1
|
Rawson AM, Dempster AW, Humphreys CM, Minton NP. Pathogenicity and virulence of Clostridium botulinum. Virulence 2023; 14:2205251. [PMID: 37157163 PMCID: PMC10171130 DOI: 10.1080/21505594.2023.2205251] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/10/2023] Open
Abstract
Clostridium botulinum, a polyphyletic Gram-positive taxon of bacteria, is classified purely by their ability to produce botulinum neurotoxin (BoNT). BoNT is the primary virulence factor and the causative agent of botulism. A potentially fatal disease, botulism is classically characterized by a symmetrical descending flaccid paralysis, which is left untreated can lead to respiratory failure and death. Botulism cases are classified into three main forms dependent on the nature of intoxication; foodborne, wound and infant. The BoNT, regarded as the most potent biological substance known, is a zinc metalloprotease that specifically cleaves SNARE proteins at neuromuscular junctions, preventing exocytosis of neurotransmitters, leading to muscle paralysis. The BoNT is now used to treat numerous medical conditions caused by overactive or spastic muscles and is extensively used in the cosmetic industry due to its high specificity and the exceedingly small doses needed to exert long-lasting pharmacological effects. Additionally, the ability to form endospores is critical to the pathogenicity of the bacteria. Disease transmission is often facilitated via the metabolically dormant spores that are highly resistant to environment stresses, allowing persistence in the environment in unfavourable conditions. Infant and wound botulism infections are initiated upon germination of the spores into neurotoxin producing vegetative cells, whereas foodborne botulism is attributed to ingestion of preformed BoNT. C. botulinum is a saprophytic bacterium, thought to have evolved its potent neurotoxin to establish a source of nutrients by killing its host.
Collapse
Affiliation(s)
- Alexander M Rawson
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Andrew W Dempster
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | - Christopher M Humphreys
- Clostridia Research Group, BBSRC/EPSRC Synthetic Biology Research Centre (SBRC), School of Life Sciences, The Biodiscovery Institute, The University of Nottingham, Nottingham, UK
| | | |
Collapse
|
2
|
Panditrao MV, Chung CH, Khouri JM, Barash JR, Motter RN, Dover N, Arnon SS. Dual-Toxin ("Bivalent") Infant Botulism in California, 1976-2020: Epidemiologic, Clinical, and Laboratory Aspects. J Pediatr 2023; 253:8-13. [PMID: 35977619 DOI: 10.1016/j.jpeds.2022.08.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/05/2022] [Accepted: 08/11/2022] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To assess the consequences of infant botulism that result from Clostridium botulinum strains that produce 2 botulinum toxin serotypes, termed "bivalent." STUDY DESIGN Epidemiologic investigations used a standard questionnaire. Clostridium botulinum strains were isolated by standard methods. Botulinum neurotoxin (BoNT) serotypes and the relative amounts of toxins produced were identified using the standard mouse bioassay. BoNT subtypes and genomic locations were identified by DNA nucleotide sequencing. RESULTS Thirty bivalent cases of infant botulism occurred in the 45 years (1976-2020), representing 2.0% of all California infant botulism cases, in the 3 geographic regions of southern California, the southern Central Valley, and mid-northern California. Toxin serotype combinations were Ba (n = 22), Bf (n = 7), and Ab (n = 1). More patients with illness caused by bivalent C botulinum Ba and Bf strains needed endotracheal intubation at hospital admission, 60.0% (18/30), than did patients with illness caused by monovalent BoNT/B strains, 34.3% (152/443). The Cbotulinum Ba and Bf strains produced BoNT/B5 and either BoNT/A4 or /F2. The Ab strain produced BoNT/A2 and /B1. All toxin gene clusters were on plasmids. CONCLUSIONS Infant botulism caused by bivalent Cbotulinum strains occurs sporadically and in diverse locations in California. Affected patients with bivalent Ba and Bf strains lacked distinguishing epidemiological features but appeared to be more severely paralyzed at hospital presentation than patients with illness caused by only BoNT/B. These bivalent strains produced BoNT subtypes A2, A4, B1, B5, and F2, and all toxin gene clusters were on plasmids.
Collapse
Affiliation(s)
- Mayuri V Panditrao
- Epidemiology, Surveillance, and Modeling Branch, COVID-19 Response California Department of Public Health, Richmond, CA
| | - Connie H Chung
- Infant Botulism Treatment and Prevention Program, Infectious Diseases Laboratory Branch, Center for Infectious Diseases, California Department of Public Health, Richmond, CA
| | - Jessica M Khouri
- Infant Botulism Treatment and Prevention Program, Infectious Diseases Laboratory Branch, Center for Infectious Diseases, California Department of Public Health, Richmond, CA.
| | - Jason R Barash
- Infant Botulism Treatment and Prevention Program, Infectious Diseases Laboratory Branch, Center for Infectious Diseases, California Department of Public Health, Richmond, CA
| | - Ruth N Motter
- Infant Botulism Treatment and Prevention Program, Infectious Diseases Laboratory Branch, Center for Infectious Diseases, California Department of Public Health, Richmond, CA
| | - Nir Dover
- Infant Botulism Treatment and Prevention Program, Infectious Diseases Laboratory Branch, Center for Infectious Diseases, California Department of Public Health, Richmond, CA
| | - Stephen S Arnon
- Infant Botulism Treatment and Prevention Program, Infectious Diseases Laboratory Branch, Center for Infectious Diseases, California Department of Public Health, Richmond, CA
| |
Collapse
|
3
|
Wentz TG, Tremblay BJM, Bradshaw M, Doxey AC, Sharma SK, Sauer JD, Pellett S. Endogenous CRISPR-Cas Systems in Group I Clostridium botulinum and Clostridium sporogenes Do Not Directly Target the Botulinum Neurotoxin Gene Cluster. Front Microbiol 2022; 12:787726. [PMID: 35222299 PMCID: PMC8865420 DOI: 10.3389/fmicb.2021.787726] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 12/27/2021] [Indexed: 12/28/2022] Open
Abstract
Most strains of proteolytic group I Clostridium botulinum (G1 C. botulinum) and some strains of Clostridium sporogenes possess genes encoding botulinum neurotoxin (BoNT), a potent neuroparalytic agent. Within G1 C. botulinum, conserved bont gene clusters of three major toxin serotypes (bont/A/B/F) can be found on conjugative plasmids and/or within chromosomal pathogenicity islands. CRISPR-Cas systems enable site-specific targeting of previously encountered mobile genetic elements (MGE) such as plasmids and bacteriophage through the creation of a spacer library complementary to protospacers within the MGEs. To examine whether endogenous CRISPR-Cas systems restrict the transfer of bont gene clusters across strains we conducted a bioinformatic analysis profiling endogenous CRISPR-Cas systems from 241 G1 C. botulinum and C. sporogenes strains. Approximately 6,200 CRISPR spacers were identified across the strains and Type I-B, III-A/B/D cas genes and CRISPR array features were identified in 83% of the strains. Mapping the predicted spacers against the masked strain and RefSeq plasmid dataset identified 56,000 spacer-protospacer matches. While spacers mapped heavily to targets within bont(+) plasmids, no protospacers were identified within the bont gene clusters. These results indicate the toxin is not a direct target of CRISPR-Cas but the plasmids predominantly responsible for its mobilization are. Finally, while the presence of a CRISPR-Cas system did not reliably indicate the presence or absence of a bont gene cluster, comparative genomics across strains indicates they often occupy the same hypervariable loci common to both species, potentially suggesting similar mechanisms are involved in the acquisition and curation of both genomic features.
