1
|
Gartz M, Haberman M, Sutton J, Slick RA, Luttrell SM, Mack DL, Lawlor MW. ACTA1 H40Y mutant iPSC-derived skeletal myocytes display mitochondrial defects in an in vitro model of nemaline myopathy. Exp Cell Res 2023; 424:113507. [PMID: 36796746 PMCID: PMC9993434 DOI: 10.1016/j.yexcr.2023.113507] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/06/2023] [Accepted: 02/07/2023] [Indexed: 02/16/2023]
Abstract
Nemaline myopathies (NM) are a group of congenital myopathies that lead to muscle weakness and dysfunction. While 13 genes have been identified to cause NM, over 50% of these genetic defects are due to mutations in nebulin (NEB) and skeletal muscle actin (ACTA1), which are genes required for normal assembly and function of the thin filament. NM can be distinguished on muscle biopsies due to the presence of nemaline rods, which are thought to be aggregates of the dysfunctional protein. Mutations in ACTA1 have been associated with more severe clinical disease and muscle weakness. However, the cellular pathogenesis linking ACTA1 gene mutations to muscle weakness are unclear To evaluate cellular disease phenotypes, iPSC-derived skeletal myocytes (iSkM) harboring an ACTA1 H40Y point mutation were used to model NM in skeletal muscle. These were generated by Crispr-Cas9, and include one non-affected healthy control (C) and 2 NM iPSC clone lines, therefore representing isogenic controls. Fully differentiated iSkM were characterized to confirm myogenic status and subject to assays to evaluate nemaline rod formation, mitochondrial membrane potential, mitochondrial permeability transition pore (mPTP) formation, superoxide production, ATP/ADP/phosphate levels and lactate dehydrogenase release. C- and NM-iSkM demonstrated myogenic commitment as evidenced by mRNA expression of Pax3, Pax7, MyoD, Myf5 and Myogenin; and protein expression of Pax4, Pax7, MyoD and MF20. No nemaline rods were observed with immunofluorescent staining of NM-iSkM for ACTA1 or ACTN2, and these mRNA transcript and protein levels were comparable to C-iSkM. Mitochondrial function was altered in NM, as evidenced by decreased cellular ATP levels and altered mitochondrial membrane potential. Oxidative stress induction revealed the mitochondrial phenotype, as evidenced by collapsed mitochondrial membrane potential, early formation of the mPTP and increased superoxide production. Early mPTP formation was rescued with the addition of ATP to media. Together, these findings suggest that mitochondrial dysfunction and oxidative stress are disease phenotypes in the in vitro model of ACTA1 nemaline myopathy, and that modulation of ATP levels was sufficient to protect NM-iSkM mitochondria from stress-induced injury. Importantly, the nemaline rod phenotype was absent in our in vitro model of NM. We conclude that this in vitro model has the potential to recapitulate human NM disease phenotypes, and warrants further study.
Collapse
Affiliation(s)
- Melanie Gartz
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA.
| | - Margaret Haberman
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Jessica Sutton
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| | - Rebecca A Slick
- Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Shawn M Luttrell
- Curi Bio Inc., 3000 Western Avenue, Seattle, WA, 98121, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - David L Mack
- Department of Rehabilitation Medicine, University of Washington, Seattle, WA, USA; Institute for Stem Cell and Regenerative Medicine, UW Medicine, Seattle, WA, USA
| | - Michael W Lawlor
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA; Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, WI, USA; Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA; Diverge Translational Science Laboratory, Milwaukee, WI, USA
| |
Collapse
|
2
|
Chatel B, Ducreux S, Harhous Z, Bendridi N, Varlet I, Ogier AC, Bernard M, Gondin J, Rieusset J, Westerblad H, Bendahan D, Gineste C. Impaired aerobic capacity and premature fatigue preceding muscle weakness in the skeletal muscle Tfam-knockout mouse model. Dis Model Mech 2021; 14:272176. [PMID: 34378772 PMCID: PMC8461820 DOI: 10.1242/dmm.048981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Accepted: 07/30/2021] [Indexed: 11/20/2022] Open
Abstract
Mitochondrial diseases are genetic disorders that lead to impaired mitochondrial function, resulting in exercise intolerance and muscle weakness. In patients, muscle fatigue due to defects in mitochondrial oxidative capacities commonly precedes muscle weakness. In mice, deletion of the fast-twitch skeletal muscle-specific Tfam gene (Tfam KO) leads to a deficit in respiratory chain activity, severe muscle weakness and early death. Here, we performed a time-course study of mitochondrial and muscular dysfunctions in 11- and 14-week-old Tfam KO mice, i.e. before and when mice are about to enter the terminal stage, respectively. Although force in the unfatigued state was reduced in Tfam KO mice compared to control littermates (wild type) only at 14 weeks, during repeated submaximal contractions fatigue was faster at both ages. During fatiguing stimulation, total phosphocreatine breakdown was larger in Tfam KO muscle than in wild-type muscle at both ages, whereas phosphocreatine consumption was faster only at 14 weeks. In conclusion, the Tfam KO mouse model represents a reliable model of lethal mitochondrial myopathy in which impaired mitochondrial energy production and premature fatigue occur before muscle weakness and early death. Summary: A time-course study of mitochondrial and muscular dysfunctions in a mouse model of mitochondrial myopathy reveals that decreased resistance to fatigue together with decreased oxidative capacities arise ahead of muscle weakness.
