1
|
Jabbarzadeh Kaboli P, Chen HF, Babaeizad A, Roustai Geraylow K, Yamaguchi H, Hung MC. Unlocking c-MET: A comprehensive journey into targeted therapies for breast cancer. Cancer Lett 2024; 588:216780. [PMID: 38462033 DOI: 10.1016/j.canlet.2024.216780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/18/2024] [Accepted: 02/29/2024] [Indexed: 03/12/2024]
Abstract
Breast cancer is the most common malignancy among women, posing a formidable health challenge worldwide. In this complex landscape, the c-MET (cellular-mesenchymal epithelial transition factor) receptor tyrosine kinase (RTK), also recognized as the hepatocyte growth factor (HGF) receptor (HGFR), emerges as a prominent protagonist, displaying overexpression in nearly 50% of breast cancer cases. Activation of c-MET by its ligand, HGF, secreted by neighboring mesenchymal cells, contributes to a cascade of tumorigenic processes, including cell proliferation, metastasis, angiogenesis, and immunosuppression. While c-MET inhibitors such as crizotinib, capmatinib, tepotinib and cabozantinib have garnered FDA approval for non-small cell lung cancer (NSCLC), their potential within breast cancer therapy is still undetermined. This comprehensive review embarks on a journey through structural biology, multifaceted functions, and intricate signaling pathways orchestrated by c-MET across cancer types. Furthermore, we highlight the pivotal role of c-MET-targeted therapies in breast cancer, offering a clinical perspective on this promising avenue of intervention. In this pursuit, we strive to unravel the potential of c-MET as a beacon of hope in the fight against breast cancer, unveiling new horizons for therapeutic innovation.
Collapse
Affiliation(s)
- Parham Jabbarzadeh Kaboli
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Hsiao-Fan Chen
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Ali Babaeizad
- Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | | | - Hirohito Yamaguchi
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan
| | - Mien-Chie Hung
- Graduate Institute of Biomedical Sciences, Institute of Biochemistry and Molecular Biology, Research Center for Cancer Biology, Cancer Biology and Precision Therapeutics Center, and Center for Molecular Medicine, China Medical University, Taichung, 406, Taiwan; Department of Biotechnology, Asia University, Taichung, 413, Taiwan.
| |
Collapse
|
2
|
Zhuang X, Sun Z, Du H, Zhou T, Zou J, Fu W. Metformin inhibits high glucose-induced apoptosis of renal podocyte through regulating miR-34a/SIRT1 axis. Immun Inflamm Dis 2024; 12:e1053. [PMID: 38270305 PMCID: PMC10797654 DOI: 10.1002/iid3.1053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Previous studies have reported SIRT1 was inversely modulated by miR-34a, However, mechanism of metformin (MFN)'s renal podocyte protection under high glucose (HG) conditions and the connection between miR-34a and SIRT1 expression in diabetic nephropathy (DN) remain unclear. METHOD We aimed to further elucidate the role of miR-34a in HG-treated podocytes in DN. A conditionally immortalized human podocyte cell line was cultivated in d-glucose (30 mM). RESULTS Microarray and RT-qPCR revealed that miR-34a was downregulated in HG-treated podocytes. Additionally, miR-34a levels increased in MFN-treated HG-induced podocytes. CCK-8 assay, colony formation assay, flow cytometry, and Western blot detection showed that HG treatment reduced cell viability and promoted via HG treatment, and MFN treatment reversed this phenotypic change. MiR-34a upregulation caused restored cell viability and suppressed cell apoptosis in HG-treated podocytes, and miR-34a downregulation led to damaged cell survival and induced apoptosis in MFN-administered and HG-treated podocytes. The dual luciferase reporter assay showed that SIRT1 3'-UTR was a direct miR-34a target. Further studies demonstrated an elevation in SIRT1 levels in HG-exposed podocytes, whereas MFN treatment decreased SIRT1 levels. In addition, miR-34a upregulation led to reduced SIRT1 expression, whereas miR-34a inhibition increased SIRT1 levels in cells. MFN-induced miR-34a suppresses podocyte apoptosis under HG conditions by acting on SIRT1. CONCLUSION This study proposes a promising approach to interpret the mechanisms of action of the MFN-miR-34a axis involved in DN.
Collapse
Affiliation(s)
- Xudong Zhuang
- Department of DialysisLinyi Traditional Chinese Medicine HospitalLinyiShandongChina
| | - Zhuye Sun
- Department of PharmacyRizhao Hospital of Traditional Chinese MedicineRizhaoShandongChina
| | - Huasheng Du
- Department of NephrologyQingdao Municipal HospitalQingdaoShandongChina
| | - Tianhui Zhou
- Beijing University of Chinese MedicineBeijingChina
| | - Jing Zou
- Department of DialysisLinyi Traditional Chinese Medicine HospitalLinyiShandongChina
| | - Wei Fu
- Department of Drug DispensingZibo Central HospitalZiboShandongChina
| |
Collapse
|
3
|
Geiger M, Gorica E, Mohammed SA, Mongelli A, Mengozi A, Delfine V, Ruschitzka F, Costantino S, Paneni F. Epigenetic Network in Immunometabolic Disease. Adv Biol (Weinh) 2024; 8:e2300211. [PMID: 37794610 DOI: 10.1002/adbi.202300211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/08/2023] [Indexed: 10/06/2023]
Abstract
Although a large amount of data consistently shows that genes affect immunometabolic characteristics and outcomes, epigenetic mechanisms are also heavily implicated. Epigenetic changes, including DNA methylation, histone modification, and noncoding RNA, determine gene activity by altering the accessibility of chromatin to transcription factors. Various factors influence these alterations, including genetics, lifestyle, and environmental cues. Moreover, acquired epigenetic signals can be transmitted across generations, thus contributing to early disease traits in the offspring. A closer investigation is critical in this aspect as it can help to understand the underlying molecular mechanisms further and gain insights into potential therapeutic targets for preventing and treating diseases arising from immuno-metabolic dysregulation. In this review, the role of chromatin alterations in the transcriptional modulation of genes involved in insulin resistance, systemic inflammation, macrophage polarization, endothelial dysfunction, metabolic cardiomyopathy, and nonalcoholic fatty liver disease (NAFLD), is discussed. An overview of emerging chromatin-modifying drugs and the importance of the individual epigenetic profile for personalized therapeutic approaches in patients with immuno-metabolic disorders is also presented.
Collapse
Affiliation(s)
- Martin Geiger
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Era Gorica
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Shafeeq Ahmed Mohammed
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessia Mongelli
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Alessandro Mengozi
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Valentina Delfine
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Frank Ruschitzka
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Sarah Costantino
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| | - Francesco Paneni
- Center for Translational and Experimental Cardiology, University Hospital Zürich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- University Heart Center, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
- Department of Research and Education, University Hospital Zurich and University of Zürich, Wagistrasse 12, Schlieren, Zurich, 8952, Switzerland
| |
Collapse
|
4
|
Feng Y, Yang Z, Xu X. c-Met: A Promising Therapeutic Target in Bladder Cancer. Cancer Manag Res 2022; 14:2379-2388. [PMID: 35967753 PMCID: PMC9374328 DOI: 10.2147/cmar.s369175] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Mesenchymal-epithelial transition factor (c-Met) belongs to the tyrosine kinase receptor family and is overexpressed in various human cancers. Its ligand is hepatocyte growth factor (HGF), and the HGF/c-Met signaling pathway is involved in a wide range of cellular processes, including cell proliferation, migration, and metastasis. Emerging studies have indicated that c-Met expression is strongly associated with bladder cancer (BCa) development and prognosis. Therefore, c-Met is a potential therapeutic target for BCa treatment. Recently, the aberrant expression of noncoding RNAs was found to play a significant role in tumour progression. There is a close connection between c-Met and noncoding RNA. Herein, we summarized the biological function and prognostic value of c-Met in BCa, as well as its potential role as a drug target. The relation of c-Met and ncRNA was also described in the paper.
Collapse
Affiliation(s)
- Yanfei Feng
- The Second Affiliated College, Zhejiang Chinese Medical University, Hangzhou, People's Republic of China
| | - Zitong Yang
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xin Xu
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| |
Collapse
|
5
|
A miR-34a-guided, tRNA iMet-derived, piR_019752-like fragment (tRiMetF31) suppresses migration and angiogenesis of breast cancer cells via targeting PFKFB3. Cell Death Dis 2022; 8:355. [PMID: 35961977 PMCID: PMC9374763 DOI: 10.1038/s41420-022-01054-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 04/12/2022] [Accepted: 05/03/2022] [Indexed: 12/01/2022]
Abstract
Although we recently demonstrated that miR-34a directly targets tRNAiMet precursors via Argonaute 2 (AGO2)-mediated cleavage, consequently attenuating the proliferation of breast cancer cells, whether tRNAiMet fragments derived from this cleavage influence breast tumor angiogenesis remains unknown. Here, using small-RNA-Seq, we identified a tRNAiMet-derived, piR_019752-like 31-nt fragment tRiMetF31 in breast cancer cells expressing miR-34a. Bioinformatic analysis predicted 6-phosphofructo-2-kinase/fructose-2,6-bisphosphatase 3 (PFKFB3) as a potential target of tRiMrtF31, which was validated by luciferase assay. tRiMetF31 was downregulated, whereas PFKFB3 was overexpressed in cancer cell lines. Overexpression of tRiMetF31 profoundly inhibited the migration and angiogenesis of two breast cancer cell lines while slightly inducing apoptosis. Conversely, knockdown of tRiMetF31 restored PFKFB3-driven angiogenesis. miR-34a was downregulated, whereas tRNAiMet and PFKFB3 were upregulated in breast cancer, and elevated PFKFB3 significantly correlated with metastasis. Our findings demonstrate that tRiMetF31 profoundly suppresses angiogenesis by silencing PFKFB3, presenting a novel target for therapeutic intervention in breast cancer.
Collapse
|
6
|
Cuzziol CI, Marzochi LL, Possebon VS, Kawasaki-Oyama RS, Mattos MF, Junior VS, Ferreira LAM, Pavarino ÉC, Castanhole-Nunes MMU, Goloni-Bertollo EM. Regulation of VEGFA, KRAS, and NFE2L2 Oncogenes by MicroRNAs in Head and Neck Cancer. Int J Mol Sci 2022; 23:7483. [PMID: 35806488 PMCID: PMC9267745 DOI: 10.3390/ijms23137483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 06/24/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Mutations and alterations in the expression of VEGFA, KRAS, and NFE2L2 oncogenes play a key role in cancer initiation and progression. These genes are enrolled not only in cell proliferation control, but also in angiogenesis, drug resistance, metastasis, and survival of tumor cells. MicroRNAs (miRNAs) are small, non-coding regulatory RNA molecules that can regulate post-transcriptional expression of multiple target genes. We aimed to investigate if miRNAs hsa-miR-17-5p, hsa-miR-140-5p, and hsa-miR-874-3p could interfere in VEGFA, KRAS, and NFE2L2 expression in cell lines derived from head and neck cancer (HNC). FADU (pharyngeal cancer) and HN13 (oral cavity cancer) cell lines were transfected with miR-17-5p, miR-140-5p, and miR-874-3p microRNA mimics. RNA and protein expression analyses revealed that miR-17-5p, miR-140-5p and miR-874-3p overexpression led to a downregulation of VEGFA, KRAS, and NFE2L2 gene expression in both cell lines analyzed. Taken together, our results provide evidence for the establishment of new biomarkers in the diagnosis and treatment of HNC.
