1
|
Zhang X, Xing T, Zhao L, Zhang L, Gao F. Transcriptomic meta-analysis and exploration of differentially expressed gene functions in wooden breast myopathy of broilers. Poult Sci 2024; 103:104047. [PMID: 39068695 PMCID: PMC11332813 DOI: 10.1016/j.psj.2024.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Wooden breast (WB) myopathy is a common myopathy found in commercial broiler chickens worldwide. Although extensive research on WB has been conducted using transcriptomics, effectively screening and analyzing key target information remains a challenge. In this present study, 5 transcriptomic datasets obtained from the National Center for Biotechnology Information (NCBI) were used. A meta-analysis was conducted to identify meta-differentially expressed genes (meta-DEGs) involved in the response of broilers to WB myopathy. These meta-DEGs were further analyzed using Kyoto Encyclopedia of Genes and Genomes (KEGG), Gene Ontology (GO), and Gene Set Enrichment Analysis (GSEA), supplemented by protein-protein interaction (PPI) network construction to pinpoint hub genes. These analyses help to reveal key genes, pathways, and biological processes associated with WB myopathy. The results showed that 645 up-regulated and 99 down-regulated significant meta-DEGs (|log2FC| ≥0.6, P-Meta < 0.05, and present in at least 4 datasets) were identified. GO analysis showed that multiple fibrosis-related pathways/biological processes, such as cell adhesion, connective tissue development, and collagen-rich extracellular matrix, as well as calcium ion binding were significantly upregulated. PPI analysis identified TGFB3, COL1A1, COL1A2, and COL3A1 as central hub genes involved in the fibrotic processes. KEGG analysis revealed significant upregulation of apoptosis and lysosomal pathways, with an enrichment of Ca2+-related signals and lysosomal cathepsins within the apoptosis pathway. Additionally, GSEA indicated a suppression of the tricarboxylic acid (TCA) cycle and the mitochondrial electron transport chain (ETC) in WB myopathy, with PPI analysis also identifying specific hub genes associated with these pathways. In conclusion, our comprehensive analysis of meta-DEGs elucidated key biological processes and pathways implicated in WB myopathy, including fibrosis, apoptosis, altered calcium signaling, and metabolic disruption. The identification of specific hub genes offers avenues for further investigation into the pathogenesis of this condition, potentially guiding targeted therapeutic strategies.
Collapse
Affiliation(s)
- Xinrui Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China
| | - Tong Xing
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China
| | - Liang Zhao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China
| | - Lin Zhang
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China
| | - Feng Gao
- College of Animal Science and Technology, Key Laboratory of Animal Origin Food Production and Safety Guarantee of Jiangsu Province, Jiangsu Collaborative Innovation Center of Meat Production and Processing, Quality and Safety Control, Nanjing Agricultural University, Nanjing 210095, People' s Republic of China.
| |
Collapse
|
2
|
De Vos K, Mavrogiannis A, Wolters JC, Schlenner S, Wierda K, Cortés Calabuig Á, Chinnaraj R, Dermesrobian V, Armoudjian Y, Jacquemyn M, Corthout N, Daelemans D, Annaert P. Tankyrase1/2 inhibitor XAV-939 reverts EMT and suggests that PARylation partially regulates aerobic activities in human hepatocytes and HepG2 cells. Biochem Pharmacol 2024; 227:116445. [PMID: 39053638 DOI: 10.1016/j.bcp.2024.116445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/27/2024]
Abstract
The maintenance of a highly functional metabolic epithelium in vitro is challenging. Metabolic impairments in primary human hepatocytes (PHHs) over time is primarily due to epithelial-to-mesenchymal transitioning (EMT). The immature hepatoma cell line HepG2 was used as an in vitro model to explore strategies for enhancing the hepatic phenotype. The phenotypic characterization includes measuring the urea cycle, lipid storage, tricarboxylic acid-related metabolites, reactive oxygen species, endoplasmic reticulum calcium efflux, mitochondrial membrane potentials, oxygen consumptions rate, and CYP450 biotransformation capacity. Expression studies were performed with transcriptomics, co-immunoprecipitation and proteomics. CRISPR/Cas9 was also employed to genetically engineer HepG2 cells. After confirming that PHHs develop an EMT phenotype, expression of tankyrase1/2 was found to increase over time. EMT was reverted when blocking tankyrases1/2-dependent poly-ADP-ribosylation (PARylation) activity, by biochemical and genetic perturbation. Wnt/β-catenin inhibitor XAV-939 blocks tankyrase1/2 and treatment elevated several oxygen-consuming reactions (electron-transport chain, OXHPOS, CYP450 mono-oxidase activity, phase I/II xenobiotic biotransformation, and prandial turnover), suggesting that cell metabolism was enhanced. Glutathione-dependent redox homeostasis was also significantly improved in the XAV-939 condition. Oxygen consumption rate and proteomics experiments in tankyrase1/2 double knockout HepG2 cells then uncovered PARylation as master regulator of aerobic-dependent cell respiration. Furthermore, novel tankyrase1/2-dependent PARylation targets, including mitochondrial DLST, and OGDH, were revealed. This work exposed a new mechanistic framework by linking PARylation to respiration and metabolism, thereby broadening the current understanding that underlies these vital processes. XAV-939 poses an immediate and straightforward strategy to improve aerobic activities, and metabolism, in (immature) cell cultures.
Collapse
Affiliation(s)
- Kristof De Vos
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - Adamantios Mavrogiannis
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Justina Clarinda Wolters
- Section Systems Medicine of Metabolism and Signaling, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Groningen 9713 AV, the Netherlands
| | - Susan Schlenner
- Adaptive Immunology, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Keimpe Wierda
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; Electrophysiology Unit, VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium
| | | | - Reena Chinnaraj
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | - Vera Dermesrobian
- KU Leuven Flow and Mass Cytometry Facility, Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium
| | | | - Maarten Jacquemyn
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Nikky Corthout
- VIB-KU Leuven Center for Brain & Disease Research, 3000 Leuven, Belgium; VIB Bio Imaging Core, 3000 Leuven, Belgium
| | - Dirk Daelemans
- Laboratory of Virology and Chemotherapy, Department of Microbiology, Immunology and Transplantation, KU Leuven, Rega Institute, 3000 Leuven, Belgium
| | - Pieter Annaert
- Laboratory of Drug Delivery and Disposition, Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium; BioNotus GCV, 2845 Niel, Belgium.
| |
Collapse
|
3
|
Ren J, Che Y, Li H, Gao H, Wang Y, Wang Y, Su H, Li Z, Li J, Qu P. SGK3 deficiency in macrophages suppresses angiotensin II-induced cardiac remodeling via regulating Ndufa13-mediated mitochondrial oxidative stress. Cell Mol Life Sci 2024; 81:359. [PMID: 39158709 PMCID: PMC11335188 DOI: 10.1007/s00018-024-05395-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/01/2024] [Accepted: 08/04/2024] [Indexed: 08/20/2024]
Abstract
Infiltration of monocyte-derived macrophages plays a crucial role in cardiac remodeling and dysfunction. The serum and glucocorticoid-inducible protein kinase 3 (SGK3) is a downstream factor of PI3K signaling, regulating various biological processes via an AKT-independent signaling pathway. SGK3 has been implicated in cardiac remodeling. However, the contribution of macrophagic SGK3 to hypertensive cardiac remodeling remains unclear. A cardiac remodeling model was established by angiotensin II (Ang II) infusion in SGK3-Lyz2-CRE (f/f, +) and wild-type mice to assess the function of macrophagic SGK3. Additionally, a co-culture system of SGK3-deficient or wild-type macrophages and neonatal rat cardiomyocytes (CMs) or neonatal rat fibroblasts (CFs) was established to evaluate the effects of SGK3 and the underlying mechanisms. SGK3 levels were significantly elevated in both peripheral blood mononuclear cells and serum from patients with heart failure. Macrophage SGK3 deficiency attenuated Ang II-induced macrophage infiltration, myocardial hypertrophy, myocardial fibrosis, and mitochondrial oxidative stress. RNA sequencing suggested Ndufa13 as the candidate gene in the effect of SGK3 on Ang II-induced cardiac remolding. Downregulation of Ndufa13 in CMs and CFs prevented the suppression of cardiac remodeling caused by SGK3 deficiency in macrophages. Mechanistically, the absence of SGK3 led to a reduction in IL-1β secretion by inhibiting the NLRP3/Caspase-1/IL-1β pathway in macrophages, consequently suppressing upregulated Ndufa13 expression and mitochondrial oxidative stress in CMs and CFs. This study provides new evidence that SGK3 is a potent contributor to the pathogenesis of hypertensive cardiac remodeling, and targeting SGK3 in macrophages may serve as a potential therapy for cardiac remodeling.
Collapse
Affiliation(s)
- Jiayu Ren
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Yilin Che
- The 1st Department of Thoracic Medical Oncology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Heyu Li
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Haijun Gao
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Yue Wang
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Ying Wang
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Hongtong Su
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China
| | - Zhihan Li
- The Department of Pathology, Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Jing Li
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China.
| | - Peng Qu
- Department of Cardiology, Institute of Heart and Vascular Diseases, Second Affiliated Hospital of Dalian Medical University, 467 Zhongshan Road, Dalian, Liaoning, 116023, P.R. China.
- Faculty of Medicine, Dalian University of Technology, No.2 Linggong Road, Ganjingzi District, Liaoning, 116024, P.R. China.
| |
Collapse
|
4
|
He X, Zhou A, Lu H, Chen Y, Huang G, Yue X, Zhao P, Wu Y. Correction: Suppression of Mitochondrial Complex I Influences Cell Metastatic Properties. PLoS One 2024; 19:e0303435. [PMID: 38696504 PMCID: PMC11065242 DOI: 10.1371/journal.pone.0303435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2024] Open
Abstract
[This corrects the article DOI: 10.1371/journal.pone.0061677.].
Collapse
|
5
|
Chinopoulos C. Complex I activity in hypoxia: implications for oncometabolism. Biochem Soc Trans 2024; 52:529-538. [PMID: 38526218 PMCID: PMC11088919 DOI: 10.1042/bst20230189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/06/2024] [Accepted: 03/14/2024] [Indexed: 03/26/2024]
Abstract
Certain cancer cells within solid tumors experience hypoxia, rendering them incapable of oxidative phosphorylation (OXPHOS). Despite this oxygen deficiency, these cells exhibit biochemical pathway activity that relies on NAD+. This mini-review scrutinizes the persistent, residual Complex I activity that oxidizes NADH in the absence of oxygen as the electron acceptor. The resulting NAD+ assumes a pivotal role in fueling the α-ketoglutarate dehydrogenase complex, a critical component in the oxidative decarboxylation branch of glutaminolysis - a hallmark oncometabolic pathway. The proposition is that through glutamine catabolism, high-energy phosphate intermediates are produced via substrate-level phosphorylation in the mitochondrial matrix substantiated by succinyl-CoA ligase, partially compensating for an OXPHOS deficiency. These insights provide a rationale for exploring Complex I inhibitors in cancer treatment, even when OXPHOS functionality is already compromised.
Collapse
|
6
|
Wang M, Lan S, Zhang W, Jin Q, Du H, Sun X, He L, Meng X, Su L, Liu G. Anti-Cancer Potency of Copper-Doped Carbon Quantum Dots Against Breast Cancer Progression. Int J Nanomedicine 2024; 19:1985-2004. [PMID: 38435754 PMCID: PMC10908338 DOI: 10.2147/ijn.s449887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024] Open
Abstract
Introduction The anti-cancer potency of copper-doped carbon quantum dots (Cu-CDs) against breast cancer progression needs more detailed investigations. Methods With urea and ethylene glycol applied as carbon sources and copper sulfate used as a reactive dopant, Cu-CDs were synthesized in the current study by a one-step hydrothermal synthesis method, followed by the characterization and biocompatibility evaluations of Cu-CDs. Subsequently, the anti-cancer potency of Cu-CDs against breast cancer progression was confirmed by these biochemical, molecular, and transcriptomic assessments, including viability, proliferation, migration, invasion, adhesion, clonogenicity, cell cycle distribution, apoptosis, redox homeostasis, and transcriptomic assays of MDA-MB-231 cells. Results The biocompatibility of Cu-CDs was confirmed based on the non-significant changes in the pathological and physiological parameters in the Cu-CDs treated mice, as well as the noncytotoxic effect of Cu-CDs on normal cells. Moreover, the Cu-CDs treatments not only decreased the viability, proliferation, migration, invasion, adhesion, and clonogenicity of MDA-MB-231 cells but also induced the redox imbalance, cell cycle arrest, and apoptosis of MDA-MB-231 cells via ameliorating the mitochondrial dysfunctions and regulating the MAPK signaling pathway. Conclusion Our findings confirmed the biosafety and excellent anti-cancer potency of Cu-CDs against breast cancer progression by tapping into mechanisms that disrupt malignant behaviors and oxidative homeostasis of breast cancer cells.