Collapse
Affiliation(s)
- Travis G. Wentz
- Microbiology Doctoral Training Program, University of Wisconsin–Madison, Madison, WI, United States,Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States,Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | | | - Marite Bradshaw
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States
| | - Andrew C. Doxey
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Shashi K. Sharma
- Division of Microbiology, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, United States
| | - John-Demian Sauer
- Department of Medical Microbiology and Immunology, University of Wisconsin–Madison, Madison, WI, United States
| | - Sabine Pellett
- Department of Bacteriology, University of Wisconsin–Madison, Madison, WI, United States,*Correspondence: Sabine Pellett,
| |
Collapse
|
4
|
Dilena R, Pozzato M, Baselli L, Chidini G, Barbieri S, Scalfaro C, Finazzi G, Lonati D, Locatelli CA, Cappellari A, Anniballi F. Infant Botulism: Checklist for Timely Clinical Diagnosis and New Possible Risk Factors Originated from a Case Report and Literature Review. Toxins (Basel) 2021; 13:toxins13120860. [PMID: 34941698 PMCID: PMC8703831 DOI: 10.3390/toxins13120860] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/24/2022] Open
Abstract
Infant botulism is a rare and underdiagnosed disease caused by BoNT-producing clostridia that can temporarily colonize the intestinal lumen of infants less than one year of age. The diagnosis may be challenging because of its rareness, especially in patients showing atypical presentations or concomitant coinfections. In this paper, we report the first infant botulism case associated with Cytomegalovirus coinfection and transient hypogammaglobulinemia and discuss the meaning of these associations in terms of risk factors. Intending to help physicians perform the diagnosis, we also propose a practical clinical and diagnostic criteria checklist based on the revision of the literature.
Collapse
Affiliation(s)
- Robertino Dilena
- Unità di Neurofiopatologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.B.); (A.C.)
- Correspondence:
| | - Mattia Pozzato
- Neurology Unit & MS Centre, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
- Dino Ferrari Centre, Neuroscience Section, Department of Pathophysiology and Transplantation, University of Milan, 20122 Milan, Italy
| | - Lucia Baselli
- Pediatric Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Giovanna Chidini
- Pediatric Intensive Care Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy;
| | - Sergio Barbieri
- Unità di Neurofiopatologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.B.); (A.C.)
| | - Concetta Scalfaro
- National Reference Centre for Botulism, Nutrition and Veterinary Public Health, Department of Food Safety, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.S.); (F.A.)
| | - Guido Finazzi
- Department of Food Control, Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia-Romagna, 25124 Brescia, Italy;
| | - Davide Lonati
- Toxicology Unit, Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (D.L.); (C.A.L.)
| | - Carlo Alessandro Locatelli
- Toxicology Unit, Laboratory of Clinical and Experimental Toxicology, and Poison Control Centre and National Toxicology Information Centre, Istituti Clinici Scientifici Maugeri IRCCS, 27100 Pavia, Italy; (D.L.); (C.A.L.)
| | - Alberto Cappellari
- Unità di Neurofiopatologia, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy; (S.B.); (A.C.)
| | - Fabrizio Anniballi
- National Reference Centre for Botulism, Nutrition and Veterinary Public Health, Department of Food Safety, Istituto Superiore di Sanità, 00161 Rome, Italy; (C.S.); (F.A.)
| |
Collapse
|
5
|
Smith TJ, Tian R, Imanian B, Williamson CHD, Johnson SL, Daligault HE, Schill KM. Integration of Complete Plasmids Containing Bont Genes into Chromosomes of Clostridium parabotulinum, Clostridium sporogenes, and Clostridium argentinense. Toxins (Basel) 2021; 13:473. [PMID: 34357945 PMCID: PMC8310154 DOI: 10.3390/toxins13070473] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/30/2021] [Accepted: 07/05/2021] [Indexed: 11/16/2022] Open
Abstract
At least 40 toxin subtypes of botulinum neurotoxins (BoNTs), a heterogenous group of bacterial proteins, are produced by seven different clostridial species. A key factor that drives the diversity of neurotoxigenic clostridia is the association of bont gene clusters with various genomic locations including plasmids, phages and the chromosome. Analysis of Clostridium sporogenes BoNT/B1 strain CDC 1632, C. argentinense BoNT/G strain CDC 2741, and Clostridium parabotulinum BoNT/B1 strain DFPST0006 genomes revealed bont gene clusters within plasmid-like sequences within the chromosome or nested in large contigs, with no evidence of extrachromosomal elements. A nucleotide sequence (255,474 bp) identified in CDC 1632 shared 99.5% identity (88% coverage) with bont/B1-containing plasmid pNPD7 of C. sporogenes CDC 67071; CDC 2741 contig AYSO01000020 (1.1 MB) contained a ~140 kb region which shared 99.99% identity (100% coverage) with plasmid pRSJ17_1 of C. argentinense BoNT/G strain 89G; and DFPST0006 contig JACBDK0100002 (573 kb) contained a region that shared 100% identity (99%) coverage with the bont/B1-containing plasmid pCLD of C. parabotulinum Okra. This is the first report of full-length plasmid DNA-carrying complete neurotoxin gene clusters integrated in three distinct neurotoxigenic species: C. parabotulinum, C. sporogenes and C. argentinense.
Collapse
Affiliation(s)
- Theresa J. Smith
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (T.J.S.); (C.H.D.W.)
| | - Renmao Tian
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL 60501, USA; (R.T.); (B.I.)
| | - Behzad Imanian
- Institute for Food Safety and Health, Illinois Institute of Technology, Bedford Park, IL 60501, USA; (R.T.); (B.I.)
