1
|
Tian Z, Zhou D, Jiang R, Zhou B. Role of AMIGO2 in cancer progression: Novel insights (Review). Oncol Lett 2024; 28:434. [PMID: 39049987 PMCID: PMC11268087 DOI: 10.3892/ol.2024.14567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Adhesion molecule with IgG-like domain 2 (AMIGO2) is a novel scaffold protein initially identified in cerebellar granule neurons, and inhibits apoptosis of neurons. It is also widely expressed in various malignant tumors, including gastric cancer, colorectal carcinoma, ovarian cancer, prostate cancer and melanoma. During the past decades, it has been revealed that AMIGO2 can act as an oncogene, participating in tumor occurrence and development, for example by inhibiting apoptosis, accelerating cell proliferation, migration and adhesion, and promoting tumor metastasis and drug resistance. The present review discusses the recent advancements regarding AMIGO2 in the field of cancer, emphasizing its related molecular mechanisms to identify novel therapeutic strategies targeting AMIGO2 for cancer treatment in the future.
Collapse
Affiliation(s)
- Zhen Tian
- Department of Oncology, Huishan Third People's Hospital of Wuxi, Wuxi, Jiangsu 214183, P.R. China
| | - Dongsheng Zhou
- Department of Oncology, Huishan Third People's Hospital of Wuxi, Wuxi, Jiangsu 214183, P.R. China
| | - Rui Jiang
- Department of Oncology, Huishan Third People's Hospital of Wuxi, Wuxi, Jiangsu 214183, P.R. China
| | - Bin Zhou
- Department of Oncology, Huishan Third People's Hospital of Wuxi, Wuxi, Jiangsu 214183, P.R. China
| |
Collapse
|
2
|
Rust R, Holm MM, Egger M, Weinmann O, van Rossum D, Walter FR, Santa-Maria AR, Grönnert L, Maurer MA, Kraler S, Akhmedov A, Cideciyan R, Lüscher TF, Deli MA, Herrmann IK, Schwab ME. Nogo-A is secreted in extracellular vesicles, occurs in blood and can influence vascular permeability. J Cereb Blood Flow Metab 2024; 44:938-954. [PMID: 38000040 PMCID: PMC11318402 DOI: 10.1177/0271678x231216270] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 10/10/2023] [Accepted: 10/20/2023] [Indexed: 11/26/2023]
Abstract
Nogo-A is a transmembrane protein with multiple functions in the central nervous system (CNS), including restriction of neurite growth and synaptic plasticity. Thus far, Nogo-A has been predominantly considered a cell contact-dependent ligand signaling via cell surface receptors. Here, we show that Nogo-A can be secreted by cultured cells of neuronal and glial origin in association with extracellular vesicles (EVs). Neuron- and oligodendrocyte-derived Nogo-A containing EVs inhibited fibroblast spreading, and this effect was partially reversed by Nogo-A receptor S1PR2 blockage. EVs purified from HEK cells only inhibited fibroblast spreading upon Nogo-A over-expression. Nogo-A-containing EVs were found in vivo in the blood of healthy mice and rats, as well as in human plasma. Blood Nogo-A concentrations were elevated after acute stroke lesions in mice and rats. Nogo-A active peptides decreased barrier integrity in an in vitro blood-brain barrier model. Stroked mice showed increased dye permeability in peripheral organs when tested 2 weeks after injury. In the Miles assay, an in vivo test to assess leakage of the skin vasculature, a Nogo-A active peptide increased dye permeability. These findings suggest that blood borne, possibly EV-associated Nogo-A could exert long-range regulatory actions on vascular permeability.
