1
|
Schaunaman N, Nichols T, Cervantes D, Hartsoe P, Ferrington DA, Chu HW. The Effect of a TLR3 Agonist on Airway Allergic Inflammation and Viral Infection in Immunoproteasome-Deficient Mice. Viruses 2024; 16:1384. [PMID: 39339860 PMCID: PMC11437510 DOI: 10.3390/v16091384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/23/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Allergic asthma is characterized by increased type 2 inflammation, including eosinophils. Subjects with allergic asthma have recurrent symptoms due to their constant exposure to environmental allergens, such as house dust mite (HDM), which can be further exacerbated by respiratory infections like rhinovirus. The immunoproteasome (IP) is a proteolytic machinery that is induced by inflammatory mediators during virus infection, but the role of the IP in airway allergic inflammation during rhinovirus infection remains unknown. Wild-type (WT) and IP knockout (KO) mice were challenged with HDM. At 48 h after the last HDM challenge, mice were infected with rhinovirus 1B (RV-A1B) for 24 h. After HDM and RV-A1B treatment, IP KO (vs. WT) mice had significantly more lung eosinophils and neutrophils, as well as a significantly higher viral load, but less IFN-beta expression, compared to WT mice. A TLR3 agonist polyinosinic-polycytidylic acid (Poly I:C) treatment after RV-A1B infection in HDM-challenged IP KO mice significantly increased IFN-beta expression and reduced viral load, with a minimal effect on the number of inflammatory cells. Our data suggest that immunoproteasome is an important mechanism functioning to prevent excessive inflammation and viral infection in allergen-exposed mice, and that Poly I:C could be therapeutically effective in enhancing the antiviral response and lessening the viral burden in lungs with IP deficiency.
Collapse
Affiliation(s)
| | - Taylor Nichols
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Diana Cervantes
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | - Paige Hartsoe
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| | | | - Hong Wei Chu
- National Jewish Health, Denver, CO 80206, USA; (N.S.); (D.C.); (P.H.)
| |
Collapse
|
2
|
Layhadi JA, Moya R, Tan TJ, Lenormand MM, Sharif H, Parkin RV, Vila-Nadal G, Fedina O, Zhu R, Laisuan W, Durham SR, Carnés J, Shamji MH. Single-cell RNA sequencing identifies precise tolerogenic cellular and molecular pathways induced by depigmented-polymerized grass pollen allergen extract. J Allergy Clin Immunol 2023; 151:1357-1370.e9. [PMID: 36649758 DOI: 10.1016/j.jaci.2022.11.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 11/04/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023]
Abstract
BACKGROUND Immunologic mechanism of action of allergoids remains poorly understood. Previous models of allergenicity and immunogenicity have yielded suboptimal knowledge of these immunotherapeutic vaccine products. Novel single-cell RNA sequencing technology offers a bridge to this gap in knowledge. OBJECTIVE We sought to identify the underpinning tolerogenic molecular and cellular mechanisms of depigmented-polymerized Phleum pratense (Phl p) extract. METHODS The molecular mechanisms underlying native Phl p, depigmented Phl p (DPG-Phl p), and depigmented-polymerized (DPG-POL-Phl p) allergoid were investigated by single-cell RNA sequencing. Allergen-specific TH2A, T follicular helper (Tfh), and IL-10+ regulatory B cells were quantified by flow cytometry in peripheral blood mononuclear cells from 16 grass pollen-allergic and 8 nonatopic control subjects. The ability of Phl p, DPG-Phl p, and DPG-POL-Phl p to elicit FcεRI- and FcεRII-mediated IgE responses was measured by basophil activation test and IgE-facilitated allergen binding assay. RESULTS Analysis revealed that DPG-POL-Phl p downregulated genes associated with TH2 signaling, induced functional regulatory T cells exhibiting immunosuppressive roles through CD52 and Siglec-10, modulated genes encoding immunoproteasome that dysregulate the processing and presentation of antigens to T cells and promoted a shift from IgE toward an IgA1 and IgG responses. In grass pollen-allergic subjects, DPG-POL-Phl p exhibited reduced capacity to elicit proliferation of TH2A, IL-4+ Tfh and IL-21+ Tfh cells while being the most prominent at inducing IL-10+CD19+CD5hi and IL-10+CD19+CD5hiCD38intCD24int regulatory B-cell subsets compared to Phl p (all P < .05). Furthermore, DPG-POL-Phl p demonstrated a hypoallergenic profile through basophil activation and histamine release compared to Phl p (31.54-fold, P < .001). CONCLUSIONS Single-cell RNA sequencing provides an in-depth resolution of the mechanisms underlying the tolerogenic profile of DPG-POL-Phl p.