- Food Science and Nutrition, Illinois Institute of Technology, Chicago, IL 60616, USA
| | - Charles H. D. Williamson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ 86011, USA; (T.J.S.); (C.H.D.W.)
| | - Shannon L. Johnson
- Los Alamos National Laboratory, Los Alamos, NM 87545, USA; (S.L.J.); (H.E.D.)
| | | | - Kristin M. Schill
- Center for Food Safety and Applied Nutrition, Food and Drug Administration, Bedford Park, IL 60501, USA
| |
Collapse
|
6
|
Smith TJ, Williamson CHD, Hill KK, Johnson SL, Xie G, Anniballi F, Auricchio B, Fernández RA, Caballero PA, Keim P, Sahl JW. The Distinctive Evolution of orfX Clostridium parabotulinum Strains and Their Botulinum Neurotoxin Type A and F Gene Clusters Is Influenced by Environmental Factors and Gene Interactions via Mobile Genetic Elements. Front Microbiol 2021; 12:566908. [PMID: 33716993 PMCID: PMC7952441 DOI: 10.3389/fmicb.2021.566908] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 02/08/2021] [Indexed: 12/30/2022] Open
Abstract
Of the seven currently known botulinum neurotoxin-producing species of Clostridium, C. parabotulinum, or C. botulinum Group I, is the species associated with the majority of human botulism cases worldwide. Phylogenetic analysis of these bacteria reveals a diverse species with multiple genomic clades. The neurotoxins they produce are also diverse, with over 20 subtypes currently represented. The existence of different bont genes within very similar genomes and of the same bont genes/gene clusters within different bacterial variants/species indicates that they have evolved independently. The neurotoxin genes are associated with one of two toxin gene cluster types containing either hemagglutinin (ha) genes or orfX genes. These genes may be located within the chromosome or extrachromosomal elements such as large plasmids. Although BoNT-producing C parabotulinum bacteria are distributed globally, they are more ubiquitous in certain specific geographic regions. Notably, northern hemisphere strains primarily contain ha gene clusters while southern hemisphere strains have a preponderance of orfX gene clusters. OrfX C. parabotulinum strains constitute a subset of this species that contain highly conserved bont gene clusters having a diverse range of bont genes. While much has been written about strains with ha gene clusters, less attention has been devoted to those with orfX gene clusters. The recent sequencing of 28 orfX C. parabotulinum strains and the availability of an additional 91 strains for analysis provides an opportunity to compare genomic relationships and identify unique toxin gene cluster characteristics and locations within this species subset in depth. The mechanisms behind the independent processes of bacteria evolution and generation of toxin diversity are explored through the examination of bacterial relationships relating to source locations and evidence of horizontal transfer of genetic material among different bacterial variants, particularly concerning bont gene clusters. Analysis of the content and locations of the bont gene clusters offers insights into common mechanisms of genetic transfer, chromosomal integration, and development of diversity among these genes.
Collapse
Affiliation(s)
- Theresa J Smith
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Charles H D Williamson
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Karen K Hill
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | | | - Gary Xie
- Los Alamos National Laboratory, Los Alamos, NM, United States
| | - Fabrizio Anniballi
- Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Istituto Superiore di Sanità, Rome, Italy
| | - Bruna Auricchio
- Department of Food Safety, Nutrition and Veterinary Public Health, National Reference Centre for Botulism, Istituto Superiore di Sanità, Rome, Italy
| | - Rafael A Fernández
- Área Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Patricia A Caballero
- Área Microbiología, Departamento de Patología, Universidad Nacional de Cuyo, Mendoza, Argentina
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University, Flagstaff, AZ, United States
| |
Collapse
|
7
|
Smith TJ, Xie G, Williamson CHD, Hill KK, Fernández RA, Sahl JW, Keim P, Johnson SL. Genomic Characterization of Newly Completed Genomes of Botulinum Neurotoxin-Producing Species from Argentina, Australia, and Africa. Genome Biol Evol 2021; 12:229-242. [PMID: 32108238 DOI: 10.1093/gbe/evaa043] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2020] [Indexed: 11/14/2022] Open
Abstract
Botulinum neurotoxin-producing clostridia are diverse in the types of toxins they produce as well as in their overall genomic composition. They are globally distributed, with prevalent species and toxin types found within distinct geographic regions, but related strains containing the same toxin types may also be located on distinct continents. The mechanisms behind the spread of these bacteria and the independent movements of their bont genes may be understood through examination of their genetic backgrounds. The generation of 15 complete genomic sequences from bacteria isolated in Argentina, Australia, and Africa allows for a thorough examination of genome features, including overall relationships, bont gene cluster locations and arrangements, and plasmid comparisons, in bacteria isolated from various areas in the southern hemisphere. Insights gained from these examinations provide an understanding of the mechanisms behind the independent movements of these elements among distinct species.
Collapse
Affiliation(s)
- Theresa J Smith
- Pathogen and Microbiome Institute, Northern Arizona University
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory
| | | | - Karen K Hill
- Bioscience Division, Los Alamos National Laboratory
| | | | - Jason W Sahl
- Pathogen and Microbiome Institute, Northern Arizona University
| | - Paul Keim
- Pathogen and Microbiome Institute, Northern Arizona University
| | | |
Collapse
|
8
|
Revitt-Mills SA, Vidor CJ, Watts TD, Lyras D, Rood JI, Adams V. Virulence Plasmids of the Pathogenic Clostridia. Microbiol Spectr 2019; 7:10.1128/microbiolspec.gpp3-0034-2018. [PMID: 31111816 PMCID: PMC11257192 DOI: 10.1128/microbiolspec.gpp3-0034-2018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Indexed: 12/12/2022] Open
Abstract
The clostridia cause a spectrum of diseases in humans and animals ranging from life-threatening tetanus and botulism, uterine infections, histotoxic infections and enteric diseases, including antibiotic-associated diarrhea, and food poisoning. The symptoms of all these diseases are the result of potent protein toxins produced by these organisms. These toxins are diverse, ranging from a multitude of pore-forming toxins to phospholipases, metalloproteases, ADP-ribosyltransferases and large glycosyltransferases. The location of the toxin genes is the unifying theme of this review because with one or two exceptions they are all located on plasmids or on bacteriophage that replicate using a plasmid-like intermediate. Some of these plasmids are distantly related whilst others share little or no similarity. Many of these toxin plasmids have been shown to be conjugative. The mobile nature of these toxin genes gives a ready explanation of how clostridial toxin genes have been so widely disseminated both within the clostridial genera as well as in the wider bacterial community.
Collapse
Affiliation(s)
- Sarah A Revitt-Mills
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Callum J Vidor
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Thomas D Watts
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Dena Lyras
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Julian I Rood
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| | - Vicki Adams
- Infection and Immunity Program, Biomedicine Discovery Institute and Department of Microbiology, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
9
|
Davies JR, Liu SM, Acharya KR. Variations in the Botulinum Neurotoxin Binding Domain and the Potential for Novel Therapeutics. Toxins (Basel) 2018; 10:toxins10100421. [PMID: 30347838 PMCID: PMC6215321 DOI: 10.3390/toxins10100421] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 10/11/2018] [Accepted: 10/18/2018] [Indexed: 01/23/2023] Open
Abstract
Botulinum neurotoxins (BoNTs) are categorised into immunologically distinct serotypes BoNT/A to /G). Each serotype can also be further divided into subtypes based on differences in amino acid sequence. BoNTs are ~150 kDa proteins comprised of three major functional domains: an N-terminal zinc metalloprotease light chain (LC), a translocation domain (HN), and a binding domain (HC). The HC is responsible for targeting the BoNT to the neuronal cell membrane, and each serotype has evolved to bind via different mechanisms to different target receptors. Most structural characterisations to date have focussed on the first identified subtype within each serotype (e.g., BoNT/A1). Subtype differences within BoNT serotypes can affect intoxication, displaying different botulism symptoms in vivo, and less emphasis has been placed on investigating these variants. This review outlines the receptors for each BoNT serotype and describes the basis for the highly specific targeting of neuronal cell membranes. Understanding receptor binding is of vital importance, not only for the generation of novel therapeutics but also for understanding how best to protect from intoxication.