Collapse
Affiliation(s)
- Mengqi Wang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Shuting Lan
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Wenqi Zhang
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Qin Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu, People’s Republic of China
| | - Hua Du
- Department of Pathology, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiaomei Sun
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Lijun He
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Xiangyun Meng
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Liya Su
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| | - Gang Liu
- Key Laboratory of Medical Cell Biology, Department of Achievement Transformation, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, Inner Mongolia, People’s Republic of China
| |
Collapse
|
7
|
Chen T, Li D, Wang Y, Shen X, Dong A, Dong C, Duan K, Ren J, Li W, Shu G, Yang J, Xie Y, Qian F, Zhou J. Loss of NDUFS1 promotes gastric cancer progression by activating the mitochondrial ROS-HIF1α-FBLN5 signaling pathway. Br J Cancer 2023; 129:1261-1273. [PMID: 37644092 PMCID: PMC10575981 DOI: 10.1038/s41416-023-02409-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Recent studies suggested that NDUFS1 has an important role in human cancers; however, the effects of NDUFS1 on gastric cancer (GC) are still not fully understood. METHODS We confirmed that NDUFS1 is downregulated in GC cells through western blot immunohistochemistry and bioinformation analysis. The effect of NDUFS1 on GC was studied by CCK-8, colony formation, transwell assay in vitro and Mouse xenograft assay in vivo. Expression and subcellular localization of NDUFS1 and the content of mitochondrial reactive oxygen species (mROS) was observed by confocal reflectance microscopy. RESULTS Reduced expression of NDUFS1 was found in GC tissues and cell lines. Also, NDUFS1 overexpression inhibited GC cell proliferation, migration, and invasion in vitro as well as growth and metastasis in vivo. Mechanistically, NDUFS1 reduction led to the activation of the mROS-hypoxia-inducible factor 1α (HIF1α) signaling pathway. We further clarified that NDUFS1 reduction upregulated the expression of fibulin 5 (FBLN5), a transcriptional target of HIF1α, through activation of mROS-HIF1α signaling in GC cells. CONCLUSIONS The results of this study indicate that NDUFS1 downregulation promotes GC progression by activating an mROS-HIF1α-FBLN5 signaling pathway.
Collapse
Affiliation(s)
- Tao Chen
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Dongbao Li
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Yunliang Wang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Xiaochun Shen
- Department of Respiratory Medicine, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Anqi Dong
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Chao Dong
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Kaipeng Duan
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Jiayu Ren
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Weikang Li
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Gege Shu
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Jiaoyang Yang
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China
| | - Yufeng Xie
- Department of Thoracic Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
| | - Fuliang Qian
- Center for Systems Biology, Suzhou Medical College of Soochow University, 215123, Suzhou, China.
- Medical Center of Soochow University, 215123, Suzhou, China.
- Jiangsu Province Engineering Research Center of Precision Diagnostics and Therapeutics Development, Soochow University, 215123, Suzhou, China.
| | - Jin Zhou
- Department of General Surgery, the First Affiliated Hospital of Soochow University, 215006, Suzhou, China.
| |
Collapse
|
8
|
Bassal MA. The Interplay between Dysregulated Metabolism and Epigenetics in Cancer. Biomolecules 2023; 13:944. [PMID: 37371524 DOI: 10.3390/biom13060944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/21/2023] [Accepted: 05/29/2023] [Indexed: 06/29/2023] Open
Abstract
Cellular metabolism (or energetics) and epigenetics are tightly coupled cellular processes. It is arguable that of all the described cancer hallmarks, dysregulated cellular energetics and epigenetics are the most tightly coregulated. Cellular metabolic states regulate and drive epigenetic changes while also being capable of influencing, if not driving, epigenetic reprogramming. Conversely, epigenetic changes can drive altered and compensatory metabolic states. Cancer cells meticulously modify and control each of these two linked cellular processes in order to maintain their tumorigenic potential and capacity. This review aims to explore the interplay between these two processes and discuss how each affects the other, driving and enhancing tumorigenic states in certain contexts.
Collapse
Affiliation(s)
- Mahmoud Adel Bassal
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 117599, Singapore
- Harvard Stem Cell Institute, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
9
|
Singh S, De Carlo F, Ibrahim MA, Penfornis P, Mouton AJ, Tripathi SK, Agarwal AK, Eastham L, Pasco DS, Balachandran P, Claudio PP. The Oligostilbene Gnetin H Is a Novel Glycolysis Inhibitor That Regulates Thioredoxin Interacting Protein Expression and Synergizes with OXPHOS Inhibitor in Cancer Cells. Int J Mol Sci 2023; 24:ijms24097741. [PMID: 37175448 PMCID: PMC10178141 DOI: 10.3390/ijms24097741] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 04/12/2023] [Accepted: 04/18/2023] [Indexed: 05/15/2023] Open
Abstract
Since aerobic glycolysis was first observed in tumors almost a century ago by Otto Warburg, the field of cancer cell metabolism has sparked the interest of scientists around the world as it might offer new avenues of treatment for malignant cells. Our current study claims the discovery of gnetin H (GH) as a novel glycolysis inhibitor that can decrease metabolic activity and lactic acid synthesis and displays a strong cytostatic effect in melanoma and glioblastoma cells. Compared to most of the other glycolysis inhibitors used in combination with the complex-1 mitochondrial inhibitor phenformin (Phen), GH more potently inhibited cell growth. RNA-Seq with the T98G glioblastoma cell line treated with GH showed more than an 80-fold reduction in thioredoxin interacting protein (TXNIP) expression, indicating that GH has a direct effect on regulating a key gene involved in the homeostasis of cellular glucose. GH in combination with phenformin also substantially enhances the levels of p-AMPK, a marker of metabolic catastrophe. These findings suggest that the concurrent use of the glycolytic inhibitor GH with a complex-1 mitochondrial inhibitor could be used as a powerful tool for inducing metabolic catastrophe in cancer cells and reducing their growth.
Collapse
Affiliation(s)
- Shivendra Singh
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Flavia De Carlo
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Mohamed A Ibrahim
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Patrice Penfornis
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
- Cancer Center & Research Institute, Department of Pharmacology & Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Alan J Mouton
- Department of Physiology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Siddharth K Tripathi
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Ameeta K Agarwal
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Linda Eastham
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - David S Pasco
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Premalatha Balachandran
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| | - Pier Paolo Claudio
- National Center for Natural Products Research, Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
- Cancer Center & Research Institute, Department of Pharmacology & Toxicology, School of Medicine, University of Mississippi Medical Center, Jackson, MS 39216, USA
- Department of Biomolecular Sciences, School of Pharmacy, University of Mississippi, University, MS 38677, USA
| |
Collapse
|
10
|
Zhou Y, Zou J, Xu J, Zhou Y, Cen X, Zhao Y. Recent advances of mitochondrial complex I inhibitors for cancer therapy: Current status and future perspectives. Eur J Med Chem 2023; 251:115219. [PMID: 36893622 DOI: 10.1016/j.ejmech.2023.115219] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/09/2023] [Accepted: 02/19/2023] [Indexed: 02/26/2023]
Abstract
Mitochondrial complex I (CI) as a critical multifunctional respiratory complex of electron transport chain (ETC) in mitochondrial oxidative phosphorylation has been identified as vital and essence in ATP production, biosynthesis and redox balance. Recent progress in targeting CI has provided both insight and inspiration for oncotherapy, highlighting that the development of CI-targeting inhibitors is a promising therapeutic approach to fight cancer. Natural products possessing of ample scaffold diversity and structural complexity are the majority source of CI inhibitors, although low specificity and safety hinder their extensive application. Along with the gradual deepening in understanding of CI structure and function, significant progress has been achieved in exploiting novel and selective small molecules targeting CI. Among them, IACS-010759 had been approved by FDA for phase I trial in advanced cancers. Moreover, drug repurposing represents an effective and prospective strategy for CI inhibitor discovery. In this review, we mainly elaborate the biological function of CI in tumor progression, summarize the CI inhibitors reported in recent years and discuss the further perspectives for CI inhibitor application, expecting this work may provide insights into innovative discovery of CI-targeting drugs for cancer treatment.
Collapse
Affiliation(s)
- Yang Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| | - Jiao Zou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Jing Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Yue Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China
| | - Xiaobo Cen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China; National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yinglan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
11
|
Li F, Niu A, Zhao K, Feng J, Chen Y. GRIM-19 in asthenozoospermia regulates GC-2 spd cell proliferation, apoptosis and migration. Sci Rep 2023; 13:3106. [PMID: 36813832 PMCID: PMC9947114 DOI: 10.1038/s41598-023-29775-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 02/10/2023] [Indexed: 02/24/2023] Open
Abstract
Asthenozoospermia (AZS) is a severe form of male infertility with no clear pathogenesis, despite numerous research efforts, there is no consensus on this. This study was to investigate the expression of gene-associated with retinoid-interferon-induced mortality 19 (GRIM-19) in the sperm of patients with asthenozoospermia and the regulation of GC-2 spd cell proliferation, apoptosis and migration. We analyzed the sperm samples from 82 asthenozoospermia and normal patients were collected in the First People's Hospital of Shangqiu and the First Affiliated Hospital of Zhengzhou University. Immunofluorescence, western blots and RT-qPCR analyses were used to verify the expressions of GRIM-19. MTT assays were used to assess cell proliferations, flow cytometry was performed to assess cell apoptosis, wound‑healing was performed to measure cell migration. Immunofluorescence showed that GRIM-19 is predominantly expressed in the sperm mid-piece, the mRNA expressions of GRIM-19 in sperms of the asthenozoospermia group were significantly low, relative to the normal group (OR 0.266; 95% CI = 0.081-0.868; P = 0.028). The protein expressions of GRIM-19 in sperms of the asthenozoospermia group were significantly lower than that of the normal group as well (GRIM-19/GAPDH: 0.827 ± 0.063 vs 0.458 ± 0.033; P < 0.001). GRIM-19 overexpression promotes GC-2 spd cell proliferation and migration and reduces apoptosis, while GRIM-19-silenced reduces GC-2 spd cell proliferation and migration and increased apoptosis. GRIM-19 is closely related to the occurrence of asthenozoospermia and promotes GC-2 spd cell proliferation and migration and reduces apoptosis.
Collapse
Affiliation(s)
- Fei Li
- grid.440265.10000 0004 6761 3768Center for Reproductive Medicine, The First People’s Hospital of Shangqiu, 292 Kaixuan South Road, Shangqiu, Henan China
| | - Aiqin Niu
- grid.440265.10000 0004 6761 3768Center for Reproductive Medicine, The First People’s Hospital of Shangqiu, 292 Kaixuan South Road, Shangqiu, Henan China
| | - Kangjun Zhao
- The First Clinical College of Hubei University of Medicine, Hubei, China
| | - Jianbing Feng
- grid.207374.50000 0001 2189 3846The First Affiliated Hospital of Zhengzhou University, Henan, China
| | - Ying Chen
- Center for Reproductive Medicine, The First People's Hospital of Shangqiu, 292 Kaixuan South Road, Shangqiu, Henan, China.
| |
Collapse
|
12
|
Zheng X, Ma H, Wang J, Huang M, Fu D, Qin L, Yin Q. Energy metabolism pathways in breast cancer progression: The reprogramming, crosstalk, and potential therapeutic targets. Transl Oncol 2022; 26:101534. [PMID: 36113343 PMCID: PMC9482139 DOI: 10.1016/j.tranon.2022.101534] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 08/14/2022] [Accepted: 09/04/2022] [Indexed: 11/19/2022] Open
Abstract
Breast cancer (BC) is a malignant tumor that seriously endangers health in women. BC, like other cancers, is accompanied by metabolic reprogramming. Among energy metabolism-related pathways, BC exhibits enhanced glycolysis, tricarboxylic acid (TCA) cycle, pentose phosphate pathway (PPP), glutamate metabolism, and fatty acid metabolism activities. These pathways facilitate the proliferation, growth and migration of BC cells. The progression of BC is closely related to the alterations in the activity or expression level of several metabolic enzymes, which are regulated by the intrinsic factors such as the key signaling and transcription factors. The metabolic reprogramming in the progression of BC is attributed to the aberrant expression of the signaling and transcription factors associated with the energy metabolism pathways. Understanding the metabolic mechanisms underlying the development of BC will provide a druggable potential for BC treatment and drug discovery.
Collapse
Affiliation(s)
- Xuewei Zheng
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Haodi Ma
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Jingjing Wang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Mengjiao Huang
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Dongliao Fu
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China
| | - Ling Qin
- Department of Hematology, The First Affiliated Hospital of Henan University of Science and Technology, Luoyang, China
| | - Qinan Yin
- School of Medical Technology and Engineering, Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
13
|
Vikramdeo KS, Sudan SK, Singh AP, Singh S, Dasgupta S. Mitochondrial respiratory complexes: Significance in human mitochondrial disorders and cancers. J Cell Physiol 2022; 237:4049-4078. [PMID: 36074903 DOI: 10.1002/jcp.30869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 07/18/2022] [Accepted: 08/23/2022] [Indexed: 11/07/2022]
Abstract
Mitochondria are pivotal organelles that govern cellular energy production through the oxidative phosphorylation system utilizing five respiratory complexes. In addition, mitochondria also contribute to various critical signaling pathways including apoptosis, damage-associated molecular patterns, calcium homeostasis, lipid, and amino acid biosynthesis. Among these diverse functions, the energy generation program oversee by mitochondria represents an immaculate orchestration and functional coordination between the mitochondria and nuclear encoded molecules. Perturbation in this program through respiratory complexes' alteration results in the manifestation of various mitochondrial disorders and malignancy, which is alarmingly becoming evident in the recent literature. Considering the clinical relevance and importance of this emerging medical problem, this review sheds light on the timing and nature of molecular alterations in various respiratory complexes and their functional consequences observed in various mitochondrial disorders and human cancers. Finally, we discussed how this wealth of information could be exploited and tailored to develop respiratory complex targeted personalized therapeutics and biomarkers for better management of various incurable human mitochondrial disorders and cancers.