Collapse
Affiliation(s)
- Benjamin Chatel
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France.,CellMade, 73370 Le-Bourget-du-Lac, France
| | - Sylvie Ducreux
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite et F-69500 Bron, France
| | - Zeina Harhous
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite et F-69500 Bron, France
| | - Nadia Bendridi
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69600 Oullins, France
| | - Isabelle Varlet
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| | - Augustin C Ogier
- Aix-Marseille Université, Université de Toulon, CNRS, LIS, 13397 Marseille, France
| | - Monique Bernard
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| | - Julien Gondin
- Institut NeuroMyoGène, UMR CNRS 5310 - INSERM U1217, Université Claude Bernard Lyon 1, F-69008 Lyon, France
| | - Jennifer Rieusset
- CarMeN Laboratory, UMR INSERM U1060/INRA U1397, Université Claude Bernard Lyon1, F-69310 Pierre-Bénite et F-69500 Bron, France
| | - Håkan Westerblad
- Department of Physiology and Pharmacology, Karolinska Institutet, 17177 Stockholm, Sweden
| | - David Bendahan
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| | - Charlotte Gineste
- Aix-Marseille Université, CRMBM UMR CNRS 7339, 13385 Marseille, France
| |
Collapse
|
3
|
de Winter JM, Gineste C, Minardi E, Brocca L, Rossi M, Borsboom T, Beggs AH, Bernard M, Bendahan D, Hwee DT, Malik FI, Pellegrino MA, Bottinelli R, Gondin J, Ottenheijm CAC. Acute and chronic tirasemtiv treatment improves in vivo and in vitro muscle performance in actin-based nemaline myopathy mice. Hum Mol Genet 2021; 30:1305-1320. [PMID: 33909041 PMCID: PMC8255131 DOI: 10.1093/hmg/ddab112] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/09/2021] [Accepted: 04/07/2021] [Indexed: 12/13/2022] Open
Abstract
Nemaline myopathy, a disease of the actin-based thin filament, is one of the most frequent congenital myopathies. To date, no specific therapy is available to treat muscle weakness in nemaline myopathy. We tested the ability of tirasemtiv, a fast skeletal troponin activator that targets the thin filament, to augment muscle force-both in vivo and in vitro-in a nemaline myopathy mouse model with a mutation (H40Y) in Acta1. In Acta1H40Y mice, treatment with tirasemtiv increased the force response of muscles to submaximal stimulation frequencies. This resulted in a reduced energetic cost of force generation, which increases the force production during a fatigue protocol. The inotropic effects of tirasemtiv were present in locomotor muscles and, albeit to a lesser extent, in respiratory muscles, and they persisted during chronic treatment, an important finding as respiratory failure is the main cause of death in patients with congenital myopathy. Finally, translational studies on permeabilized muscle fibers isolated from a biopsy of a patient with the ACTA1H40Y mutation revealed that at physiological Ca2+ concentrations, tirasemtiv increased force generation to values that were close to those generated in muscle fibers of healthy subjects. These findings indicate the therapeutic potential of fast skeletal muscle troponin activators to improve muscle function in nemaline myopathy due to the ACTA1H40Y mutation, and future studies should assess their merit for other forms of nemaline myopathy and for other congenital myopathies.
Collapse
Affiliation(s)
- Josine M de Winter
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam 1081 HV, The Netherlands
| | | | - Elisa Minardi
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Lorenza Brocca
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Maira Rossi
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
| | - Tamara Borsboom
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam 1081 HV, The Netherlands
| | - Alan H Beggs
- Division of Genetics and Genomics, The Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Monique Bernard
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, 13005 Marseille, France
| | - David Bendahan
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, 13005 Marseille, France
| | - Darren T Hwee
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Fady I Malik
- Research and Early Development, Cytokinetics Inc., South San Francisco, CA 94080, USA
| | - Maria Antonietta Pellegrino
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
- Interdipartimental Centre for Biology and Sport Medicine, University of Pavia, Pavia 27100, Italy
| | - Roberto Bottinelli
- Department of Molecular Medicine, University of Pavia, Pavia 27100, Italy
- Istituti Clinici Maugeri (IRCCS), Scientific Institute of Pavia, Pavia 27100, Italy
| | - Julien Gondin
- Aix-Marseille Univ, CNRS, CRMBM, UMR 7339, 13005 Marseille, France
- Institut NeuroMyoGène, Université Claude Bernard Lyon 1, CNRS 5310, INSERM U1217, 69008, Lyon, France
| | - Coen A C Ottenheijm
- Department of Physiology, Amsterdam UMC (location VUmc), Amsterdam 1081 HV, The Netherlands
| |
Collapse
|
4
|
Gineste C, Ogier AC, Varlet I, Hourani Z, Bernard M, Granzier H, Bendahan D, Gondin J. In vivo characterization of skeletal muscle function in nebulin-deficient mice. Muscle Nerve 2020; 61:416-424. [PMID: 31893464 DOI: 10.1002/mus.26798] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/16/2019] [Accepted: 12/21/2019] [Indexed: 01/04/2023]
Abstract
INTRODUCTION The conditional nebulin knockout mouse is a new model mimicking nemaline myopathy, a rare disease characterized by muscle weakness and rods within muscle fibers. We investigated the impact of nebulin (NEB) deficiency on muscle function in vivo. METHODS Conditional nebulin knockout mice and control littermates were studied at 10 to 12 months. Muscle function (force and fatigue) and anatomy (muscles volume and fat content) were measured in vivo. Myosin heavy chain (MHC) composition and nebulin (NEB) protein expression were assessed by protein electrophoresis. RESULTS Conditional nebulin knockout mice displayed a lower NEB level (-90%) leading to a 40% and 45% reduction in specific maximal force production and muscles volume, respectively. Nebulin deficiency was also associated with higher resistance to fatigue and increased MHC I content. DISCUSSION Adult nebulin-deficient mice displayed severe muscle atrophy and weakness in vivo related to a low NEB content but an improved fatigue resistance due to a slower contractile phenotype.
