1
|
Eng SW, Muniandy V, Punniamoorthy L, Tew HX, Norazmi MN, Ravichandran M, Lee SY. Live Attenuated Bacterial Vectors as Vehicles for DNA Vaccine Delivery: A Mini Review. Malays J Med Sci 2024; 31:6-20. [PMID: 39830112 PMCID: PMC11740808 DOI: 10.21315/mjms2024.31.6.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 08/16/2024] [Indexed: 01/22/2025] Open
Abstract
DNA vaccines are third-generation vaccines composed of plasmids that encode vaccine antigens. Their advantages include fast development, safety, stability, and cost effectiveness, which make them an attractive vaccine platform for genetic and infectious diseases. However, the low transfection efficiency of DNA vaccines results in poor performance in both larger animals and humans, thereby limiting their clinical use. To overcome this issue, live attenuated bacterial vector (LABV) has been proposed as a DNA delivery vehicle. LABV is known to improve DNA vaccine transfection efficiency, thus enhancing the immune response. This article highlights recent advancements in the development of LABV DNA vaccines, the design of shuttle plasmids and adjuvants, and the potential applications of LABV candidates.
Collapse
Affiliation(s)
- Sze Wei Eng
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Vilassini Muniandy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Lohshinni Punniamoorthy
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Hui Xian Tew
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| | - Mohd Nor Norazmi
- School of Health Sciences, Universiti Sains Malaysia, Kelantan, Malaysia
- Malaysia Genome and Vaccine Institute, National Institutes of Biotechnology Malaysia, Selangor, Malaysia
| | - Manickam Ravichandran
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- MyGenome Sdn Bhd, Kuala Lumpur, Malaysia
| | - Su Yin Lee
- Faculty of Applied Sciences, AIMST University, Kedah, Malaysia
- Centre of Excellence for Vaccine Development (CoEVD), Faculty of Applied Science, AIMST University, Kedah, Malaysia
| |
Collapse
|
2
|
Duysak T, Kim K, Yun M, Jeong JH, Choy HE. Enhanced anti-cancer efficacy of arginine deaminase expressed by tumor-seeking Salmonella Gallinarum. Oncogene 2024; 43:3378-3387. [PMID: 39322639 DOI: 10.1038/s41388-024-03176-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Amino acid deprivation, particularly of nonessential amino acids that can be synthesized by normal cells but not by cancer cells with specific defects in the biosynthesis pathway, has emerged as a potential strategy in cancer therapeutics. In normal cells, arginine is synthesized from citrulline in two steps via two enzymes: argininosuccinate synthetase (ASS1) and argininosuccinate lyase. Several cancer cells exhibit arginine auxotrophy due to the loss or down-regulation of ASS1. These cells undergo starvation-induced cell death in the presence of arginine-degrading enzymes such as arginine deaminase (ADI). Thus, ADI has emerged as a potential therapeutic in cancer therapy. However, the use of ADI has two major disadvantages: ADI of bacterial origin is strongly antigenic in mammals, and ADI has a short circulation half-life (∼5 h). In this study, we engineered tumor-targeting Salmonella Gallinarum to express and secrete ADI and deployed this strain into mice implanted with ASS1-defective mouse colorectal cancer (CT26) through an intravenous route. A notable antitumor effect was observed, suggesting that the disadvantages were overcome as ADI was expressed constitutively by tumor-targeting bacteria. A combination with chloroquine, which inhibits the induction of autophagy, further enhanced the effect. Anti-cancer effect of Salmonella Gallinarum expressing an arginine deiminase (ADI) on arginine-dependent tumors in situ.
Collapse
Affiliation(s)
- Taner Duysak
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Korea
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Korea
| | - Kwangsoo Kim
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Korea
| | - Misun Yun
- Technology Innovation Research Division, World Institute of Kimchi, Gwangju, 61755, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Korea.
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, 61468, Korea.
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyang-ro, Hwasun, Jeonnam, 58128, Korea.