Collapse
Affiliation(s)
- Ruslan Rust
- Brain Research Institute, University of Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Switzerland
| | - Mea M Holm
- Brain Research Institute, University of Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | - Matteo Egger
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
| | | | | | - Fruzsina R Walter
- Biological Barriers Research Group, ELKH Biological Research Centre, Szeged, Hungary
| | | | - Lisa Grönnert
- Brain Research Institute, University of Zürich, Switzerland
| | | | - Simon Kraler
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | | | - Rose Cideciyan
- Center for Molecular Cardiology, University of Zurich, Switzerland
| | - Thomas F Lüscher
- Center for Molecular Cardiology, University of Zurich, Switzerland
- Royal Brompton and Harefield Hospitals and Imperial College, London, United Kingdom
| | - Maria A Deli
- Biological Barriers Research Group, ELKH Biological Research Centre, Szeged, Hungary
| | - Inge K Herrmann
- Particles Biology Interactions Laboratory, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, Switzerland
- Nanoparticle Systems Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zurich, Zurich, Switzerland
| | - Martin E Schwab
- Brain Research Institute, University of Zürich, Switzerland
- Department of Health Sciences and Technology, ETH Zürich, Switzerland
- Institute for Regenerative Medicine (IREM), University of Zurich, Switzerland
| |
Collapse
|
3
|
Sutherland DM, Strebl M, Koehler M, Welsh OL, Yu X, Hu L, dos Santos Natividade R, Knowlton JJ, Taylor GM, Moreno RA, Wörz P, Lonergan ZR, Aravamudhan P, Guzman-Cardozo C, Kour S, Pandey UB, Alsteens D, Wang Z, Prasad BVV, Stehle T, Dermody TS. NgR1 binding to reovirus reveals an unusual bivalent interaction and a new viral attachment protein. Proc Natl Acad Sci U S A 2023; 120:e2219404120. [PMID: 37276413 PMCID: PMC10268256 DOI: 10.1073/pnas.2219404120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 04/19/2023] [Indexed: 06/07/2023] Open
Abstract
Nogo-66 receptor 1 (NgR1) binds a variety of structurally dissimilar ligands in the adult central nervous system to inhibit axon extension. Disruption of ligand binding to NgR1 and subsequent signaling can improve neuron outgrowth, making NgR1 an important therapeutic target for diverse neurological conditions such as spinal crush injuries and Alzheimer's disease. Human NgR1 serves as a receptor for mammalian orthoreovirus (reovirus), but the mechanism of virus-receptor engagement is unknown. To elucidate how NgR1 mediates cell binding and entry of reovirus, we defined the affinity of interaction between virus and receptor, determined the structure of the virus-receptor complex, and identified residues in the receptor required for virus binding and infection. These studies revealed that central NgR1 surfaces form a bridge between two copies of viral capsid protein σ3, establishing that σ3 serves as a receptor ligand for reovirus. This unusual binding interface produces high-avidity interactions between virus and receptor to prime early entry steps. These studies refine models of reovirus cell-attachment and highlight the evolution of viruses to engage multiple receptors using distinct capsid components.
Collapse
Affiliation(s)
- Danica M. Sutherland
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Michael Strebl
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076Tübingen, Germany
| | - Melanie Koehler
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Olivia L. Welsh
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Xinzhe Yu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
| | - Liya Hu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
| | - Rita dos Santos Natividade
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
| | - Jonathan J. Knowlton
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Cryo-Electron Microscopy and Tomography Core, Baylor College of Medicine, Houston, TX77030
| | - Gwen M. Taylor
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Rodolfo A. Moreno
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
| | - Patrick Wörz
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076Tübingen, Germany
| | - Zachery R. Lonergan
- Cryo-Electron Microscopy and Tomography Core, Baylor College of Medicine, Houston, TX77030
| | - Pavithra Aravamudhan
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Camila Guzman-Cardozo
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Sukhleen Kour
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
| | - Udai Bhan Pandey
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN37232
- Department of Human Genetics, University of Pittsburgh School of Public Health, Pittsburgh, PA15261
| | - David Alsteens
- Louvain Institute of Biomolecular Science and Technology, Université catholique de Louvain, 1348Louvain-la-Neuve, Belgium
- Children’s Neuroscience Institute, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
| | - Zhao Wang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
- Walloon Excellence in Life Sciences and Biotechnology, 1300Wavre, Belgium
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX77030
| | - B. V. Venkataram Prasad
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX77030
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX77030
| | - Thilo Stehle
- Interfaculty Institute of Biochemistry, University of Tübingen, D-72076Tübingen, Germany
| | - Terence S. Dermody
- Department of Pediatrics, University of Pittsburgh School of Medicine, Pittsburgh, PA15224
- Institute of Infection, Inflammation, and Immunity, University of Pittsburgh Medical Center Children’s Hospital of Pittsburgh, Pittsburgh, PA15224
- Department of Microbiology and Molecular Genetics, University of Pittsburgh School of Medicine, Pittsburgh, PA15219