Collapse
Affiliation(s)
- Jonathan R Davies
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| | - Sai Man Liu
- Ipsen Bioinnovation Limited, Abingdon OX14 4RY, UK.
| | - K Ravi Acharya
- Department of Biology and Biochemistry, University of Bath, Bath BA2 7AY, UK.
| |
Collapse
|
10
|
Hackett G, Moore K, Burgin D, Hornby F, Gray B, Elliott M, Mir I, Beard M. Purification and Characterization of Recombinant Botulinum Neurotoxin Serotype FA, Also Known as Serotype H. Toxins (Basel) 2018; 10:E195. [PMID: 29751611 PMCID: PMC5983251 DOI: 10.3390/toxins10050195] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 05/04/2018] [Accepted: 05/08/2018] [Indexed: 11/17/2022] Open
Abstract
We have purified and characterized recombinant botulinum neurotoxin serotype FA (BoNT/FA). This protein has also been named as a new serotype (serotype H), but the classification has been controversial. A lack of well-characterized, highly pure material has been a roadblock to study. Here we report purification and characterization of enzymatically active, and of inactive nontoxic, recombinant forms of BoNT/FA as tractable alternatives to purifying this neurotoxin from native Clostridium botulinum. BoNT/FA cleaves the same intracellular target proteins as BoNT/F1 and other F serotype BoNTs; the intracellular targets are vesicle associated membrane proteins (VAMP) 1, 2 and 3. BoNT/FA cleaves the same site in VAMP-2 as BoNT/F5, which is different from the cleavage site of other F serotype BoNTs. BoNT/FA has slower enzyme kinetics than BoNT/F1 in a cell-free protease assay and is less potent at inhibiting ex vivo nerve-stimulated skeletal muscle contraction. In contrast, BoNT/FA is more potent at inhibiting neurotransmitter release from cultured neurons.
Collapse
Affiliation(s)
- Gavin Hackett
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Kevin Moore
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - David Burgin
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Fraser Hornby
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Bryony Gray
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Mark Elliott
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Imran Mir
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| | - Matthew Beard
- Ipsen Bioinnovation Ltd., 102 Park Drive, Milton Park, Abingdon OX14 4RY, UK.
| |
Collapse
|
11
|
Identification and characterization of a novel botulinum neurotoxin. Nat Commun 2017; 8:14130. [PMID: 28770820 PMCID: PMC5543303 DOI: 10.1038/ncomms14130] [Citation(s) in RCA: 164] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Accepted: 12/02/2016] [Indexed: 12/19/2022] Open
Abstract
Botulinum neurotoxins are known to have seven serotypes (BoNT/A-G). Here we report a new BoNT serotype, tentatively named BoNT/X, which has the lowest sequence identity with other BoNTs and is not recognized by antisera against known BoNTs. Similar to BoNT/B/D/F/G, BoNT/X cleaves vesicle-associated membrane proteins (VAMP) 1, 2 and 3, but at a novel site (Arg66-Ala67 in VAMP2). Remarkably, BoNT/X is the only toxin that also cleaves non-canonical substrates VAMP4, VAMP5 and Ykt6. To validate its activity, a small amount of full-length BoNT/X was assembled by linking two non-toxic fragments using a transpeptidase (sortase). Assembled BoNT/X cleaves VAMP2 and VAMP4 in cultured neurons and causes flaccid paralysis in mice. Thus, BoNT/X is a novel BoNT with a unique substrate profile. Its discovery posts a challenge to develop effective countermeasures, provides a novel tool for studying intracellular membrane trafficking, and presents a new potential therapeutic toxin for modulating secretions in cells.
Collapse
|
12
|
Williamson CHD, Sahl JW, Smith TJ, Xie G, Foley BT, Smith LA, Fernández RA, Lindström M, Korkeala H, Keim P, Foster J, Hill K. Comparative genomic analyses reveal broad diversity in botulinum-toxin-producing Clostridia. BMC Genomics 2016; 17:180. [PMID: 26939550 PMCID: PMC4778365 DOI: 10.1186/s12864-016-2502-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2015] [Accepted: 02/18/2016] [Indexed: 11/24/2022] Open
Abstract
Background Clostridium botulinum is a diverse group of bacteria characterized by the production of botulinum neurotoxin. Botulinum neurotoxins are classified into serotypes (BoNT/A–G), which are produced by six species/Groups of Clostridia, but the genetic background of the bacteria remains poorly understood. The purpose of this study was to use comparative genomics to provide insights into the genetic diversity and evolutionary history of bacteria that produce the potent botulinum neurotoxin. Results Comparative genomic analyses of over 170 Clostridia genomes, including our draft genome assemblies for 59 newly sequenced Clostridia strains from six continents and publicly available genomic data, provided in-depth insights into the diversity and distribution of BoNT-producing bacteria. These newly sequenced strains included Group I and II strains that express BoNT/A,/B,/E, or/F as well as bivalent strains. BoNT-producing Clostridia and closely related Clostridia species were delineated with a variety of methods including 16S rRNA gene, concatenated marker genes, core genome and concatenated multi-locus sequencing typing (MLST) gene phylogenies that related whole genome sequenced strains to publicly available strains and sequence types. These analyses illustrated the phylogenetic diversity in each Group and the diversity of genomic backgrounds that express the same toxin type or subtype. Comparisons of the botulinum neurotoxin genes did not identify novel toxin types or variants. Conclusions This study represents one of the most comprehensive analyses of whole genome sequence data for Group I and II BoNT-producing strains. Read data and draft genome assemblies generated for 59 isolates will be a resource to the research community. Core genome phylogenies proved to be a powerful tool for differentiating BoNT-producing strains and can provide a framework for the study of these bacteria. Comparative genomic analyses of Clostridia species illustrate the diversity of botulinum-neurotoxin-producing strains and the plasticity of the genomic backgrounds in which bont genes are found. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2502-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Charles H D Williamson
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Jason W Sahl
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Theresa J Smith
- Molecular and Translational Sciences Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Gary Xie
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Brian T Foley
- Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| | - Leonard A Smith
- Medical Countermeasures Technology, United States Army Medical Research and Material Command, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD, 21702, USA.
| | - Rafael A Fernández
- Área Microbiología, Departamento de Patología, Facultad de Ciencias Médicas, Universidad Nacional de Cuyo, Centro Universitario, (5500), Mendoza, Argentina.
| | - Miia Lindström
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland.
| | - Hannu Korkeala
- Department of Food Hygiene and Environmental Health, University of Helsinki, Helsinki, Finland.
| | - Paul Keim
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA.
| | - Jeffrey Foster
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, AZ, 86011, USA. .,Present Address: Department of Molecular, Cellular and Biomedical Sciences, University of New Hampshire, Durham, NH, 03824, USA.