| |
Collapse
|
3
|
Lim D, Kim K, Duysak T, So E, Jeong JH, Choy HE. Bacterial cancer therapy using the attenuated fowl-adapted Salmonella enterica serovar Gallinarum. Mol Ther Oncolytics 2023; 31:100745. [PMID: 38053546 PMCID: PMC10694566 DOI: 10.1016/j.omto.2023.100745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023] Open
Abstract
We report here a novel anti-cancer therapy based on an avian-host-specific serotype Salmonella enterica serovar Gallinarum (S. Gallinarum) deficient in ppGpp synthesis. To monitor the tumor targeting, a bioluminescent ΔppGpp S. Gallinarum was constructed and injected intravenously into mice bearing syngeneic and human xenograft tumors. Strong bioluminescent signals were detected specifically in all grafted tumors at 2 days post-injection (dpi). The bacterial counts in normal and tumor tissue at 1 dpi revealed that ΔppGpp S. Gallinarum reached >108 CFU/g in tumor tissue and 106-107 CFU/g in endothelial organs; counts were much lower in other organs. At 16 dpi, ΔppGpp S. Gallinarum counts in tumor tissue decreased to ∼106 CFU/g, while those in the other organs became undetectable. A strong anti-cancer effect was observed after the injection of ΔppGpp S. Gallinarum into BALB/c mice grafted with CT26 colon cancer cells. This could be attributed to reduced virulence, which allowed the administration of at least a 10-fold greater dose (108 CFU) of ΔppGpp S. Gallinarum than other attenuated strains of S. enterica serovar Typhimurium (≤107 CFU). An advantage of the avian-specific S. Gallinarum as a cancer therapeutic should be a reduced capacity to cause infections or harm in humans.
Collapse
Affiliation(s)
- Daejin Lim
- Division of Biomedical Convergence, College of Biomedical Science, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Kwangsoo Kim
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyangro, Hwasun, Jeonnam 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| | - Taner Duysak
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| | - EunA. So
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| | - Hyon E. Choy
- Odysseus Bio, Basic Medical Research Building, Chonnam National University Medical College, 322 Seoyangro, Hwasun, Jeonnam 58128, Republic of Korea
- Department of Microbiology, Chonnam National University Medical School, Gwangju 61468, Republic of Korea
| |
Collapse
|
4
|
Amrofell MB, Rengarajan S, Vo ST, Ramirez Tovar ES, LoBello L, Dantas G, Moon TS. Engineering E. coli strains using antibiotic-resistance-gene-free plasmids. CELL REPORTS METHODS 2023; 3:100669. [PMID: 38086386 PMCID: PMC10753387 DOI: 10.1016/j.crmeth.2023.100669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 05/29/2023] [Accepted: 11/17/2023] [Indexed: 12/21/2023]
Abstract
We created a generalizable pipeline for antibiotic-resistance-gene-free plasmid (ARGFP)-based cloning using a dual auxotrophic- and essential-gene-based selection strategy. We use auxotrophic selection to construct plasmids in engineered E. coli DH10B cloning strains and both auxotrophic- and essential-gene-based selection to (1) select for recombinant strains and (2) maintain a plasmid in E. coli Nissle 1917, a common chassis for engineered probiotic applications, and E. coli MG1655, the laboratory "wild-type" E. coli strain. We show that our approach has comparable efficiency to that of antibiotic-resistance-gene-based cloning. We also show that the double-knockout Nissle and MG1655 strains are simple to transform with plasmids of interest. Notably, we show that the engineered Nissle strains are amenable to long-term plasmid maintenance in repeated culturing as well as in the mouse gut, demonstrating the potential for broad applications while minimizing the risk of antibiotic resistance spread via horizontal gene transfer.
Collapse
Affiliation(s)
- Matthew B Amrofell
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Sunaina Rengarajan
- Department of Medicine, Division of Dermatology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Steven T Vo
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Erick S Ramirez Tovar
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Larissa LoBello
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Gautam Dantas
- Department of Pathology and Immunology, Division of Laboratory and Genomic Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; The Edison Family Center for Genome Sciences & Systems Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA
| | - Tae Seok Moon
- Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO 63130, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO 63130, USA.
| |
Collapse
|
5
|
Constitutive Expression of a Cytotoxic Anticancer Protein in Tumor-Colonizing Bacteria. Cancers (Basel) 2023; 15:cancers15051486. [PMID: 36900277 PMCID: PMC10000871 DOI: 10.3390/cancers15051486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/23/2023] [Accepted: 02/23/2023] [Indexed: 03/03/2023] Open
Abstract
Bacterial cancer therapy is a promising next-generation modality to treat cancer that often uses tumor-colonizing bacteria to deliver cytotoxic anticancer proteins. However, the expression of cytotoxic anticancer proteins in bacteria that accumulate in the nontumoral reticuloendothelial system (RES), mainly the liver and spleen, is considered detrimental. This study examined the fate of the Escherichia coli strain MG1655 and an attenuated strain of Salmonella enterica serovar Gallinarum (S. Gallinarum) with defective ppGpp synthesis after intravenous injection into tumor-bearing mice (~108 colony forming units/animal). Approximately 10% of the injected bacteria were detected initially in the RES, whereas approximately 0.01% were in tumor tissues. The bacteria in the tumor tissue proliferated vigorously to up to 109 colony forming units/g tissue, whereas those in the RES died off. RNA analysis revealed that tumor-associated E. coli activated rrnB operon genes encoding the rRNA building block of ribosome needed most during the exponential stage of growth, whereas those in the RES expressed substantially decreased levels of this gene and were cleared soon presumably by innate immune systems. Based on this finding, we engineered ΔppGpp S. Gallinarum to express constitutively a recombinant immunotoxin comprising TGFα and the Pseudomonas exotoxin A (PE38) using a constitutive exponential phase promoter, the ribosomal RNA promoter rrnB P1. The construct exerted anticancer effects on mice grafted with mouse colon (CT26) or breast (4T1) tumor cells without any notable adverse effects, suggesting that constitutive expression of cytotoxic anticancer protein from rrnB P1 occurred only in tumor tissue.