Collapse
Affiliation(s)
- Caroline Izak Cuzziol
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Ludimila Leite Marzochi
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Vitória Scavacini Possebon
- Institute of Biosciences, Humanities and Exact Sciences, Campus Sao Jose do Rio Preto, São Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, Brazil; (V.S.P.); (V.S.J.)
| | - Rosa Sayoko Kawasaki-Oyama
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Marlon Fraga Mattos
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Vilson Serafim Junior
- Institute of Biosciences, Humanities and Exact Sciences, Campus Sao Jose do Rio Preto, São Paulo State University (Unesp), Sao Jose do Rio Preto 15054-000, Brazil; (V.S.P.); (V.S.J.)
| | - Letícia Antunes Muniz Ferreira
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Érika Cristina Pavarino
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Márcia Maria Urbanin Castanhole-Nunes
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| | - Eny Maria Goloni-Bertollo
- Research Unit of Genetics and Molecular Biology (UPGEM), Department of Molecular Biology, Faculty of Medicine of Sao Jose do Rio Preto (FAMERP), Sao Jose do Rio Preto 15090-000, Brazil; (C.I.C.); (L.L.M.); (R.S.K.-O.); (M.F.M.); (L.A.M.F.); (É.C.P.); (M.M.U.C.-N.)
| |
Collapse
|
7
|
Yang Z, Liu T, Ren X, Yang M, Tu C, Li Z. Mir-34a: a regulatory hub with versatile functions that controls osteosarcoma networks. Cell Cycle 2022; 21:2121-2131. [PMID: 35699451 DOI: 10.1080/15384101.2022.2087755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
Osteosarcoma (OS) is one of the most prevalent and highly aggressive bone malignancies. The treatment strategies of OS is under standard regimens, including surgical resection, chemotherapy, and other adjuvant therapy. However, the 5-year survival rate is still unsatisfactory. Previous studies have demonstrated that the expression of miR-34a decreases in osteosarcoma, which is involved in regulating numerous genes directly or indirectly at the post-transcriptional level and other pathways. Thus, miR-34a plays an important role in mediating OS cell proliferation, differentiation, migration, and apoptosis, and might be a pivotal biomarker for OS with diagnostic and therapeutic potentials. In this review, we aim to summarize the relationship between miR-34a and OS, with an emphasis on the specific mechanisms in OS development referring to miR-34a. Moreover, the potential role of miR-34a as a diagnostic, prognostic, and therapeutic candidate for OS would be presented in detail. However, the molecular mechanisms related to miR-34a and OS remain elusive, and more investigations are needed to reach a comprehensive understanding.
Collapse
Affiliation(s)
- Zhimin Yang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Tang Liu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Xiaolei Ren
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Mei Yang
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Chao Tu
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| | - Zhihong Li
- Department of Orthopaedics, The Second Xiangya Hospital of Central South University, Hunan, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Hunan, China
| |
Collapse
|
8
|
MiR-612, miR-637, and miR-874 can Regulate VEGFA Expression in Hepatocellular Carcinoma Cell Lines. Genes (Basel) 2022; 13:genes13020282. [PMID: 35205327 PMCID: PMC8871716 DOI: 10.3390/genes13020282] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/09/2022] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNA molecules acting as important posttranscriptional gene and protein expression regulators in cancer. The study goal was to examine VEGFA (vascular endothelial growth factor A) expression in hepatocellular carcinoma (HCC) cell lines upon transfection miR-612, miR-637, or miR-874. Methods: MiR-612 mimics, miR-637 mimics, or miR-874 inhibitors were transfected using Lipofectamine RNAiMax in both HCC cell lines, HepG2 and HuH-7. Real-time PCR, Western blotting, and ELISA methods were used to evaluate VEGFA regulation by the miRNAs. Results: Gene and protein expression levels of VEGFA were down-expressed in both cell lines, HepG2 and HuH-7, transfected with miR-612 or miR-637. Transfection with miR-874 inhibitor showed an increase in VEGFA gene expression in HepG2 and HuH-7 cell lines; however, no regulation was observed on VEGFA protein expression by miR-874 inhibition. Correlation analysis between miRNAs and VEGFA protein expression showed that miR-637 and miR-874 expression present inversely correlated to VEGFA protein expression. Conclusions: VEGFA was down-regulated in response to hsa-miR-612 or hsa-miR-637 overexpression; however, the modulation of VEGFA by miR-874 was observed only at the gene expression and thus, needs further investigation.
Collapse
|
9
|
Mohamed DAW, Nabil ES, Motaleb FIA, Aboushahba RM, Abou-Zeid AAA, Mohamed SM. miR-34a-5p suppresses colorectal cancer cell proliferation through silencing Microtubule Actin Crosslinking Factor 1 (MACF1) gene. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
10
|
Li S, Wei X, He J, Cao Q, Du D, Zhan X, Zeng Y, Yuan S, Sun L. The comprehensive landscape of miR-34a in cancer research. Cancer Metastasis Rev 2021; 40:925-948. [PMID: 33959850 DOI: 10.1007/s10555-021-09973-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 04/29/2021] [Indexed: 12/12/2022]
Abstract
MicroRNA-34 (miR-34) plays central roles in human diseases, especially cancers. Inactivation of miR-34 is detected in cancer cell lines and tumor tissues versus normal controls, implying its potential tumor-suppressive effect. Clinically, miR-34 has been identified as promising prognostic indicators for various cancers. In fact, members of the miR-34 family, especially miR-34a, have been convincingly proved to affect almost the whole cancer progression process. Here, a total of 512 (miR-34a, 10/21), 85 (miR-34b, 10/16), and 114 (miR-34c, 10/14) putative targets of miR-34a/b/c are predicted by at least ten miRNA databases, respectively. These targets are further analyzed in gene ontology (GO), KEGG pathway, and the Reactome pathway dataset. The results suggest their involvement in the regulation of signal transduction, macromolecule metabolism, and protein modification. Also, the targets are implicated in critical signaling pathways, such as MAPK, Notch, Wnt, PI3K/AKT, p53, and Ras, as well as apoptosis, cell cycle, and EMT-related pathways. Moreover, the upstream regulators of miR-34a, mainly including transcription factors (TFs), lncRNAs, and DNA methylation, will be summarized. Meanwhile, the potential TF upstream of miR-34a/b/c will be predicted by PROMO, JASPAR, Animal TFDB 3.0, and GeneCard databases. Notably, miR-34a is an attractive target for certain cancers. In fact, miR-34a-based systemic delivery combined with chemotherapy or radiotherapy can more effectively control tumor progression. Collectively, this review will provide a panorama for miR-34a in cancer research.
Collapse
Affiliation(s)
- Sijing Li
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaohui Wei
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Jinyong He
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
- China Cell-Gene Therapy Translational Medicine Research Center, Biotherapy Center, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- School of Medicine, Sun Yat-sen University, Shenzhen, 518107, China
| | - Quanquan Cao
- MARBEC, Université Montpellier, UM-CNRS-IRD-IFREMER, cc 092, Place E. Bataillon, 34095, Montpellier Cedex 05, France
| | - Danyu Du
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Xiaoman Zhan
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Yuqi Zeng
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Shengtao Yuan
- Jiangsu Center for Pharmacodynamics Research and Evaluation, China Pharmaceutical University, Nanjing, 210009, China.
| | - Li Sun
- New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
11
|
Li D, Yang J, Yang Y, Liu J, Li H, Li R, Cao C, Shi L, Wu W, He K. A Timely Review of Cross-Kingdom Regulation of Plant-Derived MicroRNAs. Front Genet 2021; 12:613197. [PMID: 34012461 PMCID: PMC8126714 DOI: 10.3389/fgene.2021.613197] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 04/12/2021] [Indexed: 11/26/2022] Open
Abstract
MicroRNAs (miRNAs) belong to a class of non-coding RNAs that suppress gene expression by complementary oligonucleotide binding to the sites in target messenger RNAs. Numerous studies have demonstrated that miRNAs play crucial role in virtually all cellular processes of both plants and animals, such as cell growth, cell division, differentiation, proliferation and apoptosis. The study of rice MIR168a has demonstrated for the first time that exogenous plant MIR168a influences cholesterol transport in mice by inhibiting low-density lipoprotein receptor adapter protein 1 expression. Inspired by this finding, the cross-kingdom regulation of plant-derived miRNAs has drawn a lot of attention because of its capability to provide novel therapeutic agents in the treatment of miRNA deregulation-related diseases. Notably, unlike mRNA, some plant miRNAs are robust because of their 3′ end modification, high G, C content, and the protection by microvesicles, miRNAs protein cofactors or plant ingredients. The stability of these small molecules guarantees the reliability of plant miRNAs in clinical application. Although the function of endogenous miRNAs has been widely investigated, the cross-kingdom regulation of plant-derived miRNAs is still in its infancy. Herein, this review summarizes the current knowledge regarding the anti-virus, anti-tumor, anti-inflammatory, anti-apoptosis, immune modulation, and intestinal function regulation effects of plant-derived miRNAs in mammals. It is expected that exploring the versatile role of plant-derived miRNAs may lay the foundation for further study and application of these newly recognized, non-toxic, and inexpensive plant active ingredients.
Collapse
Affiliation(s)
- Dan Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Jianhui Yang
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Yong Yang
- School of Pharmacy, Hunan University of Traditional Chinese Medicine, Changsha, China
| | - Jianxin Liu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Hui Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Rongfei Li
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Chunya Cao
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Liping Shi
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China
| | - Weihua Wu
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| | - Kai He
- School of Pharmaceutical Science, Hunan University of Medicine, Huaihua, China.,Hunan Provincial Key Laboratory of Dong Medicine, Huaihua, China
| |
Collapse
|
12
|
Wang L, Sun M, Cao Y, Ma L, Shen Y, Velikanova AA, Li X, Sun C, Zhao Y. miR-34a regulates lipid metabolism by targeting SIRT1 in non-alcoholic fatty liver disease with iron overload. Arch Biochem Biophys 2020; 695:108642. [PMID: 33098868 DOI: 10.1016/j.abb.2020.108642] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Micro-ribonucleic acids (miRNAs) have been implicated in the regulation of non-alcoholic fatty liver disease (NAFLD), a leading cause of chronic liver disease worldwide. The mechanisms by which miR-34a influences NAFLD through the Sirtuin 1 (SIRT1)-related pathway were investigated herein. METHODS Male C57BL/6 mice were injected with a miR-34a lentivirus vector inhibitor or control. HepG2 cells were transfected with a miR-34a mimic, inhibitor, SIRT1 small interfering RNA (siRNA), SIRT1 plasmid, and a negative oligonucleotide control to evaluate their role in oleic acid (OA) and excess iron-induced NAFLD. The accumulation of lipids in the mice liver and HepG2 cells was analyzed by triglyceride (TG) detection and hematoxylin and eosin (HE) staining. Additionally, the indexes of oxidative stress related to lipid metabolism were evaluated by western blotting and real-time PCR (qRT-PCR). The levels of intracellular reactive oxygen species (ROS) and mitochondrial membrane potentials were measured by flow cytometry and laser confocal microscopy, respectively. Finally, the dual luciferase reporter assay was conducted to further confirm whether SIRT1 was a direct target of miR-34a. RESULTS Overexpression of miR-34a resulted in increased triglyceride accumulation as well as in decreased mitochondrial membrane potential and SIRT1 levels. Silencing of miR-34a increased SIRT1 expression and alleviated triglyceride accumulation in the presence of OA and iron. Additionally, miR-34a directly inhibited SIRT1 by binding to the 3'-untranslated region, as determined via the luciferase reporter assay. CONCLUSIONS Our results support the existence of a link between the liver cell mitochondria and miR-34a/SIRT1 signaling. Potential endogenous modulators of NAFLD pathogenesis may ultimately provide new tools for therapeutic intervention.
Collapse
Affiliation(s)
- Li Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Mengyun Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Yue Cao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Lingyu Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Yang Shen
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Arina Alekseevna Velikanova
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Xianan Li
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Changhao Sun
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China
| | - Yan Zhao
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, 157 Baojian Road, Nangang District, Harbin, Hei Longjiang Province, 150081, China.
| |
Collapse
|
13
|
Cabral BCA, Hoffmann L, Bottaro T, Costa PF, Ramos ALA, Coelho HSM, Villela-Nogueira CA, Ürményi TP, Faffe DS, Silva R. Circulating microRNAs associated with liver fibrosis in chronic hepatitis C patients. Biochem Biophys Rep 2020; 24:100814. [PMID: 33015376 PMCID: PMC7520427 DOI: 10.1016/j.bbrep.2020.100814] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 09/06/2020] [Accepted: 09/14/2020] [Indexed: 12/21/2022] Open
Abstract
A major challenge in hepatitis C research is the detection of early potential for progressive liver disease. MicroRNAs (miRNAs) are small RNAs that regulate gene expression and can be biomarkers of pathological processes. In this study, we compared circulating miRNAs identified in hepatitis C virus (HCV)-infected patients presenting two extremes of liver disease: mild/moderate fibrosis and cirrhosis. The patients in the cirrhosis group subsequently developed hepatocellular carcinoma (HCC). We identified 163 mature miRNAs in the mild/moderate fibrosis group and 171 in the cirrhosis group, with 144 in common to both groups. Differential expression analysis revealed 5 upregulated miRNAs and 2 downregulated miRNAs in the cirrhosis group relative to the mild/moderate fibrosis group. Functional analyses of regulatory networks (target gene and miRNA) identified gene categories involved in cell cycle biological processes and metabolic pathways related to cell cycle, cancer, and apoptosis. These results suggest that the differentially expressed circulating miRNAs observed in this work (miR-215-5p, miR-483-5p, miR-193b-3p, miR-34a-5p, miR-885-5p, miR-26b-5p and miR -197-3p) may be candidates for biomarkers in the prognosis of liver disease. Circulating miRNome was performed in patients infected with HCV-1a or 1b. Mature miRNAs were identified in patients with mild/moderate fibrosis and cirrhosis. Five upregulated and two downregulated miRNAs were observed in the cirrhosis group. Regulatory networks identified gene categories involved in cell cycle. A routine baseline circulating biomarkers detection can have a prognostic value.