| |
Collapse
|
4
|
Massoumi H, Amin S, Soleimani M, Momenaei B, Ashraf MJ, Guaiquil VH, Hematti P, Rosenblatt MI, Djalilian AR, Jalilian E. Extracellular-Vesicle-Based Therapeutics in Neuro-Ophthalmic Disorders. Int J Mol Sci 2023; 24:9006. [PMID: 37240353 PMCID: PMC10219002 DOI: 10.3390/ijms24109006] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 05/09/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
Extracellular vesicles (EVs) have been recognized as promising candidates for developing novel therapeutics for a wide range of pathologies, including ocular disorders, due to their ability to deliver a diverse array of bioactive molecules, including proteins, lipids, and nucleic acids, to recipient cells. Recent studies have shown that EVs derived from various cell types, including mesenchymal stromal cells (MSCs), retinal pigment epithelium cells, and endothelial cells, have therapeutic potential in ocular disorders, such as corneal injury and diabetic retinopathy. EVs exert their effects through various mechanisms, including promoting cell survival, reducing inflammation, and inducing tissue regeneration. Furthermore, EVs have shown promise in promoting nerve regeneration in ocular diseases. In particular, EVs derived from MSCs have been demonstrated to promote axonal regeneration and functional recovery in various animal models of optic nerve injury and glaucoma. EVs contain various neurotrophic factors and cytokines that can enhance neuronal survival and regeneration, promote angiogenesis, and modulate inflammation in the retina and optic nerve. Additionally, in experimental models, the application of EVs as a delivery platform for therapeutic molecules has revealed great promise in the treatment of ocular disorders. However, the clinical translation of EV-based therapies faces several challenges, and further preclinical and clinical studies are needed to fully explore the therapeutic potential of EVs in ocular disorders and to address the challenges for their successful clinical translation. In this review, we will provide an overview of different types of EVs and their cargo, as well as the techniques used for their isolation and characterization. We will then review the preclinical and clinical studies that have explored the role of EVs in the treatment of ocular disorders, highlighting their therapeutic potential and the challenges that need to be addressed for their clinical translation. Finally, we will discuss the future directions of EV-based therapeutics in ocular disorders. Overall, this review aims to provide a comprehensive overview of the current state of the art of EV-based therapeutics in ophthalmic disorders, with a focus on their potential for nerve regeneration in ocular diseases.
Collapse
Affiliation(s)
- Hamed Massoumi
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Sohil Amin
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Mohammad Soleimani
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Bita Momenaei
- Wills Eye Hospital, Mid Atlantic Retina, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Mohammad Javad Ashraf
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Victor H. Guaiquil
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Peiman Hematti
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mark I. Rosenblatt
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Ali R. Djalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
| | - Elmira Jalilian
- Department of Ophthalmology and Visual Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA; (H.M.)
- The Richard and Loan Hill Department of Biomedical Engineering, University of Illinois at Chicago, Chicago, IL 60607, USA
| |
Collapse
|
5
|
Dave BP, Shah KC, Shah MB, Chorawala MR, Patel VN, Shah PA, Shah GB, Dhameliya TM. Unveiling the modulation of Nogo receptor in neuroregeneration and plasticity: Novel aspects and future horizon in a new frontier. Biochem Pharmacol 2023; 210:115461. [PMID: 36828272 DOI: 10.1016/j.bcp.2023.115461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/25/2023]
Abstract
Neurodegenerative diseases (NDs) such as Alzheimer's, Parkinson's, Multiple Sclerosis, Hereditary Spastic Paraplegia, and Amyotrophic Lateral Sclerosis have emerged as the most dreaded diseases due to a lack of precise diagnostic tools and efficient therapies. Despite the fact that the contributing factors of NDs are still unidentified, mounting evidence indicates the possibility that genetic and cellular changes may lead to the significant production of abnormally misfolded proteins. These misfolded proteins lead to damaging effects thereby causing neurodegeneration. The association between Neurite outgrowth factor (Nogo) with neurological diseases and other peripheral diseases is coming into play. Three isoforms of Nogo have been identified Nogo-A, Nogo-B and Nogo-C. Among these, Nogo-A is mainly responsible for neurological diseases as it is localized in the CNS (Central Nervous System), whereas Nogo-B and Nogo-C are responsible for other diseases such as colitis, lung, intestinal injury, etc. Nogo-A, a membrane protein, had first been described as a CNS-specific inhibitor of axonal regeneration. Several recent studies have revealed the role of Nogo-A proteins and their receptors in modulating neurite outgrowth, branching, and precursor migration during nervous system development. It may also modulate or affect the inhibition of growth during the developmental processes of the CNS. Information about the effects of other ligands of Nogo protein on the CNS are yet to be discovered however several pieces of evidence have suggested that it may also influence the neuronal maturation of CNS and targeting Nogo-A could prove to be beneficial in several neurodegenerative diseases.