Collapse
|
6
|
Enhancing the tropism of bacteria via genetically programmed biosensors. Nat Biomed Eng 2021; 6:94-104. [PMID: 34326488 DOI: 10.1038/s41551-021-00772-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/25/2021] [Indexed: 01/01/2023]
Abstract
Engineered bacteria for therapeutic applications would benefit from control mechanisms that confine the growth of the bacteria within specific tissues or regions in the body. Here we show that the tropism of engineered bacteria can be enhanced by coupling bacterial growth with genetic circuits that sense oxygen, pH or lactate through the control of the expression of essential genes. Bacteria that were engineered with pH or oxygen sensors showed preferential growth in physiologically relevant acidic or oxygen conditions, and reduced growth outside the permissive environments when orally delivered to mice. In syngeneic mice bearing subcutaneous tumours, bacteria engineered with both hypoxia and lactate biosensors coupled through an AND gate showed increased tumour specificity. The multiplexing of genetic circuits may be more broadly applicable for enhancing the localization of bacteria to specified niches.
Collapse
|
7
|
Hawkins JS, Silvis MR, Koo BM, Peters JM, Osadnik H, Jost M, Hearne CC, Weissman JS, Todor H, Gross CA. Mismatch-CRISPRi Reveals the Co-varying Expression-Fitness Relationships of Essential Genes in Escherichia coli and Bacillus subtilis. Cell Syst 2020; 11:523-535.e9. [PMID: 33080209 PMCID: PMC7704046 DOI: 10.1016/j.cels.2020.09.009] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/26/2020] [Accepted: 09/25/2020] [Indexed: 11/24/2022]
Abstract
Essential genes are the hubs of cellular networks, but lack of high-throughput methods for titrating gene expression has limited our understanding of the fitness landscapes against which their expression levels are optimized. We developed a modified CRISPRi system leveraging the predictable reduction in efficacy of imperfectly matched sgRNAs to generate defined levels of CRISPRi activity and demonstrated its broad applicability. Using libraries of mismatched sgRNAs predicted to span the full range of knockdown levels, we characterized the expression-fitness relationships of most essential genes in Escherichia coli and Bacillus subtilis. We find that these relationships vary widely from linear to bimodal but are similar within pathways. Notably, despite ∼2 billion years of evolutionary separation between E. coli and B. subtilis, most essential homologs have similar expression-fitness relationships with rare but informative differences. Thus, the expression levels of essential genes may reflect homeostatic or evolutionary constraints shared between the two organisms.
Collapse
Affiliation(s)
- John S Hawkins
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Melanie R Silvis
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Byoung-Mo Koo
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jason M Peters
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Hendrik Osadnik
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Marco Jost
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Cameron C Hearne
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Jonathan S Weissman
- Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94158, USA; Howard Hughes Medical Institute, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute for Quantitative Biosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Horia Todor
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA.
| | - Carol A Gross
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA 94158, USA; California Institute of Quantitative Biology, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
8
|
Kim K, Min SY, Lim HD, You SH, Lim D, Jeong JH, Kim HJ, Rhee JH, Park K, Shin M, Kim GJ, Min JJ, Choy HE. Cell mass-dependent expression of an anticancer protein drug by tumor-targeted Salmonella. Oncotarget 2018; 9:8548-8559. [PMID: 29492216 PMCID: PMC5823552 DOI: 10.18632/oncotarget.24013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/03/2017] [Indexed: 01/09/2023] Open
Abstract
Bacterial cancer therapy relies on the properties of certain bacterial species capable of targeting and proliferating within solid malignancies. If these bacteria could be loaded with antitumor proteins, the efficacy of this approach could be greatly increased. However, because most antitumor proteins are also toxic to normal tissue, they must be expressed by bacteria that specifically target and exclusively localize to tumor tissue. As a strategy for treating solid malignancies, we recently evaluated L-asparaginase (L-ASNase) delivered by tumor-targeted Salmonella. In this system, L-ASNase was expressed under the control of the araBAD promoter (PBAD) of the E. coli arabinose operon, which is induced by injection of L-arabinose. Here, we further improved the performance of recombinant Salmonella in cancer therapy by exploiting the quorum-sensing (QS) system, which uses cell mass-dependent auto-induction logic. This approach obviates the necessity of monitoring intratumoral bacterial status and inducing cargo protein expression by administration of an exogenous compound. Recombinant Salmonella in tumors expressed and secreted active L-ASNase in a cell mass-dependent manner, yielding significant anticancer effects. These results suggest that expression of a therapeutic protein under the control of the QS system represents a promising engineering platform for the production of recombinant proteins in vivo.
