07/29/2015] [Accepted: 08/14/2015] [Indexed: 11/09/2022]
Abstract
Because of health benefits that are manifested across various disease areas, the consumption of herbal products and/or health supplements containing different kinds of flavonoids has been on the rise. While the drug-drug interaction potential between flavonoids and co-ingested drugs still remain an issue, opportunities exist for the combination of flavonoids with suitable anti-cancer drugs to enhance the bioavailability of anti-cancer drugs and thereby reduce the dose size of the anti-cancer drugs and improve its therapeutic index. In recent years, scores of flavonoids have undergone preclinical investigation with variety of drugs encompassing therapeutic areas such as oncology (etoposide, doxorubicin, paclitaxel, tamoxifen etc.), immunosuppression (cyclosporine) and hypertension (losartan, felodipine, nitrendipine etc.). The review provides examples of the recent trends in the preclinical investigation of 14 flavonoids (morin, quercetin, silibinin, kaempferol etc.) with various co-administered drugs. The relevance of combination of flavonoids with anti-cancer drugs and a framework to help design the in vitro and in vivo preclinical studies to gain better mechanistic insights are discussed. Also, concise discussions on the various physiological factors that contribute for the reduced bioavailability of flavonoids along with the significant challenges in the data interpretation are provided.
Collapse
|
42
|
Purchartová K, Valentová K, Pelantová H, Marhol P, Cvačka J, Havlíček L, Křenková A, Vavříková E, Biedermann D, Chambers CS, Křen V. Prokaryotic and Eukaryotic Aryl Sulfotransferases: Sulfation of Quercetin and Its Derivatives. ChemCatChem 2015. [DOI: 10.1002/cctc.201500298] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Kateřina Purchartová
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
- Department of Biochemistry; Faculty of Science; Charles University in Prague; Albertov 6 12843 Prague Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Helena Pelantová
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Petr Marhol
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Josef Cvačka
- Institute of Organic Chemistry and Biochemistry; Academy of Sciences of the Czech Republic; Flemingovo nám. 2 16610 Prague Czech Republic
| | - Libor Havlíček
- Institute of Experimental Botany; Isotope Laboratory; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Alena Křenková
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Eva Vavříková
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - David Biedermann
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Christopher S. Chambers
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| | - Vladimír Křen
- Institute of Microbiology; Academy of Sciences of the Czech Republic; Vídeňská 1083 14220 Prague Czech Republic
| |
Collapse
|
43
|
Yan WJ, Tan YC, Xu JC, Tang XP, Zhang C, Zhang PB, Ren ZQ. Protective effects of silibinin and its possible mechanism of action in mice exposed to chronic unpredictable mild stress. Biomol Ther (Seoul) 2015; 23:245-50. [PMID: 25995823 PMCID: PMC4428717 DOI: 10.4062/biomolther.2014.138] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Revised: 02/24/2015] [Accepted: 03/18/2015] [Indexed: 12/11/2022] Open
Abstract
Silibinin, a natural flavonoid antioxidant isolated from extracts of the milk thistle herb, has recently been identified as having anti-hepatotoxic and anticancer properties. In this paper, we investigated the effects of silibinin on behavior and neuroplasticity in mice subjected to chronic unpredictable mild stress (CUMS). After 5 consecutive weeks of CUMS, the mice were treated with silibinin (100 mg/kg, 200 mg/kg and 400 mg/kg by oral gavage) for 3 consecutive weeks. The results showed that silibinin administration significantly alleviated the CUMS-induced depressive-like behavior, including the total number of squares crossed and the frequency of rearing in the open field test, the immobility time in the tail suspension test and the forced swimming test. Furthermore, silibinin treatment increased the levels of brain-derived neurotrophic factor (BDNF), serotonin (5-HT) and norepinephrine (NE) in the prefrontal cortex and hippocampus. Our study provides new insight into the protective effects of silibinin on the depressive status of CUMS mice, specifically by improving neuroplasticity and neurotransmission.