| | - Karen Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
| |
Collapse
|
13
|
Carter AT, Austin JW, Weedmark KA, Peck MW. Evolution of Chromosomal Clostridium botulinum Type E Neurotoxin Gene Clusters: Evidence Provided by Their Rare Plasmid-Borne Counterparts. Genome Biol Evol 2016; 8:540-55. [PMID: 26936890 PMCID: PMC4824171 DOI: 10.1093/gbe/evw017] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Analysis of more than 150 Clostridium botulinum Group II type E genomes identified a small fraction (6%) where neurotoxin-encoding genes were located on plasmids. Seven closely related (134–144 kb) neurotoxigenic plasmids of subtypes E1, E3, and E10 were characterized; all carried genes associated with plasmid mobility via conjugation. Each plasmid contained the same 24-kb neurotoxin cluster cassette (six neurotoxin cluster and six flanking genes) that had split a helicase gene, rather than the more common chromosomal rarA. The neurotoxin cluster cassettes had evolved as separate genetic units which had either exited their chromosomal rarA locus in a series of parallel events, inserting into the plasmid-borne helicase gene, or vice versa. A single intact version of the helicase gene was discovered on a nonneurotoxigenic form of this plasmid. The observed low frequency for the plasmid location may reflect one or more of the following: 1) Less efficient recombination mechanism for the helicase gene target, 2) lack of suitable target plasmids, and 3) loss of neurotoxigenic plasmids. Type E1 and E10 plasmids possessed a Clustered Regularly Interspaced Short Palindromic Repeats locus with spacers that recognized C. botulinum Group II plasmids, but not C. botulinum Group I plasmids, demonstrating their long-term separation. Clostridium botulinum Group II type E strains also carry nonneurotoxigenic plasmids closely related to C. botulinum Group II types B and F plasmids. Here, the absence of neurotoxin cassettes may be because recombination requires both a specific mechanism and specific target sequence, which are rarely found together.
Collapse
Affiliation(s)
- Andrew T Carter
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - John W Austin
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, ON, Canada
| | - Kelly A Weedmark
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
| | - Michael W Peck
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
14
|
Purification and Characterization of Botulinum Neurotoxin FA from a Genetically Modified Clostridium botulinum Strain. mSphere 2016; 1:mSphere00100-15. [PMID: 27303710 PMCID: PMC4863619 DOI: 10.1128/msphere.00100-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/01/2016] [Indexed: 12/29/2022] Open
Abstract
Botulinum neurotoxins (BoNTs), produced by neurotoxigenic clostridial species, are the cause of the severe disease botulism in humans and animals. Early research on BoNTs has led to their classification into seven serotypes (serotypes A to G) based upon the selective neutralization of their toxicity in mice by homologous antibodies. Recently, a report of a potential eighth serotype of BoNT, designated "type H," has been controversial. This novel BoNT was produced together with BoNT/B2 in a dual-toxin-producing Clostridium botulinum strain. The data used to designate this novel toxin as a new serotype were derived from culture supernatant containing both BoNT/B2 and novel toxin and from sequence information, although data from two independent laboratories indicated neutralization by antibodies raised against BoNT/A1, and classification as BoNT/FA was proposed. The sequence data indicate a chimeric structure consisting of a BoNT/A1 receptor binding domain, a BoNT/F5 light-chain domain, and a novel translocation domain most closely related to BoNT/F1. Here, we describe characterization of this toxin purified from the native strain in which expression of the second BoNT (BoNT/B) has been eliminated. Mass spectrometry analysis indicated that the toxin preparation contained only BoNT/FA and confirmed catalytic activity analogous to that of BoNT/F5. The in vivo mouse bioassay indicated a specific activity of this toxin of 3.8 × 10(7) mouse 50% lethal dose (mLD50) units/mg, whereas activity in cultured human neurons was very high (50% effective concentration [EC50] = 0.02 mLD50/well). Neutralization assays in cells and mice both indicated full neutralization by various antibodies raised against BoNT/A1, although at 16- to 20-fold-lower efficiency than for BoNT/A1. IMPORTANCE Botulinum neurotoxins (BoNTs), produced by anaerobic bacteria, are the cause of the potentially deadly, neuroparalytic disease botulism. BoNTs have been classified into seven serotypes, serotypes A to G, based upon their selective neutralization by homologous antiserum, which is relevant for clinical and diagnostic purposes. Even though supportive care dramatically reduces the death rate of botulism, the only pharmaceutical intervention to reduce symptom severity and recovery time is early administration of antitoxin (antiserum raised against BoNTs). A recent report of a novel BoNT serotype, serotype H, raised concern of a "treatment-resistant" and highly potent toxin. However, the toxin's chimeric structure and characteristics indicate a chimeric BoNT/FA. Here we describe the first characterization of this novel toxin in purified form. BoNT/FA was neutralized by available antitoxins, supporting classification as BoNT/FA. BoNT/FA required proteolytic activation to achieve full toxicity and had relatively low potency in mice compared to BoNT/A1 but surprisingly high activity in cultured neurons.
Collapse
|
15
|
Genetic diversity within the botulinum neurotoxin-producing bacteria and their neurotoxins. Toxicon 2015; 107:2-8. [PMID: 26368006 DOI: 10.1016/j.toxicon.2015.09.011] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 12/25/2022]
Abstract
The recent availability of multiple Clostridium botulinum genomic sequences has initiated a new genomics era that strengthens our understanding of the bacterial species that produce botulinum neurotoxins (BoNTs). Analysis of the genomes has reinforced the historical Group I-VI designations and provided evidence that the bont genes can be located within the chromosome, phage or plasmids. The sequences provide the opportunity to examine closely the variation among the toxin genes, the composition and organization of the toxin complex, the regions flanking the toxin complex and the location of the toxin within different bacterial strains. These comparisons provide evidence of horizontal gene transfer and site-specific insertion and recombination events that have contributed to the variation observed among the neurotoxins. Here, examples that have contributed to the variation observed in serotypes A-H strains are presented to illustrate the mechanisms that have contributed to their variation.
Collapse
|
16
|
Rummel A. The long journey of botulinum neurotoxins into the synapse. Toxicon 2015; 107:9-24. [PMID: 26363288 DOI: 10.1016/j.toxicon.2015.09.009] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 08/27/2015] [Accepted: 09/08/2015] [Indexed: 01/09/2023]
Abstract
Botulinum neurotoxins (BoNT) cause the disease botulism, a flaccid paralysis of the muscle. They are also very effective, widely used medicines applied locally in sub-nanogram quantities. BoNTs are released together with several non-toxic, associated proteins as progenitor toxin complexes (PCT) by Clostridium botulinum to become highly potent oral poisons ingested via contaminated food. They block the neurotransmission in susceptible animals and humans already in nanogram quantities due to their specific ability to enter motoneurons and to cleave only selected neuronal proteins involved in neuroexocytosis. BoNTs have developed a sophisticated strategy to passage the gastrointestinal tract and to be absorbed in the intestine of the host to finally attack neurons. A non-toxic non-hemagglutinin (NTNHA) forms a binary complex with BoNT to protect it from gastrointestinal degradation. This binary M-PTC is one component of the bi-modular 14-subunit ∼760 kDa large progenitor toxin complex. The other component is the structurally and functionally independent dodecameric hemagglutinin (HA) complex which facilitates the absorption on the intestinal epithelium by glycan binding. Subsequent to its transcytosis the HA complex disrupts the tight junction of the intestinal barrier from the basolateral side by binding to E-cadherin. Now, the L-PTC can also enter the circulation by paracellular routes in much larger quantities. From here, the dissociated BoNTs reach the neuromuscular junction and accumulate via interaction with polysialo gangliosides, complex glycolipids, on motoneurons at the neuromuscular junction. Subsequently, additional specific binding to luminal segments of synaptic vesicles proteins like SV2 and synaptotagmin leads to their uptake. Finally, the neurotoxins shut down the synaptic vesicle cycle, which they had exploited before to enter their target cells, via specific cleavage of soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) proteins, which constitute the core components of the cellular membrane fusion machinery.