Collapse
Affiliation(s)
- Kwangsoo Kim
- Department of Microbiology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Molecular Medicine, BK21 plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Sa-Young Min
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Ho-Dong Lim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Sung-Hwan You
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Molecular Medicine, BK21 plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Molecular Medicine, BK21 plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Hyun-Ju Kim
- Department of Microbiology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Molecular Medicine, BK21 plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Joon Haeng Rhee
- Department of Microbiology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Molecular Medicine, BK21 plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Kyeongil Park
- Department of Microbiology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Molecular Medicine, BK21 plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, Kyungpook National University Medical School, Daegu, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Gwangju, Republic of Korea
| | - Jung-Joon Min
- Molecular Medicine, BK21 plus, Chonnam National University Graduate School, Gwangju, Republic of Korea.,Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital, Jeonnam, Republic of Korea
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Jeollanam-do, Republic of Korea.,Molecular Medicine, BK21 plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| |
Collapse
|
9
|
Lim D, Kim KS, Kim H, Ko KC, Song JJ, Choi JH, Shin M, Min JJ, Jeong JH, Choy HE. Anti-tumor activity of an immunotoxin (TGFα-PE38) delivered by attenuated Salmonella typhimurium. Oncotarget 2017; 8:37550-37560. [PMID: 28473665 PMCID: PMC5514929 DOI: 10.18632/oncotarget.17197] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/06/2017] [Indexed: 12/22/2022] Open
Abstract
The anticancer strategy underlying the use of immunotoxins is as follows: the cancer-binding domain delivers the toxin to a cancer cell, after which the toxin enters and kills the cell. TGFα-PE38 is an immunotoxin comprising transforming growth factor alpha (TGFα), a natural ligand of epidermal growth factor receptor (EGFR), and a modified Pseudomonas exotoxin A (PE38) lacking N terminal cell-binding domain, a highly potent cytotoxic protein moiety. Tumor cells with high level of EGFR undergo apoptosis upon treatment with TGFα-PE38. However, clinical trials demonstrated that this immunotoxin delivered by an intracerebral infusion technique has only a limited inhibitory effect on intracranial tumors mainly due to inconsistent drug delivery. To circumvent this problem, we turned to tumor-seeking bacterial system. Here, we engineered Salmonella typhimurium to selectively express and release TGFα-PE38. Engineered bacteria were administered to mice implanted with mouse colon or breast tumor cells expressing high level of EGFR. We observed that controlled expression and release of TGFα-PE38 from intra-tumoral Salmonellae by either an engineered phage lysis system or by a bacterial membrane transport signal led to significant inhibition of solid tumor growth. These results demonstrated that delivery by tumor-seeking bacteria would greatly augment efficacy of immunotoxin in cancer therapeutics.