Collapse
Affiliation(s)
- B C A Cabral
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - L Hoffmann
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.,Departamento de Biotecnologia, Instituto Federal de Educação, Ciência e Tecnologia do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T Bottaro
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - P F Costa
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - A L A Ramos
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - H S M Coelho
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - C A Villela-Nogueira
- Departamento de Clínica Médica, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - T P Ürményi
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - D S Faffe
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - R Silva
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
14
|
Liu L, Zhang W, Hu Y, Ma L, Xu X. Downregulation of miR-1225-5p is pivotal for proliferation, invasion, and migration of HCC cells through NFκB regulation. J Clin Lab Anal 2020; 34:e23474. [PMID: 32720731 PMCID: PMC7676203 DOI: 10.1002/jcla.23474] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/11/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Background As one of the most frequently seen malignancies, hepatocellular carcinoma (HCC) serves as the second largest contributor to malignancy‐specific mortality worldwide. MicroRNA‐1225‐5p (miR‐1225) exerts an essential impact on the growth and metastasis of many malignancies. However, the contribution of miR‐125 to HCC and the molecular mechanism of cancer cell viability and apoptosis are still unclear. We focused our research on exploring the function and molecular mechanism of miR‐1225 in regulating HCC cell growth, migration, and invasion. Material Quantitative PCR data showed that miR‐1225 expression was repressed in HCC cell lines and in the tissues of HCC patients, compared to that in normal human hepatic cells and tissues. Transfection of a miR‐1225 mimic inhibited cell viability and proliferation as indicated by CCK‐8 staining and MTT assay. Transwell invasion, wound healing assay, and Western blotting were performed to assess whether miR‐1225 repressed the metastasis and invasion of HCC cells, and decreased matrix metalloproteinase 9 (MMP9) expression. Further bioinformatic prediction and dual‐luciferase reporter assay suggested that miR‐1225 targeted the 3′‐UTR of NFκB p65. Results Overexpression of p65 protein counteracted the repressive impact of miR‐1225 on invasion, migration, and proliferation of HCC cells. Conclusion This research provided new evidences that miR‐1225 inhibits the viability, migration, and invasion of HCC cells by downregulation of p65.
Collapse
Affiliation(s)
- Lin Liu
- Department of Oncology Hematology, People's Hospital of Linzi District, Zibo, China
| | - Weiguo Zhang
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Yujing Hu
- Department of Obstetric Area 3, Shandong Qilu Hospital Pingyi Branch (Pingyi County People's Hospital), Linyi, China
| | - Liangliang Ma
- Department of General Surgery, Tianjin Fifth Central Hospital, Tianjin, China
| | - Xiangsu Xu
- Department of Hepatolibiary Surgery, Jining No.1 People's Hospital, Jining, China
| |
Collapse
|
15
|
Zhan H, Tu S, Zhang F, Shao A, Lin J. MicroRNAs and Long Non-coding RNAs in c-Met-Regulated Cancers. Front Cell Dev Biol 2020; 8:145. [PMID: 32219093 PMCID: PMC7078111 DOI: 10.3389/fcell.2020.00145] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 02/21/2020] [Indexed: 12/16/2022] Open
Abstract
MicroRNAs (miRNAs) and long non-coding RNAs (lncRNAs) are components of many signaling pathways associated with tumor aggressiveness and cancer metastasis. Some lncRNAs are classified as competitive endogenous RNAs (ceRNAs) that bind to specific miRNAs to prevent interaction with target mRNAs. Studies have shown that the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/c-Met) pathway is involved in physiological and pathological processes such as cell growth, angiogenesis, and embryogenesis. Overexpression of c-Met can lead to sustained activation of downstream signals, resulting in carcinogenesis, metastasis, and resistance to targeted therapies. In this review, we evaluated the effects of anti-oncogenic and oncogenic non-coding RNAs (ncRNAs) on c-Met, and the interactions among lncRNAs, miRNAs, and c-Met in cancer using clinical and tissue chromatin immunoprecipition (ChIP) analysis data. We summarized current knowledge of the mechanisms and effects of the lncRNAs/miR-34a/c-Met axis in various tumor types, and evaluated the potential therapeutic value of lncRNAs and/or miRNAs targeted to c-Met on drug-resistance. Furthermore, we discussed the functions of lncRNAs and miRNAs in c-Met-related carcinogenesis and potential therapeutic strategies.
Collapse
Affiliation(s)
- Hong Zhan
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sheng Tu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Zhang
- School of Medicine, Zhejiang University Hangzhou, Hangzhou, China
| | - Anwen Shao
- Department of Neurosurgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jun Lin
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
16
|
Wang H, Rao B, Lou J, Li J, Liu Z, Li A, Cui G, Ren Z, Yu Z. The Function of the HGF/c-Met Axis in Hepatocellular Carcinoma. Front Cell Dev Biol 2020; 8:55. [PMID: 32117981 PMCID: PMC7018668 DOI: 10.3389/fcell.2020.00055] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 01/22/2020] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide, leading to a large global cancer burden. Hepatocyte growth factor (HGF) and its high-affinity receptor, mesenchymal epithelial transition factor (c-Met), are closely related to the onset, progression, and metastasis of multiple tumors. The HGF/c-Met axis is involved in cell proliferation, movement, differentiation, invasion, angiogenesis, and apoptosis by activating multiple downstream signaling pathways. In this review, we focus on the function of the HGF/c-Met axis in HCC. The HGF/c-Met axis promotes the onset, proliferation, invasion, and metastasis of HCC. Moreover, it can serve as a biomarker for diagnosis and prognosis, as well as a therapeutic target for HCC. In addition, it is closely related to drug resistance during HCC treatment.
Collapse
Affiliation(s)
- Haiyu Wang
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Benchen Rao
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jiamin Lou
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Jianhao Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenguo Liu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ang Li
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Guangying Cui
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhigang Ren
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zujiang Yu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Gene Hospital of Henan Province, Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
17
|
Fatunde OA, Brown SA. The Role of CYP450 Drug Metabolism in Precision Cardio-Oncology. Int J Mol Sci 2020; 21:E604. [PMID: 31963461 PMCID: PMC7014347 DOI: 10.3390/ijms21020604] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 01/09/2020] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
As many novel cancer therapies continue to emerge, the field of Cardio-Oncology (or onco-cardiology) has become crucial to prevent, monitor and treat cancer therapy-related cardiovascular toxicity. Furthermore, given the narrow therapeutic window of most cancer therapies, drug-drug interactions are prevalent in the cancer population. Consequently, there is an increased risk of affecting drug efficacy or predisposing individual patients to adverse side effects. Here we review the role of cytochrome P450 (CYP450) enzymes in the field of Cardio-Oncology. We highlight the importance of cardiac medications in preventive Cardio-Oncology for high-risk patients or in the management of cardiotoxicities during or following cancer treatment. Common interactions between Oncology and Cardiology drugs are catalogued, emphasizing the impact of differential metabolism of each substrate drug on unpredictable drug bioavailability and consequent inter-individual variability in treatment response or development of cardiovascular toxicity. This inter-individual variability in bioavailability and subsequent response can be further enhanced by genomic variants in CYP450, or by modifications of CYP450 gene, RNA or protein expression or function in various 'omics' related to precision medicine. Thus, we advocate for an individualized approach to each patient by a multidisciplinary team with clinical pharmacists evaluating a treatment plan tailored to a practice of precision Cardio-Oncology. This review may increase awareness of these key concepts in the rapidly evolving field of Cardio-Oncology.
Collapse
Affiliation(s)
- Olubadewa A. Fatunde
- Department of Medicine, University of Texas Health Science Center at Tyler–CHRISTUS Good Shepherd Medical Center, Longview, TX 75601, USA
| | - Sherry-Ann Brown
- Department of Cardiovascular Diseases, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
18
|
MOSTAFA SHADYM, GAMAL-ELDEEN AMIRAM, MAKSOUD NABILAABDEL, FAHMI ABDELGAWADA. Epigallocatechin gallate-capped gold nanoparticles enhanced the tumor suppressors let-7a and miR-34a in hepatocellular carcinoma cells. ACTA ACUST UNITED AC 2020; 92:e20200574. [DOI: 10.1590/0001-3765202020200574] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/17/2020] [Indexed: 01/01/2023]
Affiliation(s)
- SHADY M. MOSTAFA
- National Research Centre, Egypt; National Research Centre, Egypt
| | - AMIRA M. GAMAL-ELDEEN
- National Research Centre, Egypt; National Research Centre, Egypt; Taif University, Saudi Arabia
| | | | | |
Collapse
|
19
|
Huang L, Jian Z, Gao Y, Zhou P, Zhang G, Jiang B, Lv Y. RPN2 promotes metastasis of hepatocellular carcinoma cell and inhibits autophagy via STAT3 and NF-κB pathways. Aging (Albany NY) 2019; 11:6674-6690. [PMID: 31481647 PMCID: PMC6756868 DOI: 10.18632/aging.102167] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 08/05/2019] [Indexed: 12/11/2022]
Abstract
This study aimed to investigate the function and the molecular mechanism of Ribophorin II (RPN2) in regulating Hepatocellular carcinoma (HCC) cell growth, metastasis, and autophagy. Quantitative real-time PCR (qPCR), western blotting analysis, and immunofluorescence assay were utilized to detect the RPN2 expression in HCC cell lines and specimens of HCC patients. We discovered that RPN2 expression was upregulated in HCC cell lines and tissues of HCC patients, which correlated with the low histological grade and low survival rate. Enhanced RPN2 expression stimulated cell proliferation, metastasis, invasion, and epithelial-mesenchymal transition (EMT), and decreased Microtubule-associated protein light chain 3B (LC3B) synthesis and reduced the expression of p62 protein. Further studies suggested that matrix metalloproteinase 9 (MMP-9) was partially upregulated by RPN2 via Nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) p65. Interestingly, we found that phosphorylated RPN2 activated the signal transducer and activator of transcription 3 (STAT3) in HCC cells. It was also accountable for RPN2-stimulated elevated expression of MMP-9 and for invading HCC cells. It can be concluded that over-expression of RPN2 in HCC aggravated the malignant progression into cancerous cells. This research provided new evidences that RPN2 could facilitate tumor invasion by increasing the expression of MMP-9 in HCC cells.
Collapse
Affiliation(s)
- Linsheng Huang
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an, Shaanxi Province, China
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Zhiyuan Jian
- The First General Surgery Department of the Hospital Affiliated Guilin Medical University, Guilin, Guangxi Province, China
| | - Yi Gao
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an, Shaanxi Province, China
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Ping Zhou
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Gan Zhang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Bin Jiang
- Department of Hepatopancreatobiliary Surgery, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei Province, China
| | - Yi Lv
- National Local Joint Engineering Research Center for Precision Surgery and Regenerative Medicine, Xi’an, Shaanxi Province, China
- Department of Hepatobiliary Surgery, The First Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi Province, China
| |
Collapse
|
20
|
Wilk G, Braun R. Integrative analysis reveals disrupted pathways regulated by microRNAs in cancer. Nucleic Acids Res 2019; 46:1089-1101. [PMID: 29294105 PMCID: PMC5814839 DOI: 10.1093/nar/gkx1250] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Accepted: 12/01/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are small endogenous regulatory molecules that modulate gene expression post-transcriptionally. Although differential expression of miRNAs have been implicated in many diseases (including cancers), the underlying mechanisms of action remain unclear. Because each miRNA can target multiple genes, miRNAs may potentially have functional implications for the overall behavior of entire pathways. Here, we investigate the functional consequences of miRNA dysregulation through an integrative analysis of miRNA and mRNA expression data using a novel approach that incorporates pathway information a priori. By searching for miRNA-pathway associations that differ between healthy and tumor tissue, we identify specific relationships at the systems level which are disrupted in cancer. Our approach is motivated by the hypothesis that if an miRNA and pathway are associated, then the expression of the miRNA and the collective behavior of the genes in a pathway will be correlated. As such, we first obtain an expression-based summary of pathway activity using Isomap, a dimension reduction method which can articulate non-linear structure in high-dimensional data. We then search for miRNAs that exhibit differential correlations with the pathway summary between phenotypes as a means of finding aberrant miRNA-pathway coregulation in tumors. We apply our method to cancer data using gene and miRNA expression datasets from The Cancer Genome Atlas and compare ∼105 miRNA-pathway relationships between healthy and tumor samples from four tissues (breast, prostate, lung and liver). Many of the flagged pairs we identify have a biological basis for disruption in cancer.