Collapse
Affiliation(s)
- Kunwar Somesh Vikramdeo
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Sarabjeet Kour Sudan
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA
| | - Ajay P Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Seema Singh
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| | - Santanu Dasgupta
- Department of Pathology, Mitchell Cancer Institute, University of South Alabama, Mobile, Alabama, USA.,Department of Pathology, College of Medicine, University of South Alabama, Mobile, Alabama, USA.,Department of Biochemistry and Molecular Biology, University of South Alabama, Mobile, Alabama, USA
| |
Collapse
|
14
|
Hudson CN, He K, Pascal LE, Liu T, Myklebust LK, Dhir R, Srivastava P, Yoshimura N, Wang Z, Ricke WA, DeFranco DB. Increased COX-1 expression in benign prostate epithelial cells is triggered by mitochondrial dysfunction. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:234-245. [PMID: 36051613 PMCID: PMC9428567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 05/26/2022] [Indexed: 02/16/2023]
Abstract
BACKGROUND Prostatic inflammation is closely linked to the development and progression of benign prostatic hyperplasia (BPH). Clinical studies of non-steroidal anti-inflammatory drugs, which inhibit cyclooxygenase-2 (COX-2), targeting prostate inflammation patients with symptomatic BPH have demonstrated conflicting results, with some studies demonstrating symptom improvement and others showing no impact. Thus, understanding the role of the cyclooxygenases in BPH and prostatic inflammation is important. METHODS The expression of COX-1 was analyzed in a cohort of donors and BPH patients by immunohistochemistry and compared to previously determined characteristics for this same cohort. The impact of mitochondrial dysfunction on COX-1 and COX-2 was determined in experiments treating human benign prostate epithelial cell lines BPH-1 and RWPE-1 with rotenone and MitoQ. RWPE-1 cells were transfected with small interfering RNA specific to complex 1 gene NDUFS3. RESULTS COX-1 expression was increased in the epithelial cells of BPH specimens compared to young healthy organ donor and normal prostate adjacent to BPH and frequently co-occurred with COX-2 alteration in BPH patients. COX-1 immunostaining was associated with the presence of CD8+ cytotoxic T-cells, but was not associated with age, prostate size, COX-2 or the presence of CD4+, CD20+ or CD68+ inflammatory cells. In cell line studies, COX protein levels were elevated following treatment with inhibitors of mitochondrial function. MitoQ significantly decreased mitochondrial membrane potential in RWPE-1 cells. Knockdown of NDUFS3 stimulated COX-1 expression. CONCLUSION Our findings suggest COX-1 is elevated in BPH epithelial cells and is associated with increased presence of CD8+ cytotoxic T-cells. COX-1 can be induced in benign prostate epithelial cells in response to mitochondrial complex I inhibition, and knockdown of the complex 1 protein NDUFS3. COX-1 and mitochondrial dysfunction may play more of a role than previously recognized in the development of age-related benign prostatic disease.
Collapse
Affiliation(s)
- Chandler N Hudson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Kai He
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Laura E Pascal
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Teresa Liu
- Department of Urology, University of WisconsinMadison, WI, USA
| | | | - Rajiv Dhir
- Department of Pathology, UPMC, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Pooja Srivastava
- Department of Pathology, UPMC, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Naoki Yoshimura
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - Zhou Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Department of Urology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- UPMC Hillman Cancer Center, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| | - William A Ricke
- Department of Urology, University of WisconsinMadison, WI, USA
| | - Donald B DeFranco
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of MedicinePittsburgh, PA, USA
- Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh School of MedicinePittsburgh, PA, USA
| |
Collapse
|
15
|
Mitochondrial dysfunction and epithelial to mesenchymal transition in head neck cancer cell lines. Sci Rep 2022; 12:13255. [PMID: 35918485 PMCID: PMC9345891 DOI: 10.1038/s41598-022-16829-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 07/18/2022] [Indexed: 11/08/2022] Open
Abstract
Mitochondrial dysfunction promotes cancer aggressiveness, metastasis, and resistance to therapy. Similar traits are associated with epithelial mesenchymal transition (EMT). We questioned whether mitochondrial dysfunction induces EMT in head and neck cancer (HNC) cell lines. We induced mitochondrial dysfunction in four HNC cell lines with carbonyl cyanide-4(trifluoromethoxy)phenylhydrazone (FCCP), a mitochondrial electron transport chain uncoupling agent, and oligomycin, a mitochondrial ATP synthase inhibitor. Extracellular flux analyses and expression of the cystine/glutamate antiporter system xc (xCT) served to confirm mitochondrial dysfunction. Expression of the EMT-related transcription factor SNAI2, the mesenchymal marker vimentin and vimentin/cytokeratin double positivity served to detect EMT. In addition, holotomographic microscopy was used to search for morphological features of EMT. Extracellular flux analysis and xCT expression confirmed that FCCP/oligomycin induced mitochondrial dysfunction in all cell lines. Across the four cell lines, mitochondrial dysfunction resulted in an increase in relative SNAI2 expression from 8.5 ± 0.8 to 12.0 ± 1.1 (mean ± SEM; p = 0.007). This effect was predominantly caused by the CAL 27 cell line (increase from 2.2 ± 0.4 to 5.5 ± 1.0; p < 0.001). Similarly, only in CAL 27 cells vimentin expression increased from 2.2 ± 0.5 × 10-3 to 33.2 ± 10.2 × 10-3 (p = 0.002) and vimentin/cytokeratin double positive cells increased from 34.7 ± 5.1 to 67.5 ± 9.8% (p = 0.003), while the other 3 cell lines did not respond with EMT (all p > 0.1). Across all cell lines, FCCP/oligomycin had no effect on EMT characteristics in holotomographic microscopy. Mitochondrial dysfunction induced EMT in 1 of 4 HNC cell lines. Given the heterogeneity of HNC, mitochondrial dysfunction may be sporadically induced by EMT, but EMT does not explain the tumor promoting effects of mitochondrial dysfunction in general.
Collapse
|
16
|
Zhuan Q, Du X, Bai J, Zhou D, Luo Y, Liu H, Sun W, Wan P, Hou Y, Li J, Fu X. Proteomic profile of mouse oocytes after vitrification: A quantitative analysis based on 4D label-free technique. Theriogenology 2022; 187:64-73. [DOI: 10.1016/j.theriogenology.2022.04.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/23/2022] [Accepted: 04/24/2022] [Indexed: 10/18/2022]
|
17
|
Yadav T, Gau D, Roy P. Mitochondria-actin cytoskeleton crosstalk in cell migration. J Cell Physiol 2022; 237:2387-2403. [PMID: 35342955 PMCID: PMC9945482 DOI: 10.1002/jcp.30729] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 03/06/2022] [Accepted: 03/11/2022] [Indexed: 12/15/2022]
Abstract
Mitochondria perform diverse functions in the cell and their roles during processes such as cell survival, differentiation, and migration are increasingly being appreciated. Mitochondrial and actin cytoskeletal networks not only interact with each other, but this multifaceted interaction shapes their functional dynamics. The interrelation between mitochondria and the actin cytoskeleton extends far beyond the requirement of mitochondrial ATP generation to power actin dynamics, and impinges upon several major aspects of cellular physiology. Being situated at the hub of cell signaling pathways, mitochondrial function can alter the activity of actin regulatory proteins and therefore modulate the processes downstream of actin dynamics such as cellular migration. As we will discuss, this regulation is highly nuanced and operates at multiple levels allowing mitochondria to occupy a strategic position in the regulation of migration, as well as pathological events that rely on aberrant cell motility such as cancer metastasis. In this review, we summarize the crosstalk that exists between mitochondria and actin regulatory proteins, and further emphasize on how this interaction holds importance in cell migration in normal as well as dysregulated scenarios as in cancer.
Collapse
Affiliation(s)
- Tarun Yadav
- Biology, Indian Institute of Science Education and Research, Pune
| | - David Gau
- Bioengineering, University of Pittsburgh, USA
| | - Partha Roy
- Bioengineering, University of Pittsburgh, USA
- Pathology, University of Pittsburgh, USA
| |
Collapse
|
18
|
Identification of the Upregulation of MRPL13 as a Novel Prognostic Marker Associated with Overall Survival Time and Immunotherapy Response in Breast Cancer. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:1498924. [PMID: 34868337 PMCID: PMC8639240 DOI: 10.1155/2021/1498924] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 11/05/2021] [Indexed: 11/17/2022]
Abstract
Mitochondrial ribosomal protein (MRPL) genes have been reported to participate in many cellular processes, such as cell proliferation, apoptosis, and cell cycle. Meanwhile, the occurrence rate of breast cancer (BRCA) in China steadily increased. Exploring the prognostic value of MRPL genes in BRCA could provide novel biomarkers for BRCA. In this study, to identify prognosis-related genes in breast cancer, the P value and the hazard ratio (HR) of all genes are analyzed with TCGA database. We revealed higher expression level of CEL, PGK1, WNT3A, USP41, LINC02037, PCMT1, LRP11, MCTS1, TCP1, TMEM31, STK4-AS1, STXBP5, LOC100287036, SLC16A2, MRPL13, DERL1, and TARS was correlated to shorter OS time in BRCA. However, higher expression level of JCHAIN, KLRB1, and TNFRSF14 was correlated to longer OS time in BRCA. The further analysis demonstrated MRPL13 was overexpressed in BRCA. Subtype analysis showed that MRPL13 was overexpressed in luminal, HER2-positive BRCA, and TNBC samples and was highest in TNBC samples. Moreover, we revealed higher expression of MRPL13 was significantly correlated to shorter OS time and higher TMB levels in BRCA. Pan-cancer analysis further revealed the prognostic value of MRPL13 in human cancers. MRPL13 expression was significantly increased in multiple human cancers, such as bladder cancer, colon cancer, liver cancer, and prostate cancer. Pan-cancer TMB and overall survival time showed dysregulation of MRPL13 is significantly related to the OS and TMB levels in various cancers. These results further proved that MRPL13 may be a pan-cancer biomarker for predicting prognosis and the response to immunotherapy.
Collapse
|
19
|
Chen P, Yang J, Xiao B, Zhang Y, Liu S, Zhu L. Mechanisms for the impacts of graphene oxide on the developmental toxicity and endocrine disruption induced by bisphenol A on zebrafish larvae. JOURNAL OF HAZARDOUS MATERIALS 2021; 408:124867. [PMID: 33370691 DOI: 10.1016/j.jhazmat.2020.124867] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/15/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
The huge production and application of bisphenol A (BPA) and graphene oxide (GO) inevitably lead to their co-presence in aquatic ecosystems, which might cause joint toxic effects to aquatic organisms. Herein, zebrafish larvae at 3 d post fertilization (dpf) were exposed to BPA, GO, and their mixtures until 7 dpf. GO was ingested and localized in the gut. 5000 μg/L BPA alone induced distinct ultrastructure damage, which was alleviated by GO, indicating that GO reduced the developmental toxicity of BPA. The levels of endocrine-related genes and steroid hormones were all modulated to the greatest extent by 500 μg/L BPA, suggesting that BPA exhibited a remarkable endocrine disruption effect. However, the responses of some of these genes were recovered by GO, indicating that GO also alleviated the BPA-induced endocrine disruption. The mRNA levels of five genes in the extracellular matrix-receptor interaction pathway, two in the oxidative phosphorylation pathway, 18 in the metabolic pathways, and five in the peroxisome proliferator-activated receptor signaling pathway were distinctly altered by 5000 μg/L BPA, but most of them were recovered in the presence of GO. GO might relieve the BPA-induced developmental toxicity and endocrine disruption by recovering the genes related to the corresponding pathways.
Collapse
Affiliation(s)
- Pengyu Chen
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Jing Yang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Bowen Xiao
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Yanfeng Zhang
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Lingyan Zhu
- Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Key Laboratory of Pollution Processes and Environmental Criteria of Ministry of Education, College of Environmental Science and Engineering of Nankai University, Tianjin 300350, China.
| |
Collapse
|
20
|
Xu X, Li R, Zeng X, Wang X, Xue B, Huang D, Huang Y. [Pathogenic role of NDUFA13 inactivation in spontaneous hepatitis in mice and the mechanism]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2021; 41:55-63. [PMID: 33509753 DOI: 10.12122/j.issn.1673-4254.2021.01.07] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
OBJECTIVE To investigate the role of NDUFA13 inactivation in the pathogenesis of spontaneous hepatitis in mice and explore the possible mechanisms. METHODS Hepatocyte-specific NDUFA13 knockout (NDUFA13fl/-) mice were generated by intercrossing NDUFA13fl/fl and Alb-Cre mice based on Cre/loxP transgenic technology, and tail and liver DNA of the mice was genotyped by PCR analysis. Ten NDUFA13fl/- mice and 10 littermate control NDUFA13fl/fl mice were housed, and in each group, 5 mice were euthanized at the age of 4 weeks and the other 5 at two years for pathological examination of the liver tissues with HE staining. Immunohistochemistry was used to verify the expression levels of NDUFA13, NF-κB/p65, NF-κB/p-p65 and inflammasome NLRP3. The total intracellular ROS and mitochondrial ROS levels were measured with a ROS staining kit. The expressions of the inflammatory cell markers (CD45, MPO, and F4/80) and inflammatory cytokines (IL1β and IL33) in the liver were detected with immunohistochemistry and immunofluorescence assay. RESULTS Liver-specific NDUFA13 heterozygous knockout mice were successfully constructed as verified by PCR results. HE staining revealed severe liver damage in both 4- week-old and 2-year-old NDUFA13fl/- mice as compared with their littermate controls. Immunohistochemistry showed a significant decrease of NDUFA13 expression in both 4-week-old and 2-year-old NDUFA13fl/- mice (P < 0.05). The expression levels of NF-κB signals p65, p-p65 and NLRP3 inflammasomes were all significantly increased in NDUFA13fl/- mice (P < 0.05). The total intracellular ROS and mitochondrial ROS levels in NDUFA13fl/- mice were also significantly increased. NDUFA13 knockout obviously promoted the expression of the inflammatory cell markers (CD45, MPO and F4/80) and the secretion of IL-1β and IL-33 in the liver tissue of the mice (P < 0.05). CONCLUSIONS Hepatocytes-specific NDUFA13 ablation can trigger spontaneous hepatitis in mice possibly mediated by the activation of ROS/NF-κB/NLRP3 signaling.