Collapse
Affiliation(s)
| | - Augustin C Ogier
- Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France
| | | | - Zaynab Hourani
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, Arizona
| | | | - Julien Gondin
- Aix-Marseille Univ, CNRS, CRMBM, Marseille, France.,Institut NeuroMyoGène, UMR CNRS 5310 - INSERM U1217, Université Claude Bernard, Lyon, France
| |
Collapse
|
5
|
Sewry CA, Laitila JM, Wallgren-Pettersson C. Nemaline myopathies: a current view. J Muscle Res Cell Motil 2019; 40:111-126. [PMID: 31228046 PMCID: PMC6726674 DOI: 10.1007/s10974-019-09519-9] [Citation(s) in RCA: 110] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 05/29/2019] [Indexed: 12/13/2022]
Abstract
Nemaline myopathies are a heterogenous group of congenital myopathies caused by de novo, dominantly or recessively inherited mutations in at least twelve genes. The genes encoding skeletal α-actin (ACTA1) and nebulin (NEB) are the commonest genetic cause. Most patients have congenital onset characterized by muscle weakness and hypotonia, but the spectrum of clinical phenotypes is broad, ranging from severe neonatal presentations to onset of a milder disorder in childhood. Most patients with adult onset have an autoimmune-related myopathy with a progressive course. The wide application of massively parallel sequencing methods is increasing the number of known causative genes and broadening the range of clinical phenotypes. Nemaline myopathies are identified by the presence of structures that are rod-like or ovoid in shape with electron microscopy, and with light microscopy stain red with the modified Gömöri trichrome technique. These rods or nemaline bodies are derived from Z lines (also known as Z discs or Z disks) and have a similar lattice structure and protein content. Their shape in patients with mutations in KLHL40 and LMOD3 is distinctive and can be useful for diagnosis. The number and distribution of nemaline bodies varies between fibres and different muscles but does not correlate with severity or prognosis. Additional pathological features such as caps, cores and fibre type disproportion are associated with the same genes as those known to cause the presence of rods. Animal models are advancing the understanding of the effects of various mutations in different genes and paving the way for the development of therapies, which at present only manage symptoms and are aimed at maintaining muscle strength, joint mobility, ambulation, respiration and independence in the activities of daily living.
Collapse
Affiliation(s)
- Caroline A Sewry
- Dubowitz Neuromuscular Centre, UCL Institute of Child Health and Great Ormond Street Hospital, 30 Guilford Street, London, WC1N 1EH, UK. .,Wolfson Centre of Inherited Neuromuscular Disorders, RJAH Orthopaedic Hospital, Oswestry, SY10 7AG, UK.
| | - Jenni M Laitila
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| | - Carina Wallgren-Pettersson
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, Helsinki, Finland.,Department of Medical and Clinical Genetics, Medicum, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Yeşilbaş O, Şevketoğlu E, Kıhtır HS, Ersoy M, Petmezci MT, Akkuş CH, Şahin Ö, Ceylaner S. A rare structural myopathy: Nemaline myopathy. Turk Arch Pediatr 2019; 54:49-52. [PMID: 31217710 PMCID: PMC6559969 DOI: 10.5152/turkpediatriars.2018.4402] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 12/27/2016] [Indexed: 12/24/2022]
Abstract
Nemaline myopathy, which is characterized by the accumulation of ‘’rod’’ bodies in muscle fibers is a very rare inherited muscle disease. According to the underlying mutation, the disease has varying severity of clinical outcomes. Patients with severe forms of the disease die because of hypotonia, feeding difficulties, aspiration pneumonia, and respiratory failure in the neonatal or infancy period. Mild forms of the disease present with walking-swallowing difficulties and respiratory distress in late childhood or adulthood. A two-and-a-half-month-old boy was monitored in our Pediatric Intensive Care Unit with hypotonia, pneumonia, and respiratory distress. Nemaline myopathy was diagnosed as the result of a muscle biopsy. An advanced molecular examination revealed heterozygous mutations in the skeletal muscle α-actin (ACTA1) gene, which is the second most common cause of this disease. Nemaline myopathy should be kept in mind in patients of all age groups with respiratory failure and walking difficulty secondary to muscle weakness.