Collapse
Affiliation(s)
- Gary Wilk
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Rosemary Braun
- Biostatistics Division, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA.,Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL 60208, USA
| |
Collapse
|
21
|
Long noncoding RNA Mirt2 upregulates USP10 expression to suppress hepatic steatosis by sponging miR-34a-5p. Gene 2019; 700:139-148. [DOI: 10.1016/j.gene.2019.02.096] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 02/11/2019] [Accepted: 02/23/2019] [Indexed: 12/18/2022]
|
22
|
Zhang B, Wang X, Deng J, Zheng H, Liu W, Chen S, Tian J, Wang F. p53-dependent upregulation of miR-16-2 by sanguinarine induces cell cycle arrest and apoptosis in hepatocellular carcinoma. Cancer Lett 2019; 459:50-58. [PMID: 31163195 DOI: 10.1016/j.canlet.2019.05.042] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Revised: 05/26/2019] [Accepted: 05/29/2019] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) were involved in cancer progression, and the targeting of miRNAs by natural agents has opened avenues for cancer treatment and drug development. miR-16 functions as a tumor suppressor and is frequently deleted or downregulated in various human cancers, including hepatocellular carcinoma (HCC). In the present study, we employed a miR-16-responsive luciferase reporter to screen candidate compounds that modulate miR-16 expression from a natural product library. One compound, sanguinarine (SG), was capable of activating miR-16 in HCC cells with wildtype or mutated p53 expression but not in p53-deleted HCC cells. Mechanistic investigations revealed that SG increased p53 occupancy on the miR-16-2 promoter and decreased the expression of miR-16 target genes, including Bcl-2 and cyclin D1. Moreover, SG significantly inhibited HCC cell proliferation in a p53-dependent manner by inducing cell cycle arrest and reactive oxygen species (ROS)-associated apoptosis. Silencing miR-16 by treatment with anti-miR16 miRNA inhibitors rescued the cell viability repression effect caused by SG. Importantly, SG dramatically suppressed tumor growth in an HCC xenograft model, with little cytotoxicity. Taken together, our results provide a preclinical proof-of-concept for SG as a potential strategy for HCC treatment based on the restoration of miR-16 tumor suppressor function.
Collapse
Affiliation(s)
- Beilei Zhang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China; Department of Gynecology and Obstetrics, Tangdu Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710038, China
| | - Xinan Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Jiacong Deng
- School of Ocean Science and Biochemistry Engineering, Fujian Normal University Fuqing Branch, Fuqing, Fujian, 350300, China
| | - Haifeng Zheng
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Wei Liu
- Department of Hepatobiliary Surgery, Xijing Hospital, The Fourth Military Medical University, Xi'an, Shaanxi, 710032, China
| | - Si Chen
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Jie Tian
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China; CAS Key Laboratory of Molecular Imaging, Institute of Automation Chinese Academy of Sciences, Beijing, 100190, China; Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100190, China.
| | - Fu Wang
- Engineering Research Center of Molecular and Neuro Imaging, Ministry of Education, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China.
| |
Collapse
|
23
|
Ahmed MY, Salah MM, Kassim SK, Abdelaal A, Elayat WM, Mohamed DAW, Fouly AE, Abu-Zahra FAE. Evaluation of the diagnostic and therapeutic roles of non-coding RNA and cell proliferation related gene association in hepatocellular carcinoma. Gene 2019; 706:97-105. [PMID: 31034943 DOI: 10.1016/j.gene.2019.04.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Revised: 03/17/2019] [Accepted: 04/18/2019] [Indexed: 12/30/2022]
Abstract
Micro RNA-34a-5p (miR-34a-5p) is an important molecule that can act as a modulator of tumor growth. It controls expression of a plenty of proteins controlling cell cycle, differentiation and apoptosis and opposing processes that favor viability of cancer cells, their metastasis and resistance to chemotherapy. Bioinformatics analysis indicated that minichromosome maintenance protein 2 (MCM2) is a target gene of miR-34a-p. In this study, RT-qPCR was employed to detect the expression of miR-34a-5p and MCM2 in 10 hepatocellular carcinoma (HCC) tissues. The functional role of miR-34a-5p in HCC was investigated and the interaction between miR-34a-5p and MCM2 was explored. Results showed miR-34a-5p expression in HCC tissues was significantly lower than in non HCC liver tissues (P < 0.05), but MCM2 expression in HCC tissues was markedly higher than in non HCC liver tissues (P < 0.05). In addition, miR-34a-5p expression was negatively related to MCM2 expression. To confirm effect of miR-34a-5p on tumor growth and its possible effect on MCM2, miR-34a-5p mimic and inhibitor was transfected into HCC cell lines (HepG2). MTS assay, showed miR-34a-5p over-expression could inhibit the proliferation of HCC cells. RT-qPCR was done to detect the expression of miR-34a-5p and MCM2 in HepG2 cells before and after transfection. Results showed that MCM2 expression in HCC tissues was markedly lower in mimic transfected group than in inhibitor transfected group and control group (P < 0.05) while miR-34a-5p expression in HepG2 cells was significantly higher in mimic transfected group than in inhibitor transfected group and control group (P < 0.05). Thus, miR-34a-5p may inhibit the proliferation of HCC cells via regulating MCM2 expression. These findings provide an evidence for the emerging role of microRNAs as diagnostic markers and therapeutic targets in HCC.
Collapse
Affiliation(s)
- Manar Yehia Ahmed
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Mofida Mohammed Salah
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Samar Kamal Kassim
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr Abdelaal
- Department of Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Wael M Elayat
- Medical Biochemistry Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | | | - Amr El Fouly
- Endemic Medicine Department, Faculty of Medicine, Helwan University, Helwan, Egypt
| | | |
Collapse
|
24
|
Han R, Chen X, Li Y, Zhang S, Li R, Lu L. MicroRNA-34a suppresses aggressiveness of hepatocellular carcinoma by modulating E2F1, E2F3, and Caspase-3. Cancer Manag Res 2019; 11:2963-2976. [PMID: 31114344 PMCID: PMC6489561 DOI: 10.2147/cmar.s202664] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 12/13/2022] Open
Abstract
Background: Accumulating evidence suggests an antineoplastic role of MicroRNA-34a (miR-34a) in human cancer. However, its precise biological functions stay largely elusive. Purpose: Our study was aimed to investigate the impact of miR-34a on hepatocellular carcinoma (HCC) and its underlying apoptosis related mechanisms in vitro, as well as the association of miR-34a, E2F1 and E2F3 expression with patient survival of HCC using publicly accessed datasets. Methods: The HBV-expressing Hep3B and SNU-449 cell lines with or without enforced expression of miR-34a were in vitro cultured for cell proliferation, colony formation, wound healing, cell invasion, and 3D spheroid formation. Quantitative reverse transcription PCR (RT-qPCR) was performed for E2F1, E2F3 expression. Caspase-3 (CASP3) activity was determined using a CaspACETM Assay System. Kaplan-Meier survival curves were used to analyze the associations of miR-34a, E2F1 and E2F3 expression and overall survival in HCC. Meta-analysis was performed to examine the differential expression of E2F1 and E2F3 between primary HCC vs normal tissues. Results: The results in vitro showed that enforced miR-34a expression significantly inhibited cell proliferation, migration, and invasion of both Hep3B and SNU-449. RT-qPCR results demonstrated that miR-34a could significantly suppress E2F1 and E2F3 expression, particularly in SNU-449. CASP3 activity in both Hep3B and SNU-449 increased in miR-34a treatment group. Overexpressed E2F1 and E2F3 were observed in primary HCC vs normal tissues. Survival analyses showed that HCC patients with either high miR-34a, or low E2F1, or low E2F3 expression had better survival than their opposite counterparts, respectively. Conclusion: Our study suggested thatmiR-34a can modulate the expression of E2F1, E2F3, and CASP3 activity, thereby repressing tumor aggressiveness and expediting apoptosis in liver cancer cells.
Collapse
Affiliation(s)
- Rui Han
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700 People's Republic of China.,Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Xinyi Chen
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700 People's Republic of China
| | - Ya Li
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700 People's Republic of China.,Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Shunjia Zhang
- Department of Epidemiology and Public Health, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Ruibai Li
- Department of Oncology and Hematology, Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700 People's Republic of China
| | - Lingeng Lu
- Department of Chronic Disease Epidemiology, Yale School of Public Health, School of Medicine, Yale University, New Haven, CT, 06520-8034, USA.,Center for Biomedical Data Science, Yale Cancer Center, Yale University, New Haven, CT, USA
| |
Collapse
|
25
|
Wu HY, Li MW, Li QQ, Pang YY, Chen G, Lu HP, Pan SL. Elevation of miR-191-5p level and its potential signaling pathways in hepatocellular carcinoma: a study validated by microarray and in-house qRT-PCR with 1,291 clinical samples. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2019; 12:1439-1456. [PMID: 31933962 PMCID: PMC6947072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 02/02/2019] [Accepted: 02/21/2019] [Indexed: 06/10/2023]
Abstract
BACKGROUND The miR-191-5p expression has been reported to increase in hepatocellular carcinoma (HCC), but its clinical value and exact role remain to be further clarified. Thus, a comprehensive analysis was performed in the current study to explore the underlying function of miR-191-5p in HCC. METHODS HCC-related expression data were collected to conduct a thorough analysis to determine the miR-191-5p expression and its clinical significance in HCC, including microarray data from the Gene Expression Omnibus and ArrayExpress database as well as quantitative real-time polymerase chain reaction (qRT-PCR) data of 178 matched clinical samples. The underlying relationship between miR-191-5p and HCC was also explored on the basis of a series of bioinformatics analyses. RESULTS The overall pooled meta-analysis showed an overexpression of miR-191-5p in the HCC samples (SMD=0.400, 95% CI=0.139-0.663, P=0.003), consistent with the detected result of the clinical HCC samples through the qRT-PCR analysis. Higher miR-191-5p levels were correlated with advanced TNM stages (III and IV), higher pathological grades, and metastasis. Functionally, 64 potential target genes were acquired for further mechanism analysis. Two pathways (p75 neurotrophin receptor and liver kinase B1-mediated signaling pathways), which were likely modulated by miR-191-5p, were regarded to be linked to the deterioration of HCC. Early growth response 1 and UBE2D3 were identified as the most likely targets for miR-191-5p in HCC and were commonly implied in the top enriched pathways and protein-protein network. CONCLUSIONS In summary, miR-191-5p may function as a tumor promoter miRNA of HCC, and the miR-191-5p inhibitor may contribute to the targeted HCC treatment in the future.
Collapse
Affiliation(s)
- Hua-Yu Wu
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Mei-Wei Li
- Department of Cell Biology and Genetics, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Qi-Qi Li
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| | - Shang-Ling Pan
- Department of Pathophysiology, School of Pre-clinical Medicine, Guangxi Medical UniversityNanning, Guangxi Zhuang Autonomous Region, P. R. China
| |
Collapse
|
26
|
Gao L, Guo YN, Zeng JH, Ma FC, Luo J, Zhu HW, Xia S, Wei KL, Chen G. The expression, significance and function of cancer susceptibility candidate 9 in lung squamous cell carcinoma: A bioinformatics and in vitro investigation. Int J Oncol 2019; 54:1651-1664. [PMID: 30896821 PMCID: PMC6439977 DOI: 10.3892/ijo.2019.4758] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Accepted: 02/14/2019] [Indexed: 12/13/2022] Open
Abstract
The cancer susceptibility candidate 9 (CASC9) gene has been reported to exert an oncogenic effect in several types of cancer. However, its role in lung squamous cell carcinoma (LUSC) is unknown. Therefore, the present study examined the expression of CASC9 in LUSC and non-cancer tissues by reverse transcription-quantitative polymerase chain reaction assays and by data mining of high-throughput public databases, including The Cancer Genome Atlas, the Gene Expression Omnibus, ArrayExpress and the Cancer Cell Line Encyclopedia. In vitro experiments were conducted to investigate the effects of CASC9 on the viability and the proliferation of LUSC cells. Furthermore, consulting the alteration status of CASC9 in LUSC from cBioPortal, functional enrichment analysis of co-expressed genes, prediction of potential transcription factors, and inspection of adjacent protein-coding genes were conducted to explore the potential molecular mechanism of CASC9 in LUSC. The results revealed that CASC9 was overexpressed in LUSC tissue, and significantly associated with the malignant progression of LUSC. In vitro experiments demonstrated that CASC9 knockdown by RNA interference attenuated the viability and proliferation of LUSC cells. Multiple copies of CASC9 gene were detected in 4 of 179 available sequenced LUSC cases. A functional enrichment analysis of 200 co-expressed genes indicated that these genes were significantly associated with terms, including 'cell-cell junction organization', 'desmosome organization', 'epidermis development', 'Hippo signaling pathway', 'pathogenic Escherichia coli infection' and 'PID HIF1 TF pathway'. Three genes, Fos-related antigen 2 (FOSL2), SWI/SNF complex subunit SMARCC2, and transcription factor COE1 (EBF1), were predicted by lncRNAMap to be associated with CASC9. Among these, the expression of FOSL2 and EBF1 was positively and negatively correlated with the expression of CASC9, respectively. Two adjacent protein-coding genes, cysteine-rich secretory protein LCCL domain-containing 1 and hepatocyte nuclear factor 4-γ, were also positively correlated with CASC9 expression. In conclusion, the present data suggest that CASC9 serves as an oncogene in LUSC and may be a promising target for alternative therapeutic options for patients with this condition.