Collapse
Affiliation(s)
- Xiaohui Xu
- Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Rui Li
- Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Xin Zeng
- Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Xin Wang
- Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Bingqian Xue
- Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Daochao Huang
- Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| | - Yi Huang
- Institute of Pediatrics, Children's Hospital of Chongqing Medical University, Chongqing Key Laboratory of Child Infection and Immunity// Key Laboratory of Child Development and Disorders of Ministry of Education//National Clinical Research Center for Child Health and Disorders//China International Science and Technology Cooperation Base of Child Development and Critical Disorders, Chongqing 400014, China
| |
Collapse
|
21
|
Ma C, Cui Z, Wang Y, Zhang L, Wen J, Guo H, Li N, Zhang W. Bioinformatics analysis reveals TSPAN1 as a candidate biomarker of progression and prognosis in pancreatic cancer. Bosn J Basic Med Sci 2021; 21:47-60. [PMID: 33188589 PMCID: PMC7861625 DOI: 10.17305/bjbms.2020.5096] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 11/08/2020] [Indexed: 12/14/2022] Open
Abstract
Pancreatic cancer (PCC) is a common malignant tumor of the digestive system that is resistant to traditional treatments and has an overall 5-year survival rate of <7%. Transcriptomics research provides reliable biomarkers for diagnosis, prognosis, and clinical precision treatment, as well as the identification of molecular targets for the development of drugs to improve patient survival. We sought to identify new biomarkers for PCC by combining transcriptomics and clinical data with current knowledge regarding molecular mechanisms. Consequently, we employed weighted gene co-expression network analysis and differentially expressed gene analysis to evaluate genes co-expressed in tumor versus normal tissues using pancreatic adenocarcinoma data from The Cancer Genome Atlas and dataset GSE16515 from the Gene Expression Omnibus. Twenty-one overlapping genes were identified, with enrichment of key Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathways, including epidermal growth factor receptor signaling, cadherin, cell adhesion, ubiquinone, and glycosphingolipid biosynthesis pathways, and retinol metabolism. Protein-protein interaction analysis highlighted 10 hub genes, according to Maximal Clique Centrality. Univariate and multivariate COX analyses indicated that TSPAN1 serves as an independent prognostic factor for PCC patients. Survival analysis distinguished TSPAN1 as an independent prognostic factor among hub genes in PCC. Finally, immunohistochemical staining results suggested that the TSPAN1 protein levels in the Human Protein Atlas were significantly higher in tumor tissue than in normal tissue. Therefore, TSPAN1 may be involved in PCC development and act as a critical biomarker for diagnosing and predicting PCC patient survival.
Collapse
Affiliation(s)
- Chenhui Ma
- Department of Hepatobiliary Medicine, Hebei General Hospital, Shijiazhuang, China. Graduate school of North China University of Science and Technology, Tangshan, China
| | - ZeLong Cui
- Department of Hematology, Qilu Hospital of Shandong University, Jinan, China
| | - YiChao Wang
- Graduate School of North China University of Science and Technology, Tangshan, China
| | - Lei Zhang
- Department of hepatobiliary, Hebei General Hospital, Shijiazhuang, China
| | - JunYe Wen
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| | - HuaiBin Guo
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| | - Na Li
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| | - WanXing Zhang
- Department of Hepatobiliary diseases, Hebei General Hospital, Shijiazhuang, China
| |
Collapse
|
22
|
Huang Y, Li X, Pan C, Cheng W, Wang X, Yang Z, Zheng L. The intervention mechanism of emodin on TLR3 pathway in the process of central nervous system injury caused by herpes virus infection. Neurol Res 2020; 43:307-313. [PMID: 33274693 DOI: 10.1080/01616412.2020.1853989] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Background and purpose: To investigate the effect of Emodin on the inflammatory response of brain tissue and the expression of the TLR3 pathway in mice with herpes virus encephalitis.Method: Twenty male BALB/c mice were randomly divided into the NS group, HSV-1 group, HSV-1 + Emodin group and HSV-1 + ACV group. The histopathological features and the effect of TLR3 expression were observed by staining and immunohistochemistry (IHC) respectively. The gene expression of TLR3, trif, TRADD, TRAF6, traf3, p38, Nemo and IRF3 was detected by polymerase chain reaction (PCR). The protein production of TLR3 and its downstream molecules was detected by Western blot. The expression of IL-6, TNF-α and IFN-β in the brain tissues was detected by ELISA.Result: Compared to the HSV-1 group, the pathological changes (inflammatory cell infiltration, necrotic temporal lobe and massive hemorrhage) were not as obvious as those in the HSV-1+emodin and HSV-1+ACV groups. The TLR3 staining increased significantly in the HSV-1 groups and decreased in the HSV-1 + emodin group. Compared with the NS group, the mRNA expression of TLR3, TRIF, TRADD, TRAF6, traf3, p38, NEMO and IRF3 decreased by 20%-60% in the HSV-1 + emodin group and 30% in the HSV-1 + ACV group, respectively. The expression of IL-6, TNF-α and IFN-β decreased by 30%-50% in the HSV-1 + emodin group and showed no significant change in the HSV-1 + ACV group, respectively.Conclusion: Emodin could inhibit the inflammatory response in the brain of mice with herpes virus encephalitis. The inhibition of TLR3 expression may play an important role in this process.
Collapse
Affiliation(s)
- Yongqian Huang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xing Li
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Chunlian Pan
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Wei Cheng
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Xijia Wang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Zhigang Yang
- Department of Neurology, Puren Hospital Affiliated to Wuhan University of Science and Technology, Wuhan, China
| | - Lifang Zheng
- Department of Neurology, Yantian Hospital of Southern University of Science and Technology, Shenzhen, China
| |
Collapse
|
23
|
Rai NK, Mathur S, Singh SK, Tiwari M, Singh VK, Haque R, Tiwari S, Kumar Sharma L. Differential regulation of mitochondrial complex I and oxidative stress based on metastatic potential of colorectal cancer cells. Oncol Lett 2020; 20:313. [PMID: 33093922 PMCID: PMC7573887 DOI: 10.3892/ol.2020.12176] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 09/03/2020] [Indexed: 01/03/2023] Open
Abstract
Mitochondria serve a vital role in cellular homeostasis as they regulate cell proliferation and death pathways, which are attributed to mitochondrial bioenergetics, free radicals and metabolism. Alterations in mitochondrial functions have been reported in various diseases, including cancer. Colorectal cancer (CRC) is one of the most common metastatic cancer types with high mortality rates. Although mitochondrial oxidative stress has been associated with CRC, its specific mechanism and contribution to metastatic progression remain poorly understood. Therefore, the aims of the present study were to investigate the role of mitochondria in CRC cells with low and high metastatic potential and to evaluate the contribution of mitochondrial respiratory chain (RC) complexes in oncogenic signaling pathways. The present results demonstrated that cell lines with low metastatic potential were resistant to mitochondrial complex I (C-I)-mediated oxidative stress, and had C-I inhibition with impaired mitochondrial functions. These adaptations enabled cells to cope with higher oxidative stress. Conversely, cells with high metastatic potential demonstrated functional C-I with improved mitochondrial function due to coordinated upregulation of mitochondrial biogenesis and metabolic reprogramming. Pharmacological inhibition of C-I in high metastatic cells resulted in increased sensitivity to cell death and decreased metastatic signaling. The present findings identified the differential regulation of mitochondrial functions in CRC cells, based on CRC metastatic potential. Specifically, it was suggested that a functional C-I is required for high metastatic features of cancer cells, and the role of C-I could be further examined as a potential target in the development of novel therapies for diagnosing high metastatic cancer types.
Collapse
Affiliation(s)
- Neeraj Kumar Rai
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Shashank Mathur
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Suraj Kumar Singh
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences-Patna, Patna, Bihar 801507, India
| | - Meenakshi Tiwari
- Department of Pathology/Lab Medicine, All India Institute of Medical Sciences-Patna, Patna, Bihar 801507, India
| | - Vijay Kumar Singh
- Department of Bioinformatics, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Rizwanul Haque
- Department of Biotechnology, Central University of South Bihar, Gaya, Bihar 824236, India
| | - Swasti Tiwari
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| | - Lokendra Kumar Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh 226014, India
| |
Collapse
|
24
|
Narayanan D, Ma S, Özcelik D. Targeting the Redox Landscape in Cancer Therapy. Cancers (Basel) 2020; 12:cancers12071706. [PMID: 32605023 PMCID: PMC7407119 DOI: 10.3390/cancers12071706] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/22/2020] [Accepted: 06/25/2020] [Indexed: 12/18/2022] Open
Abstract
Reactive oxygen species (ROS) are produced predominantly by the mitochondrial electron transport chain and by NADPH oxidases in peroxisomes and in the endoplasmic reticulum. The antioxidative defense counters overproduction of ROS with detoxifying enzymes and molecular scavengers, for instance, superoxide dismutase and glutathione, in order to restore redox homeostasis. Mutations in the redox landscape can induce carcinogenesis, whereas increased ROS production can perpetuate cancer development. Moreover, cancer cells can increase production of antioxidants, leading to resistance against chemo- or radiotherapy. Research has been developing pharmaceuticals to target the redox landscape in cancer. For instance, inhibition of key players in the redox landscape aims to modulate ROS production in order to prevent tumor development or to sensitize cancer cells in radiotherapy. Besides the redox landscape of a single cell, alternative strategies take aim at the multi-cellular level. Extracellular vesicles, such as exosomes, are crucial for the development of the hypoxic tumor microenvironment, and hence are explored as target and as drug delivery systems in cancer therapy. This review summarizes the current pharmaceutical and experimental interventions of the cancer redox landscape.
Collapse
Affiliation(s)
- Dilip Narayanan
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Sana Ma
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
| | - Dennis Özcelik
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark; (D.N.); (S.M.)
- current address: Chemistry | Biology | Pharmacy Information Center, ETH Zürich, Vladimir-Prelog-Weg 10, 8093 Zürich, Switzerland
- Correspondence:
| |
Collapse
|
25
|
Omasanggar R, Yu CY, Ang GY, Emran NA, Kitan N, Baghawi A, Falparado Ahmad A, Abdullah MA, Teh LK, Maniam S. Mitochondrial DNA mutations in Malaysian female breast cancer patients. PLoS One 2020; 15:e0233461. [PMID: 32442190 PMCID: PMC7244147 DOI: 10.1371/journal.pone.0233461] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2020] [Accepted: 05/05/2020] [Indexed: 01/27/2023] Open
Abstract
Cancer development has been ascribed with diverse genetic variations which are identified in both mitochondrial and nuclear genomes. Mitochondrial DNA (mtDNA) alterations have been detected in several tumours which include lung, colorectal, renal, pancreatic and breast cancer. Several studies have explored the breast tumour-specific mtDNA alteration mainly in Western population. This study aims to identify mtDNA alterations of 20 breast cancer patients in Malaysia by next generation sequencing analysis. Twenty matched tumours with corresponding normal breast tissues were obtained from female breast cancer patients who underwent mastectomy. Total DNA was extracted from all samples and the entire mtDNA (16.6kb) was amplified using long range PCR amplification. The amplified PCR products were sequenced using mtDNA next-generation sequencing (NGS) on an Illumina Miseq platform. Sequencing involves the entire mtDNA (16.6kb) from all pairs of samples with high-coverage (~ 9,544 reads per base). MtDNA variants were called and annotated using mtDNA-Server, a web server. A total of 18 of 20 patients had at least one somatic mtDNA mutation in their tumour samples. Overall, 65 somatic mutations were identified, with 30 novel mutations. The majority (59%) of the somatic mutations were in the coding region, whereas only 11% of the mutations occurred in the D-loop. Notably, somatic mutations in protein-coding regions were non-synonymous (49%) in which 15.4% of them are potentially deleterious. A total of 753 germline mutations were identified and four of which were novel mutations. Compared to somatic alterations, less than 1% of germline missense mutations are harmful. The findings of this study may enhance the current knowledge of mtDNA alterations in breast cancer. To date, the catalogue of mutations identified in this study is the first evidence of mtDNA alterations in Malaysian female breast cancer patients.
Collapse
Affiliation(s)
- Raevathi Omasanggar
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Choo Yee Yu
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Geik Yong Ang
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
- Faculty of Sports Science and Recreation, Universiti Teknologi MARA, Shah Alam, Selangor, Malaysia
| | - Nor Aina Emran
- Department of General Surgery, Hospital Kuala Lumpur, Kuala Lumpur, Malaysia
| | - Normayah Kitan
- Department of General Surgery, Hospital Putrajaya, Putrajaya, Malaysia
| | - Anita Baghawi
- Department of General Surgery, Hospital Putrajaya, Putrajaya, Malaysia
| | | | - Maizaton Atmadini Abdullah
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
- Laboratory of Molecular Medicine, Institute of Bioscience, University Putra Malaysia, Selangor, Malaysia
| | - Lay Kek Teh
- Integrative Pharmacogenomics Institute (iPROMISE), Universiti Teknologi MARA, Bandar Puncak Alam, Puncak Alam, Selangor, Malaysia
| | - Sandra Maniam
- Department of Human Anatomy, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| |
Collapse
|
26
|
Payen VL, Zampieri LX, Porporato PE, Sonveaux P. Pro- and antitumor effects of mitochondrial reactive oxygen species. Cancer Metastasis Rev 2020; 38:189-203. [PMID: 30820778 DOI: 10.1007/s10555-019-09789-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
In cancer, mitochondrial functions are commonly altered. Directly involved in metabolic reprogramming, mitochondrial plasticity confers to cancer cells a high degree of adaptability to a wide range of stresses and to the harsh tumor microenvironment. Lack of nutrients or oxygen caused by altered perfusion, metabolic needs of proliferating cells, co-option of the microenvironment, control of the immune system, cell migration and metastasis, and evasion of exogenous stress (e.g., chemotherapy) are all, at least in part, influenced by mitochondria. Mitochondria are undoubtedly one of the key contributors to cancer development and progression. Understanding their protumoral (dys)functions may pave the way to therapeutic strategies capable of turning them into innocent entities. Here, we will focus on the production and detoxification of mitochondrial reactive oxygen species (mtROS), on their impact on tumorigenesis (genetic, prosurvival, and microenvironmental effects and their involvement in autophagy), and on tumor metastasis. We will also summarize the latest therapeutic approaches involving mtROS.