Collapse
Affiliation(s)
- Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, 30623 Hannover, Germany.
| |
Collapse
|
17
|
Smith TJ, Hill KK, Raphael BH. Historical and current perspectives on Clostridium botulinum diversity. Res Microbiol 2015; 166:290-302. [PMID: 25312020 PMCID: PMC11302483 DOI: 10.1016/j.resmic.2014.09.007] [Citation(s) in RCA: 95] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2014] [Revised: 09/24/2014] [Accepted: 09/24/2014] [Indexed: 11/19/2022]
Abstract
For nearly one hundred years, researchers have attempted to categorize botulinum neurotoxin-producing clostridia and the toxins that they produce according to biochemical characterizations, serological comparisons, and genetic analyses. Throughout this period the bacteria and their toxins have defied such attempts at categorization. Below is a description of both historic and current Clostridium botulinum strain and neurotoxin information that illustrates how each new finding has significantly added to the knowledge of the botulinum neurotoxin-containing clostridia and their diversity.
Collapse
Affiliation(s)
- Theresa J Smith
- Molecular and Translational Sciences, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, MD 21702, USA.
| | - Karen K Hill
- Bioscience Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA
| | - Brian H Raphael
- Enteric Diseases Laboratory Branch, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| |
Collapse
|
18
|
Carter AT, Austin JW, Weedmark KA, Corbett C, Peck MW. Three classes of plasmid (47-63 kb) carry the type B neurotoxin gene cluster of group II Clostridium botulinum. Genome Biol Evol 2015; 6:2076-87. [PMID: 25079343 PMCID: PMC4231633 DOI: 10.1093/gbe/evu164] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Pulsed-field gel electrophoresis and DNA sequence analysis of 26 strains of Group II (nonproteolytic) Clostridium botulinum type B4 showed that 23 strains carried their neurotoxin gene cluster on a 47–63 kb plasmid (three strains lacked any hybridization signal for the neurotoxin gene, presumably having lost their plasmid). Unexpectedly, no neurotoxin genes were found on the chromosome. This apparent constraint on neurotoxin gene transfer to the chromosome stands in marked contrast to Group I C. botulinum, in which neurotoxin gene clusters are routinely found in both locations. The three main classes of type B4 plasmid identified in this study shared different regions of homology, but were unrelated to any Group I or Group III plasmid. An important evolutionary aspect firmly links plasmid class to geographical origin, with one class apparently dominant in marine environments, whereas a second class is dominant in European terrestrial environments. A third class of plasmid is a hybrid between the other two other classes, providing evidence for contact between these seemingly geographically separated populations. Mobility via conjugation has been previously demonstrated for the type B4 plasmid of strain Eklund 17B, and similar genes associated with conjugation are present in all type B4 plasmids now described. A plasmid toxin–antitoxin system pemI gene located close to the neurotoxin gene cluster and conserved in each type B4 plasmid class may be important in understanding the mechanism which regulates this unique and unexpected bias toward plasmid-borne neurotoxin genes in Group II C. botulinum type B4.
Collapse
Affiliation(s)
- Andrew T Carter
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - John W Austin
- Bureau of Microbial Hazards, Health Products and Food Branch, Health Canada, Ottawa, Ontario, Canada
| | - Kelly A Weedmark
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Cindi Corbett
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
| | - Michael W Peck
- Gut Health and Food Safety, Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|
19
|
Kull S, Schulz KM, Strotmeier JWN, Kirchner S, Schreiber T, Bollenbach A, Dabrowski PW, Nitsche A, Kalb SR, Dorner MB, Barr JR, Rummel A, Dorner BG. Isolation and functional characterization of the novel Clostridium botulinum neurotoxin A8 subtype. PLoS One 2015; 10:e0116381. [PMID: 25658638 PMCID: PMC4320087 DOI: 10.1371/journal.pone.0116381] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2014] [Accepted: 12/06/2014] [Indexed: 12/31/2022] Open
Abstract
Botulism is a severe neurological disease caused by the complex family of botulinum neurotoxins (BoNT). Based on the different serotypes known today, a classification of serotype variants termed subtypes has been proposed according to sequence diversity and immunological properties. However, the relevance of BoNT subtypes is currently not well understood. Here we describe the isolation of a novel Clostridium botulinum strain from a food-borne botulism outbreak near Chemnitz, Germany. Comparison of its botulinum neurotoxin gene sequence with published sequences identified it to be a novel subtype within the BoNT/A serotype designated BoNT/A8. The neurotoxin gene is located within an ha-orfX+ cluster and showed highest homology to BoNT/A1, A2, A5, and A6. Unexpectedly, we found an arginine insertion located in the HC domain of the heavy chain, which is unique compared to all other BoNT/A subtypes known so far. Functional characterization revealed that the binding characteristics to its main neuronal protein receptor SV2C seemed unaffected, whereas binding to membrane-incorporated gangliosides was reduced in comparison to BoNT/A1. Moreover, we found significantly lower enzymatic activity of the natural, full-length neurotoxin and the recombinant light chain of BoNT/A8 compared to BoNT/A1 in different endopeptidase assays. Both reduced ganglioside binding and enzymatic activity may contribute to the considerably lower biological activity of BoNT/A8 as measured in a mouse phrenic nerve hemidiaphragm assay. Despite its reduced activity the novel BoNT/A8 subtype caused severe botulism in a 63-year-old male. To our knowledge, this is the first description and a comprehensive characterization of a novel BoNT/A subtype which combines genetic information on the neurotoxin gene cluster with an in-depth functional analysis using different technical approaches. Our results show that subtyping of BoNT is highly relevant and that understanding of the detailed toxin function might pave the way for the development of novel therapeutics and tailor-made antitoxins.