Collapse
Affiliation(s)
- Osman Yeşilbaş
- Pediatric Intensive Care Unit, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Esra Şevketoğlu
- Pediatric Intensive Care Unit, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Hasan Serdar Kıhtır
- Pediatric Intensive Care Unit, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Melike Ersoy
- Pediatric Metabolic Diseases, Pediatrics Clinic, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Mey Talip Petmezci
- Pediatric Intensive Care Unit, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Canan Hasbal Akkuş
- Pediatrics Clinic, Bakırköy Dr. Sadi Konuk Training and Research Hospital, İstanbul, Turkey
| | - Önder Şahin
- Department of Pathology, İstanbul Univesity İstanbul Faculty of Medicine, İstanbul, Turkey
| | - Serdar Ceylaner
- Division of Clinical Genetics, Intergen Genetics Center, Ankara, Turkey
| |
Collapse
|
7
|
Carlier PG, Marty B, Scheidegger O, Loureiro de Sousa P, Baudin PY, Snezhko E, Vlodavets D. Skeletal Muscle Quantitative Nuclear Magnetic Resonance Imaging and Spectroscopy as an Outcome Measure for Clinical Trials. J Neuromuscul Dis 2018; 3:1-28. [PMID: 27854210 PMCID: PMC5271435 DOI: 10.3233/jnd-160145] [Citation(s) in RCA: 132] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent years have seen tremendous progress towards therapy of many previously incurable neuromuscular diseases. This new context has acted as a driving force for the development of novel non-invasive outcome measures. These can be organized in three main categories: functional tools, fluid biomarkers and imagery. In the latest category, nuclear magnetic resonance imaging (NMRI) offers a considerable range of possibilities for the characterization of skeletal muscle composition, function and metabolism. Nowadays, three NMR outcome measures are frequently integrated in clinical research protocols. They are: 1/ the muscle cross sectional area or volume, 2/ the percentage of intramuscular fat and 3/ the muscle water T2, which quantity muscle trophicity, chronic fatty degenerative changes and oedema (or more broadly, “disease activity”), respectively. A fourth biomarker, the contractile tissue volume is easily derived from the first two ones. The fat fraction maps most often acquired with Dixon sequences have proven their capability to detect small changes in muscle composition and have repeatedly shown superior sensitivity over standard functional evaluation. This outcome measure will more than likely be the first of the series to be validated as an endpoint by regulatory agencies. The versatility of contrast generated by NMR has opened many additional possibilities for characterization of the skeletal muscle and will result in the proposal of more NMR biomarkers. Ultra-short TE (UTE) sequences, late gadolinium enhancement and NMR elastography are being investigated as candidates to evaluate skeletal muscle interstitial fibrosis. Many options exist to measure muscle perfusion and oxygenation by NMR. Diffusion NMR as well as texture analysis algorithms could generate complementary information on muscle organization at microscopic and mesoscopic scales, respectively. 31P NMR spectroscopy is the reference technique to assess muscle energetics non-invasively during and after exercise. In dystrophic muscle, 31P NMR spectrum at rest is profoundly perturbed, and several resonances inform on cell membrane integrity. Considerable efforts are being directed towards acceleration of image acquisitions using a variety of approaches, from the extraction of fat content and water T2 maps from one single acquisition to partial matrices acquisition schemes. Spectacular decreases in examination time are expected in the near future. They will reinforce the attractiveness of NMR outcome measures and will further facilitate their integration in clinical research trials.
Collapse
Affiliation(s)
- Pierre G Carlier
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France.,National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Benjamin Marty
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,CEA, DSV, I2BM, MIRCen, NMR Laboratory, Paris, France
| | - Olivier Scheidegger
- Institute of Myology, Pitie-Salpetriere University Hospital, Paris, France.,Support Center for Advanced Neuroimaging (SCAN), Institute of Diagnostic and Interventional Neuroradiology, Inselspital, Bern University Hospital, and University of Bern, Switzerland
| | | | | | - Eduard Snezhko
- National Academy of Sciences, United Institute for Informatics Problems, Minsk, Belarus
| | - Dmitry Vlodavets
- N.I. Prirogov Russian National Medical Research University, Clinical Research Institute of Pediatrics, Moscow, Russian Federation
| |
Collapse
|
8
|
Joureau B, de Winter JM, Conijn S, Bogaards SJP, Kovacevic I, Kalganov A, Persson M, Lindqvist J, Stienen GJM, Irving TC, Ma W, Yuen M, Clarke NF, Rassier DE, Malfatti E, Romero NB, Beggs AH, Ottenheijm CAC. Dysfunctional sarcomere contractility contributes to muscle weakness in ACTA1-related nemaline myopathy (NEM3). Ann Neurol 2018; 83:269-282. [PMID: 29328520 DOI: 10.1002/ana.25144] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 01/10/2018] [Accepted: 01/10/2018] [Indexed: 01/23/2023]
Abstract
OBJECTIVE Nemaline myopathy (NM) is one of the most common congenital nondystrophic myopathies and is characterized by muscle weakness, often from birth. Mutations in ACTA1 are a frequent cause of NM (ie, NEM3). ACTA1 encodes alpha-actin 1, the main constituent of the sarcomeric thin filament. The mechanisms by which mutations in ACTA1 contribute to muscle weakness in NEM3 are incompletely understood. We hypothesized that sarcomeric dysfunction contributes to muscle weakness in NEM3 patients. METHODS To test this hypothesis, we performed contractility measurements in individual muscle fibers and myofibrils obtained from muscle biopsies of 14 NEM3 patients with different ACTA1 mutations. To identify the structural basis for impaired contractility, low angle X-ray diffraction and stimulated emission-depletion microscopy were applied. RESULTS Our findings reveal that muscle fibers of NEM3 patients display a reduced maximal force-generating capacity, which is caused by dysfunctional sarcomere contractility in the majority of patients, as revealed by contractility measurements in myofibrils. Low angle X-ray diffraction and stimulated emission-depletion microscopy indicate that dysfunctional sarcomere contractility in NEM3 patients involves a lower number of myosin heads binding to actin during muscle activation. This lower number is not the result of reduced thin filament length. Interestingly, the calcium sensitivity of force is unaffected in some patients, but decreased in others. INTERPRETATION Dysfunctional sarcomere contractility is an important contributor to muscle weakness in the majority of NEM3 patients. This information is crucial for patient stratification in future clinical trials. Ann Neurol 2018;83:269-282.