Collapse
Affiliation(s)
- Valéry L Payen
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.,Pole of Pediatrics, Institut de Recherche Expérimentale et Clinique (IREC), UCLouvain, Brussels, Belgium.,Louvain Drug Research Institute, UCLouvain, Brussels, Belgium
| | - Luca X Zampieri
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium
| | - Paolo E Porporato
- Department of Molecular Biotechnology and Health Science, Molecular Biotechnology Centre, University of Torino, Torino, Italy
| | - Pierre Sonveaux
- Pole of Pharmacology, Institut de Recherche Expérimentale et Clinique (IREC), Université catholique de Louvain (UCLouvain), Avenue Hippocrate 57 box B1.57.04, 1200, Brussels, Belgium.
| |
Collapse
|
27
|
Kim JC, Hwang SN, Kim SY. Alteration of Gene Associated with Retinoid-interferon-induced Mortality-19-expressing Cell Types in the Mouse Hippocampus Following Pilocarpine-induced Status Epilepticus. Neuroscience 2020; 425:49-58. [PMID: 31790668 DOI: 10.1016/j.neuroscience.2019.11.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 10/14/2019] [Accepted: 11/11/2019] [Indexed: 11/28/2022]
Abstract
The gene associated with retinoid-interferon-induced mortality-19 (GRIM-19) plays several significant roles in cellular processes, including ATP synthesis, reactive oxygen species formation, and the regulation of glycolytic enzyme activity, which are closely related to the pathophysiological mechanisms of epilepsy. Therefore, we investigated the expression pattern of GRIM-19 in the CA1 area of the hippocampus in 8-week-old male C57BL/6 mice following pilocarpine-induced status epilepticus (SE). Neuronal death in the hippocampal CA1 area was prominently observed at 4 and 7 days after SE, and astrocytes and microglia became progressively activated beginning at 1 day after SE. GRIM-19 immunoreactivity was decreased in the damaged pyramidal cell layer but markedly increased in the stratum radiatum and stratum lacunosum-moleculare of the hippocampus at 4 and 7 days after SE. In addition, the cell types of GRIM-19-expressing cells in the epileptic hippocampus were identified. GRIM-19 was mainly co-localized in neurons but only slightly expressed in glia in the normal hippocampus. Most of the GRIM-19-positive cells induced by SE in the stratum radiatum and stratum lacunosum-moleculare were glial fibrillary acidic protein-expressing reactive astrocytes. Moreover, we observed that both GRIM-19 and pyruvate kinase isozyme M2, a glycolytic enzyme, were highly expressed in reactive astrocytes after SE. These results indicate that expression of GRIM-19 in the hippocampus is mainly observed in neurons under normal conditions but is altered in the SE mouse model as evidenced by its increased expression in reactive astrocytes. The possible role of GRIM-19 in the glycolytic activity of reactive astrocytes is also discussed.
Collapse
Affiliation(s)
- Jae-Cheon Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Sun-Nyoung Hwang
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea
| | - Seong Yun Kim
- Department of Pharmacology, Department of Biomedicine & Health Sciences, Catholic Neuroscience Institute, College of Medicine, The Catholic University of Korea, Seoul 06591, Republic of Korea.
| |
Collapse
|
28
|
Inhibition of Alternative Cancer Cell Metabolism of EGFR Mutated Non-Small Cell Lung Cancer Serves as a Potential Therapeutic Strategy. Cancers (Basel) 2020; 12:cancers12010181. [PMID: 31936895 PMCID: PMC7017237 DOI: 10.3390/cancers12010181] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/24/2022] Open
Abstract
Targeted therapy is an efficient treatment for patients with epidermal growth factor receptor (EGFR) mutations in non-small cell lung cancer (NSCLC). Therapeutic resistance invariably occurs in NSCLC patients. Many studies have focused on drug resistance mechanisms, but only a few have addressed the metabolic flexibility in drug-resistant NSCLC. In the present study, we found that during the developing resistance to tyrosine kinase inhibitor (TKI), TKI-resistant NSCLC cells acquired metabolic flexibility in that they switched from dependence on glycolysis to oxidative phosphorylation by substantially increasing the activity of the mitochondria. Concurrently, we found the predominant expression of monocarboxylate transporter 1 (MCT-1) in the TKI-resistant NSCLC cells was strongly increased in those cells that oxidized lactate. Thus, we hypothesized that inhibiting MCT-1 could represent a novel treatment strategy. We treated cells with the MCT-1 inhibitor AZD3965. We found a significant decrease in cell proliferation and cell motility in TKI-sensitive and TKI-resistant cells. Taken together, these results demonstrated that gefitinib-resistant NSCLC cells harbored higher mitochondrial bioenergetics and MCT-1 expression. These results implied that targeting mitochondrial oxidative phosphorylation proteins or MCT-1 could serve as potential treatments for both TKI-sensitive and -resistant non-small cell lung cancer.
Collapse
|
29
|
Whitehall JC, Greaves LC. Aberrant mitochondrial function in ageing and cancer. Biogerontology 2019; 21:445-459. [PMID: 31802313 PMCID: PMC7347693 DOI: 10.1007/s10522-019-09853-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 11/23/2019] [Indexed: 12/12/2022]
Abstract
Alterations in mitochondrial metabolism have been described as one of the major hallmarks of both ageing cells and cancer. Age is the biggest risk factor for the development of a significant number of cancer types and this therefore raises the question of whether there is a link between age-related mitochondrial dysfunction and the advantageous changes in mitochondrial metabolism prevalent in cancer cells. A common underlying feature of both ageing and cancer cells is the presence of somatic mutations of the mitochondrial genome (mtDNA) which we postulate may drive compensatory alterations in mitochondrial metabolism that are advantageous for tumour growth. In this review, we discuss basic mitochondrial functions, mechanisms of mtDNA mutagenesis and their metabolic consequences, and review the evidence for and against a role for mtDNA mutations in cancer development.
Collapse
Affiliation(s)
- Julia C Whitehall
- The Medical School, Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK
| | - Laura C Greaves
- The Medical School, Wellcome Centre for Mitochondrial Research, Institute of Neuroscience, Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
| |
Collapse
|
30
|
Jaña F, Bustos G, Rivas J, Cruz P, Urra F, Basualto-Alarcón C, Sagredo E, Ríos M, Lovy A, Dong Z, Cerda O, Madesh M, Cárdenas C. Complex I and II are required for normal mitochondrial Ca 2+ homeostasis. Mitochondrion 2019; 49:73-82. [PMID: 31310854 DOI: 10.1016/j.mito.2019.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 04/01/2019] [Accepted: 07/12/2019] [Indexed: 01/03/2023]
Abstract
Cytosolic calcium (cCa2+) entry into mitochondria is facilitated by the mitochondrial membrane potential (ΔΨm), an electrochemical gradient generated by the electron transport chain (ETC). Is has been assumed that as long as mutations that affect the ETC do not affect the ΔΨm, the mitochondrial Ca2+ (mCa2+) homeostasis remains normal. We show that knockdown of NDUFAF3 and SDHB reduce ETC activity altering mCa2+ efflux and influx rates while ΔΨm remains intact. Shifting the equilibrium toward lower [Ca2+]m accumulation renders cells resistant to death. Our findings reveal an unexpected relationship between complex I and II with the mCa2+ homeostasis independent of ΔΨm.
Collapse
Affiliation(s)
- Fabian Jaña
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Galdo Bustos
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - José Rivas
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Pablo Cruz
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Felix Urra
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Carla Basualto-Alarcón
- Departamento de Ciencias de la Salud, Universidad de Aysén, Coyhaique, Chile; Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Anatomy and Legal Medicine Department, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Eduardo Sagredo
- Centro de Investigación y Tratamiento del Cáncer, Facultad de Medicina, Universidad de Chile, Chile
| | - Melany Ríos
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Center for Neuroscience Research, Tufts University School of Medicine, Boston, MA, USA
| | - Zhiwei Dong
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, TX, USA
| | - Oscar Cerda
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences (ICBM), Faculty of Medicine, Universidad de Chile, Santiago, Chile; Millennium Nucleus of Ion Channels-Associated Diseases (MiNICAD), Santiago, Chile.; The Wound Repair, Treatment and Health (WoRTH), Chile
| | - Muniswamy Madesh
- Department of Medicine, Center for Precision Medicine, University of Texas Health San Antonio, TX, USA.
| | - César Cárdenas
- Geroscience Center for Brain Health and Metabolism, Santiago, Chile; Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile; Buck Institute for Research on Aging, Novato, CA, USA; Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA, United States.
| |
Collapse
|
31
|
Thomas LW, Stephen JM, Esposito C, Hoer S, Antrobus R, Ahmed A, Al-Habib H, Ashcroft M. CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain. Cancer Metab 2019; 7:2. [PMID: 30886710 PMCID: PMC6404347 DOI: 10.1186/s40170-019-0194-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 02/05/2019] [Indexed: 12/15/2022] Open
Abstract
Background Tumour cells rely on glycolysis and mitochondrial oxidative phosphorylation (OXPHOS) to survive. Thus, mitochondrial OXPHOS has become an increasingly attractive area for therapeutic exploitation in cancer. However, mitochondria are required for intracellular oxygenation and normal physiological processes, and it remains unclear which mitochondrial molecular mechanisms might provide therapeutic benefit. Previously, we discovered that coiled-coil-helix-coiled-coil-helix domain-containing protein 4 (CHCHD4) is critical for regulating intracellular oxygenation and required for the cellular response to hypoxia (low oxygenation) in tumour cells through molecular mechanisms that we do not yet fully understand. Overexpression of CHCHD4 in human cancers correlates with increased tumour progression and poor patient survival. Results Here, we show that elevated CHCHD4 expression provides a proliferative and metabolic advantage to tumour cells in normoxia and hypoxia. Using stable isotope labelling with amino acids in cell culture (SILAC) and analysis of the whole mitochondrial proteome, we show that CHCHD4 dynamically affects the expression of a broad range of mitochondrial respiratory chain subunits from complex I-V, including multiple subunits of complex I (CI) required for complex assembly that are essential for cell survival. We found that loss of CHCHD4 protects tumour cells from respiratory chain inhibition at CI, while elevated CHCHD4 expression in tumour cells leads to significantly increased sensitivity to CI inhibition, in part through the production of mitochondrial reactive oxygen species (ROS). Conclusions Our study highlights an important role for CHCHD4 in regulating tumour cell metabolism and reveals that CHCHD4 confers metabolic vulnerabilities to tumour cells through its control of the mitochondrial respiratory chain and CI biology.
Collapse
Affiliation(s)
- Luke W. Thomas
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Jenna M. Stephen
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Cinzia Esposito
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present address: Department of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Simon Hoer
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Robin Antrobus
- Cambridge Institute for Medical Research, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0XY UK
| | - Afshan Ahmed
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
- Present address: AstraZeneca Ltd., Cambridge, UK
| | - Hasan Al-Habib
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| | - Margaret Ashcroft
- Department of Medicine, University of Cambridge, Cambridge Biomedical Campus, Cambridge, CB2 0AH UK
| |
Collapse
|
32
|
Han SY, Jeong YJ, Choi Y, Hwang SK, Bae YS, Chang YC. Mitochondrial dysfunction induces the invasive phenotype, and cell migration and invasion, through the induction of AKT and AMPK pathways in lung cancer cells. Int J Mol Med 2018; 42:1644-1652. [PMID: 29916527 DOI: 10.3892/ijmm.2018.3733] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 05/08/2018] [Indexed: 11/05/2022] Open
Abstract
Mitochondria are well known for their important roles in oxidative phosphorylation, amino acid metabolism, fatty acid oxidation and ion homeostasis. Although the effects of mitochondrial dysfunction on tumorigenesis in various cancer cells have been reported, the correlation between mitochondrial dysfunction and epithelial‑to‑mesenchymal transition (EMT) in lung cancer development and metastasis has not been well elucidated. In the present study, the effects of mitochondrial dysfunction on EMT and migration in lung cancer cells were investigated using inhibitors of mitochondrial respiration, oligomycin A and antimycin A. Oligomycin A and antimycin A induced distinct mesenchymal‑like morphological features in H23, H1793 and A549 lung cancer cells. In addition, they decreased the expression levels of the epithelial marker protein E‑cadherin, but increased the expression levels of the mesenchymal marker proteins Vimentin, Snail and Slug. The results of immunofluorescence staining indicated that oligomycin A and antimycin A downregulated cortical E‑cadherin expression and upregulated the expression of Vimentin. In addition, oligomycin A and antimycin A increased the migration and invasion of A549 lung cancer cells, and promoted the expression levels of phosphorylated (p)‑protein kinase B (AKT) and p‑AMP‑activated protein kinase (AMPK). Notably, the production of reactive oxygen species by oligomycin A and antimycin A did not affect the expression of EMT protein markers. Conversely, treatment with the AKT inhibitor wortmannin and the AMPK inhibitor Compound C upregulated E‑cadherin and downregulated Vimentin expression. These results suggested that oligomycin A and antimycin A may induce migration and invasion of lung cancer cells by inducing EMT via the upregulation of p‑AKT and p‑AMPK expression.