Collapse
Affiliation(s)
- Bhavarth P Dave
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Kashvi C Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Maitri B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Mehul R Chorawala
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India.
| | - Vishvas N Patel
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Palak A Shah
- Department of Pharmacology, K. B. Institute of Pharmaceutical Education and Research, Gandhinagar 380023, Gujarat, India
| | - Gaurang B Shah
- Department of Pharmacology and Pharmacy Practice, L. M. College of Pharmacy, Opp. Gujarat University, Ahmedabad 380009, Gujarat, India
| | - Tejas M Dhameliya
- Department of Pharmaceutical Chemistry, Institute of Pharmacy, Nirma University, Ahmedabad-382481, Gujarat, India
| |
Collapse
|
6
|
Vaccaro G, Dumoulin A, Zuñiga NR, Bandtlow CE, Stoeckli ET. The Nogo-66 Receptors NgR1 and NgR3 Are Required for Commissural Axon Pathfinding. J Neurosci 2022; 42:4087-4100. [PMID: 35437280 PMCID: PMC9121835 DOI: 10.1523/jneurosci.1390-21.2022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 11/30/2022] Open
Abstract
Nogo-66 receptors (NgR1-3) are glycosylphosphatidyl inositol-linked proteins that belong to the leucine-rich repeat superfamily. Through binding to myelin-associated inhibitors, NgRs contribute to the inhibition of axonal regeneration after spinal cord injury. Their role in limiting synaptic plasticity and axonal outgrowth in the adult CNS has been described previously, but not much is known about their role during the development of the nervous system. Here, we show that NgR1 and NgR3 mRNAs are expressed during spinal cord development of the chicken embryo. In particular, they are expressed in the dI1 subpopulation of commissural neurons during the time when their axons navigate toward and across the floorplate, the ventral midline of the spinal cord. To assess a potential role of NgR1 and NgR3 in axon guidance, we downregulated them using in ovo RNAi and analyzed the trajectory of commissural axons by tracing them in open-book preparations of spinal cords. Our results show that loss of either NgR1 or NgR3 causes axons to stall in the midline area and to interfere with the rostral turn of postcrossing axons. In addition, we also show that NgR1, but not NgR3, requires neuronal PlexinA2 for the regulation of commissural axon guidance.SIGNIFICANCE STATEMENT Over the last decades, many studies have focused on the role of NgRs, particularly NgR1, in axonal regeneration in the injured adult CNS. Here, we show a physiological role of NgRs in guiding commissural axons during early development of the chicken spinal cord in vivo Both NgR1 and NgR3 are required for midline crossing and subsequent turning of postcrossing axons into the longitudinal axis of the spinal cord. NgR1, but not NgR3, forms a receptor complex with PlexinA2 during axon guidance. Overall, these findings provide a link between neural regenerative mechanisms and developmental processes.