Collapse
Affiliation(s)
- Janice A Layhadi
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Raquel Moya
- R&D Allergy & Immunology Unit, LETI Pharma SL, Tres Cantos, Madrid, Spain
| | - Tiak Ju Tan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Madison M Lenormand
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Hanisah Sharif
- National Heart and Lung Institute, Imperial College London, London, United Kingdom; PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong, Brunei
| | - Rebecca V Parkin
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Gemma Vila-Nadal
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Oleksandra Fedina
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Rongfei Zhu
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Wannada Laisuan
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Stephen R Durham
- National Heart and Lung Institute, Imperial College London, London, United Kingdom
| | - Jerónimo Carnés
- R&D Allergy & Immunology Unit, LETI Pharma SL, Tres Cantos, Madrid, Spain
| | - Mohamed H Shamji
- National Heart and Lung Institute, Imperial College London, London, United Kingdom.
| |
Collapse
|
3
|
Oliveri F, Basler M, Rao TN, Fehling HJ, Groettrup M. Immunoproteasome Inhibition Reduces the T Helper 2 Response in Mouse Models of Allergic Airway Inflammation. Front Immunol 2022; 13:870720. [PMID: 35711460 PMCID: PMC9197384 DOI: 10.3389/fimmu.2022.870720] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 05/05/2022] [Indexed: 12/24/2022] Open
Abstract
Background Allergic asthma is a chronic disease and medical treatment often fails to fully control the disease in the long term, leading to a great need for new therapeutic approaches. Immunoproteasome inhibition impairs T helper cell function and is effective in many (auto-) inflammatory settings but its effect on allergic airway inflammation is unknown. Methods Immunoproteasome expression was analyzed in in vitro polarized T helper cell subsets. To study Th2 cells in vivo acute allergic airway inflammation was induced in GATIR (GATA-3-vYFP reporter) mice using ovalbumin and house dust mite extract. Mice were treated with the immunoproteasome inhibitor ONX 0914 or vehicle during the challenge phase and the induction of airway inflammation was analyzed. Results In vitro polarized T helper cell subsets (Th1, Th2, Th17, and Treg) express high levels of immunoproteasome subunits. GATIR mice proved to be a useful tool for identification of Th2 cells. Immunoproteasome inhibition reduced the Th2 response in both airway inflammation models. Furthermore, T cell activation and antigen-specific cytokine secretion was impaired and a reduced infiltration of eosinophils and professional antigen-presenting cells into the lung and the bronchoalveolar space was observed in the ovalbumin model. Conclusion These results show the importance of the immunoproteasome in Th2 cells and airway inflammation. Our data provides first insight into the potential of using immunoproteasome inhibition to target the aberrant Th2 response, e.g. in allergic airway inflammation.