Collapse
Affiliation(s)
- Si-Yoon Han
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Yun-Jeong Jeong
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Yongsoo Choi
- Systems Biotechnology Research Center, Korea Institute of Science and Technology (KIST), Gangneung, Gangwon 25451, Republic of Korea
| | - Soon-Kyung Hwang
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| | - Young-Seuk Bae
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group,College of Natural Sciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Young-Chae Chang
- Department of Cell Biology, Catholic University of Daegu School of Medicine, Daegu 42472, Republic of Korea
| |
Collapse
|
33
|
The Oncojanus Paradigm of Respiratory Complex I. Genes (Basel) 2018; 9:genes9050243. [PMID: 29735924 PMCID: PMC5977183 DOI: 10.3390/genes9050243] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 04/09/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023] Open
Abstract
Mitochondrial respiratory function is now recognized as a pivotal player in all the aspects of cancer biology, from tumorigenesis to aggressiveness and chemotherapy resistance. Among the enzymes that compose the respiratory chain, by contributing to energy production, redox equilibrium and oxidative stress, complex I assumes a central role. Complex I defects may arise from mutations in mitochondrial or nuclear DNA, in both structural genes or assembly factors, from alteration of the expression levels of its subunits, or from drug exposure. Since cancer cells have a high-energy demand and require macromolecules for proliferation, it is not surprising that severe complex I defects, caused either by mutations or treatment with specific inhibitors, prevent tumor progression, while contributing to resistance to certain chemotherapeutic agents. On the other hand, enhanced oxidative stress due to mild complex I dysfunction drives an opposite phenotype, as it stimulates cancer cell proliferation and invasiveness. We here review the current knowledge on the contribution of respiratory complex I to cancer biology, highlighting the double-edged role of this metabolic enzyme in tumor progression, metastasis formation, and response to chemotherapy.
Collapse
|
34
|
Implication of SPARC in the modulation of the extracellular matrix and mitochondrial function in muscle cells. PLoS One 2018; 13:e0192714. [PMID: 29420632 PMCID: PMC5805355 DOI: 10.1371/journal.pone.0192714] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Accepted: 01/29/2018] [Indexed: 01/16/2023] Open
Abstract
Secreted protein, acidic and rich in cysteine (SPARC) is differentially associated with cell proliferation and extracellular matrix (ECM) assembly. We show here the effect of exogenous SPARC inhibition/induction on ECM and mitochondrial proteins expression and on the differentiation of C2C12 cells. The cells were cultured in growth medium (GM) supplemented with different experimental conditions. The differentiation of myoblasts was studied for 5 days, the expressions of ECM and mitochondrial proteins were measured and the formation of the myotubes was quantified after exogenous induction/inhibition of SPARC. The results indicate that the addition of recombinant SPARC protein (rSPARC) in cell culture medium increased the differentiation of C2C12 myoblasts and myogenin expression during the myotube formation. However, the treatment with antibody specific for SPARC (anti-SPARC) prevented the differentiation and decreased myogenin expression. The induction of SPARC in the proliferating and differentiating C2C12 cells increased collagen 1a1 protein expression, whereas the inhibition decreased it. The effects on fibronectin protein expression were opposite. Furthermore, the addition of rSPARC in C2C12 myoblast increased the expression of mitochondrial proteins, ubiquinol-cytochrome c reductase core protein II (UQCRC2) and succinate dehydrogenase iron-sulfur subunit (SDHB), whereas the anti-SPARC decreased them. During the differentiation, only the anti-SPARC had the effects on mitochondrial proteins, NADH dehydrogenase ubiquinone 1 beta subcomplex subunit 8 (NADHB8), SDHB and cytochrome c oxidase 1 (MTCO1). Thus, SPARC plays a crucial role in the proliferation and differentiation of C2C12 and may be involved in the link between the ECM remodeling and mitochondrial function.
Collapse
|
35
|
Liu S, Chen S, Ren J, Li B, Qin B. Ghrelin protects retinal ganglion cells against rotenone via inhibiting apoptosis, restoring mitochondrial function, and activating AKT-mTOR signaling. Neuropeptides 2018; 67:63-70. [PMID: 29174113 DOI: 10.1016/j.npep.2017.11.007] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2017] [Revised: 10/25/2017] [Accepted: 11/17/2017] [Indexed: 02/06/2023]
Abstract
Ghrelin, a 28-amino acid peptide hormone, has protective effects on neuronal cells. The present study aimed to examine the neuroprotective effects of ghrelin on the rat retinal ganglion cells in the rotenone-induced in vitro model of Parkinson's disease (PD). Cell viability and cell apoptosis were determined by MTT assay and flow cytometry, respectively. Mitochondrial functions were detected by mitochondrial complex I activity assay and mitochondrial membrane potential (MMP) assay. The mRNA and protein expression levels were determined by qRT-PCR and western blot, respectively. Rotenone significantly suppressed cell viability and increased cell apoptosis, also decreased the mitochondrial complex I activity as well as MMP in rat retinal ganglion cell line (RGC-5). Growth hormone secretagogue receptor (Ghsr) siRNA transfection significantly suppressed the expression of Ghsr in RGC-5 cells. Ghrelin treatment attenuated the effects of rotenone-induced changes in cell viability, cell apoptosis and mitochondrial functions in RGC-5 cells. Post-transcriptional suppression by Ghsr siRNA transfection and treatment with GHS-R antagonist, YIL781, both significantly attenuated the effects of ghrelin in RGC-5 cells. Rotenone decreased the protein levels of Bcl-2 and increased the protein levels of Bax, cleaved caspase-3 and cleaved caspase-9, and this effect was reversed by ghrelin treatment. Ghrelin also prevented the inhibitory effects of rotenone on the AKT-mTOR signaling. The effects of ghrelin on the rotenone-induced changes in apoptosis-related protein levels and AKT-mTOR signaling were attenuated by Ghsr siRNA transfection and treatment with YIL781 in the RGC-5 cells. In addition, both rapamycin and AKT inhibitor IV pre-treatment significantly attenuated the effects of ghrelin on rotenone-induced changes in cell viability and cell apoptosis. In conclusion, ghrelin by acting on the GSH-R to protect rat retinal ganglion cells against rotenone via inhibiting apoptosis and restore mitochondrial functions in RGC-5 cells, and this effect was partially associated with the AKT-mTOR signaling pathway in RGC-5 cells.
Collapse
Affiliation(s)
- Shenwen Liu
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China
| | - Sheng Chen
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China
| | - Jing Ren
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China
| | - Baijun Li
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China
| | - Bo Qin
- Shenzhen Eye Hospital, Affiliated Shenzhen Eye Hospital of Jinan University, Joint College of Optometry, Shenzhen University, Shenzhen Key Laboratory of Ophthalmology, Shenzhen City, Guangdong Province, China.
| |
Collapse
|
36
|
Lipoamide Inhibits NF1 Deficiency-induced Epithelial-Mesenchymal Transition in Murine Schwann Cells. Arch Med Res 2017; 48:498-505. [PMID: 29198560 DOI: 10.1016/j.arcmed.2017.11.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 11/24/2017] [Indexed: 12/17/2022]
Abstract
BACKGROUND AND AIMS Neurofibromatosis type I (NF1) is one of the most common neurocutaneous syndromes characterized by development of adult neurofibromas which is mainly made up of Schwann cells. The disease is generally accepted to be caused by inactivation mutation of Nf1 gene. And Nf1 deficiency had been reported to lead to ROS overproduction and epithelial-mesenchymal transition (EMT) phenotype. This study was designed to investigate whether excessive ROS conferred to Nf1 deficiency-induced EMT in Schwann cells. METHODS Colony formation, wound healing assay and transwell assay was used to evaluate the effects of stable Nf1 knockdown in SW10 Schwann cells. Western blot and ROS assay was conducted to explore the molecular mechanisms of Nf1 inactivation in tumorigenesis. Animal experiments were performed to assess the inhibitory effects of lipoamide, which is the neutral amide of α-lipoic acid and functions as a potent antioxidant to scavenge ROS, on Nf1-deficiency tumor growth in vivo. RESULTS Nf1 knockdown enhanced the cellular capacities of proliferation, migration and invasion, promoted ROS generation, decreased the expression of epithelial surface marker E-cadherin, and up-regulated several EMT-associated molecules in Schwann cells. Moreover, lipoamide dose-dependently inhibited not only Nf1 deficiency-induced EMT but also spontaneous EMT. Furthermore, lipoamide markedly suppresses tumor growth in a mouse model of NF1-associated neurofibroma. CONCLUSIONS Our results clearly reveal that ROS overproduction is responsible for Nf1 deficiency-induced EMT and plays a crucial role in NF1 tumor growth. The findings presented herein shed light on the potential of antioxidant therapy to prevent the progression of NF1-associated neurofibroma.
Collapse
|
37
|
Lee YK, Lim JJ, Jeoun UW, Min S, Lee EB, Kwon SM, Lee C, Yoon G. Lactate-mediated mitoribosomal defects impair mitochondrial oxidative phosphorylation and promote hepatoma cell invasiveness. J Biol Chem 2017; 292:20208-20217. [PMID: 28978646 DOI: 10.1074/jbc.m117.809012] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 09/29/2017] [Indexed: 12/30/2022] Open
Abstract
Impaired mitochondrial oxidative phosphorylation (OXPHOS) capacity, accompanied by enhanced glycolysis, is a key metabolic feature of cancer cells, but its underlying mechanism remains unclear. Previously, we reported that human hepatoma cells that harbor OXPHOS defects exhibit high tumor cell invasiveness via elevated claudin-1 (CLN1). In the present study, we show that OXPHOS-defective hepatoma cells (SNU354 and SNU423 cell lines) exhibit reduced expression of mitochondrial ribosomal protein L13 (MRPL13), a mitochondrial ribosome (mitoribosome) subunit, suggesting a ribosomal defect. Specific inhibition of mitoribosomal translation by doxycycline, chloramphenicol, or siRNA-mediated MRPL13 knockdown decreased mitochondrial protein expression, reduced oxygen consumption rate, and increased CLN1-mediated tumor cell invasiveness in SNU387 cells, which have active mitochondria. Interestingly, we also found that exogenous lactate treatment suppressed MRPL13 expression and oxygen consumption rate and induced CLN1 expression. A bioinformatic analysis of the open RNA-Seq database from The Cancer Genome Atlas (TCGA) liver hepatocellular carcinoma (LIHC) cohort revealed a significant negative correlation between MRPL13 and CLN1 expression. Moreover, in patients with low MRPL13 expression, two oxidative metabolic indicators, pyruvate dehydrogenase B expression and the ratio of lactate dehydrogenase type B to type A, significantly and negatively correlated with CLN1 expression, indicating that the combination of elevated glycolysis and deficient MRPL13 activity was closely linked to CLN1-mediated tumor activity in LIHC. These results suggest that OXPHOS defects may be initiated and propagated by lactate-mediated mitoribosomal deficiencies and that these deficiencies are critically involved in LIHC development.
Collapse
Affiliation(s)
| | - Jin J Lim
- Departments of Biochemistry, Suwon 16499, Korea
| | - Un-Woo Jeoun
- Departments of Biochemistry, Suwon 16499, Korea; Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Seongki Min
- Departments of Biochemistry, Suwon 16499, Korea; Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - Eun-Beom Lee
- Departments of Biochemistry, Suwon 16499, Korea; Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea
| | - So Mee Kwon
- Departments of Biochemistry, Suwon 16499, Korea
| | - Changhan Lee
- Leonard Davis School of Gerontology, University of Southern California, Los Angeles, California 90089
| | - Gyesoon Yoon
- Departments of Biochemistry, Suwon 16499, Korea; Biomedical Sciences, Ajou University School of Medicine, Suwon 16499, Korea.
| |
Collapse
|
38
|
Abstract
PURPOSE OF REVIEW To provide examples of mitochondria-specific metabolic events that influence tumor cell biology, and of metabolism-related mitochondrial biomarkers and therapeutic targets in cancer cells. RECENT FINDINGS Cancer cell mitochondria are rewired to optimally serve the cancer cell under various conditions of cellular stress. The nonexhaustive list of mitochondrial alterations that support cancer cell proliferation, survival, and/or progression includes upregulation of oxidative metabolism and use of alternative substrates, oncometabolites, increased superoxide production, mutated mitochondrial DNA, and altered mitochondrial morphology and dynamics. Potential therapeutic targets include fatty acid oxidation, voltage-dependent anion channel-1, the pyruvate dehydrogenase complex, and Complex I. SUMMARY Some phenotypical traits, for example, chemoresistance and metastasis, are likely regulated by a fine-tuned balance between several metabolic processes and events that are upregulated in parallel and are also dependent on microenvironmental cues. Many metabolism-related mitochondrial biomarkers show prognostic value, but the biological interpretation of the data may be confounded by the overall metabolic status and context. Understanding metabolic regulation of stemness is important for targeting cancer stem cells. Therapeutic targeting of cancer cell mitochondria remains experimental but promising, and more predictive markers will be needed for metabolism-based treatments and personalized medicine.