Collapse
Affiliation(s)
- Barbara Joureau
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | | | - Stefan Conijn
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Sylvia J P Bogaards
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Igor Kovacevic
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Albert Kalganov
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Malin Persson
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada.,Department of Physiology and Pharmacology, Karolinska Institute, Stockholm, Sweden
| | - Johan Lindqvist
- Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands
| | - Thomas C Irving
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Weikang Ma
- Biophysics Collaborative Access Team, Center for Synchrotron Radiation Research and Instrumentation, and Department of Biological Sciences, Illinois Institute of Technology, Chicago, IL
| | - Michaela Yuen
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Pediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Dilson E Rassier
- Department of Kinesiology and Physical Education, McGill University, Montreal, Quebec, Canada
| | - Edoardo Malfatti
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Norma B Romero
- Pierre and Marie Curie University/University of Paris VI, Sorbonne Universities, National Institute of Health and Medical Research UMRS974, National Center for Scientific Research FRE3617, Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center Amsterdam, Amsterdam, the Netherlands.,Department of Molecular and Cellular Biology and Molecular Cardiovascular Research Program, University of Arizona, Tucson, AZ
| |
Collapse
|
9
|
van Dijk M, Dijk FJ, Hartog A, van Norren K, Verlaan S, van Helvoort A, Jaspers RT, Luiking Y. Reduced dietary intake of micronutrients with antioxidant properties negatively impacts muscle health in aged mice. J Cachexia Sarcopenia Muscle 2018; 9:146-159. [PMID: 29045021 PMCID: PMC5803605 DOI: 10.1002/jcsm.12237] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 06/06/2017] [Accepted: 08/03/2017] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Inadequate intake of micronutrients with antioxidant properties is common among older adults and has been associated with higher risk of frailty, adverse functional outcome, and impaired muscle health. However, a causal relationship is less well known. The aim was to determine in old mice the impact of reduced dietary intake of vitamins A/E/B6/B12/folate, selenium, and zinc on muscle mass, oxidative capacity, strength, and physical activity (PA) over time. METHODS Twenty-one-month-old male mice were fed either AIN-93-M (control) or a diet low in micronutrients with antioxidant properties (=LOWOX-B: 50% of mouse recommended daily intake of vitamins A, E, B6, and B12, folate, selenium, and zinc) for 4 months. Muscle mass, grip strength, physical activity (PA), and general oxidative status were assessed. Moreover, muscle fatigue was measured of m. extensor digitorum longus (EDL) during an ex vivo moderate exercise protocol. Effects on oxidative capacity [succinate dehydrogenase (SDH) activity], muscle fibre type, number, and fibre cross-sectional area (fCSA) were assessed on m. plantaris (PL) using histochemistry. RESULTS After 2 months on the diet, bodyweight of LOWOX-B mice was lower compared with control (P < 0.0001), mainly due to lower fat mass (P < 0.0001), without significant differences in food intake. After 4 months, oxidative status of LOWOX-B mice was lower, demonstrated by decreased vitamin E plasma levels (P < 0.05) and increased liver malondialdehyde levels (P = 0.018). PA was lower in LOWOX-B mice (P < 0.001 vs. control). Muscle mass was not affected, although PL-fCSA was decreased (~16%; P = 0.028 vs. control). SDH activity and muscle fibre type distribution remained unaffected. In LOWOX-B mice, EDL force production was decreased by 49.7% at lower stimulation frequencies (P = 0.038), and fatigue resistance was diminished (P = 0.023) compared with control. CONCLUSIONS Reduced dietary intake of vitamins A, E, B6, and B12, folate, selenium, and zinc resulted in a lower oxidative capacity and has major impact on muscle health as shown by decreased force production and PA, without effects on muscle mass. The reduced fCSA in combination with similar SDH activity per fibre might explain the reduced oxidative capacity resulting in the increased fatigue after exercise in LOWOX-B mice.
Collapse
Affiliation(s)
- Miriam van Dijk
- Nutricia Research, Nutricia Advanced Medical Nutrition, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - Francina J Dijk
- Nutricia Research, Nutricia Advanced Medical Nutrition, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - Anita Hartog
- Nutricia Research, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| | - Klaske van Norren
- Nutrition and Pharmacology, Wageningen University, Stippeneng 4, 6708 WE, Wageningen, the Netherlands
| | - Sjors Verlaan
- Nutricia Research, Nutricia Advanced Medical Nutrition, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands.,Department of Internal Medicine, Section of Gerontology and Geriatrics, VU University Medical Center, Box 7057, 1007 MB, Amsterdam, the Netherlands
| | - Ardy van Helvoort
- Nutricia Research, Nutricia Advanced Medical Nutrition, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands.,NUTRIM School of Nutrition and Translational Research in Metabolism, Faculty of Health, Medicine, and Life Sciences, Maastricht University, Universiteitssingel 50, 6229 ER, Maastricht, the Netherlands
| | - Richard T Jaspers
- Laboratory for Myology, MOVE Research Institute Amsterdam, Vrije Universiteit Amsterdam, De Boelelaan 1108, 1081 HZ, Amsterdam, the Netherlands
| | - Yvette Luiking
- Nutricia Research, Nutricia Advanced Medical Nutrition, Uppsalalaan 12, 3584 CT, Utrecht, the Netherlands
| |
Collapse
|
10
|
Chatel B, Bendahan D, Hourdé C, Pellerin L, Lengacher S, Magistretti P, Le Fur Y, Vilmen C, Bernard M, Messonnier LA. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice. FASEB J 2017; 31:2562-2575. [PMID: 28254758 DOI: 10.1096/fj.201601259r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 02/07/2017] [Indexed: 11/11/2022]
Abstract
The purpose of this study was to investigate the effects of a partial suppression of monocarboxylate transporter (MCT)-1 on skeletal muscle pH, energetics, and function (MCT1+/- mice). Twenty-four MCT1+/- and 13 wild-type (WT) mice were subjected to a rest-exercise-recovery protocol, allowing assessment of muscle energetics (by magnetic resonance spectroscopy) and function. The study included analysis of enzyme activities and content of protein involved in pH regulation. Skeletal muscle of MCT1+/- mice had lower MCT1 (-61%; P < 0.05) and carbonic anhydrase (CA)-II (-54%; P < 0.05) contents. Although intramuscular pH was higher in MCT1+/- mice at rest (P < 0.001), the mice showed higher acidosis during the first minute of exercise (P < 0.01). Then, the pH time course was similar among groups until exercise completion. MCT1+/- mice had higher specific peak (P < 0.05) and maximum tetanic (P < 0.01) forces and lower fatigability (P < 0.001) when compared to WT mice. We conclude that both MCT1 and CAII are involved in the homeostatic control of pH in skeletal muscle, both at rest and at the onset of exercise. The improved muscle function and resistance to fatigue in MCT1+/- mice remain unexplained.-Chatel, B., Bendahan, D., Hourdé, C., Pellerin, L., Lengacher, S., Magistretti, P., Fur, Y. L., Vilmen, C., Bernard, M., Messonnier, L. A. Role of MCT1 and CAII in skeletal muscle pH homeostasis, energetics, and function: in vivo insights from MCT1 haploinsufficient mice.