Collapse
Affiliation(s)
- Franziska Oliveri
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
| | - Michael Basler
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
| | | | | | - Marcus Groettrup
- Division of Immunology, Department of Biology, University of Konstanz, Konstanz, Germany
- Biotechnology Institute Thurgau at the University of Konstanz, Kreuzlingen, Switzerland
- *Correspondence: Marcus Groettrup,
| |
Collapse
|
4
|
Sylvester M, Son A, Schwartz DM. The Interactions Between Autoinflammation and Type 2 Immunity: From Mechanistic Studies to Epidemiologic Associations. Front Immunol 2022; 13:818039. [PMID: 35281022 PMCID: PMC8907424 DOI: 10.3389/fimmu.2022.818039] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 02/02/2022] [Indexed: 12/30/2022] Open
Abstract
Autoinflammatory diseases are a group of clinical syndromes characterized by constitutive overactivation of innate immune pathways. This results in increased production of or responses to monocyte- and neutrophil-derived cytokines such as interleukin-1β (IL-1β), Tumor Necrosis Factor-α (TNF-α), and Type 1 interferon (IFN). By contrast, clinical allergy is caused by dysregulated type 2 immunity, which is characterized by expansion of T helper 2 (Th2) cells and eosinophils, as well as overproduction of the associated cytokines IL-4, IL-5, IL-9, and IL-13. Traditionally, type 2 immune cells and autoinflammatory effectors were thought to counter-regulate each other. However, an expanding body of evidence suggests that, in some contexts, autoinflammatory pathways and cytokines may potentiate type 2 immune responses. Conversely, type 2 immune cells and cytokines can regulate autoinflammatory responses in complex and context-dependent manners. Here, we introduce the concepts of autoinflammation and type 2 immunity. We proceed to review the mechanisms by which autoinflammatory and type 2 immune responses can modulate each other. Finally, we discuss the epidemiology of type 2 immunity and clinical allergy in several monogenic and complex autoinflammatory diseases. In the future, these interactions between type 2 immunity and autoinflammation may help to expand the spectrum of autoinflammation and to guide the management of patients with various autoinflammatory and allergic diseases.
Collapse
Affiliation(s)
- McKella Sylvester
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Aran Son
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| | - Daniella M Schwartz
- Laboratory of Allergic Diseases, National Institute of Allergy and Infectious Diseases (NIAID), National Institutes of Health (NIH), Bethesda, MD, United States
| |
Collapse
|
5
|
Tripathi SC, Vedpathak D, Ostrin EJ. The Functional and Mechanistic Roles of Immunoproteasome Subunits in Cancer. Cells 2021; 10:cells10123587. [PMID: 34944095 PMCID: PMC8700164 DOI: 10.3390/cells10123587] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/15/2022] Open
Abstract
Cell-mediated immunity is driven by antigenic peptide presentation on major histocompatibility complex (MHC) molecules. Specialized proteasome complexes called immunoproteasomes process viral, bacterial, and tumor antigens for presentation on MHC class I molecules, which can induce CD8 T cells to mount effective immune responses. Immunoproteasomes are distinguished by three subunits that alter the catalytic activity of the proteasome and are inducible by inflammatory stimuli such as interferon-γ (IFN-γ). This inducible activity places them in central roles in cancer, autoimmunity, and inflammation. While accelerated proteasomal degradation is an important tumorigenic mechanism deployed by several cancers, there is some ambiguity regarding the role of immunoproteasome induction in neoplastic transformation. Understanding the mechanistic and functional relevance of the immunoproteasome provides essential insights into developing targeted therapies, including overcoming resistance to standard proteasome inhibition and immunomodulation of the tumor microenvironment. In this review, we discuss the roles of the immunoproteasome in different cancers.
Collapse
Affiliation(s)
- Satyendra Chandra Tripathi
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
- Correspondence: (S.C.T.); (E.J.O.)
| | - Disha Vedpathak
- Department of Biochemistry, All India Institute of Medical Sciences Nagpur, Nagpur 441108, MH, India;
| | - Edwin Justin Ostrin
- Department of General Internal Medicine, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- Correspondence: (S.C.T.); (E.J.O.)
| |
Collapse
|
6
|
Blood Immunoproteasome Activity Is Regulated by Sex, Age and in Chronic Inflammatory Diseases: A First Population-Based Study. Cells 2021; 10:cells10123336. [PMID: 34943847 PMCID: PMC8699521 DOI: 10.3390/cells10123336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/21/2021] [Accepted: 11/25/2021] [Indexed: 11/30/2022] Open
Abstract
Dysfunction of the immunoproteasome has been implicated in cardiovascular and pulmonary diseases. Its potential as a biomarker for predicting disease stages, however, has not been investigated so far and population-based analyses on the impact of sex and age are missing. We here analyzed the activity of all six catalytic sites of the proteasome in isolated peripheral blood mononuclear cells obtained from 873 study participants of the KORA FF4 study using activity-based probes. The activity of the immuno- and standard proteasome correlated clearly with elevated leukocyte counts of study participants. Unexpectedly, we observed a strong sex dimorphism for proteasome activity with significantly lower immunoproteasome activity in women. In aging, almost all catalytic activities of the proteasome were activated in aged women while maintained upon aging in men. We also noted distinct sex-related activation patterns of standard and immunoproteasome active sites in chronic inflammatory diseases such as diabetes, cardiovascular diseases, asthma, or chronic obstructive pulmonary disease as determined by multiple linear regression modeling. Our data thus provides a conceptual framework for future analysis of immunoproteasome function as a bio-marker for chronic inflammatory disease development and progression.