Collapse
|
39
|
Plecitá-Hlavatá L, Tauber J, Li M, Zhang H, Flockton AR, Pullamsetti SS, Chelladurai P, D'Alessandro A, El Kasmi KC, Ježek P, Stenmark KR. Constitutive Reprogramming of Fibroblast Mitochondrial Metabolism in Pulmonary Hypertension. Am J Respir Cell Mol Biol 2017; 55:47-57. [PMID: 26699943 DOI: 10.1165/rcmb.2015-0142oc] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Remodeling of the distal pulmonary artery wall is a characteristic feature of pulmonary hypertension (PH). In hypoxic PH, the most substantial pathologic changes occur in the adventitia. Here, there is marked fibroblast proliferation and profound macrophage accumulation. These PH fibroblasts (PH-Fibs) maintain a hyperproliferative, apoptotic-resistant, and proinflammatory phenotype in ex vivo culture. Considering that a similar phenotype is observed in cancer cells, where it has been associated, at least in part, with specific alterations in mitochondrial metabolism, we sought to define the state of mitochondrial metabolism in PH-Fibs. In PH-Fibs, pyruvate dehydrogenase was markedly inhibited, resulting in metabolism of pyruvate to lactate, thus consistent with a Warburg-like phenotype. In addition, mitochondrial bioenergetics were suppressed and mitochondrial fragmentation was increased in PH-Fibs. Most importantly, complex I activity was substantially decreased, which was associated with down-regulation of the accessory subunit nicotinamide adenine dinucleotide reduced dehydrogenase (ubiquinone) Fe-S protein 4 (NDUFS4). Owing to less-efficient ATP synthesis, mitochondria were hyperpolarized and mitochondrial superoxide production was increased. This pro-oxidative status was further augmented by simultaneous induction of cytosolic nicotinamide adenine dinucleotide phosphate reduced oxidase 4. Although acute and chronic exposure to hypoxia of adventitial fibroblasts from healthy control vessels induced increased glycolysis, it did not induce complex I deficiency as observed in PH-Fibs. This suggests that hypoxia alone is insufficient to induce NDUFS4 down-regulation and constitutive abnormalities in complex I. In conclusion, our study provides evidence that, in the pathogenesis of vascular remodeling in PH, alterations in fibroblast mitochondrial metabolism drive distinct changes in cellular behavior, which potentially occur independently of hypoxia.
Collapse
Affiliation(s)
- Lydie Plecitá-Hlavatá
- 1 Department of Membrane Transport Biophysics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Tauber
- 1 Department of Membrane Transport Biophysics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Min Li
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado
| | - Hui Zhang
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado.,3 Department of Pediatrics, Shengjing Hospital of China Medical, University, Shenyang, China
| | - Amanda R Flockton
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado
| | - Soni Savai Pullamsetti
- 4 Department of Lung Development and Remodeling, University of Giessen and Marburg Lung Center, Bad Nauheim, Germany; and
| | - Prakash Chelladurai
- 4 Department of Lung Development and Remodeling, University of Giessen and Marburg Lung Center, Bad Nauheim, Germany; and
| | | | - Karim C El Kasmi
- 6 Pediatric Gastroenterology, University of Colorado, Denver, Colorado
| | - Petr Ježek
- 1 Department of Membrane Transport Biophysics, Institute of Physiology, Czech Academy of Sciences, Prague, Czech Republic
| | - Kurt R Stenmark
- 2 Developmental Lung Biology and Cardiovascular Pulmonary Research Laboratory, University of Colorado, Denver, Colorado
| |
Collapse
|
40
|
Abstract
Recent evidence highlights that the cancer cell energy requirements vary greatly from normal cells and that cancer cells exhibit different metabolic phenotypes with variable participation of both glycolysis and oxidative phosphorylation. NADH-ubiquinone oxidoreductase (Complex I) is the largest complex of the mitochondrial electron transport chain and contributes about 40% of the proton motive force required for mitochondrial ATP synthesis. In addition, Complex I plays an essential role in biosynthesis and redox control during proliferation, resistance to cell death, and metastasis of cancer cells. Although knowledge about the structure and assembly of Complex I is increasing, information about the role of Complex I subunits in tumorigenesis is scarce and contradictory. Several small molecule inhibitors of Complex I have been described as selective anticancer agents; however, pharmacologic and genetic interventions on Complex I have also shown pro-tumorigenic actions, involving different cellular signaling. Here, we discuss the role of Complex I in tumorigenesis, focusing on the specific participation of Complex I subunits in proliferation and metastasis of cancer cells.
Collapse
Affiliation(s)
- Félix A Urra
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Felipe Muñoz
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile
| | - Alenka Lovy
- Department of Neuroscience, Center for Neuroscience Research, Tufts School of Medicine, Boston, MA, United States
| | - César Cárdenas
- Anatomy and Developmental Biology Program, Institute of Biomedical Sciences, University of Chile, Santiago, Chile.,Geroscience Center for Brain Health and Metabolism, Santiago, Chile.,The Buck Institute for Research on Aging, Novato, CA, United States.,Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, CA, United States
| |
Collapse
|
41
|
Yang Y, Sun Y, Cheng L, Li A, Shen Y, Jiang L, Deng X, Chao L. GRIM-19, a gene associated with retinoid-interferon-induced mortality, affects endometrial receptivity and embryo implantation. Reprod Fertil Dev 2017; 29:1447-1455. [DOI: 10.1071/rd16104] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Accepted: 06/07/2016] [Indexed: 11/23/2022] Open
Abstract
GRIM-19 is associated with apoptosis, abnormal proliferation, immune tolerance and malignant transformation, and it also plays an important role in early embryonic development. Although the homologous deletion of GRIM-19 causes embryonic lethality in mice, the precise role of GRIM-19 in embryo implantation has not been elucidated. Here we show that GRIM-19 plays an important role in endometrial receptivity and embryo implantation. Day 1 to Day 6 pregnant mouse uteri were collected. Immunohistochemistry studies revealed the presence of GRIM-19 on the luminal epithelium and glandular epithelium throughout the implantation period in pregnant mice. The protein and mRNA levels of GRIM-19 were markedly decreased on Day 4 of pregnancy in pregnant mice, but there was no change in GRIM-19 levels in a group of pseudopregnant mice. Overexpression of GRIM-19 decreased the adhesion rate of RL95–2–BeWo co-cultured spheroids and increased apoptosis. Furthermore, STAT3 and IL-11 mRNA and protein levels were reduced by overexpressing GRIM-19, but protein and mRNA levels of TNF-α were increased. These findings indicate the involvement of GRIM-19 in the embryo implantation process by regulating adhesion, apoptosis and immune tolerance.
Collapse
|
42
|
Jeon JH, Kim DK, Shin Y, Kim HY, Song B, Lee EY, Kim JK, You HJ, Cheong H, Shin DH, Kim ST, Cheong JH, Kim SY, Jang H. Migration and invasion of drug-resistant lung adenocarcinoma cells are dependent on mitochondrial activity. Exp Mol Med 2016; 48:e277. [PMID: 27932791 PMCID: PMC5192074 DOI: 10.1038/emm.2016.129] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/13/2016] [Accepted: 09/22/2016] [Indexed: 02/07/2023] Open
Abstract
A small proportion of cancer cells have stem-cell-like properties, are resistant to standard therapy and are associated with a poor prognosis. The metabolism of such drug-resistant cells differs from that of nearby non-resistant cells. In this study, the metabolism of drug-resistant lung adenocarcinoma cells was investigated. The expression of genes associated with oxidative phosphorylation in the mitochondrial membrane was negatively correlated with the prognosis of lung adenocarcinoma. Because the mitochondrial membrane potential (MMP) reflects the functional status of mitochondria and metastasis is the principal cause of death due to cancer, the relationship between MMP and metastasis was evaluated. Cells with a higher MMP exhibited greater migration and invasion than those with a lower MMP. Cells that survived treatment with cisplatin, a standard chemotherapeutic drug for lung adenocarcinoma, exhibited increased MMP and enhanced migration and invasion compared with parental cells. Consistent with these findings, inhibition of mitochondrial activity significantly impeded the migration and invasion of cisplatin-resistant cells. RNA-sequencing analysis indicated that the expression of mitochondrial complex genes was upregulated in cisplatin-resistant cells. These results suggested that drug-resistant cells have a greater MMP and that inhibition of mitochondrial activity could be used to prevent metastasis of drug-resistant lung adenocarcinoma cells.
Collapse
Affiliation(s)
- Ji Hoon Jeon
- Research Institute, National Cancer Center, Goyang, Korea
| | - Dong Keon Kim
- Research Institute, National Cancer Center, Goyang, Korea.,Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Youngmi Shin
- Research Institute, National Cancer Center, Goyang, Korea
| | - Hee Yeon Kim
- Research Institute, National Cancer Center, Goyang, Korea.,Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Bomin Song
- Research Institute, National Cancer Center, Goyang, Korea
| | - Eun Young Lee
- Research Institute, National Cancer Center, Goyang, Korea
| | - Jong Kwang Kim
- Research Institute, National Cancer Center, Goyang, Korea
| | - Hye Jin You
- Research Institute, National Cancer Center, Goyang, Korea.,Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Heesun Cheong
- Research Institute, National Cancer Center, Goyang, Korea.,Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Dong Hoon Shin
- Research Institute, National Cancer Center, Goyang, Korea.,Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| | - Seong-Tae Kim
- Department of Molecular Cell Biology, Sungkyunkwan University School of Medicine, Suwon, Korea
| | - Jae-Ho Cheong
- Department of Surgery, Yonsei University College of Medicine, Seoul, Korea.,Department of Biochemistry and Molecular Biology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Soo Youl Kim
- Research Institute, National Cancer Center, Goyang, Korea
| | - Hyonchol Jang
- Research Institute, National Cancer Center, Goyang, Korea.,Department of System Cancer Science, Graduate School of Cancer Science and Policy, National Cancer Center, Goyang, Korea
| |
Collapse
|
43
|
Heme oxygenase-1 in macrophages controls prostate cancer progression. Oncotarget 2016; 6:33675-88. [PMID: 26418896 PMCID: PMC4741794 DOI: 10.18632/oncotarget.5284] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 09/04/2015] [Indexed: 02/04/2023] Open
Abstract
Innate immune cells strongly influence cancer growth and progression via multiple mechanisms including regulation of epithelial to mesenchymal transition (EMT). In this study, we investigated whether expression of the metabolic gene, heme oxygenase-1 (HO-1) in tumor microenvironment imparts significant effects on prostate cancer progression. We showed that HO-1 is expressed in MARCO-positive macrophages in prostate cancer (PCa) xenografts and human prostate cancers. We demonstrated that macrophage specific (LyzM-Cre) conditional deletion of HO-1 suppressed growth of PC3 xenografts in vivo and delayed progression of prostate intraepithelial neoplasia (PIN) in TRAMP mice. However, initiation and progression of cancer xenografts in the presence of macrophages lacking HO-1 resulted in loss of E-cadherin, a known marker of poor prognosis as well as EMT. Application of CO, a product of HO-1 catalysis, increased levels of E-cadherin in the adherens junctions between cancer cells. We further showed that HO-1-driven expression of E-cadherin in cancer cells cultured in the presence of macrophages is dependent on mitochondrial activity of cancer cells. In summary, these data suggest that HO-1-derived CO from tumor-associated macrophages influences, in part, E-cadherin expression and thus tumor initiation and progression.
Collapse
|
44
|
Targeting metabolic flexibility by simultaneously inhibiting respiratory complex I and lactate generation retards melanoma progression. Oncotarget 2016; 6:37281-99. [PMID: 26484566 PMCID: PMC4741930 DOI: 10.18632/oncotarget.6134] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 09/23/2015] [Indexed: 12/20/2022] Open
Abstract
Melanoma is a largely incurable skin malignancy owing to the underlying molecular and metabolic heterogeneity confounded by the development of resistance. Cancer cells have metabolic flexibility in choosing either oxidative phosphorylation (OXPHOS) or glycolysis for ATP generation depending upon the nutrient availability in tumor microenvironment. In this study, we investigated the involvement of respiratory complex I and lactate dehydrogenase (LDH) in melanoma progression. We show that inhibition of complex I by metformin promotes melanoma growth in mice via elevating lactate and VEGF levels. In contrast, it leads to the growth arrest in vitro because of enhanced extracellular acidification as a result of increased glycolysis. Inhibition of LDH or lactate generation causes decrease in glycolysis with concomitant growth arrest both in vitro and in vivo. Blocking lactate generation in metformin-treated melanoma cells results in diminished cell proliferation and tumor progression in mice. Interestingly, inhibition of either LDH or complex I alone does not induce apoptosis, whereas inhibiting both together causes depletion in cellular ATP pool resulting in metabolic catastrophe induced apoptosis. Overall, our study suggests that LDH and complex I play distinct roles in regulating glycolysis and cell proliferation. Inhibition of these two augments synthetic lethality in melanoma.
Collapse
|
45
|
Fish oil prevents colon cancer by modulation of structure and function of mitochondria. Biomed Pharmacother 2016; 82:90-7. [DOI: 10.1016/j.biopha.2016.04.045] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 04/22/2016] [Accepted: 04/22/2016] [Indexed: 11/21/2022] Open
|
46
|
Yue X, Zhao P, Wu K, Huang J, Zhang W, Wu Y, Liang X, He X. GRIM-19 inhibition induced autophagy through activation of ERK and HIF-1α not STAT3 in Hela cells. Tumour Biol 2016; 37:9789-96. [PMID: 26810068 DOI: 10.1007/s13277-016-4877-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2015] [Accepted: 01/15/2016] [Indexed: 12/13/2022] Open
Abstract
Gene associated with retinoid-interferon-induced mortality (GRIM-19), an important subunit of mitochondrial complex I, has been identified as a tumor suppressor, and its reduced expression has been reported to be associated with tumorigenesis and metastasis. Autophagy has been proposed as a protective mechanism for cell survival under various stresses, including chemotherapy. However, it remains unknown whether GRIM-19 is linked to autophagy and chemotherapy resistance. Here, we showed that suppression of GRIM-19 by shRNA enhanced cell-type-dependent autophagy by activating extracellular regulated protein kinase (ERK) and hypoxia inducible factor-1a (HIF-1a) in a reactive oxygen species (ROS)-mediated manner, and thereby conferred resistance to paclitaxel. Besides, the antioxidant N-acetyl-L-cysteine (NAC) and autophagy inhibitor 3-MA could in part overcome this resistance. We also found that GRIM-19 expression was significantly correlated with clinical stage and grade in patients with cervical cancers. Taken together, our results indicated that GRIM-19 inhibition induced autophagy and chemotherapy resistance, which could affect prognosis of cervical cancers. Our study has identified new function of GRIM-19 and its underlying mechanism, and it will provide possible avenues for therapeutic targeting in cervical cancers.