Collapse
Affiliation(s)
- Skadi Kull
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - K. Melanie Schulz
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - Sebastian Kirchner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Tanja Schreiber
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | | | - P. Wojtek Dabrowski
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Andreas Nitsche
- Highly Pathogenic Viruses (ZBS1), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - Suzanne R. Kalb
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Martin B. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
| | - John R. Barr
- Centers for Disease Control and Prevention, National Center for Environmental Health, Division of Laboratory Sciences, Atlanta, Georgia, United States of America
| | - Andreas Rummel
- Institut für Toxikologie, Medizinische Hochschule Hannover, Hannover, Germany
| | - Brigitte G. Dorner
- Biological Toxins (ZBS3), Centre for Biological Threats and Special Pathogens, Robert Koch-Institut, Berlin, Germany
- * E-mail:
| |
Collapse
|
20
|
Connan C, Popoff MR. Two-component systems and toxinogenesis regulation in Clostridium botulinum. Res Microbiol 2015; 166:332-43. [PMID: 25592073 DOI: 10.1016/j.resmic.2014.12.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 12/22/2014] [Accepted: 12/23/2014] [Indexed: 12/15/2022]
Abstract
Botulinum neurotoxins (BoNTs) are the most potent toxins ever known. They are mostly produced by Clostridium botulinum but also by other clostridia. BoNTs associate with non-toxic proteins (ANTPs) to form complexes of various sizes. Toxin production is highly regulated through complex networks of regulatory systems involving an alternative sigma factor, BotR, and at least 6 recently described two-component systems (TCSs). TCSs allow bacteria to sense environmental changes and to respond to various stimuli by regulating the expression of specific genes at a transcriptional level. Several environmental stimuli have been identified to positively or negatively regulate toxin synthesis; however, the link between environmental stimuli and TCSs is still elusive. This review aims to highlight the role of TCSs as a central point in the regulation of toxin production in C. botulinum.
Collapse
Affiliation(s)
- Chloé Connan
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France
| | - Michel R Popoff
- Institut Pasteur, Unité des Bactéries anaérobies et Toxines, Paris, France.
| |
Collapse
|
21
|
First report of an infant botulism case due to Clostridium botulinum type Af. J Clin Microbiol 2014; 53:740-2. [PMID: 25502535 DOI: 10.1128/jcm.02894-14] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Most infant botulism cases worldwide are due to botulinum toxin types A and B. Rarely, Clostridium botulinum strains that produce two serotypes (Ab, Ba, and Bf) have also been isolated from infant botulism cases. This is the first reported case of infant botulism due to C. botulinum type Af worldwide.
Collapse
|
22
|
Genomic sequences of six botulinum neurotoxin-producing strains representing three clostridial species illustrate the mobility and diversity of botulinum neurotoxin genes. INFECTION GENETICS AND EVOLUTION 2014; 30:102-113. [PMID: 25489752 DOI: 10.1016/j.meegid.2014.12.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2014] [Revised: 11/29/2014] [Accepted: 12/01/2014] [Indexed: 11/21/2022]
Abstract
The whole genomes for six botulinum neurotoxin-producing clostridial strains were sequenced to provide references for under-represented toxin types, bivalent strains or unusual toxin complexes associated with a bont gene. The strains include three Clostridium botulinum Group I strains (CDC 297, CDC 1436, and Prevot 594), a Group II C. botulinum strain (Eklund 202F), a Group IV Clostridium argentinense strain (CDC 2741), and a Group V Clostridium baratii strain (Sullivan). Comparisons of the Group I genomic sequences revealed close relationships and conservation of toxin gene locations with previously published Group I C. botulinum genomes. The bont/F6 gene of strain Eklund 202F was determined to be a chimeric toxin gene composed of bont/F1 and bont/F2. The serotype G strain CDC 2741 remained unfinished in 20 contigs with the bont/G located within a 1.15Mb contig, indicating a possible chromosomal location for this toxin gene. Within the genome of C. baratii Sullivan strain, direct repeats of IS1182 insertion sequence (IS) elements were identified flanking the bont/F7 toxin complex that may be the mechanism of bont insertion into C. baratii. Highlights of the six strains are described and release of their genomic sequences will allow further study of unusual neurotoxin-producing clostridial strains.
Collapse
|
23
|
Carter AT, Peck MW. Genomes, neurotoxins and biology of Clostridium botulinum Group I and Group II. Res Microbiol 2014; 166:303-17. [PMID: 25445012 PMCID: PMC4430135 DOI: 10.1016/j.resmic.2014.10.010] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 10/10/2014] [Accepted: 10/21/2014] [Indexed: 11/29/2022]
Abstract
Recent developments in whole genome sequencing have made a substantial contribution to understanding the genomes, neurotoxins and biology of Clostridium botulinum Group I (proteolytic C. botulinum) and C. botulinum Group II (non-proteolytic C. botulinum). Two different approaches are used to study genomics in these bacteria; comparative whole genome microarrays and direct comparison of complete genome DNA sequences. The properties of the different types of neurotoxin formed, and different neurotoxin gene clusters found in C. botulinum Groups I and II are explored. Specific examples of botulinum neurotoxin genes are chosen for an in-depth discussion of neurotoxin gene evolution. The most recent cases of foodborne botulism are summarised.
Collapse
Affiliation(s)
- Andrew T Carter
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| | - Michael W Peck
- Institute of Food Research, Norwich Research Park, Colney, Norwich, NR4 7UA, UK
| |
Collapse
|
24
|
Genetic characterization and comparison of Clostridium botulinum isolates from botulism cases in Japan between 2006 and 2011. Appl Environ Microbiol 2014; 80:6954-64. [PMID: 25192986 DOI: 10.1128/aem.02134-14] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Genetic characterization was performed for 10 group I Clostridium botulinum strains isolated from botulism cases in Japan between 2006 and 2011. Of these, 1 was type A, 2 were type B, and 7 were type A(B) {carrying a silent bont/B [bont/(B)] gene} serotype strains, based on botulinum neurotoxin (BoNT) production. The type A strain harbored the subtype A1 BoNT gene (bont/A1), which is associated with the ha gene cluster. The type B strains carried bont/B5 or bont/B6 subtype genes. The type A(B) strains carried bont/A1 identical to that of type A(B) strain NCTC2916. However, bont/(B) genes in these strains showed single-nucleotide polymorphisms (SNPs) among strains. SNPs at 2 nucleotide positions of bont/(B) enabled classification of the type A(B) strains into 3 groups. Pulsed-field gel electrophoresis (PFGE) and multiple-locus variable-number tandem-repeat analysis (MLVA) also provided consistent separation results. In addition, the type A(B) strains were separated into 2 lineages based on their plasmid profiles. One lineage carried a small plasmid (5.9 kb), and another harbored 21-kb plasmids. To obtain more detailed genetic information about the 10 strains, we sequenced their genomes and compared them with 13 group I C. botulinum genomes in a database using whole-genome SNP analysis. This analysis provided high-resolution strain discrimination and enabled us to generate a refined phylogenetic tree that provides effective traceability of botulism cases, as well as bioterrorism materials. In the phylogenetic tree, the subtype B6 strains, Okayama2011 and Osaka05, were distantly separated from the other strains, indicating genomic divergence of subtype B6 strains among group I strains.