Collapse
|
7
|
Çetin G, Klafack S, Studencka-Turski M, Krüger E, Ebstein F. The Ubiquitin-Proteasome System in Immune Cells. Biomolecules 2021; 11:biom11010060. [PMID: 33466553 PMCID: PMC7824874 DOI: 10.3390/biom11010060] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/16/2020] [Accepted: 12/22/2020] [Indexed: 12/11/2022] Open
Abstract
The ubiquitin–proteasome system (UPS) is the major intracellular and non-lysosomal protein degradation system. Thanks to its unique capacity of eliminating old, damaged, misfolded, and/or regulatory proteins in a highly specific manner, the UPS is virtually involved in almost all aspects of eukaryotic life. The critical importance of the UPS is particularly visible in immune cells which undergo a rapid and profound functional remodelling upon pathogen recognition. Innate and/or adaptive immune activation is indeed characterized by a number of substantial changes impacting various cellular processes including protein homeostasis, signal transduction, cell proliferation, and antigen processing which are all tightly regulated by the UPS. In this review, we summarize and discuss recent progress in our understanding of the molecular mechanisms by which the UPS contributes to the generation of an adequate immune response. In this regard, we also discuss the consequences of UPS dysfunction and its role in the pathogenesis of recently described immune disorders including cancer and auto-inflammatory diseases.
Collapse
|
8
|
Kammerl IE, Meiners S. Proteasome function shapes innate and adaptive immune responses. Am J Physiol Lung Cell Mol Physiol 2016; 311:L328-36. [PMID: 27343191 DOI: 10.1152/ajplung.00156.2016] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 06/17/2016] [Indexed: 11/22/2022] Open
Abstract
The proteasome system degrades more than 80% of intracellular proteins into small peptides. Accordingly, the proteasome is involved in many essential cellular functions, such as protein quality control, transcription, immune responses, cell signaling, and apoptosis. Moreover, degradation products are loaded onto major histocompatibility class I molecules to communicate the intracellular protein composition to the immune system. The standard 20S proteasome core complex contains three distinct catalytic active sites that are exchanged upon stimulation with inflammatory cytokines to form the so-called immunoproteasome. Immunoproteasomes are constitutively expressed in immune cells and have different proteolytic activities compared with standard proteasomes. They are rapidly induced in parenchymal cells upon intracellular pathogen infection and are crucial for priming effective CD8(+) T-cell-mediated immune responses against infected cells. Beyond shaping these adaptive immune reactions, immunoproteasomes also regulate the function of immune cells by degradation of inflammatory and immune mediators. Accordingly, they emerge as novel regulators of innate immune responses. The recently unraveled impairment of immunoproteasome function by environmental challenges and by genetic variations of immunoproteasome genes might represent a currently underestimated risk factor for the development and progression of lung diseases. In particular, immunoproteasome dysfunction will dampen resolution of infections, thereby promoting exacerbations, may foster autoimmunity in chronic lung diseases, and possibly contributes to immune evasion of tumor cells. Novel pharmacological tools, such as site-specific inhibitors of the immunoproteasome, as well as activity-based probes, however, hold promises as innovative therapeutic drugs for respiratory diseases and biomarker profiling, respectively.