Collapse
Affiliation(s)
- Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yi-Nan Guo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jiang-Hui Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Fu-Chao Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jie Luo
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Hua-Wei Zhu
- Department of Medical Oncology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Shuang Xia
- Department of Human Anatomy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Kang-Lai Wei
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| |
Collapse
|
27
|
Wang Y, Tai Q, Zhang J, Kang J, Gao F, Zhong F, Cai L, Fang F, Gao Y. MiRNA-206 inhibits hepatocellular carcinoma cell proliferation and migration but promotes apoptosis by modulating cMET expression. Acta Biochim Biophys Sin (Shanghai) 2019; 51:243-253. [PMID: 30805592 DOI: 10.1093/abbs/gmy119] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Revised: 08/22/2018] [Indexed: 12/25/2022] Open
Abstract
A close relationship between cancer progression and microRNAs (miRNAs) regulation has been demonstrated. Abnormal microRNA-206 (miR-206) expression has been shown to be related to the development of malignancies. However, the role of miR-206 in hepatocellular carcinoma (HCC) remains unclear. Here, we evaluated the function of miR-206 in HCC. Results showed that miR-206 expression was decreased in 27 human HCC tissues compared with that of adjacent normal tissues. Conversely, cMET was up-regulated in human HCC cancer tissues, and cMET levels were shown to be negatively correlated with miR-206 expression. Abnormally increased miR-206 expression in three HCC cell lines (SMMC-7721, HepG2, and Huh7) attenuated cell viability, migration, and invasion. Increased apoptosis was also observed in these miR-206 expressing cells. Furthermore, we identified that miR-206 targets the 3'-UTR of the cMET gene for silencing, and restoration of cMET expression reversed the inhibitory effect of miR-206 on HCC. Tumor cells expressing miR-206 also showed delayed growth in the in vivo experiments compared with the controls. Altogether, our findings provide new insights into the molecular mechanisms of HCC oncogenesis.
Collapse
Affiliation(s)
- Yuanxi Wang
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Qinwen Tai
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Jinhui Zhang
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Junsheng Kang
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Feng Gao
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Feng Zhong
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Liquan Cai
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Fa Fang
- Department of General Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Yi Gao
- Department of Hepatobiliary Surgery II, Guangdong Provincial Research Center for Artificial Organ and Tissue Engineering, Guangzhou Clinical Research and Transformation Center for Artificial Liver, Institute of Regenerative Medicine, Zhujiang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
28
|
Peng J, Xiang Y. Value analysis of CD69 combined with EGR1 in the diagnosis of coronary heart disease. Exp Ther Med 2019; 17:2047-2052. [PMID: 30783476 PMCID: PMC6364247 DOI: 10.3892/etm.2019.7175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 11/21/2018] [Indexed: 12/23/2022] Open
Abstract
Expression and clinical significance of CD69 and early growth response (EGR1) in plasma of patients with coronary heart disease (CHD) were investigated. A total of 194 patients with CHD and 130 healthy subjects, respectively, were selected as CHD and control group, clinical data were collected and coronary angiography was performed. RT-qPCR was used to detect the expression of EGR1. Flow cytometry was used to detect the expression level of CD69 and the receiver operating characteristic curve was used to analyze the values of relative expression of CD69 and EGR1. The relative expression of CD69 in plasma of patients with CHD was higher than that in control group, while the relative expression of EGR1 was lower than that in control group. The relative expression of EGR1 in plasma of patients with CHD was negatively correlated with lipoprotein a [Lp(a)] and high sensitive C-reactive protein (hs-CRP) (r=-0.394 and -0.524, P<0.05), and the relative expression of CD69 in peripheral blood was positively correlated with [Lp(a)] and hs-CRP (r=0.352 and 0.402, P<0.05). The area under curve (AUC) of the relative expression of CD69 in peripheral blood of patients with CHD in evaluating the course of the disease of patients was 0.889 (95% CI: 0.822-0.958). The AUC of the relative expression of EGR1 in plasma in evaluating the course of the disease of patients was 0.933 (95% CI: 0.867-0.978). By the combined detection of CD69 and EGR1, it was found that the AUC was 0.954 (95% CI: 0.887-0.982). The expression level of EGR1 in plasma of patients with CHD decreased, while the expression level of CD69 increased, and both of them were related to the severity of the disease of patients, which could be used as an indicator to evaluate the progression of the patients' conditions.
Collapse
Affiliation(s)
- Jianqiao Peng
- Clinical Laboratory, People's Hospital of Hunan Province, Changsha, Hunan 410006, P.R. China
| | - Yi Xiang
- Department of Geriatrics, People's Hospital of Hunan Province, Changsha, Hunan 410006, P.R. China
| |
Collapse
|
29
|
Sethi S, Sethi S, Bluth MH. Clinical Implication of MicroRNAs in Molecular Pathology: An Update for 2018. Clin Lab Med 2019; 38:237-251. [PMID: 29776629 DOI: 10.1016/j.cll.2018.02.003] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
MicroRNAs (miRNAs) are poised to provide diagnostic, prognostic, and therapeutic targets for several diseases including malignancies for precision medicine applications. The miRNAs have immense potential in the clinical arena because they can be detected in the blood, serum, tissues (fresh and formalin-fixed paraffin-embedded), and fine-needle aspirate specimens. The most attractive feature of miRNA-based therapy is that a single miRNA could be useful for targeting multiple genes that are deregulated in cancers, which can be further investigated through systems biology and network analysis that may provide cancer-specific personalized therapy.
Collapse
Affiliation(s)
- Seema Sethi
- Department of Pathology, University of Michigan and VA Hospital, E300, 2215 Fuller Road, Ann Arbor, MI 48105, USA.
| | - Sajiv Sethi
- Department of Gastroenterology, University of South Florida, 12901 Bruce B. Downs Boulevard, MDC 82, Tampa, FL 33612, USA
| | - Martin H Bluth
- Department of Pathology, Wayne State University, School of Medicine, 540 East Canfield Street, Detroit, MI 48201, USA; Pathology Laboratories, Michigan Surgical Hospital, 21230 Dequindre Road, Warren, MI 48091, USA
| |
Collapse
|
30
|
Sadri Nahand J, Bokharaei-Salim F, Salmaninejad A, Nesaei A, Mohajeri F, Moshtzan A, Tabibzadeh A, Karimzadeh M, Moghoofei M, Marjani A, Yaghoubi S, Keyvani H. microRNAs: Key players in virus-associated hepatocellular carcinoma. J Cell Physiol 2018; 234:12188-12225. [PMID: 30536673 DOI: 10.1002/jcp.27956] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022]
Abstract
Hepatocellular carcinoma (HCC) is known as one of the major health problems worldwide. Pathological analysis indicated that a variety of risk factors including genetical (i.e., alteration of tumor suppressors and oncogenes) and environmental factors (i.e., viruses) are involved in beginning and development of HCC. The understanding of these risk factors could guide scientists and clinicians to design effective therapeutic options in HCC treatment. Various viruses such as hepatitis B virus (HBV) and hepatitis C virus (HCV) via targeting several cellular and molecular pathways involved in HCC pathogenesis. Among various cellular and molecular targets, microRNAs (miRNAs) have appeared as key players in HCC progression. miRNAs are short noncoding RNAs which could play important roles as oncogenes or tumor suppressors in several malignancies such as HCC. Deregulation of many miRNAs (i.e., miR-222, miR-25, miR-92a, miR-1, let-7f, and miR-21) could be associated with different stages of HCC. Besides miRNAs, exosomes are other particles which are involved in HCC pathogenesis via targeting different cargos, such as DNAs, RNAs, miRNAs, and proteins. In this review, we summarize the current knowledge of the role of miRNAs and exosomes as important players in HCC pathogenesis. Moreover, we highlighted HCV- and HBV-related miRNAs which led to HCC progression.
Collapse
Affiliation(s)
- Javid Sadri Nahand
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Arash Salmaninejad
- Drug Applied Research Center, Student Research Committee, Tabriz University of Medical Science, Tabriz, Iran.,Department of Medical Genetics, Medical Genetics Research Center, Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abolfazl Nesaei
- Department of Basic Sciences, Faculty of Medicine, Gonabad University of Medical Sciences, Gonabad, Iran
| | - Fatemeh Mohajeri
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Azadeh Moshtzan
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Alireza Tabibzadeh
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | | | - Mohsen Moghoofei
- Department of Microbiology, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Arezo Marjani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| | - Shoeleh Yaghoubi
- Department of Infectious Disease, School of Medicine, Isfahan University of Medical Science, Isfahan, Iran
| | - Hossein Keyvani
- Department of Virology, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
31
|
Bharali D, Jebur HB, Baishya D, Kumar S, Sarma MP, Masroor M, Akhter J, Husain SA, Kar P. Expression Analysis of Serum microRNA-34a and microRNA-183 in Hepatocellular Carcinoma. Asian Pac J Cancer Prev 2018; 19:2561-2568. [PMID: 30256056 PMCID: PMC6249442 DOI: 10.22034/apjcp.2018.19.9.2561] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Background/objective:: HCC is a multistep process starting from chronic hepatitis that progress through cirrhosis to HCC. MicroRNA expression level was found to be deregulated in HCC. To find out whether the expression level of miR-34a and miR-183 was deregulated in HCC compared to controls without HCC. Methods: Real time quantitative PCR was done to find out the miRNA expression level in terms of Ct value followed by statistical analysis. Results: Over-expression of miR-183 and under-expression of miR-34a in HCC was detected. All changes in expression level of miR-34a and miR-183 were found to be due to HCC compared to controls without HCC. So both miR-34a and miR-183 were suitable to differentiate HCC from Cirrhosis and chronic hepatitis with an efficient diagnostic power of sensitivity, specificity and expression level. But they might not have any role in patients’ survival. Conclusion: miR-34a and miR-183 might be considered as potential markers of HCC screening molecule in addition to other approved panel of marker. Our study warrants further expression level study.
Collapse
Affiliation(s)
- Dipu Bharali
- Department of Medicine, Maulana Azad Medical College, New Delhi, India.
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Huang Y, Zou Y, Lin L, Ma X, Chen H. Identification of serum miR-34a as a potential biomarker in acute myeloid leukemia. Cancer Biomark 2018; 22:799-805. [DOI: 10.3233/cbm-181381] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
33
|
Minutolo A, Potestà M, Gismondi A, Pirrò S, Cirilli M, Gattabria F, Galgani A, Sessa L, Mattei M, Canini A, Muleo R, Colizzi V, Montesano C. Olea europaea small RNA with functional homology to human miR34a in cross-kingdom interaction of anti-tumoral response. Sci Rep 2018; 8:12413. [PMID: 30120339 PMCID: PMC6098056 DOI: 10.1038/s41598-018-30718-w] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2018] [Accepted: 08/02/2018] [Indexed: 12/19/2022] Open
Abstract
Functional foods include compounds with nutritional and health properties. The human diet could play a stronger role in cancer prevention. Only a few studies have described the presence of plant small RNA, in humans who were fed with plant foods, which demonstrated the ability of these molecules to modulate consumer's genes and evidenced the existence of a plant-animal regulation. Through in silico prediction, Olea europaea small RNAs (sRs), which had been previously reported as miRNAs, were identified, each with functional homology to hsa-miR34a. According to this initial funding, we investigated the ability of oeu-sRs to regulate tumorigenesis in human cells. The transfection of these synthetic oeu-sRs reduced the protein expression of hsa-miR34a mRNA targets, increased apoptosis and decreased proliferation in different tumor cells; by contrast, no effect was observed in PBMCs from healthy donors. The introduction of oeu-small RNA in hsa-miR34a-deficient tumor cells restores its function, whereas cells with normal expression of endogenous hsa-miR34a remained unaffected. The natural oeu-small RNAs that were extracted from O. europaea drupes induce the same effects as synthetic sRs. Careful research on the small RNA sequences executed for mapping and annotation in the genome of O. europaea var. Sylvestris and var. Farga led to the hypothesis that RNA fragments with functional homology to human miRNAs could be generated from the degradation of regions of RNA transcripts. These results indicate the possibility of developing novel natural non-toxic drugs that contain active plant-derived tumor-suppressing small RNA with functional homology to hsa-miRNAs and that can support antineoplastic strategies.