Collapse
Affiliation(s)
- Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Kwang Soo Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Hyunju Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Kyong-Cheol Ko
- Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk, Republic of Korea
| | - Jae Jun Song
- Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk, Republic of Korea
| | - Jong Hyun Choi
- Applied Microbiology Research Center, Bio-Materials Research Institute, Korea Research Institute of Bioscience and Biotechnology, Jeongeup, Jeonbuk, Republic of Korea
| | - Minsang Shin
- Department of Microbiology, Kyungpook National University Medical School, Daegu, Republic of Korea
| | - Jung-joon Min
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Hyon E. Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- Molecular Medicine, BK21 Plus, Chonnam National University Graduate School, Gwangju, Republic of Korea
| |
Collapse
|
10
|
Yoo W, Yoon H, Seok YJ, Lee CR, Lee HH, Ryu S. Fine-tuning of amino sugar homeostasis by EIIA(Ntr) in Salmonella Typhimurium. Sci Rep 2016; 6:33055. [PMID: 27628932 PMCID: PMC5024086 DOI: 10.1038/srep33055] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 08/17/2016] [Indexed: 11/08/2022] Open
Abstract
The nitrogen-metabolic phosphotransferase system, PTS(Ntr), consists of the enzymes I(Ntr), NPr and IIA(Ntr) that are encoded by ptsP, ptsO, and ptsN, respectively. Due to the proximity of ptsO and ptsN to rpoN, the PTS(Ntr) system has been postulated to be closely related with nitrogen metabolism. To define the correlation between PTS(Ntr) and nitrogen metabolism, we performed ligand fishing with EIIA(Ntr) as a bait and revealed that D-glucosamine-6-phosphate synthase (GlmS) directly interacted with EIIA(Ntr). GlmS, which converts D-fructose-6-phosphate (Fru6P) into D-glucosamine-6-phosphate (GlcN6P), is a key enzyme producing amino sugars through glutamine hydrolysis. Amino sugar is an essential structural building block for bacterial peptidoglycan and LPS. We further verified that EIIA(Ntr) inhibited GlmS activity by direct interaction in a phosphorylation-state-dependent manner. EIIA(Ntr) was dephosphorylated in response to excessive nitrogen sources and was rapidly degraded by Lon protease upon amino sugar depletion. The regulation of GlmS activity by EIIA(Ntr) and the modulation of glmS translation by RapZ suggest that the genes comprising the rpoN operon play a key role in maintaining amino sugar homeostasis in response to nitrogen availability and the amino sugar concentration in the bacterial cytoplasm.
Collapse
Affiliation(s)
- Woongjae Yoo
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| | - Hyunjin Yoon
- Department of Molecular Science and Technology, Department of Applied Chemistry and Biological Engineering, Ajou University, Suwon 16499, Korea
| | - Yeong-Jae Seok
- Department of Biological Sciences and Institute of Microbiology, Seoul National University, Seoul 08826, Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido 17058, Republic of Korea
| | - Hyung Ho Lee
- Department of Chemistry, College of Natural Sciences, Seoul National University, Seoul 08826, Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Department of Agricultural Biotechnology, Research Institute for Agriculture and Life Sciences, and Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
11
|
Khan MA, Göpel Y, Milewski S, Görke B. Two Small RNAs Conserved in Enterobacteriaceae Provide Intrinsic Resistance to Antibiotics Targeting the Cell Wall Biosynthesis Enzyme Glucosamine-6-Phosphate Synthase. Front Microbiol 2016; 7:908. [PMID: 27379045 PMCID: PMC4908143 DOI: 10.3389/fmicb.2016.00908] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 05/27/2016] [Indexed: 11/17/2022] Open
Abstract
Formation of glucosamine-6-phosphate (GlcN6P) by enzyme GlcN6P synthase (GlmS) represents the first step in bacterial cell envelope synthesis. In Escherichia coli, expression of glmS is controlled by small RNAs (sRNAs) GlmY and GlmZ. GlmZ activates the glmS mRNA by base-pairing. When not required, GlmZ is bound by adapter protein RapZ and recruited to cleavage by RNase E inactivating the sRNA. The homologous sRNA GlmY activates glmS indirectly. When present at high levels, GlmY sequesters RapZ by an RNA mimicry mechanism suppressing cleavage of GlmZ. The interplay of both sRNAs is believed to adjust GlmS synthesis to the needs of the cell, i.e., to achieve GlcN6P homeostasis. Bacilysin (tetaine) and Nva-FMDP are dipeptide antibiotics that impair cell envelope synthesis by inhibition of enzyme GlmS through covalent modification. However, although taken up efficiently, these antibiotics are less active against E. coli for reasons unknown so far. Here we show that the GlmY/GlmZ circuit provides resistance. Inhibition of GlmS causes GlcN6P deprivation leading to activation of GlmY and GlmZ, which in turn trigger glmS overexpression in a dosage-dependent manner. Mutation of glmY or glmZ disables this response and renders the bacteria highly susceptible to GlmS inhibitors. Thus, E. coli compensates inhibition of GlmS by increasing its synthesis through the GlmY/GlmZ pathway. This mechanism is also operative in Salmonella indicating that it is conserved in Enterobacteriaceae possessing these sRNAs. As GlmY apparently responds to GlcN6P, co-application of a non-metabolizable GlcN6P analog may prevent activation of the sRNAs and thereby increase the bactericidal activity of GlmS inhibitors against wild-type bacteria. Initial experiments using glucosamine-6-sulfate support this possibility. Thus, GlcN6P analogs might be considered for co-application with GlmS inhibitors in combined therapy to treat infections caused by pathogenic Enterobacteriaceae.