Collapse
Affiliation(s)
- Ilona E Kammerl
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
9
|
Emerging role of immunoproteasomes in pathophysiology. Immunol Cell Biol 2016; 94:812-820. [PMID: 27192937 DOI: 10.1038/icb.2016.50] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 05/15/2016] [Accepted: 05/16/2016] [Indexed: 11/08/2022]
Abstract
The immunoproteasome is a proteasome variant that is found only in jawed vertebrates. It is responsible for degrading intracellular proteins to generate a major source of peptides with substantial major histocompatibility complex I binding affinity. The immunoproteasome also has roles in T-cell survival, differentiation and proliferation in various pathological conditions. In humans, any alteration in the expression, assembly or function of the immunoproteasome can lead to cancer, autoimmune disorders or inflammatory diseases. Although the roles of the immunoproteasome in cancer and neurodegenerative disorders have been extensively studied, its significance in other disease conditions has only recently become known. Therefore, there is renewed interest in the development of drugs, vaccines and biomarkers that target the immunoproteasome. The current review highlights the involvement of this complex in disease pathology in addition to the advances made in immunoproteasome research.
Collapse
|
10
|
New Insights into the Function of the Immunoproteasome in Immune and Nonimmune Cells. J Immunol Res 2015; 2015:541984. [PMID: 26636107 PMCID: PMC4617869 DOI: 10.1155/2015/541984] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Accepted: 09/10/2015] [Indexed: 12/27/2022] Open
Abstract
The immunoproteasome is a highly efficient proteolytic machinery derived from the constitutive proteasome and is abundantly expressed in immune cells. The immunoproteasome plays a critical role in the immune system because it degrades intracellular proteins, for example, those of viral origin, into small proteins. They are further digested into short peptides to be presented by major histocompatibility complex (MHC) class I molecules. In addition, the immunoproteasome influences inflammatory disease pathogenesis through its ability to regulate T cell polarization. The immunoproteasome is also expressed in nonimmune cell types during inflammation or neoplastic transformation, supporting a role in the pathogenesis of autoimmune diseases and neoplasms. Following the success of inhibitors of the constitutive proteasome, which is now an established treatment modality for multiple myeloma, compounds that selectively inhibit the immunoproteasome are currently under active investigation. This paper will review the functions of the immunoproteasome, highlighting areas where novel pharmacological treatments that regulate immunoproteasome activity could be developed.
Collapse
|
11
|
Meiners S, Ballweg K. Proteostasis in pediatric pulmonary pathology. Mol Cell Pediatr 2014; 1:11. [PMID: 26567105 PMCID: PMC4530569 DOI: 10.1186/s40348-014-0011-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/19/2014] [Indexed: 02/07/2023] Open
Abstract
Protein homeostasis describes the tight supervision of protein synthesis, correct protein maturation and folding, as well as the timely disposal of unwanted and damaged proteins by the ubiquitin-proteasome pathway or the lysosome-autophagy route. The cellular processes involved in preservation of protein homeostasis are collectively called proteostasis. Dysregulation of proteostasis is an emerging common pathomechanism for chronic lung diseases in the adult and aged patient. There is also rising evidence that impairment of protein homeostasis contributes to early sporadic disease onset in pediatric lung diseases beyond the well-known hereditary proteostasis disorders such as cystic fibrosis and alpha-1 antitrypsin (AAT) deficiency. Identifying the pathways that contribute to impaired proteostasis will provide new avenues for therapeutic interference with the pathogenesis of chronic lung diseases in the young and adult. Here, we introduce the concept of proteostasis and summarize available evidence on dysregulation of proteostasis pathways in pediatric and adult chronic lung diseases.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians-Universität, Asklepios Klinik Gauting und Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany.
| | - Korbinian Ballweg
- Comprehensive Pneumology Center (CPC), Member of the German Center for Lung Research (DZL), University Hospital, Ludwig-Maximilians-Universität, Asklepios Klinik Gauting und Helmholtz Zentrum München, Max-Lebsche-Platz 31, 81377, Munich, Germany.