Collapse
Affiliation(s)
- Benjamin Chatel
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France;
| | - David Bendahan
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Christophe Hourdé
- Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| | - Luc Pellerin
- Department of Physiology, University of Lausanne, Lausanne, Switzerland
| | - Sylvain Lengacher
- Department of Physiology, University of Lausanne, Lausanne, Switzerland.,Laboratory of Neuroenergetic and Cellular Dynamics, Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Pierre Magistretti
- Laboratory of Neuroenergetic and Cellular Dynamics, Brain and Mind Institute, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.,Division of Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Yann Le Fur
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Christophe Vilmen
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Monique Bernard
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| | - Laurent A Messonnier
- Centre de Résonance Magnétique Biologique et Médicale, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France.,Laboratoire Interuniversitaire de Biologie de la Motricité, Université Savoie Mont Blanc, Chambéry, France
| |
Collapse
|
11
|
Winter JMD, Joureau B, Lee EJ, Kiss B, Yuen M, Gupta VA, Pappas CT, Gregorio CC, Stienen GJM, Edvardson S, Wallgren-Pettersson C, Lehtokari VL, Pelin K, Malfatti E, Romero NB, Engelen BGV, Voermans NC, Donkervoort S, Bönnemann CG, Clarke NF, Beggs AH, Granzier H, Ottenheijm CAC. Mutation-specific effects on thin filament length in thin filament myopathy. Ann Neurol 2016; 79:959-69. [PMID: 27074222 DOI: 10.1002/ana.24654] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 03/22/2016] [Accepted: 03/27/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVE Thin filament myopathies are among the most common nondystrophic congenital muscular disorders, and are caused by mutations in genes encoding proteins that are associated with the skeletal muscle thin filament. Mechanisms underlying muscle weakness are poorly understood, but might involve the length of the thin filament, an important determinant of force generation. METHODS We investigated the sarcomere length-dependence of force, a functional assay that provides insights into the contractile strength of muscle fibers as well as the length of the thin filaments, in muscle fibers from 51 patients with thin filament myopathy caused by mutations in NEB, ACTA1, TPM2, TPM3, TNNT1, KBTBD13, KLHL40, and KLHL41. RESULTS Lower force generation was observed in muscle fibers from patients of all genotypes. In a subset of patients who harbor mutations in NEB and ACTA1, the lower force was associated with downward shifted force-sarcomere length relations, indicative of shorter thin filaments. Confocal microscopy confirmed shorter thin filaments in muscle fibers of these patients. A conditional Neb knockout mouse model, which recapitulates thin filament myopathy, revealed a compensatory mechanism; the lower force generation that was associated with shorter thin filaments was compensated for by increasing the number of sarcomeres in series. This allowed muscle fibers to operate at a shorter sarcomere length and maintain optimal thin-thick filament overlap. INTERPRETATION These findings might provide a novel direction for the development of therapeutic strategies for thin filament myopathy patients with shortened thin filament lengths. Ann Neurol 2016;79:959-969.
Collapse
Affiliation(s)
- Josine M de Winter
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Barbara Joureau
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands
| | - Eun-Jeong Lee
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Balázs Kiss
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Michaela Yuen
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Vandana A Gupta
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Christopher T Pappas
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Carol C Gregorio
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Ger J M Stienen
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands.,Department of Physics and Astronomy, VU University, Amsterdam, the Netherlands
| | - Simon Edvardson
- Pediatric Neurology Unit, Hadassah University Hospital, Jerusalem, Israel
| | - Carina Wallgren-Pettersson
- Department of Medical and Clinical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Folkhaelsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | - Vilma-Lotta Lehtokari
- Department of Medical and Clinical Genetics, Haartman Institute, University of Helsinki, Helsinki, Finland.,Folkhaelsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland
| | - Katarina Pelin
- Folkhaelsan Institute of Genetics, Biomedicum Helsinki, Helsinki, Finland.,Division of Genetics, Department of Biosciences, University of Helsinki, Helsinki, Finland
| | - Edoardo Malfatti
- Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Norma B Romero
- Center for Research in Myology, Pitié-Salpêtrière Hospital Group, Paris, France
| | - Baziel G van Engelen
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Nicol C Voermans
- Department of Neurology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Sandra Donkervoort
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD
| | - C G Bönnemann
- Neuromuscular and Neurogenetic Disorders of Childhood Section, National Institutes of Health, Bethesda, MD
| | - Nigel F Clarke
- Institute for Neuroscience and Muscle Research, Children's Hospital at Westmead, Westmead, New South Wales, Australia.,Discipline of Paediatrics and Child Health, University of Sydney, Sydney, New South Wales, Australia