Collapse
Affiliation(s)
- Muna A. Khan
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna BiocenterVienna, Austria
| | - Yvonne Göpel
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna BiocenterVienna, Austria
| | - Slawomir Milewski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdańsk University of TechnologyGdańsk, Poland
| | - Boris Görke
- Department of Microbiology, Immunobiology and Genetics, Max F. Perutz Laboratories, University of Vienna, Vienna BiocenterVienna, Austria
| |
Collapse
|
12
|
Phan TX, Nguyen VH, Duong MTQ, Hong Y, Choy HE, Min JJ. Activation of inflammasome by attenuated Salmonella typhimurium in bacteria-mediated cancer therapy. Microbiol Immunol 2016; 59:664-75. [PMID: 26500022 DOI: 10.1111/1348-0421.12333] [Citation(s) in RCA: 87] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 10/13/2015] [Accepted: 10/19/2015] [Indexed: 12/13/2022]
Abstract
Escherichia coli and attenuated Salmonella both naturally accumulate in a tumor mass, yet have distinct therapeutic efficacy: the E. coli K-12 strain (MG1655) cannot induce as significant a tumor suppression as attenuated Salmonella typhimurium, despite similar levels of accumulation in the tumor. To elucidate the mechanism of the robust antitumor effect of S. typhimurium, the cytokine profiles elicited by bacterial colonization in tumors were analyzed. C57BL/6 mice bearing MC38 tumors were injected with Salmonella or MG1655 in the tail vein. Tumors were collected 3 days post-infection and homogenized. Inflammasome-related signals were measured by real-time PCR, ELISA and western blot analysis. Only attenuated Salmonella triggered significant levels of the inflammatory cytokine IL-1β in the tumor, whereas tumor growth was significantly suppressed. In addition, transcript levels of the core molecules of inflammasome signaling, IPAF, NLRP3 and P2X7, were significantly elevated only in Salmonella-treated tumors. Upon direct interaction between Salmonella and BMDM, BMDM expressed inflammasome-related proteins such as NLRP3, IPAF and caspase-1 p10, and secreted a significant amount of IL-1β in supernatants. Coincubation assays with BMDM and Salmonella-treated MC38 cells (damaged cancer cells) revealed secretion of IL-1β only when TLR4 and inflammasome were activated by both LPS and damaged cancer cells. ATP released from damaged cancer cells was also identified as a mechanism of NLRP3 activation. In conclusion, Salmonella activate the inflammasome pathway using damage signals released from cancer cells and through direct interaction with macrophages.
Collapse
Affiliation(s)
- Thuy Xuan Phan
- Laboratory of In Vivo Imaging, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital
| | - Vu Hong Nguyen
- Laboratory of In Vivo Imaging, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital
| | - Mai Thi-Quynh Duong
- Laboratory of In Vivo Imaging, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Hyon E Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| | - Jung-Joon Min
- Laboratory of In Vivo Imaging, Department of Nuclear Medicine, Chonnam National University Medical School and Hwasun Hospital.,Department of Microbiology, Chonnam National University Medical School, Gwangju, Korea
| |
Collapse
|
13
|
Nguyen VH, Min JJ. Salmonella-Mediated Cancer Therapy: Roles and Potential. Nucl Med Mol Imaging 2016; 51:118-126. [PMID: 28559936 DOI: 10.1007/s13139-016-0415-z] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 02/29/2016] [Accepted: 03/28/2016] [Indexed: 01/21/2023] Open
Abstract
The use of bacteria for cancer therapy, which was proposed many years ago, was not recognized as a potential therapeutic strategy until recently. Technological advances and updated knowledge have enabled the genetic engineering of bacteria for their safe and effective application in the treatment of cancer. The efficacy of radiotherapy depends mainly on tissue oxygen levels, and low oxygen concentrations in necrotic and hypoxic regions are a common cause of treatment failure. In addition, the distribution of a drug is important for the therapeutic effect of chemotherapy, and the poor vasculature in tumors impairs drug delivery, limiting the efficacy of a drug, especially in necrotic and hypoxic regions. Bacteria-mediated cancer therapy (BMCT) relies on facultative anaerobes that can survive in well or poorly oxygenated regions, and it therefore improves the therapeutic efficacy drug distribution throughout the tumor mass. Since the mid-1990s, the number of published bacterial therapy papers has increased rapidly, with a doubling time of 2.5 years in which the use of Salmonella increased significantly. BMCT is being reevaluated to overcome some of the drawbacks of conventional therapies. This review focuses on Salmonella-mediated cancer therapy as the most widely used type of BMCT.2.