Collapse
Affiliation(s)
- Wen-Jing Yan
- School of Nursing, Xuzhou Medical College, Xuzhou 221-004
| | - Ying-Chun Tan
- School of Nursing, Xuzhou Medical College, Xuzhou 221-004
| | - Ji-Cheng Xu
- School of Nursing, Xuzhou Medical College, Xuzhou 221-004
| | - Xian-Ping Tang
- School of Nursing, Xuzhou Medical College, Xuzhou 221-004
| | - Chong Zhang
- General Surgery of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221-006, PR China
| | - Peng-Bo Zhang
- General Surgery of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221-006, PR China
| | - Ze-Qiang Ren
- General Surgery of the Affiliated Hospital of Xuzhou Medical College, Xuzhou 221-006, PR China
| |
Collapse
|
44
|
Tilley C, Deep G, Agarwal C, Wempe MF, Biedermann D, Valentová K, Kren V, Agarwal R. Silibinin and its 2,3-dehydro-derivative inhibit basal cell carcinoma growth via suppression of mitogenic signaling and transcription factors activation. Mol Carcinog 2014; 55:3-14. [PMID: 25492239 DOI: 10.1002/mc.22253] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2014] [Revised: 10/15/2014] [Accepted: 10/21/2014] [Indexed: 01/08/2023]
Abstract
Basal cell carcinoma (BCC) is the most common cancer worldwide, and its current treatment options are insufficient and toxic. Surprisingly, unlike several other malignancies, chemopreventive efforts against BCC are almost lacking. Silibinin, a natural agent from milk thistle seeds, has shown strong efficacy against several cancers including ultraviolet radiation-induced skin (squamous) cancer; however, its potential activity against BCC is not yet examined. Herein, for the first time, we report the efficacy of silibinin and its oxidation product 2,3-dehydrosilibinin (DHS) against BCC both in vitro and in vivo using ASZ (p53 mutated) and BSZ (p53 deleted) cell lines derived from murine BCC tumors. Both silibinin and DHS significantly inhibited cell growth and clonogenicity while inducing apoptosis in a dose- and time-dependent manner, with DHS showing higher activity at lower concentrations. Both agents also inhibited the mitogenic signaling by reducing EGFR, ERK1/2, Akt, and STAT3 phosphorylation and suppressed the activation of transcription factors NF-κB and AP-1. More importantly, in an ectopic allograft model, oral administration of silibinin and DHS (200 mg/kg body weight) strongly inhibited the ASZ tumor growth by 44% and 71% (P < 0.05), respectively, and decreased the expression of proliferation biomarkers (PCNA and cyclin D1) as well as NF-κB p50 and c-Fos in the tumor tissues. Taken together, these results provide the first evidence for the efficacy and usefulness of silibinin and its derivative DHS against BCC, and suggest the need for additional studies with these agents in pre-clinical and clinical BCC chemoprevention and therapy models.
Collapse
Affiliation(s)
- Cynthia Tilley
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado
| | - Gagan Deep
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| | - Chapla Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| | - Michael F Wempe
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| | - David Biedermann
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská, Prague, Czech Republic
| | - Kateřina Valentová
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská, Prague, Czech Republic
| | - Vladimir Kren
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská, Prague, Czech Republic
| | - Rajesh Agarwal
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado Denver, Aurora, Colorado.,University of Colorado Cancer Center, University of Colorado Denver, Aurora, Colorado
| |
Collapse
|
45
|
Gechev TS, Hille J, Woerdenbag HJ, Benina M, Mehterov N, Toneva V, Fernie AR, Mueller-Roeber B. Natural products from resurrection plants: Potential for medical applications. Biotechnol Adv 2014; 32:1091-101. [DOI: 10.1016/j.biotechadv.2014.03.005] [Citation(s) in RCA: 63] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 03/10/2014] [Accepted: 03/11/2014] [Indexed: 01/25/2023]
|
46
|
Křenek K, Marhol P, Peikerová Ž, Křen V, Biedermann D. Preparatory separation of the silymarin flavonolignans by Sephadex LH-20 gel. Food Res Int 2014. [DOI: 10.1016/j.foodres.2014.02.001] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
47
|
Leon IE, Porro V, Di Virgilio AL, Naso LG, Williams PAM, Bollati-Fogolín M, Etcheverry SB. Antiproliferative and apoptosis-inducing activity of an oxidovanadium(IV) complex with the flavonoid silibinin against osteosarcoma cells. J Biol Inorg Chem 2014; 19:59-74. [PMID: 24233155 DOI: 10.1007/s00775-013-1061-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/29/2013] [Indexed: 01/02/2023]