| | - Alan H Beggs
- Division of Genetics and Genomics, Manton Center for Orphan Disease Research, Boston Children's Hospital, Harvard Medical School, Boston, MA
| | - Henk Granzier
- Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| | - Coen A C Ottenheijm
- Department of Physiology, VU University Medical Center, Amsterdam, the Netherlands.,Department of Cellular and Molecular Medicine, University of Arizona, Tucson, AZ
| |
Collapse
|
12
|
Béchir N, Pecchi É, Relizani K, Vilmen C, Le Fur Y, Bernard M, Amthor H, Bendahan D, Giannesini B. Mitochondrial impairment induced by postnatal ActRIIB blockade does not alter function and energy status in exercising mouse glycolytic muscle in vivo. Am J Physiol Endocrinol Metab 2016; 310:E539-49. [PMID: 26837807 DOI: 10.1152/ajpendo.00370.2015] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 01/24/2016] [Indexed: 11/22/2022]
Abstract
Because it leads to a rapid and massive muscle hypertrophy, postnatal blockade of the activin type IIB receptor (ActRIIB) is a promising therapeutic strategy for counteracting muscle wasting. However, the functional consequences remain very poorly documented in vivo. Here, we have investigated the impact of 8-wk ActRIIB blockade with soluble receptor (sActRIIB-Fc) on gastrocnemius muscle anatomy, energy metabolism, and force-generating capacity in wild-type mice, using totally noninvasive magnetic resonance imaging (MRI) and dynamic(31)P-MRS. Compared with vehicle (PBS) control, sActRIIB-Fc treatment resulted in a dramatic increase in body weight (+29%) and muscle volume (+58%) calculated from hindlimb MR imaging, but did not alter fiber type distribution determined via myosin heavy chain isoform analysis. In resting muscle, sActRIIB-Fc treatment induced acidosis and PCr depletion, thereby suggesting reduced tissue oxygenation. During an in vivo fatiguing exercise (6-min repeated maximal isometric contraction electrically induced at 1.7 Hz), maximal and total absolute forces were larger in sActRIIB-Fc treated animals (+26 and +12%, respectively), whereas specific force and fatigue resistance were lower (-30 and -37%, respectively). Treatment with sActRIIB-Fc further decreased the maximal rate of oxidative ATP synthesis (-42%) and the oxidative capacity (-34%), but did not alter the bioenergetics status in contracting muscle. Our findings demonstrate in vivo that sActRIIB-Fc treatment increases absolute force-generating capacity and reduces mitochondrial function in glycolytic gastrocnemius muscle, but this reduction does not compromise energy status during sustained activity. Overall, these data support the clinical interest of postnatal ActRIIB blockade.
Collapse
Affiliation(s)
- Nelly Béchir
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Émilie Pecchi
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Karima Relizani
- Université de Versailles Saint-Quentin-en-Yvelines, UFR des sciences de la santé, INSERM U1179, LIA BAHN CSM, SQY Therapeutics, 78180 Montigny-le-Bretonneux, France
| | - Christophe Vilmen
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Monique Bernard
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Helge Amthor
- Université de Versailles Saint-Quentin-en-Yvelines, UFR des sciences de la santé, INSERM U1179, LIA BAHN CSM, SQY Therapeutics, 78180 Montigny-le-Bretonneux, France
| | - David Bendahan
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| | - Benoît Giannesini
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale, UMR 7339, 13385, Marseille, France; and
| |
Collapse
|
13
|
Fouré A, Wegrzyk J, Le Fur Y, Mattei JP, Boudinet H, Vilmen C, Bendahan D, Gondin J. Impaired mitochondrial function and reduced energy cost as a result of muscle damage. Med Sci Sports Exerc 2016; 47:1135-44. [PMID: 25371171 DOI: 10.1249/mss.0000000000000523] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
PURPOSE Although it has been largely acknowledged that isometric neuromuscular electrostimulation (NMES) exercise induces larger muscle damage than voluntary contractions, the corresponding effects on muscle energetics remain to be determined. Voluntary exercise-induced muscle damage (EIMD) has been reported to have minor slight effects on muscle metabolic response to subsequent dynamic exercise, but the magnitude of muscle energetics alterations for NMES EIMD has never been documented. METHODS ³¹P magnetic resonance spectroscopy measurements were performed in 13 young healthy males during a standardized rest-exercise-recovery protocol before (D0) and 2 d (D2) and 4 d (D4) after NMES EIMD on knee extensor muscles. Changes in kinetics of phosphorylated metabolite concentrations (i.e., phosphocreatine [PCr], inorganic phosphate [Pi], and adenosine triphosphate [ATP]) and pH were assessed to investigate aerobic and anaerobic rates of ATP production and energy cost of contraction (Ec). RESULTS Resting [Pi]/[PCr] ratio increased at D2 (+39%) and D4 (+29%), mainly owing to the increased [Pi] (+43% and +32%, respectively), whereas a significant decrease in resting pH was determined (-0.04 pH unit and -0.03 pH unit, respectively). PCr recovery rate decreased at D2 (-21%) and D4 (-23%) in conjunction with a significantly decreased total rate of ATP production at D4 (-18%) mainly owing to an altered aerobic ATP production (-19%). Paradoxically, Ec was decreased at D4 (-21%). CONCLUSION Overall, NMES EIMD led to intramuscular acidosis in resting muscle and mitochondrial impairment in exercising muscle. Alterations of noncontractile processes and/or adaptive mechanisms to muscle damage might account for the decreased Ec during the dynamic exercise.