Collapse
Affiliation(s)
| | - Marina Potestà
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Angelo Gismondi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Stefano Pirrò
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Mir-Nat s.r.l, Rome, Italy
| | - Marco Cirilli
- Department of Agricultural and Forestry, Science, University of Tuscia, Viterbo, Italy
| | - Fabiano Gattabria
- Department of Agricultural and Forestry, Science, University of Tuscia, Viterbo, Italy
| | - Andrea Galgani
- Mir-Nat s.r.l, Rome, Italy
- Interdepartmental Center for Animal Technology, University of Rome "Tor Vergata", Rome, Italy
| | - Libera Sessa
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Maurizio Mattei
- Interdepartmental Center for Animal Technology, University of Rome "Tor Vergata", Rome, Italy
| | - Antonella Canini
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
| | - Rosario Muleo
- Department of Agricultural and Forestry, Science, University of Tuscia, Viterbo, Italy
| | - Vittorio Colizzi
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy
- Mir-Nat s.r.l, Rome, Italy
| | - Carla Montesano
- Department of Biology, University of Rome "Tor Vergata", Rome, Italy.
| |
Collapse
|
34
|
Li L, Jia L, Ding Y. Upregulation of miR-375 inhibits human liver cancer cell growth by modulating cell proliferation and apoptosis via targeting ErbB2. Oncol Lett 2018; 16:3319-3326. [PMID: 30127930 DOI: 10.3892/ol.2018.9011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/06/2017] [Indexed: 12/18/2022] Open
Abstract
microRNAs (miRNA/miRs) are a class of small non-coding RNAs; they serve important biological roles in tumorigenesis through the regulation of oncogene expression, and they may be used for the diagnosis and treatment of human cancer. miR-375 was identified to exhibit abnormal expression levels in a number of types of tumor; however, the biological role of miR-375 in human hepatocellular carcinoma (HCC) remains incompletely characterized. The present study investigated the expression of miR-375 in human HCC tissues and human liver cancer cell lines; results from a reverse transcription quantitative polymerase chain reaction analysis indicated that the expression of miR-375 was significantly decreased in tissues and live cancer cell lines, compared with normal tissues and PHH cells. Additional studies demonstrated that the upregulation of miR-375 inhibited human liver cancer cell growth via regulation of cell apoptosis. It was also revealed that the receptor tyrosine-protein kinase erbB-2 (ErbB2) gene was a direct target gene of miR-375, and that the regulation of ErbB2 was associated with the human liver cancer growth. Therefore, the present study demonstrated that miR-375 was expressed at low levels both in human HCC tissues and cell line, compared with normal tissues and PHH cells, and that the induction of miR-375 expression may regulate human liver cancer cell function through targeting the ErbB2 gene, which may potentially improve the diagnosis and treatment of patients with HCC in the future.
Collapse
Affiliation(s)
- Lina Li
- Department of Digestive Diseases, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Liping Jia
- Department of Digestive Diseases, Daqing Longnan Hospital, Daqing, Heilongjiang 163453, P.R. China
| | - Yan Ding
- The First Department of General Surgery, Daqing Oilfield General Hospital, Daqing, Heilongjiang 163000, P.R. China
| |
Collapse
|
35
|
Iwagami Y, Zou J, Zhang H, Cao K, Ji C, Kim M, Huang CK. Alcohol-mediated miR-34a modulates hepatocyte growth and apoptosis. J Cell Mol Med 2018; 22:3987-3995. [PMID: 29873178 PMCID: PMC6050481 DOI: 10.1111/jcmm.13681] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2017] [Accepted: 04/11/2018] [Indexed: 01/02/2023] Open
Abstract
MicroRNAs (miRs) have been recently shown to be heavily involved in the development of alcoholic liver disease (ALD) and suggested as a potential therapeutic target in ALD. The miR‐34a was consistently reported to be significantly elevated in several ALD rodent models, but it remains unclear how miR‐34a modulates the cellular behaviours of hepatocytes in ALD development and progression. This study aims to characterize alcohol‐induced miR‐34a impact on hepatocytes growth and apoptosis. The miRNA array was performed to assess changes in miRNA after chronic alcohol feeding. Liver and blood samples were used to examine ALD progression. The miR‐34a was overexpressed in human hepatocytes to evaluate its impact on cell growth and apoptosis. Real‐time quantitative PCR and Western blot were used to determine the growth and apoptosis molecular signalling pathways associated with miR‐34a. Alcohol feeding significantly promoted fatty liver progression, serum ALT levels, apoptosis and miR‐34a expression in rat liver. Overexpression of miR‐34a in human hepatocytes suppressed cell growth signallings, including c‐Met, cyclin D1 and cyclin‐dependent kinase 6 (CDK6). The miR‐34a might also inhibit the expression of sirtuin 1 (Sirt1) and its target, B‐cell lymphoma 2. Interestingly, the expression of miR‐34a reverses the suppressive effects of ethanol on cell growth. But, miR‐34a promotes hepatocyte senescence and apoptosis. Although the miR‐34a‐mediated down‐regulation of cell growth‐associated genes may contribute to cell growth retardation, other miR‐34a targets, such as Sirt1, may reverse this phenotype. Future studies will be needed to clarify the role of miR‐34a in ALD progression.
Collapse
Affiliation(s)
- Yoshifumi Iwagami
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Jing Zou
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Hongyu Zhang
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Kevin Cao
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Chengcheng Ji
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Miran Kim
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| | - Chiung-Kuei Huang
- Department of Medicine, Rhode Island Hospital and The Warren Alpert Medical School of Brown University, Providence, Rhode Island, USA
| |
Collapse
|
36
|
Chen E, Xu X, Liu R, Liu T. Small but Heavy Role: MicroRNAs in Hepatocellular Carcinoma Progression. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6784607. [PMID: 29951542 PMCID: PMC5987324 DOI: 10.1155/2018/6784607] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 02/08/2018] [Indexed: 02/06/2023]
Abstract
Hepatocellular carcinoma (HCC), which accounts for 85-90% of primary liver cancer, is the fifth most common malignant tumor and the third leading cause of cancer-related deaths worldwide, but the pathological mechanism of HCC is still not fully elucidated. miRNAs are evolutionarily endogenous small noncoding RNAs that negatively regulate gene expression via posttranscriptional inhibition or target mRNA degradation in several diseases, especially human cancer. Therefore, discovering the roles of miRNAs is appealing to scientific researchers. Emerging evidence has shown that the aberrant expressions of numerous miRNAs are involved in many HCC biological processes. In hepatocarcinogenesis, miRNAs with dysregulated expression can exert their function as oncogenes or tumor suppressors depending on their cellular target during the cell cycle, and in tumor development, differentiation, apoptosis, angiogenesis, metastasis, and progression of the tumor microenvironment. In this review, we summarize current findings on miRNAs and assess their functions to explore the molecular mechanisms of tumor progression in HCC.
Collapse
Affiliation(s)
- Erbao Chen
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaojing Xu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ruiqi Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Tianshu Liu
- Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
37
|
Soliman B, Salem A, Ghazy M, Abu-Shahba N, El Hefnawi M. Bioinformatics functional analysis of let-7a, miR-34a, and miR-199a/b reveals novel insights into immune system pathways and cancer hallmarks for hepatocellular carcinoma. Tumour Biol 2018; 40:1010428318773675. [PMID: 29775159 DOI: 10.1177/1010428318773675] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Let-7a, miR-34a, and miR-199 a/b have gained a great attention as master regulators for cellular processes. In particular, these three micro-RNAs act as potential onco-suppressors for hepatocellular carcinoma. Bioinformatics can reveal the functionality of these micro-RNAs through target prediction and functional annotation analysis. In the current study, in silico analysis using innovative servers (miRror Suite, DAVID, miRGator V3.0, GeneTrail) has demonstrated the combinatorial and the individual target genes of these micro-RNAs and further explored their roles in hepatocellular carcinoma progression. There were 87 common target messenger RNAs (p ≤ 0.05) that were predicted to be regulated by the three micro-RNAs using miRror 2.0 target prediction tool. In addition, the functional enrichment analysis of these targets that was performed by DAVID functional annotation and REACTOME tools revealed two major immune-related pathways, eight hepatocellular carcinoma hallmarks-linked pathways, and two pathways that mediate interconnected processes between immune system and hepatocellular carcinoma hallmarks. Moreover, protein-protein interaction network for the predicted common targets was obtained by using STRING database. The individual analysis of target genes and pathways for the three micro-RNAs of interest using miRGator V3.0 and GeneTrail servers revealed some novel predicted target oncogenes such as SOX4, which we validated experimentally, in addition to some regulated pathways of immune system and hepatocarcinogenesis such as insulin signaling pathway and adipocytokine signaling pathway. In general, our results demonstrate that let-7a, miR-34a, and miR-199 a/b have novel interactions in different immune system pathways and major hepatocellular carcinoma hallmarks. Thus, our findings shed more light on the roles of these miRNAs as cancer silencers.
Collapse
Affiliation(s)
- Bangly Soliman
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt.,2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt
| | - Ahmed Salem
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Mohamed Ghazy
- 1 Department of Biochemistry, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Nourhan Abu-Shahba
- 3 Stem Cells Research Group, Medical Centre of Excellence, Medical Molecular Genetics Department, National Research Centre, Cairo, Egypt
| | - Mahmoud El Hefnawi
- 2 Informatics and Systems Department, Biomedical Informatics and Chemo-Informatics Group, Centre of Excellence for Advanced Sciences (CEAS), Division of Engineering Research, National Research Centre, Cairo, Egypt.,4 Centre for Informatics, Nile University, Sheikh Zayed City, Egypt
| |
Collapse
|
38
|
He RQ, Gao L, Ma J, Li ZY, Hu XH, Chen G. Oncogenic role of miR‑183‑5p in lung adenocarcinoma: A comprehensive study of qPCR, in vitro experiments and bioinformatic analysis. Oncol Rep 2018; 40:83-100. [PMID: 29749535 PMCID: PMC6059757 DOI: 10.3892/or.2018.6429] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 04/25/2018] [Indexed: 12/14/2022] Open
Abstract
Despite the fact that previous studies have reported the aberrant expression of miR-183-5p in lung adenocarcinoma (LUAD), the oncogenic role of miR-183-5p in LUAD and its underlying mechanisms have remained elusive. Hence, we attempted to elucidate the clinicopathological significance of miR-183-5p expression in LUAD and identify the biological function of miR-183-5p in LUAD in this study. Meta-analysis of Gene Expression Omnibus (GEO) data, data mining of The Cancer Genome Atlas (TCGA) and real-time quantitative polymerase chain reaction (qPCR) were performed to evaluate the clinicopathological significance of miR-183-5p in LUAD. Then, the effect of miR-183-5p on cell growth in LUAD was assessed by in vitro experiments. Additionally, the target genes of miR-183-5p were identified via miRWalk v.2.0 and TCGA. Gene Ontology (GO) analysis, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and Disease Ontology (DO) analysis were further carried out for the target genes. The targetability between target genes in key KEGG pathways and miR-183-5p was validated by independent samples t-test, Pearson's correlation test and immunohistochemistry results from the Human Protein Atlas (HPA). According to the results, miR-183-5p was overexpressed in LUAD and exhibited significant diagnostic value. Moreover, miR-183 expression was associated with tumor progression in the TCGA data. In vitro experiments revealed the positive influence of miR-183-5p on cell viability and proliferation as well as the negative effect of miR-183-5p on caspase-3/7 activity in LUAD, which supports the finding that target genes of miR-183-5p are mainly enriched in gene pathways containing cell adhesion molecules (CAMs) and gene pathways important in cancer. Therefore, we conclude that miR-183-5p acts as an oncogene in LUAD and participates in the pathogenesis of LUAD via the interaction networks of its target genes.