Collapse
Affiliation(s)
- Giuseppe Vaccaro
- Institute of Neurobiochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
- Department of Molecular Life Sciences, Neuroscience Center Zurich, Zurich, 8057, Switzerland
| | - Alexandre Dumoulin
- Department of Molecular Life Sciences, Neuroscience Center Zurich, Zurich, 8057, Switzerland
| | - Nikole R Zuñiga
- Department of Molecular Life Sciences, Neuroscience Center Zurich, Zurich, 8057, Switzerland
| | - Christine E Bandtlow
- Institute of Neurobiochemistry, Biocenter, Medical University of Innsbruck, Innsbruck, 6020, Austria
| | - Esther T Stoeckli
- Department of Molecular Life Sciences, Neuroscience Center Zurich, Zurich, 8057, Switzerland
| |
Collapse
|
7
|
Cooke P, Janowitz H, Dougherty SE. Neuronal Redevelopment and the Regeneration of Neuromodulatory Axons in the Adult Mammalian Central Nervous System. Front Cell Neurosci 2022; 16:872501. [PMID: 35530177 PMCID: PMC9074815 DOI: 10.3389/fncel.2022.872501] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 01/09/2023] Open
Abstract
One reason that many central nervous system injuries, including those arising from traumatic brain injury, spinal cord injury, and stroke, have limited recovery of function is that neurons within the adult mammalian CNS lack the ability to regenerate their axons following trauma. This stands in contrast to neurons of the adult mammalian peripheral nervous system (PNS). New evidence, provided by single-cell expression profiling, suggests that, following injury, both mammalian central and peripheral neurons can revert to an embryonic-like growth state which is permissive for axon regeneration. This “redevelopment” strategy could both facilitate a damage response necessary to isolate and repair the acute damage from injury and provide the intracellular machinery necessary for axon regrowth. Interestingly, serotonin neurons of the rostral group of raphe nuclei, which project their axons into the forebrain, display a robust ability to regenerate their axons unaided, counter to the widely held view that CNS axons cannot regenerate without experimental intervention after injury. Furthermore, initial evidence suggests that norepinephrine neurons within the locus coeruleus possess similar regenerative abilities. Several morphological characteristics of serotonin axon regeneration in adult mammals, observable using longitudinal in vivo imaging, are distinct from the known characteristics of unaided peripheral nerve regeneration, or of the regeneration seen in the spinal cord and optic nerve that occurs with experimental intervention. These results suggest that there is an alternative CNS program for axon regeneration that likely differs from that displayed by the PNS.
Collapse
Affiliation(s)
- Patrick Cooke
- Linden Lab, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Haley Janowitz
- Linden Lab, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Sarah E Dougherty
- Linden Lab, Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| |
Collapse
|
8
|
Havla J, Hohlfeld R. Antibody Therapies for Progressive Multiple Sclerosis and for Promoting Repair. Neurotherapeutics 2022; 19:774-784. [PMID: 35289375 PMCID: PMC9294105 DOI: 10.1007/s13311-022-01214-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2022] [Indexed: 12/21/2022] Open
Abstract
Progressive multiple sclerosis (PMS) is clinically distinct from relapsing-remitting MS (RRMS). In PMS, clinical disability progression occurs independently of relapse activity. Furthermore, there is increasing evidence that the pathological mechanisms of PMS and RRMS are different. Current therapeutic options for the treatment of PMS remain inadequate, although ocrelizumab, a B-cell-depleting antibody, is now available as the first approved therapeutic option for primary progressive MS. Recent advances in understanding the pathophysiology of PMS provide hope for new innovative therapeutic options: these include antibody therapies with anti-inflammatory, neuroprotective, and/or remyelination-fostering effects. In this review, we summarize the relevant trial data relating to antibody therapy and consider future antibody options for treating PMS.
Collapse
Affiliation(s)
- Joachim Havla
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany.
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany.
- Data Integration for Future Medicine (DIFUTURE) Consortium, LMU Munich, Munich, Germany.