Collapse
Affiliation(s)
- Vu Hong Nguyen
- Department of Experimental Therapeutics, Beckman Research Institute of City of Hope, Duarte, California, 1500 East Duarte Road, Duarte, CA 91010 USA
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, 5 Hak1 dong, Dong-gu, Gwangju, 501-746 Republic of Korea
| |
Collapse
|
14
|
Kim JE, Phan TX, Nguyen VH, Dinh-Vu HV, Zheng JH, Yun M, Park SG, Hong Y, Choy HE, Szardenings M, Hwang W, Park JA, Park S, Im SH, Min JJ. Salmonella typhimurium Suppresses Tumor Growth via the Pro-Inflammatory Cytokine Interleukin-1β. Am J Cancer Res 2015; 5:1328-42. [PMID: 26516371 PMCID: PMC4615736 DOI: 10.7150/thno.11432] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 08/23/2015] [Indexed: 12/23/2022] Open
Abstract
Although strains of attenuated Salmonella typhimurium and wild-type Escherichia coli show similar tumor-targeting capacities, only S. typhimurium significantly suppresses tumor growth in mice. The aim of the present study was to examine bacteria-mediated immune responses by conducting comparative analyses of the cytokine profiles and immune cell populations within tumor tissues colonized by E. coli or attenuated Salmonellae. CT26 tumor-bearing mice were treated with two different bacterial strains: S. typhimurium defective in ppGpp synthesis (ΔppGpp Salmonellae) or wild-type E. coli MG1655. Cytokine profiles and immune cell populations in tumor tissue colonized by these two bacterial strains were examined at two time points based on the pattern of tumor growth after ΔppGpp Salmonellae treatment: 1) when tumor growth was suppressed ('suppression stage') and 2) when they began to re-grow ('re-growing stage'). The levels of IL-1β and TNF-α were markedly increased in tumors colonized by ΔppGpp Salmonellae. This increase was associated with tumor regression; the levels of both IL-1β and TNF-α returned to normal level when the tumors started to re-grow. To identify the immune cells primarily responsible for Salmonellae-mediated tumor suppression, we examined the major cell types that produce IL-1β and TNF-α. We found that macrophages and dendritic cells were the main producers of TNF-α and IL-1β. Inhibiting IL-1β production in Salmonellae-treated mice restored tumor growth, whereas tumor growth was suppressed for longer by local administration of recombinant IL-1β or TNF-α in conjunction with Salmonella therapy. These findings suggested that IL-1β and TNF-α play important roles in Salmonella-mediated cancer therapy. A better understanding of host immune responses in Salmonella therapy may increase the success of a given drug, particularly when various strategies are combined with bacteriotherapy.
Collapse
|
15
|
L-Asparaginase delivered by Salmonella typhimurium suppresses solid tumors. MOLECULAR THERAPY-ONCOLYTICS 2015; 2:15007. [PMID: 27119104 PMCID: PMC4845971 DOI: 10.1038/mto.2015.7] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/02/2015] [Indexed: 01/16/2023]
Abstract
Bacteria can be engineered to deliver anticancer proteins to tumors via a controlled expression system that maximizes the concentration of the therapeutic agent in the tumor. L-asparaginase (L-ASNase), which primarily converts asparagine to aspartate, is an anticancer protein used to treat acute lymphoblastic leukemia. In this study, Salmonellae were engineered to express L-ASNase selectively within tumor tissues using the inducible araBAD promoter system of Escherichia coli. Antitumor efficacy of the engineered bacteria was demonstrated in vivo in solid malignancies. This result demonstrates the merit of bacteria as cancer drug delivery vehicles to administer cancer-starving proteins such as L-ASNase to be effective selectively within the microenvironment of cancer tissue.
Collapse
|
16
|
Liu Q, Li Y, Zhao X, Yang X, Liu Q, Kong Q. Construction of Escherichia coli Mutant with Decreased Endotoxic Activity by Modifying Lipid A Structure. Mar Drugs 2015; 13:3388-406. [PMID: 26023843 PMCID: PMC4483635 DOI: 10.3390/md13063388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Revised: 05/18/2015] [Accepted: 05/19/2015] [Indexed: 12/22/2022] Open
Abstract
Escherichia coli BL21 (DE3) and its derivatives are widely used for the production of recombinant proteins, but these purified proteins are always contaminated with lipopolysaccharide (LPS). LPS is recognized by the toll-like receptor 4 and myeloid differentiation factor 2 complex of mammalian immune cells and leads to release of pro-inflammatory cytokines. It is a vital step to remove LPS from the proteins before use for therapeutic purpose. In this study, we constructed BL21 (DE3) ∆msbB28 ∆pagP38 mutant, which produces a penta-acylated LPS with reduced endotoxicity. The plasmids harboring pagL and/or lpxE were then introduced into this mutant to further modify the LPS. The new strain (S004) carrying plasmid pQK004 (pagL and lpxE) produced mono-phosphoryated tetra-acylated lipid A, which induces markedly less production of tumor necrosis factor-α in the RAW264.7 and IL-12 in the THP1, but still retains ability to produce recombinant proteins. This study provides a strategy to decrease endotoxic activity of recombinant proteins purified from E. coli BL21 backgrounds and a feasible approach to modify lipid A structure for alternative purposes such as mono-phosphoryl lipid A (MPL) as vaccine adjuvants.