Collapse
Affiliation(s)
- Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Li Gao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Jie Ma
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Zu-Yun Li
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Xiao-Hua Hu
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530022, P.R. China
| |
Collapse
|
39
|
Zhang R, Wei Y, Zhu L, Huang L, Wei Y, Chen G, Dang Y, Feng Z. LncRNA UCHL1-AS1 prevents cell mobility of hepatocellular carcinoma: a study based on in vitro and bioinformatics. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2018; 11:2270-2280. [PMID: 31938339 PMCID: PMC6958276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/08/2018] [Indexed: 06/10/2023]
Abstract
We set out to investigate biological functions and potential molecular mechanisms of long non-coding RNA (lncRNA) in hepatocellular carcinoma (HCC). HCC cell line Bel-7404 was cultured and transfected with antisense to the ubiquitin carboxyl-terminal hydrolase L1 (UCHL1-AS1). Viability and mobility were detected by MTT and wound healing assays. Additionally, enrichment analysis and functional networks of UCHL1-AS1 related genes in HCC were performed. Results showed that high level UCHL1-AS1 could effectively inhibit HCC cell migration. However, there was no significant correlation between overexpressed UCHL1-AS1 and HCC proliferation. Meanwhile, BMP4, CALM3, and HRAS were selected from 204 genes that related to UCHL1-AS1. All of these hub genes play critical roles in HCC occurrence and development. Thus, underlying molecular mechanisms among hub genes and UCHL1-AS1 in HCC might be valuable for prognosis and treatment.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yichen Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Li'ou Zhu
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Lanshan Huang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yan Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yiwu Dang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhenbo Feng
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
40
|
Luo Y, Ouyang J, Zhou D, Zhong S, Wen M, Ou W, Yu H, Jia L, Huang Y. Long Noncoding RNA GAPLINC Promotes Cells Migration and Invasion in Colorectal Cancer Cell by Regulating miR-34a/c-MET Signal Pathway. Dig Dis Sci 2018; 63:890-899. [PMID: 29427222 DOI: 10.1007/s10620-018-4915-9] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2017] [Accepted: 01/03/2018] [Indexed: 01/17/2023]
Abstract
BACKGROUND Gastric adenocarcinoma predictive long intergenic noncoding RNA (GAPLINC) has been detected in colorectal cancer (CRC) cells and reportedly performs many functions related to tumor proliferation and metastasis. Aim The present study aimed to comprehensively explore the biological functions of GAPLINC and their underlying mechanism in CRC cell. METHODS The human cancer LncRNA PCR array was used to detect the differentially expressed long noncoding RNAs in human CRC samples. Real-time PCR, dual-luciferase assay, RNA pull-down assay, Transwell assay, and western blot analysis were performed to explore the molecular mechanism underlying GAPLINC functions related to migration and invasion of a human CRC cell line (HCT116). RESULTS Compared to the non-cancerous tissues, GAPLINC expression was obviously increased in CRC tissues. In HCT116, silencing of GAPLINC weakened cell migration and invasion, while overexpression of GAPLINC significantly promoted cell migration and invasion. Through dual-luciferase, RNA pull-down, and Transwell assays, we verified that miR-34a was the downstream molecule of GAPLINC and that miR-34a negatively regulated the migration and invasion of HCT116 cell. Furthermore, we found that GAPLINC positively regulated the miR-34a target gene c-MET in CRC tissues. CONCLUSIONS Our findings revealed that GAPLINC was up-regulated in CRC tissues and was involved in the migration and invasion of CRC cells by regulating miR-34a/c-MET signaling pathway.
Collapse
Affiliation(s)
- Yuqi Luo
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.,Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Jun Ouyang
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Donggen Zhou
- Ningbo international Travel Healthcare Center, Ningbo, 315000, China
| | - Shizhen Zhong
- Department of Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Minjie Wen
- Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Wentao Ou
- Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Haitao Yu
- Department of General Surgery, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Lin Jia
- Department of Gastroenterology, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| | - Yaoxin Huang
- Department of Gastroenterology, Nansha Hospital of Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, 511457, China
| |
Collapse
|
41
|
Zhang HF, Wang YC, Han YD. MicroRNA‑34a inhibits liver cancer cell growth by reprogramming glucose metabolism. Mol Med Rep 2018; 17:4483-4489. [PMID: 29328457 PMCID: PMC5802224 DOI: 10.3892/mmr.2018.8399] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 12/05/2017] [Indexed: 01/01/2023] Open
Abstract
MicroRNAs (miRs) have been proposed as minimally invasive prognostic markers for various types of cancer, including liver cancer, which is one of the most common cancers worldwide. In the present study, the expression of miR-34a in human liver cancer tissues and cell lines was evaluated and the effects of miR-34a on cell proliferation, invasion and glycolysis in hepatocellular carcinoma (HCC) cells were determined. The results indicated that miR-34a was downregulated in human liver cancer tissues. Overexpression of miR-34a significantly inhibited liver cancer cell proliferation and clone formation. In terms of the underlying mechanism, miR-34a was indicated to negatively regulate the expression of lactate dehydrogenase A (LDHA), which consequently inhibited LDHA-dependent glucose uptake in the cancer cells, as well as cell proliferation and invasion. Collectively, these data suggest that miR-34a functions as a negative regulator of glucose metabolism and may serve as a novel marker for liver cancer prognosis.
Collapse
Affiliation(s)
- Hai-Feng Zhang
- Department of Hepatology, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Yi-Cheng Wang
- Department of Hepatology, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| | - Yi-Di Han
- Department of Hepatology, Qingdao No. 6 People's Hospital, Qingdao, Shandong 266033, P.R. China
| |
Collapse
|
42
|
Ren FH, Yang H, He RQ, Lu JN, Lin XG, Liang HW, Dang YW, Feng ZB, Chen G, Luo DZ. Analysis of microarrays of miR-34a and its identification of prospective target gene signature in hepatocellular carcinoma. BMC Cancer 2018; 18:12. [PMID: 29298665 PMCID: PMC5753510 DOI: 10.1186/s12885-017-3941-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 12/19/2017] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Currently, some studies have demonstrated that miR-34a could serve as a suppressor of several cancers including hepatocellular carcinoma (HCC). Previously, we discovered that miR-34a was downregulated in HCC and involved in the tumorigenesis and progression of HCC; however, the mechanism remains unclear. The purpose of this study was to estimate the expression of miR-34a in HCC by applying the microarray profiles and analyzing the predicted targets of miR-34a and their related biological pathways of HCC. METHODS Gene expression omnibus (GEO) datasets were conducted to identify the difference of miR-34a expression between HCC and corresponding normal tissues and to explore its relationship with HCC clinicopathologic features. The natural language processing (NLP), gene ontology (GO), pathway and network analyses were performed to analyze the genes associated with the carcinogenesis and progression of HCC and the targets of miR-34a predicted in silico. In addition, the integrative analysis was performed to explore the targets of miR-34a which were also relevant to HCC. RESULTS The analysis of GEO datasets demonstrated that miR-34a was downregulated in HCC tissues, and no heterogeneity was observed (Std. Mean Difference(SMD) = 0.63, 95% confidence intervals(95%CI):[0.38, 0.88], P < 0.00001; Pheterogeneity = 0.08 I2 = 41%). However, no association was found between the expression value of miR-34a and any clinicopathologic characteristics. In the NLP analysis of HCC, we obtained 25 significant HCC-associated signaling pathways. Besides, we explored 1000 miR-34a-related genes and 5 significant signaling pathways in which CCND1 and Bcl-2 served as necessary hub genes. In the integrative analysis, we found 61 hub genes and 5 significant pathways, including cell cycle, cytokine-cytokine receptor interaction, notching pathway, p53 pathway and focal adhesion, which proposed the relevant functions of miR-34a in HCC. CONCLUSION Our results may lead researchers to understand the molecular mechanism of miR-34a in the diagnosis, prognosis and therapy of HCC. Therefore, the interaction between miR-34a and its targets may promise better prediction and treatment for HCC. And the experiments in vivo and vitro will be conducted by our group to identify the specific mechanism of miR-34a in the progress and deterioration of HCC.
Collapse
Affiliation(s)
- Fang-Hui Ren
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Rong-Quan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Jing-Ning Lu
- Department of Hepatobiliary Surgery, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Xing-Gu Lin
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Hai-Wei Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, People's Republic of China.
| |
Collapse
|
43
|
Ye ZH, Wen DY, Cai XY, Liang L, Wu PR, Qin H, Yang H, He Y, Chen G. The protective value of miR-204-5p for prognosis and its potential gene network in various malignancies: a comprehensive exploration based on RNA-seq high-throughput data and bioinformatics. Oncotarget 2017; 8:104960-104980. [PMID: 29285225 PMCID: PMC5739612 DOI: 10.18632/oncotarget.21950] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 09/23/2017] [Indexed: 01/26/2023] Open
Abstract
Purpose The prognostic role of miR-204-5p (previous ID: miR-204) is varied and inconclusive in diverse types of malignant neoplasm. Therefore, the purposes of the study comprehensively explore the overall prognostic role of miR-204-5p based on high-throughput microRNA sequencing data, and to investigate the potential role of miR-204-5p via bioinformatics approaches. Materials and Methods The data of microRNA sequencing and survival were downloaded from The Cancer Genome Atlas (TCGA), and the prognostic value of miR-204-5p was analyzed by using Kaplan-Meier and univariate cox regressions. Then a meta-analysis was conducted with all TCGA data and relevant studies collected from literature. Pooled hazard ratios (HRs) with 95% confidence intervals (CIs) were calculated. The prospective molecular mechanism of miR-204-5p was also assessed at a functional level with Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-to-protein interactions (PPI) network. Results From TCGA data, the prognostic value of miR-204-5p obviously varied among 20 types of cancers. The pooled HR was 0.928 (95% CI: 0.774-1.113, P = 0.386, 6203 cases of malignancies). For the meta-analysis based on 15 studies from literature, the pooled HR was 0.420 (95% CI: 0.306-0.576, P < 0.001, 1783 cases of malignancies) for overall survival (OS). Furthermore, the combined HR from both TCGA and literature was 0.708 (95% CI: 0.600-0.834, P < 0.001, 7986 cases of malignancies). Subgroup analyses revealed that miR-204-5p could act as a prognostic marker in cancers of respiratory system and digestive system. Functional analysis was conducted on genes predicted as targets (n = 2057) after the overlay genes from six out of twelve software were extracted. Two significant KEGG pathways were enriched (hsa04360: Axon guidance and hsa04722: Neurotrophin signaling pathway). PPI network revealed some hub genes/proteins (CDC42, SOS1, PIK3R1, MAPK1, PLCG1, ESR1, MAPK11, and AR). Conclusions The current study demonstrates that over-expression of miR-204-5p could be a protective factor for a certain group of cancers. Clinically, the low miR-204-5p level could gain a predictive value for a poor survival in cancers of respiratory system and digestive system. The detailed molecular mechanisms of miR-204-5p remain to be verified.
Collapse
Affiliation(s)
- Zhi-Hua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Dong-Yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Liang Liang
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University (West), Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Pei-Rong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hui Qin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People's Republic of China
| |
Collapse
|
44
|
Abstract
BACKGROUND miRNA deregulation and vascular modifications constitute promising predictors in the study of hepatocellular carcinoma (HCC). In the literature, the relative miRNA abundance in HCC is usually determined using as control non-matched tumoral tissue, healthy liver, or cirrhotic liver. However, a common standard RNA control for the normalization toward the tissue gene expression was not settled yet. AIM To assess the differences existing in the quantitative miRNA gene expression in HCC on tissue according to two different liver controls. METHODS A wide array of miRNAs was analyzed on 22 HCCs arisen in cirrhotic and non-cirrhotic livers by means of microfluidic cards. Control samples included total RNA extracted from healthy and cirrhotic livers. Immunohistochemistry for CD34 and Nestin was performed to assess the pattern of intratumoral vascular modifications. RESULTS Six miRNAs were deregulated in HCCs using either controls: miR-532, miR-34a, miR-93, miR-149#, miR-7f-2#, and miR-30a-5p. Notably, the miRNA expression changed significantly between HCCs arisen in cirrhotic and non-cirrhotic livers, according to the control used for normalization. Different miRNA profiles were found also in HCCs with different vascular patterns, according to the control used for normalization. CONCLUSIONS Our data confirm that the choice of the methodology, and particularly the control used for normalization, represents the main concern in miRNA evaluation, particularly in a heterogeneous model such as liver pathology. Still we observed the deregulation of some common miRNAs as promising in HCC cancerogenesis and progression. A standardized control will be a crucial achievement to compare miRNA expression among different laboratories.
Collapse
|
45
|
Mohamed AA, Ali-Eldin ZA, Elbedewy TA, El-Serafy M, Ali-Eldin FA, AbdelAziz H. MicroRNAs and clinical implications in hepatocellular carcinoma. World J Hepatol 2017; 9:1001-1007. [PMID: 28878865 PMCID: PMC5569275 DOI: 10.4254/wjh.v9.i23.1001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2017] [Revised: 05/13/2017] [Accepted: 06/20/2017] [Indexed: 02/06/2023] Open
Abstract
AIM To assess the role of some circulating miRNAs (miR-23a, miR-203, miR338, miR-34, and miR-16) as tumor markers for diagnosis of hepatocellular carcinoma (HCC).