| | - Reinhard Hohlfeld
- Institute of Clinical Neuroimmunology, University Hospital, LMU Munich, Munich, Germany
- Biomedical Center (BMC), Faculty of Medicine, LMU Munich, Martinsried, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
| |
Collapse
|
9
|
Li X, Pan Y, Gui J, Fang Z, Huang D, Luo H, Cheng L, Chen H, Song X, Jiang L. The Role and Mechanism of AMIGO3 in the Formation of Aberrant Neural Circuits After Status Convulsion in Immature Mice. Front Mol Neurosci 2021; 14:748115. [PMID: 34650403 PMCID: PMC8505997 DOI: 10.3389/fnmol.2021.748115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 09/08/2021] [Indexed: 12/02/2022] Open
Abstract
Leucine rich repeat and immunoglobulin-like domain-containing protein 1 (Lingo-1) has gained considerable interest as a potential therapy for demyelinating diseases since it inhibits axonal regeneration and myelin production. However, the results of clinical trials targeted at Lingo-1 have been unsatisfactory. Amphoterin-induced gene and open reading frame-3 (AMIGO3), which is an analog of Lingo-1, might be an alternative therapeutic target for brain damage. In the present study, we investigated the effects of AMIGO3 on neural circuits in immature mice after status convulsion (SC) induced by kainic acid. The expression of both AMIGO3 and Lingo-1 was significantly increased after SC, with levels maintained to 20 days after SC. Following SC, transmission electron microscopy revealed the impaired microstructure of myelin sheaths and Western blot analysis showed a decrease in myelin basic protein expression, and this damage was alleviated by downregulation of AMIGO3 expression. The ROCK/RhoA signaling pathway was inhibited at 20 days after SC by downregulating AMIGO3 expression. These results indicate that AMIGO3 plays important roles in seizure-induced damage of myelin sheaths as well as axon growth and synaptic plasticity via the ROCK/RhoA signaling pathway.
Collapse
Affiliation(s)
- Xue Li
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Yanan Pan
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Jianxiong Gui
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Zhixu Fang
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Dishu Huang
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hanyu Luo
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Li Cheng
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Hengsheng Chen
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Xiaojie Song
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| | - Li Jiang
- Chongqing Key Laboratory of Pediatrics, Department of Neurology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing, China
| |
Collapse
|
10
|
Alhajlah S, Thompson AM, Ahmed Z. Overexpression of Reticulon 3 Enhances CNS Axon Regeneration and Functional Recovery after Traumatic Injury. Cells 2021; 10:2015. [PMID: 34440784 PMCID: PMC8395006 DOI: 10.3390/cells10082015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/03/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
CNS neurons are generally incapable of regenerating their axons after injury due to several intrinsic and extrinsic factors, including the presence of axon growth inhibitory molecules. One such potent inhibitor of CNS axon regeneration is Reticulon (RTN) 4 or Nogo-A. Here, we focused on RTN3 as its contribution to CNS axon regeneration is currently unknown. We found that RTN3 expression correlated with an axon regenerative phenotype in dorsal root ganglion neurons (DRGN) after injury to the dorsal columns, a well-characterised model of spinal cord injury. Overexpression of RTN3 promoted disinhibited DRGN neurite outgrowth in vitro and dorsal column axon regeneration/sprouting and electrophysiological, sensory and locomotor functional recovery after injury in vivo. Knockdown of protrudin, however, ablated RTN3-enhanced neurite outgrowth/axon regeneration in vitro and in vivo. Moreover, overexpression of RTN3 in a second model of CNS injury, the optic nerve crush injury model, enhanced retinal ganglion cell (RGC) survival, disinhibited neurite outgrowth in vitro and survival and axon regeneration in vivo, an effect that was also dependent on protrudin. These results demonstrate that RTN3 enhances neurite outgrowth/axon regeneration in a protrudin-dependent manner after both spinal cord and optic nerve injury.
Collapse
Affiliation(s)
- Sharif Alhajlah
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
- Applied Medical Science College, Shaqra University, P.O. Box 1678, Ad-Dawadmi 11911, Saudi Arabia
| | - Adam M Thompson
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham B15 2TT, UK; (S.A.); (A.M.T.)