Collapse
Affiliation(s)
- Alexandre Fouré
- 1Aix-Marseille University, Centre National de la Recherche Scientifique (CNRS), Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Unité Mixte de Recherche 7339, Marseille, FRANCE; 2Assistance Publique des Hôpitaux de Marseille (APHM), Sainte Marguerite Hospital, Department of Rheumatology, Marseille, FRANCE; and 3APHM, La Timone Hospital, Centre d'Exploration Métabolique par Résonance Magnétique (CEMEREM), Imaging Center, Marseille, FRANCE
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Alterations at the cross-bridge level are associated with a paradoxical gain of muscle function in vivo in a mouse model of nemaline myopathy. PLoS One 2014; 9:e109066. [PMID: 25268244 PMCID: PMC4182639 DOI: 10.1371/journal.pone.0109066] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 09/09/2014] [Indexed: 11/29/2022] Open
Abstract
Nemaline myopathy is the most common disease entity among non-dystrophic skeletal muscle congenital diseases. The first disease causing mutation (Met9Arg) was identified in the gene encoding α-tropomyosinslow gene (TPM3). Considering the conflicting findings of the previous studies on the transgenic (Tg) mice carrying the TPM3Met9Arg mutation, we investigated carefully the effect of the Met9Arg mutation in 8–9 month-old Tg(TPM3)Met9Arg mice on muscle function using a multiscale methodological approach including skinned muscle fibers analysis and invivo investigations by magnetic resonance imaging and 31-phosphorus magnetic resonance spectroscopy. While invitro maximal force production was reduced in Tg(TPM3)Met9Arg mice as compared to controls, invivo measurements revealed an improved mechanical performance in the transgenic mice as compared to the former. The reduced invitro muscle force might be related to alterations occuring at the cross-bridges level with muscle-specific underlying mechanisms. In vivo muscle improvement was not associated with any changes in either muscle volume or energy metabolism. Our findings indicate that TPM3(Met9Arg) mutation leads to a mild muscle weakness invitro related to an alteration at the cross-bridges level and a paradoxical gain of muscle function invivo. These results clearly point out that invitro alterations are muscle-dependent and do not necessarily translate into similar changes invivo.
Collapse
|
15
|
Rubenstein PA, Wen KK. Insights into the effects of disease-causing mutations in human actins. Cytoskeleton (Hoboken) 2014; 71:211-29. [PMID: 24574087 DOI: 10.1002/cm.21169] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Revised: 02/13/2013] [Accepted: 02/19/2014] [Indexed: 01/04/2023]
Abstract
Mutations in all six actins in humans have now been shown to cause diseases. However, a number of factors have made it difficult to gain insight into how the changes in actin functions brought about by these pathogenic mutations result in the disease phenotype. These include the presence of multiple actins in the same cell, limited accessibility to pure mutant material, and complexities associated with the structures and their component cells that manifest the diseases. To try to circumvent these difficulties, investigators have turned to the use of model systems. This review describes these various approaches, the initial results obtained using them, and the insight they have provided into allosteric mechanisms that govern actin function. Although results so far have not explained a particular disease phenotype at the molecular level, they have provided valuable insight into actin function at the mechanistic level which can be utilized in the future to delineate the molecular bases of these different actinopathies.
Collapse
Affiliation(s)
- Peter A Rubenstein
- Department of Biochemistry, University of Iowa Carver College of Medicine, Iowa City, Iowa
| | | |
Collapse
|
16
|
Multimodal MRI and (31)P-MRS investigations of the ACTA1(Asp286Gly) mouse model of nemaline myopathy provide evidence of impaired in vivo muscle function, altered muscle structure and disturbed energy metabolism. PLoS One 2013; 8:e72294. [PMID: 23977274 PMCID: PMC3748127 DOI: 10.1371/journal.pone.0072294] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 07/15/2013] [Indexed: 02/03/2023] Open
Abstract
Nemaline myopathy (NM), the most common non-dystrophic congenital disease of skeletal muscle, can be caused by mutations in the skeletal muscle α-actin gene (ACTA1) (~25% of all NM cases and up to 50% of severe forms of NM). Muscle function of the recently generated transgenic mouse model carrying the human Asp286Gly mutation in the ACTA1 gene (Tg(ACTA1)(Asp286Gly)) has been mainly investigated in vitro. Therefore, we aimed at providing a comprehensive picture of the in vivo hindlimb muscle function of Tg(ACTA1)(Asp286Gly) mice by combining strictly noninvasive investigations. Skeletal muscle anatomy (hindlimb muscles, intramuscular fat volumes) and microstructure were studied using multimodal magnetic resonance imaging (Dixon, T2, Diffusion Tensor Imaging [DTI]). Energy metabolism was studied using 31-phosphorus Magnetic Resonance Spectroscopy ((31)P-MRS). Skeletal muscle contractile performance was investigated while applying a force-frequency protocol (1-150 Hz) and a fatigue protocol (6 min-1.7 Hz). Tg(ACTA1)(Asp286Gly) mice showed a mild muscle weakness as illustrated by the reduction of both absolute (30%) and specific (15%) maximal force production. Dixon MRI did not show discernable fatty infiltration in Tg(ACTA1)(Asp286Gly) mice indicating that this mouse model does not reproduce human MRI findings. Increased T2 values were observed in Tg(ACTA1)(Asp286Gly) mice and might reflect the occurrence of muscle degeneration/regeneration process. Interestingly, T2 values were linearly related to muscle weakness. DTI experiments indicated lower λ2 and λ3 values in Tg(ACTA1)(Asp286Gly) mice, which might be associated to muscle atrophy and/or the presence of histological anomalies. Finally (31)P-MRS investigations illustrated an increased anaerobic energy cost of contraction in Tg(ACTA1)(Asp286Gly) mice, which might be ascribed to contractile and non-contractile processes. Overall, we provide a unique set of information about the anatomic, metabolic and functional consequences of the Asp286Gly mutation that might be considered as relevant biomarkers for monitoring the severity and/or the progression of NM and for assessing the efficacy of potential therapeutic interventions.
Collapse
|