METHODS One hundred and seventy-one subjects were enrolled, 57 patients with HCC, 57 patients with liver cirrhosis (LC) and 57 healthy subjects as control group. Severity of liver disease was assessed by Child Pugh score. Tumor staging was done using Okuda staging system. Quantification of Micro RNA (miR-23a, miR-203, miR338, miR-34, and miR-16) was performed.
RESULTS All studied miRNA showed significant difference between HCC and cirrhotic patients in comparison to healthy control. miR-23a showed statistically significant difference between HCC and cirrhotic patients being higher in HCC group than cirrhotic. miR-23a is significantly higher in HCC patients with focal lesion size equal or more than 5 cm, patients with multiple focal lesions and Okuda stage III. At cutoff value ≥ 210, miR-23a showed accuracy 79.3% to diagnose HCC patients with sensitivity 89.47% and specificity about 64.91%. At cut off level ≥ 200 ng/mL, serum alpha fetoprotein had 73.68% sensitivity, 52.63% specificity, 43.75% PPV, 80% NPV for diagnosis of HCC.
CONCLUSION MicroRNA 23a can be used as a screening test for early detection of HCC. Also, it is related to larger size of tumour, late Okuda staging and multiple hepatic focal lesions, so it might be a prognostic biomarker.
Collapse
|
46
|
Ding H, Ye ZH, Wen DY, Huang XL, Zeng CM, Mo J, Jiang YQ, Li JJ, Cai XY, Yang H, Chen G. Downregulation of miR‑136‑5p in hepatocellular carcinoma and its clinicopathological significance. Mol Med Rep 2017; 16:5393-5405. [PMID: 28849100 PMCID: PMC5647073 DOI: 10.3892/mmr.2017.7275] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 06/12/2017] [Indexed: 12/11/2022] Open
Abstract
The clinical significance of microRNA (miR)‑136‑5p in hepatocellular carcinoma (HCC) has not been verified. Therefore, in the current study, the authors aimed to explore miR‑136‑5p expression and its clinical significance in HCC, as well as to investigate its potential target genes function. The authors detected the levels of miR‑136‑5p in 101 pairs of HCC and para‑cancer tissues via reverse transcription‑quantitative polymerase chain reaction. Gene Expression Omnibus database and the Cancer Genome Atlas (TCGA) database were used to further verify the clinical significance of miR‑136‑5p expression in HCC. The target genes prediction analysis of miR‑136‑5p, natural language processing (NLP) analysis of HCC in PubMed and gene functional enrichment analysis were conducted. The miR‑136‑5p level was markedly downregulated in HCC tissue, compared to para‑non‑tumor tissue. MiR‑136‑5p expression decreased in HCC patients with metastasis (P=0.004), advance TNM stage (P<0.001), portal vein tumor embolus (P=0.007) and vaso‑invasion (P=0.003), compared with those HCC patients with non‑metastasis, early TNM stage, non‑portal vein tumor embolus and non‑vaso‑invasion, respectively. In the TCGA database, downregulated miR‑136‑5p was also observed in HCC tissue compared to normal liver tissue (P<0.001). There were 178 genes obtained from the overlap between predicted targets and NLP analysis. GO and KEGG pathway analyses revealed some significant pathways related to cancers. Downregulation of miR‑136‑5p may be responsible for the carcinogenesis and aggressiveness of HCC. miR‑136‑5p may act as an anti‑carcinoma miRNA, which is essential for HCC progression through the regulation of various signaling pathways. Thus, miR‑136‑5p interaction may provide a novel strategy for HCC treatment.
Collapse
Affiliation(s)
- Hua Ding
- Department of Radiotherapy, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Hua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Liang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Chu-Mei Zeng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jie Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yi-Qiang Jiang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jian-Jun Li
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Xiao-Yong Cai
- Department of General Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Hong Yang
- Department of Medical Ultrasonics, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
47
|
He X, Yang A, McDonald DG, Riemer EC, Vanek KN, Schulte BA, Wang GY. MiR-34a modulates ionizing radiation-induced senescence in lung cancer cells. Oncotarget 2017; 8:69797-69807. [PMID: 29050242 PMCID: PMC5642517 DOI: 10.18632/oncotarget.19267] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 06/09/2017] [Indexed: 12/30/2022] Open
Abstract
MicroRNAs (miRNAs) are a new class of gene expression regulators that have been implicated in tumorigenesis and modulation of the responses to cancer treatment including that of human non-small cell lung cancer (NSCLC). However, the role of miR-34a in ionizing radiation (IR)-induced senescence in NSCLC cells remains poorly understood. Here we report that IR-induced premature senescence correlates with upregulation of miR-34a expression in NSCLC cells. Ectopic overexpression of miR-34a by transfection with synthetic miR-34a mimics markedly enhances IR-induced senescence, whereas inhibition of miR-34a by transfection with a synthetic miR-34a inhibitor attenuates IR-induced senescence. Clonogenic assays reveal that treatment with miR-34a mimics augments IR-induced cell killing in human NSCLC cells. Mechanistically, we found that the senescence-promoting effect of miR-34a is associated with a dramatic down-regulation of c-Myc (Myc) expression, suggesting that miR-34a may promote IR-induced senescence via targeting Myc. In agreement with this suggestion, knockdown of Myc expression by RNAi recapitulates the senescence-promoting effect of miR-34a and enhances IR-induced cell killing in NSCLC cells. Collectively, these results demonstrate a previously unrecognized role for miR-34a in modulating IR-induced senescence in human NSCLC cells and suggest that pharmacological intervention of miR-34a expression may represent a new therapeutic strategy for improving the efficacy of lung cancer radiotherapy.
Collapse
Affiliation(s)
- Xiaoyuan He
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Aimin Yang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Daniel G McDonald
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Ellen C Riemer
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Kenneth N Vanek
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Bradley A Schulte
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA
| | - Gavin Y Wang
- Department of Pathology and Laboratory Medicine, Medical University of South Carolina, Charleston, SC 29425, USA.,Cancer Genes and Molecular Regulation Program of Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, USA
| |
Collapse
|
48
|
Liang HW, Ye ZH, Yin SY, Mo WJ, Wang HL, Zhao JC, Liang GM, Feng ZB, Chen G, Luo DZ. A comprehensive insight into the clinicopathologic significance of miR-144-3p in hepatocellular carcinoma. Onco Targets Ther 2017; 10:3405-3419. [PMID: 28744145 PMCID: PMC5513884 DOI: 10.2147/ott.s138143] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Studies which focused on the character of miR-144-3p in hepatocellular carcinoma (HCC) are limited. This study aimed to explore the expression, clinical significance and the potential targets of miR-144-3p in HCC. METHODS The Cancer Genome Atlas (TCGA) and a cohort of 95 cases of HCC were applied to investigate aberrant miR-144-3p expression in HCC. A meta-analysis was performed to accumulate data on miR-144-3p expression in HCC based on TCGA, quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and Gene Expression Omnibus (GEO). Additionally, the potential regulatory mechanisms of miR-144-3p in HCC were explored by bioinformatics. RESULTS MiR-144-3p expression was downregulated distinctly in HCC compared to para-HCC tissue both in TCGA data (8.9139±1.5986 vs 10.7721±0.9156, P<0.001) and in our qRT-PCR validation (1.3208±0.7594 vs 2.6200±0.9263, P<0.001). The meta-analysis based on TCGA, qRT-PCR and GEO data confirmed a consistent result (standard mean difference =-0.854, 95% CI: -1.224 to -0.484, P<0.001). The receiver operating characteristic curve of miR-144-3p gained a significant diagnostic value both in TCGA data (area under the curve [AUC] =0.852, 95% CI: 0.810 to 0.894, P<0.001) and in qRT-PCR validation (AUC =0.867, 95% CI: 0.817 to 0.916, P<0.001), especially in alpha-fetoprotein-negative HCC patients (AUC =0.900, 95% CI: 0.839 to 0.960, P<0.001). Furthermore, we identified 119 potential targets of miR-144-3p in HCC by bioinformatics. Gene ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that several significant biologic functions and pathways correlated with the pathogenesis of HCC, including the p53 signaling pathway. CONCLUSION MiR-144-3p may function as a cancer suppressor microRNA, which is essential for HCC progression through the regulation of various signaling pathways. Thus, interactions with miR-144-3p may provide a novel treatment strategy for HCC in the future.
Collapse
Affiliation(s)
- Hai-Wei Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Hua Ye
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Shu-Ya Yin
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Han-Lin Wang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Jin-Che Zhao
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Guo-Mei Liang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Zhen-Bo Feng
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| | - Dian-Zhong Luo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
49
|
3'UTR polymorphisms of carbonic anhydrase IX determine the miR-34a targeting efficiency and prognosis of hepatocellular carcinoma. Sci Rep 2017; 7:4466. [PMID: 28667334 PMCID: PMC5493636 DOI: 10.1038/s41598-017-04732-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 05/19/2017] [Indexed: 12/26/2022] Open
Abstract
Carbonic anhydrase IX (CA9) expression level has been considered as a poor prognostic factor in hepatocellular carcinoma (HCC) patients. However, the judging criteria of CA9 level is hard to define for potential clinical applications. Unlike CA9 expression level, CA9 polymorphism is poorly documented in HCC. Here, we found that people carry A allele at CA9 rs1048638, a 3′UTR SNP, has higher risk of HCC. rs1048638-CA correlates with advanced stages, larger tumor sizes, more vascular invasion, and shorter survival of HCC patients. A allele at CA9 rs1048638 impairs miR-34a, a tumor suppressor miRNA in HCC, binding to CA9 3′UTR and desensitizes CA9 mRNA to miR-34a-dependent RNA degradation. CA9 expression levels were also correlated with miR-34a levels and rs1048638 genotypes in HCC patients. rs1048638 influences HCC risk and progression through effects on miR-34a-targeted CA9 expression in HCC. In conclusion, genetic variations of the CA9 3′UTR play important roles in regulating CA9 expression and cancer progression, which is a novel determinant and target for HCC metastasis and prognosis.
Collapse
|
50
|
Chen AH, Qin YE, Tang WF, Tao J, Song HM, Zuo M. MiR-34a and miR-206 act as novel prognostic and therapy biomarkers in cervical cancer. Cancer Cell Int 2017; 17:63. [PMID: 28615991 PMCID: PMC5466768 DOI: 10.1186/s12935-017-0431-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2017] [Accepted: 05/29/2017] [Indexed: 12/13/2022] Open
Abstract
Background Recent evidence indicated that the aberrant expression of microRNA plays a crucial role in the development of cervical cancer. The overall shorter survival was strongly related to the abnormal expression of microRNA-34a (miR-34a) and microRNA-206 (miR-206), which target B cell lymphoma-2(Bcl2) and c-Met. Hepatocyte growth factor (HGF)/c-Met pathway is related to the occurrence, development and prognosis of cervical cancer, and c-Met is significantly overexpressed in cervical squamous cell carcinoma. Bcl2 is also considered to be a promising target for developing novel anticancer treatments. Methods In this study, we detect the expression of miR-34a and miR-206 in the cervical cancer tissue through quantificational real-time polymerase chain reaction (qRT-PCR) assay, and the expression of Bcl2 and c-Met from cervical cancer tissue were detected by immunohistochemistry. Results The expression of miR-34a and miR-206 were down-regulated in the cervical cancer tissue through qRT-PCR assay. As target genes of miR-34a and miR-206, Bcl2 and c-Met were up-regulated in cervical cancer tissues through qRT-PCR assay and immunohistochemistry. Kaplan–Meier and log-rank analysis revealed that down-regulated expression of miR-34a and miR-206 were strongly related to shorter overall survival. Multivariate Cox proportional hazards model for all variables that were statistically significant in the univariate analysis demonstrated that miR-34a (P = 0.038) and miR-206 (P = 0.008) might be independent prognostic factors for overall survival of patients suffering from cervical cancer. Conclusions The up-regulation of Bcl2 and c-Met promotes the cervical cancer’s progress, and the expression of miR-34a and miR-206 significantly correlated with the progression and prognosis in cervical cancer. All of these suggested that miR-34a and miR-206 might be the novel prognostic and therapy tools in cervical cancer. Electronic supplementary material The online version of this article (doi:10.1186/s12935-017-0431-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ai-Hua Chen
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Yu-E Qin
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Wen-Fan Tang
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Jing Tao
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Hua-Mei Song
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| | - Manzhen Zuo
- Department of Gynecology and Obstetrics, The People's Hospital of China, China Three Gorges University, The First People's Hospital of Yichang, Yichang, Hubei 443000 China
| |
Collapse
|