Collapse
MESH Headings
- Adult
- Antineoplastic Agents, Phytogenic/pharmacology
- Apoptosis/drug effects
- Apoptosis Regulatory Proteins/antagonists & inhibitors
- Apoptosis Regulatory Proteins/genetics
- Apoptosis Regulatory Proteins/metabolism
- Autophagy/drug effects
- Biomarkers, Tumor/metabolism
- Blotting, Western
- Case-Control Studies
- Cell Proliferation/drug effects
- Drug Resistance, Neoplasm
- Female
- Fluorescent Antibody Technique
- Follow-Up Studies
- HeLa Cells
- Humans
- Hypoxia-Inducible Factor 1, alpha Subunit/metabolism
- Lymphatic Metastasis
- Male
- Mitogen-Activated Protein Kinase 1/metabolism
- Mitogen-Activated Protein Kinase 3/metabolism
- NADH, NADPH Oxidoreductases/antagonists & inhibitors
- NADH, NADPH Oxidoreductases/genetics
- NADH, NADPH Oxidoreductases/metabolism
- Neoplasm Invasiveness
- Neoplasm Staging
- Paclitaxel/pharmacology
- Prognosis
- RNA, Small Interfering/genetics
- STAT3 Transcription Factor/metabolism
- Survival Rate
- Tumor Cells, Cultured
- Uterine Cervical Neoplasms/drug therapy
- Uterine Cervical Neoplasms/metabolism
- Uterine Cervical Neoplasms/pathology
Collapse
Affiliation(s)
- Xin Yue
- Clinical Research Center, Wuhan Medical and Healthcare Center for Women and Children, No. 100 Hongkong Rd, Wuhan, Hubei, China
| | - Peiwei Zhao
- Clinical Research Center, Wuhan Medical and Healthcare Center for Women and Children, No. 100 Hongkong Rd, Wuhan, Hubei, China
| | - Kongming Wu
- Department of Oncology, Tongji Hospital of Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, China
| | - Juan Huang
- Department of Pathology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei, China
| | - Wen Zhang
- Department of Pathology, Wuhan Medical and Healthcare Center for Women and Children, Wuhan, Hubei, China
| | - Yaogui Wu
- School of Public Health, Wuhan University, Wuhan, China
| | - Xiaohui Liang
- Department of Oncology, Renmin Hospital, Wuhan University, Wuhan, China
| | - Xuelian He
- Clinical Research Center, Wuhan Medical and Healthcare Center for Women and Children, No. 100 Hongkong Rd, Wuhan, Hubei, China.
| |
Collapse
|
47
|
Lee YK, Jee BA, Kwon SM, Yoon YS, Xu WG, Wang HJ, Wang XW, Thorgeirsson SS, Lee JS, Woo HG, Yoon G. Identification of a mitochondrial defect gene signature reveals NUPR1 as a key regulator of liver cancer progression. Hepatology 2015; 62:1174-89. [PMID: 26173068 PMCID: PMC6312643 DOI: 10.1002/hep.27976] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 06/11/2015] [Accepted: 07/06/2015] [Indexed: 02/01/2023]
Abstract
UNLABELLED Many cancer cells require more glycolytic adenosine triphosphate production due to a mitochondrial respiratory defect. However, the roles of mitochondrial defects in cancer development and progression remain unclear. To address the role of transcriptomic regulation by mitochondrial defects in liver cancer cells, we performed gene expression profiling for three different cell models of mitochondrial defects: cells with chemical respiratory inhibition (rotenone, thenoyltrifluoroacetone, antimycin A, and oligomycin), cells with mitochondrial DNA depletion (Rho0), and liver cancer cells harboring mitochondrial defects (SNU354 and SNU423). By comparing gene expression in the three models, we identified 10 common mitochondrial defect-related genes that may be responsible for retrograde signaling from cancer cell mitochondria to the intracellular transcriptome. The concomitant expression of the 10 common mitochondrial defect genes is significantly associated with poor prognostic outcomes in liver cancers, suggesting their functional and clinical relevance. Among the common mitochondrial defect genes, we found that nuclear protein 1 (NUPR1) is one of the key transcription regulators. Knockdown of NUPR1 suppressed liver cancer cell invasion, which was mediated in a Ca(2+) signaling-dependent manner. In addition, by performing an NUPR1-centric network analysis and promoter binding assay, granulin was identified as a key downstream effector of NUPR1. We also report association of the NUPR1-granulin pathway with mitochondrial defect-derived glycolytic activation in human liver cancer. CONCLUSION Mitochondrial respiratory defects and subsequent retrograde signaling, particularly the NUPR1-granulin pathway, play pivotal roles in liver cancer progression.
Collapse
Affiliation(s)
- Young-Kyoung Lee
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Byul A. Jee
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - So Mee Kwon
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Young-Sil Yoon
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea
| | - Wei Guang Xu
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Hee-Jung Wang
- Department of Surgery, Ajou University School of Medicine, Suwon, Korea
| | - Xin Wei Wang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Snorri S. Thorgeirsson
- Laboratory of Experimental Carcinogenesis, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD
| | - Jae-Seon Lee
- Department of Biomedical Sciences and Hypoxia-Related Disease Research Center, Inha University College of Medicine, Incheon, Korea
| | - Hyun Goo Woo
- Department of Physiology, Ajou University School of Medicine, Suwon, Korea,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| | - Gyesoon Yoon
- Department of Biochemistry, Ajou University School of Medicine, Suwon, Korea,Department of Biomedical Science, Graduate School, Ajou University, Suwon, Korea
| |
Collapse
|
48
|
Byun HO, Lee YK, Kim JM, Yoon G. From cell senescence to age-related diseases: differential mechanisms of action of senescence-associated secretory phenotypes. BMB Rep 2015; 48:549-58. [PMID: 26129674 PMCID: PMC4911181 DOI: 10.5483/bmbrep.2015.48.10.122] [Citation(s) in RCA: 79] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Indexed: 12/18/2022] Open
Abstract
Cellular senescence is a process by which cells enter a state of permanent cell cycle arrest. It is commonly believed to underlie organismal aging and age-associated diseases. However, the mechanism by which cellular senescence contributes to aging and age-associated pathologies remains unclear. Recent studies showed that senescent cells exert detrimental effects on the tissue microenvironment, generating pathological facilitators or aggravators. The most significant environmental effector resulting from senescent cells is the senescence-associated secretory phenotype (SASP), which is constituted by a strikingly increased expression and secretion of diverse pro-inflammatory cytokines. Careful investigation into the components of SASPs and their mechanism of action, may improve our understanding of the pathological backgrounds of age-associated diseases. In this review, we focus on the differential expression of SASP-related genes, in addition to SASP components, during the progress of senescence. We also provide a perspective on the possible action mechanisms of SASP components, and potential contributions of SASP-expressing senescent cells, to age-associated pathologies.
Collapse
Affiliation(s)
- Hae-Ok Byun
- Department of Biochemistry, Ajou University School of Medicine
- Department of Biomedical Science, Graduate School
| | - Young-Kyoung Lee
- Department of Biochemistry, Ajou University School of Medicine
- Department of Biomedical Science, Graduate School
| | - Jeong-Min Kim
- Department of Biochemistry, Ajou University School of Medicine
- College of Natural Sciences, Ajou University, Suwon 16499, Korea
| | - Gyesoon Yoon
- Department of Biochemistry, Ajou University School of Medicine
- Department of Biomedical Science, Graduate School
| |
Collapse
|
49
|
Lee JH, Lee YK, Lim JJ, Byun HO, Park I, Kim GH, Xu WG, Wang HJ, Yoon G. Mitochondrial Respiratory Dysfunction Induces Claudin-1 Expression via Reactive Oxygen Species-mediated Heat Shock Factor 1 Activation, Leading to Hepatoma Cell Invasiveness. J Biol Chem 2015; 290:21421-31. [PMID: 26157141 DOI: 10.1074/jbc.m115.654913] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2015] [Indexed: 01/17/2023] Open
Abstract
Although mitochondrial dysfunction has been implicated in tumor metastasis, it is unclear how it regulates tumor cell aggressiveness. We have reported previously that human hepatoma cells harboring mitochondrial defects have high tumor cell invasion activity via increased claudin-1 (Cln-1) expression. In this study, we demonstrated that mitochondrial respiratory defects induced Cln-1 transcription via reactive oxygen species (ROS)-mediated heat shock factor 1 (HSF1) activation, which contributed to hepatoma invasiveness. We first confirmed the inverse relationship between mitochondrial defects and Cln-1 induction in SNU hepatoma cells and hepatocellular carcinoma tissues. We then examined five different respiratory complex inhibitors, and complex I inhibition by rotenone most effectively induced Cln-1 at the transcriptional level. Rotenone increased both mitochondrial and cytosolic ROS. In addition, rotenone-induced Cln-1 expression was attenuated by N-acetylcysteine, an antioxidant, and exogenous H2O2 treatment was enough to increase Cln-1 transcription, implying the involvement of ROS. Next we found that ROS-mediated HSF1 activation via hyperphosphorylation was the key event for Cln-1 transcription. Moreover, the Cln-1 promoter region (from -529 to +53) possesses several HSF1 binding elements, and this region showed increased promoter activity and HSF1 binding affinity in response to rotenone treatment. Finally, we demonstrated that the invasion activity of SNU449 cells, which harbor mitochondrial defects, was blocked by siRNA-mediated HSF1 knockdown. Taken together, these results indicate that mitochondrial respiratory defects enhance Cln-1-mediated hepatoma cell invasiveness via mitochondrial ROS-mediated HSF1 activation, presenting a potential role for HSF1 as a novel mitochondrial retrograde signal-responsive transcription factor to control hepatoma cell invasiveness.
Collapse
Affiliation(s)
- Jong-Hyuk Lee
- From the Departments of Biochemistry and the Department of Biomedical Science, Graduate School, Ajou University, Suwon 443-380, Korea
| | - Young-Kyoung Lee
- From the Departments of Biochemistry and the Department of Biomedical Science, Graduate School, Ajou University, Suwon 443-380, Korea
| | - Jin J Lim
- From the Departments of Biochemistry and the Department of Biomedical Science, Graduate School, Ajou University, Suwon 443-380, Korea
| | - Hae-Ok Byun
- From the Departments of Biochemistry and the Department of Biomedical Science, Graduate School, Ajou University, Suwon 443-380, Korea
| | - Imkyong Park
- From the Departments of Biochemistry and the Department of Biomedical Science, Graduate School, Ajou University, Suwon 443-380, Korea
| | - Gyeong-Hyeon Kim
- From the Departments of Biochemistry and the Department of Biomedical Science, Graduate School, Ajou University, Suwon 443-380, Korea
| | - Wei Guang Xu
- Surgery, Ajou University School of Medicine, Suwon, 443-380, Korea and
| | - Hee-Jung Wang
- Surgery, Ajou University School of Medicine, Suwon, 443-380, Korea and
| | - Gyesoon Yoon
- From the Departments of Biochemistry and the Department of Biomedical Science, Graduate School, Ajou University, Suwon 443-380, Korea
| |
Collapse
|
50
|
Hitting the Bull's-Eye in Metastatic Cancers-NSAIDs Elevate ROS in Mitochondria, Inducing Malignant Cell Death. Pharmaceuticals (Basel) 2015; 8:62-106. [PMID: 25688484 PMCID: PMC4381202 DOI: 10.3390/ph8010062] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/08/2015] [Accepted: 02/05/2015] [Indexed: 12/20/2022] Open
Abstract
Tumor metastases that impede the function of vital organs are a major cause of cancer related mortality. Mitochondrial oxidative stress induced by hypoxia, low nutrient levels, or other stresses, such as genotoxic events, act as key drivers of the malignant changes in primary tumors to enhance their progression to metastasis. Emerging evidence now indicates that mitochondrial modifications and mutations resulting from oxidative stress, and leading to OxPhos stimulation and/or enhanced reactive oxygen species (ROS) production, are essential for promoting and sustaining the highly metastatic phenotype. Moreover, the modified mitochondria in emerging or existing metastatic cancer cells, by their irreversible differences, provide opportunities for selectively targeting their mitochondrial functions with a one-two punch. The first blow would block their anti-oxidative defense, followed by the knockout blow—promoting production of excess ROS, capitulating the terminal stage—activation of the mitochondrial permeability transition pore (mPTP), specifically killing metastatic cancer cells or their precursors. This review links a wide area of research relevant to cellular mechanisms that affect mitochondria activity as a major source of ROS production driving the pro-oxidative state in metastatic cancer cells. Each of the important aspects affecting mitochondrial function are discussed including: hypoxia, HIFs and PGC1 induced metabolic changes, increased ROS production to induce a more pro-oxidative state with reduced antioxidant defenses. It then focuses on how the mitochondria, as a major source of ROS in metastatic cancer cells driving the pro-oxidative state of malignancy enables targeting drugs affecting many of these altered processes and why the NSAIDs are an excellent example of mitochondria-targeted agents that provide a one-two knockout activating the mPTP and their efficacy as selective anticancer metastasis drugs.
Collapse
|