Abstract
Flavonoids are a large family of polyphenolic compounds synthesized by plants. They display interesting biological effects mainly related to their antioxidant properties. On the other hand, vanadium compounds also exhibit different biological and pharmacological effects in cell culture and in animal models. Since coordination of ligands to metals can improve or change the pharmacological properties, we report herein, for the first time, a detailed study of the mechanisms of action of an oxidovanadium(IV) complex with the flavonoid silibinin, Na2[VO(silibinin)2]·6H2O (VOsil), in a model of the human osteosarcoma derived cell line MG-63. The complex inhibited the viability of osteosarcoma cells in a dose-dependent manner with a greater potency than that of silibinin and oxidovanadium(IV) (p < 0.01), demonstrating the benefit of complexation. Cytotoxicity and genotoxicity studies also showed a concentration effect for VOsil. The increase in the levels of reactive oxygen species and the decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of the complex. Besides, the complex caused cell cycle arrest and activated caspase 3, triggering apoptosis as determined by flow cytometry. As a whole, these results show the main mechanisms of the deleterious effects of VOsil in the osteosarcoma cell line, demonstrating that this complex is a promising compound for cancer treatments.
Collapse
|
48
|
Phytochemical analysis and antileukemic activity of polyphenolic constituents of Toona sinensis. Bioorg Med Chem Lett 2014; 24:4286-90. [DOI: 10.1016/j.bmcl.2014.07.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/07/2014] [Accepted: 07/08/2014] [Indexed: 12/13/2022]
|
49
|
Abstract
Silybin, a secondary metabolite isolated from the seeds of the blessed milk thistle (Silybum marianum) was discovered as the first member of a new family of natural compounds called flavonolignans in 1959. Over the years it has received the research attention of many organic chemists. This research has resulted in a number of semisynthetic derivatives prepared in an effort to modulate and better target the biological activities of silybin or to improve its physical properties, such as its solubility. A fundamental breakthrough in silybin chemistry was the determination of the absolute configurations of silybin A and silybin B, and the development of methods for their separation. This review covers articles dealing with silybin chemistry and also summarizes all the derivatives prepared.
Collapse
Affiliation(s)
- D Biedermann
- Institute of Microbiology AS CR, Centre of Biocatalysis and Biotransformation, Vídeňská 1083, Prague 4, CZ 14220, Czech Republic.
| | | | | | | |
Collapse
|
50
|
Purchartová K, Engels L, Marhol P, Sulc M, Kuzma M, Slámová K, Elling L, Křen V. Enzymatic preparation of silybin phase II metabolites: sulfation using aryl sulfotransferase from rat liver. Appl Microbiol Biotechnol 2013; 97:10391-8. [PMID: 23494622 DOI: 10.1007/s00253-013-4794-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 02/14/2013] [Accepted: 02/18/2013] [Indexed: 01/10/2023]
Abstract
Aryl sulfotransferase IV (AstIV) from rat liver was overexpressed in Escherichia coli and purified to homogeneity. Using the produced mammalian liver enzyme, sulfation-the Phase II conjugation reaction-of optically pure silybin diastereoisomers (silybin A and B) was tested. As a result, silybin B was sulfated yielding 20-O-silybin B sulfate, whereas silybin A was completely resistant to the sulfation reaction. Milligram-scale sulfation of silybin B was optimized employing resting E. coli cells producing AstIV, thus avoiding the use of expensive 3'-phosphoadenosine-5'-phosphate cofactor and laborious enzyme purification. Using this approach, we were able to reach 48 % conversion of silybin B into its 20-sulfate within 24 h. The sulfated product was isolated by solid phase extraction and its structure was characterized by HRMS and NMR. Sulfation reaction of silybin appeared strictly stereoselective; only silybin B was sulfated by AstIV.
Collapse
Affiliation(s)
- Kateřina Purchartová
- Institute of Microbiology, Laboratory of Biotransformation, Academy of Sciences of the Czech Republic, Vídeňská 1083, CZ 14220, Prague, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|