| |
Collapse
|
12
|
Meiners S, Keller IE, Semren N, Caniard A. Regulation of the proteasome: evaluating the lung proteasome as a new therapeutic target. Antioxid Redox Signal 2014; 21:2364-82. [PMID: 24437504 DOI: 10.1089/ars.2013.5798] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
SIGNIFICANCE Lung diseases are on the second rank worldwide with respect to morbidity and mortality. For most respiratory diseases, no effective therapies exist. Whereas the proteasome has been successfully evaluated as a novel target for therapeutic interventions in cancer, neurodegenerative, and cardiac disorders, there is a profound lack of knowledge on the regulation of proteasome activity in chronic and acute lung diseases. RECENT ADVANCES There are various means of how the amount of active proteasome complexes in the cell can be regulated such as transcriptional regulation of proteasomal subunit expression, association with different regulators, assembly and half-life of proteasomes and regulatory complexes, as well as post-translational modifications. It also becomes increasingly evident that proteasome activity is fine-tuned and depends on the state of the cell. We propose here that 20S proteasomes and their regulators can be regarded as dynamic building blocks, which assemble or disassemble in response to cellular needs. The composition of proteasome complexes in a cell may vary depending on tissue, cell type and compartment, stage of development, or pathological context. CRITICAL ISSUES AND FUTURE DIRECTIONS Dissecting the expression and regulation of the various catalytic forms of 20S proteasomes, such as constitutive, immuno-, and mixed proteasomes, together with their associated regulatory complexes will not only greatly enhance our understanding of proteasome function in lung pathogenesis but will also pave the way to develop new classes of drugs that inhibit or activate proteasome function in a defined setting for treatment of lung diseases.
Collapse
Affiliation(s)
- Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital , Ludwig-Maximilians University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | | | | | | |
Collapse
|
13
|
Bargut TCL, Ferreira TPT, Daleprane JB, Martins MA, Silva PMR, Aguila MB. Fish oil has beneficial effects on allergen-induced airway inflammation and hyperreactivity in mice. PLoS One 2013; 8:e75059. [PMID: 24040386 PMCID: PMC3765396 DOI: 10.1371/journal.pone.0075059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2012] [Accepted: 08/12/2013] [Indexed: 12/19/2022] Open
Abstract
Background Fish oil (FO) is rich in n-3 polyunsaturated fatty acids (PUFA), which have been suggested to be anti-inflammatory and are associated with improvement of several inflammatory diseases. In this study, we investigated the influence of FO on allergen-induced lung inflammation and airway hyperreactivity in mice. Methods Male A/J mice were fed either a standard-chow (SC) or a FO diet (FO) for 8 weeks. After 4 weeks, each group was further randomized for ovalbumin (SC-OVA and FO-OVA) or saline (SC-SAL and FO-SAL) challenge. Resistance and elastance were measured at baseline and after aerosolized methacholine, 24h after the last challenge. Bronchoalveolar lavage (BAL) was performed for leukocyte counts. Lung tissue mucus deposition, peribronchiolar matrix deposition and eosinophil infiltration were quantified. Serum immunoglobulin E (IgE) and IgG1 (ref 2.2), lung IL-4, IL-5, IL-10, IL-13, IL-17, INFγ and eotaxin-1 and 2 were detected by ELISA and nuclear factor kappa B (NFκB), GATA-3 and peroxisome proliferator-activated receptor gamma (PPARγ) expression was measured by Western blot. Results Levels of serum IgE and IgG1 were significantly higher in OVA sensitized mice. OVA challenge resulted in increased eosinophil infiltration, increased inflammatory cytokine production, peribronchiolar matrix and mucus deposition and airway hyperreactivity to aerosolized methacholine. Elevated lung NFκB and GATA-3 expression was noted in OVA-challenged mice. These changes were attenuated in mice fed with FO diet. Higher PPARγ expression was also detected in the lungs from the FO-fed groups. Conclusion Our results demonstrate that FO intake attenuated classical asthma features by suppressing the systemic sensitization, thus providing evidence that FO might be a prophylactic alternative for asthma prevention.
Collapse
Affiliation(s)
- Thereza Cristina Lonzetti Bargut
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Tatiana Paula Teixeira Ferreira
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Julio Beltrame Daleprane
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Marco Aurélio Martins
- Laboratory of Inflammation, Oswaldo Cruz Institute, Oswaldo Cruz Foundation (FIOCRUZ), Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Marcia Barbosa Aguila
- Laboratory of Morphometry, Metabolism and Cardiovascular Disease, Biomedical Center, Institute of Biology, State University of Rio de Janeiro, Rio de Janeiro, Rio de Janeiro, Brazil
- * E-mail:
| |
Collapse
|