Collapse
|
25
|
Rossetto O, Pirazzini M, Montecucco C. Botulinum neurotoxins: genetic, structural and mechanistic insights. Nat Rev Microbiol 2014; 12:535-49. [PMID: 24975322 DOI: 10.1038/nrmicro3295] [Citation(s) in RCA: 400] [Impact Index Per Article: 40.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Botulinum neurotoxins (BoNTs) are produced by anaerobic bacteria of the genus Clostridium and cause a persistent paralysis of peripheral nerve terminals, which is known as botulism. Neurotoxigenic clostridia belong to six phylogenetically distinct groups and produce more than 40 different BoNT types, which inactivate neurotransmitter release owing to their metalloprotease activity. In this Review, we discuss recent studies that have improved our understanding of the genetics and structure of BoNT complexes. We also describe recent insights into the mechanisms of BoNT entry into the general circulation, neuronal binding, membrane translocation and neuroparalysis.
Collapse
Affiliation(s)
- Ornella Rossetto
- 1] Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [2] National Research Council Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [3]
| | - Marco Pirazzini
- 1] Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [2] National Research Council Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [3]
| | - Cesare Montecucco
- 1] Department of Biomedical Sciences, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy. [2] National Research Council Institute of Neuroscience, University of Padova, Via Ugo Bassi 58/B, 35131 Padova, Italy
| |
Collapse
|
26
|
Abstract
Botulinum neurotoxin type F (BoNT/F) may be produced by Clostridium botulinum alone or in combination with another toxin type such as BoNT/A or BoNT/B. Type F neurotoxin gene sequences have been further classified into seven toxin subtypes. Recently, the genome sequence of one strain of C. botulinum (Af84) was shown to contain three neurotoxin genes (bont/F4, bont/F5, and bont/A2). In this study, eight strains containing bont/F4 and seven strains containing bont/F5 were examined. Culture supernatants produced by these strains were incubated with BoNT/F-specific peptide substrates. Cleavage products of these peptides were subjected to mass spectral analysis, allowing detection of the BoNT/F subtypes present in the culture supernatants. PCR analysis demonstrated that a plasmid-specific marker (PL-6) was observed only among strains containing bont/F5. Among these strains, Southern hybridization revealed the presence of an approximately 242-kb plasmid harboring bont/F5. Genome sequencing of four of these strains revealed that the genomic backgrounds of strains harboring either bont/F4 or bont/F5 are diverse. None of the strains analyzed in this study were shown to produce BoNT/F4 and BoNT/F5 simultaneously, suggesting that strain Af84 is unusual. Finally, these data support a role for the mobility of a bont/F5-carrying plasmid among strains of diverse genomic backgrounds.
Collapse
|
27
|
Kalb SR, Baudys J, Smith TJ, Smith LA, Barr JR. Three enzymatically active neurotoxins of Clostridium botulinum strain Af84: BoNT/A2, /F4, and /F5. Anal Chem 2014; 86:3254-62. [PMID: 24605815 DOI: 10.1021/ac5001509] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Botulinum neurotoxins (BoNTs) are produced by various species of clostridia and are potent neurotoxins which cause the disease botulism, by cleaving proteins needed for successful nerve transmission. There are currently seven confirmed serotypes of BoNTs, labeled A-G, and toxin-producing clostridia typically only produce one serotype of BoNT. There are a few strains (bivalent strains) which are known to produce more than one serotype of BoNT, producing either both BoNT/A and /B, BoNT/A and /F, or BoNT/B and /F, designated as Ab, Ba, Af, or Bf. Recently, it was reported that Clostridium botulinum strain Af84 has three neurotoxin gene clusters: bont/A2, bont/F4, and bont/F5. This was the first report of a clostridial organism containing more than two neurotoxin gene clusters. Using a mass spectrometry based proteomics approach, we report here that all three neurotoxins, BoNT/A2, /F4, and /F5, are produced by C. botulinum Af84. Label free MS(E) quantification of the three toxins indicated that toxin composition is 88% BoNT/A2, 1% BoNT/F4, and 11% BoNT/F5. The enzymatic activity of all three neurotoxins was assessed by examining the enzymatic activity of the neurotoxins upon peptide substrates, which mimic the toxins' natural targets, and monitoring cleavage of the substrates by mass spectrometry. We determined that all three neurotoxins are enzymatically active. This is the first report of three enzymatically active neurotoxins produced in a single strain of Clostridium botulinum.
Collapse
Affiliation(s)
- Suzanne R Kalb
- Centers for Disease Control and Prevention , National Center for Environmental Health, Division of Laboratory Sciences, 4770 Buford Hwy, NE, Atlanta, Georgia 30341, United States
| | | | | | | | | |
Collapse
|
28
|
Kwon SJ, Jeong EJ, Yoo YC, Cai C, Yang GH, Lee JC, Dordick JS, Linhardt RJ, Lee KB. High sensitivity detection of active botulinum neurotoxin by glyco-quantitative polymerase chain-reaction. Anal Chem 2014; 86:2279-84. [PMID: 24506443 PMCID: PMC3985614 DOI: 10.1021/ac500262d] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
![]()
The sensitive detection of highly
toxic botulinum neurotoxin (BoNT)
from Clostridium botulinum is of critical importance
because it causes human illnesses if foodborne or introduced in wounds
and as an iatrogenic substance. Moreover, it has been recently considered
a possible biological warfare agent. Over the past decade, significant
progress has been made in BoNT detection technologies, including mouse
lethality assays, enzyme-linked immunosorbent assays, and endopeptidase
assays and by mass spectrometry. Critical assay requirements, including
rapid assay, active toxin detection, sensitive and accurate detection,
still remain challenging. Here, we present a novel method to detect
active BoNTs using a Glyco-quantitative polymerase chain-reaction
(qPCR) approach. Sialyllactose, which interacts with the binding-domain
of BoNTs, is incorporated into a sialyllactose-DNA conjugate as a
binding-probe for active BoNT and recovered through BoNT-immunoprecipitation.
Glyco-qPCR analysis of the bound sialyllactose-DNA is then used to
detect low attomolar concentrations of BoNT and attomolar to femtomolar
concentrations of BoNT in honey, the most common foodborne source
of infant botulism.
Collapse
Affiliation(s)
- Seok Joon Kwon
- Department of Chemical and Biological Engineering, Department of Chemistry and Chemical Biology, and Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute , Troy, New York 12180, United States
| | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Popoff MR, Bouvet P. Genetic characteristics of toxigenic Clostridia and toxin gene evolution. Toxicon 2013; 75:63-89. [DOI: 10.1016/j.toxicon.2013.05.003] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 12/14/2022]
|
30
|
Popoff MR. Botulinum neurotoxins: more and more diverse and fascinating toxic proteins. J Infect Dis 2013; 209:168-9. [PMID: 24106294 DOI: 10.1093/infdis/jit505] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
31
|
Barash JR, Arnon SS. A Novel Strain of Clostridium botulinum That Produces Type B and Type H Botulinum Toxins. J Infect Dis 2013; 209:183-91. [DOI: 10.1093/infdis/jit449] [Citation(s) in RCA: 241] [Impact Index Per Article: 21.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
32
|
Dover N, Barash JR, Hill KK, Xie G, Arnon SS. Molecular Characterization of a Novel Botulinum Neurotoxin Type H Gene. J Infect Dis 2013; 209:192-202. [DOI: 10.1093/infdis/jit450] [Citation(s) in RCA: 204] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
|