Collapse
Affiliation(s)
- Qiong Liu
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Yanyan Li
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| | - Xinxin Zhao
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Xue Yang
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qing Liu
- Department of Bioengineering, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| | - Qingke Kong
- Institute of Preventive Veterinary Medicine, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
17
|
Jeong JH, Kim K, Lim D, Jeong K, Hong Y, Nguyen VH, Kim TH, Ryu S, Lim JA, Kim JI, Kim GJ, Kim SC, Min JJ, Choy HE. Anti-tumoral effect of the mitochondrial target domain of Noxa delivered by an engineered Salmonella typhimurium. PLoS One 2014; 9:e80050. [PMID: 24416126 PMCID: PMC3885380 DOI: 10.1371/journal.pone.0080050] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2013] [Accepted: 09/30/2013] [Indexed: 12/18/2022] Open
Abstract
Bacterial cancer therapy relies on the fact that several bacterial species are capable of targeting tumor tissue and that bacteria can be genetically engineered to selectively deliver therapeutic proteins of interest to the targeted tumors. However, the challenge of bacterial cancer therapy is the release of the therapeutic proteins from the bacteria and entry of the proteins into tumor cells. This study employed an attenuated Salmonella typhimurium to selectively deliver the mitochondrial targeting domain of Noxa (MTD) as a potential therapeutic cargo protein, and examined its anti-cancer effect. To release MTD from the bacteria, a novel bacterial lysis system of phage origin was deployed. To facilitate the entry of MTD into the tumor cells, the MTD was fused to DS4.3, a novel cell-penetrating peptide (CPP) derived from a voltage-gated potassium channel (Kv2.1). The gene encoding DS4.3-MTD and the phage lysis genes were placed under the control of PBAD, a promoter activated by L-arabinose. We demonstrated that DS4.3-MTD chimeric molecules expressed by the Salmonellae were anti-tumoral in cultured tumor cells and in mice with CT26 colon carcinoma.
Collapse
Affiliation(s)
- Jae-Ho Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kwangsoo Kim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Daejin Lim
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Kwangjoon Jeong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Yeongjin Hong
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Vu H. Nguyen
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Tae-Hyoung Kim
- Department of Biochemistry, Chosun University Medical School, Gwangju, Republic of Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Korea
| | - Jeong-A Lim
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, Korea
| | - Jae Il Kim
- School of Life Science, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Geun-Joong Kim
- Department of Biological Sciences, College of Natural Sciences, Chonnam National University, Yongbong-Dong, Buk-Gu, Gwangju, Korea
| | - Sun Chang Kim
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail: (JJM); (HEC)
| | - Hyon E. Choy
- Department of Microbiology, Chonnam National University Medical School, Gwangju, Republic of Korea
- * E-mail: (JJM); (HEC)
| |
Collapse
|
18
|
Danino T, Prindle A, Hasty J, Bhatia S. Measuring growth and gene expression dynamics of tumor-targeted S. typhimurium bacteria. J Vis Exp 2013:e50540. [PMID: 23851642 DOI: 10.3791/50540] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The goal of these experiments is to generate quantitative time-course data on the growth and gene expression dynamics of attenuated S. typhimurium bacterial colonies growing inside tumors. We generated model xenograft tumors in mice by subcutaneous injection of a human ovarian cancer cell line, OVCAR-8 (NCI DCTD Tumor Repository, Frederick, MD). We transformed attenuated strains of S. typhimurium bacteria (ELH430:SL1344 phoPQ- (1)) with a constitutively expressed luciferase (luxCDABE) plasmid for visualization(2). These strains specifically colonize tumors while remaining essentially non-virulent to the mouse(1). Once measurable tumors were established, bacteria were injected intravenously via the tail vein with varying dosage. Tumor-localized, bacterial gene expression was monitored in real time over the course of 60 hours using an in vivo imaging system (IVIS). At each time point, tumors were excised, homogenized, and plated to quantitate bacterial colonies for correlation with gene expression data. Together, this data yields a quantitative measure of the in vivo growth and gene expression dynamics of bacteria growing inside tumors.
Collapse
Affiliation(s)
- Tal Danino
- Health Sciences and Technology, Massachusetts Institute of Technology
| | | | | | | |
Collapse
|