- Centre for Trauma Sciences Research, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|
11
|
Binamé F, Pham-Van LD, Bagnard D. Manipulating oligodendrocyte intrinsic regeneration mechanism to promote remyelination. Cell Mol Life Sci 2021; 78:5257-5273. [PMID: 34019104 PMCID: PMC11073109 DOI: 10.1007/s00018-021-03852-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/14/2021] [Accepted: 05/08/2021] [Indexed: 02/06/2023]
Abstract
In demyelinated lesions, astrocytes, activated microglia and infiltrating macrophages secrete several factors regulating oligodendrocyte precursor cells' behaviour. What appears to be the initiation of an intrinsic mechanism of myelin repair is only leading to partial recovery and inefficient remyelination, a process worsening over the course of the disease. This failure is largely due to the concomitant accumulation of inhibitory cues in and around the lesion sites opposing to growth promoting factors. Here starts a complex game of interactions between the signalling pathways controlling oligodendrocytes migration or differentiation. Receptors of positive or negative cues are modulating Ras, PI3K or RhoGTPases pathways acting on oligodendrocyte cytoskeleton remodelling. From the description of this intricate signalling network, this review addresses the extent to which the modulation of the global response to inhibitory cues may pave the route towards novel therapeutic approaches for myelin repair.
Collapse
Affiliation(s)
- Fabien Binamé
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Lucas D Pham-Van
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France
| | - Dominique Bagnard
- INSERM U1119, Biopathology of Myelin, Neuroprotection and Therapeutic Strategy (BMNST Lab), Labex Medalis, Fédération de Médecine Translationnelle de Strasbourg (FMTS), Pôle API, Ecole Supérieure de Biotechnologie, 300 Boulevard Sébastien Brant, 67412, Illkirch, France.
| |
Collapse
|
12
|
Maverick EE, Leek AN, Tamkun MM. Kv2 channel-AMIGO β-subunit assembly modulates both channel function and cell adhesion molecule surface trafficking. J Cell Sci 2021; 134:jcs256339. [PMID: 34137443 PMCID: PMC8255027 DOI: 10.1242/jcs.256339] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 05/17/2021] [Indexed: 11/20/2022] Open
Abstract
The Kv2 channels encode delayed rectifier currents that regulate membrane potential in many tissues. They also have a non-conducting function to form stable junctions between the endoplasmic reticulum and plasma membranes, creating membrane contact sites that mediate functions distinct from membrane excitability. Therefore, proteins that interact with Kv2.1 and Kv2.2 channels can alter conducting and/or non-conducting channel properties. One member of the AMIGO family of proteins is an auxiliary β-subunit for Kv2 channels and modulates Kv2.1 electrical activity. However, the AMIGO family has two additional members of ∼50% similarity that have not yet been characterized as Kv2 β-subunits. In this work, we show that the surface trafficking and localization of all three AMIGOs are controlled by their assembly with both Kv2 channels. Additionally, assembly of each AMIGO with either Kv2.1 or Kv2.2 hyperpolarizes the channel activation midpoint by -10 mV. However, only AMIGO2 significantly slows inactivation and deactivation, leading to a prolonged open state of Kv2 channels. The co-regulatory effects of Kv2s and AMIGOs likely fine-tune both the electrical and non-electrical properties of the cells in which they are expressed.
Collapse
Affiliation(s)
- Emily E. Maverick
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Ashley N. Leek
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA
| | - Michael M. Tamkun
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO 80523, USA
- Molecular, Cellular and Integrative Neuroscience Program, Colorado State University, Fort Collins, CO 80523, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
13
|
Ahmed Z, Fulton D, Douglas MR. Opicinumab: is it a potential treatment for multiple sclerosis? ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:892. [PMID: 32793736 DOI: 10.21037/atm.2020.03.131] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Zubair Ahmed
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Daniel Fulton
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Michael R Douglas
- Neuroscience & Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK.,School of Life and Health Sciences, Aston University, Birmingham, UK.,Department of Neurology, Dudley Group NHS Foundation Trust, Dudley, UK
| |
Collapse
|
14
|
Tsepilov YA, Freidin MB, Shadrina AS, Sharapov SZ, Elgaeva EE, Zundert JV, Karssen LС, Suri P, Williams FMK, Aulchenko YS. Analysis of genetically independent phenotypes identifies shared genetic factors associated with chronic musculoskeletal pain conditions. Commun Biol 2020; 3:329. [PMID: 32587327 PMCID: PMC7316754 DOI: 10.1038/s42003-020-1051-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Accepted: 06/03/2020] [Indexed: 12/04/2022] Open
Abstract
Chronic musculoskeletal pain affects all aspects of human life. However, mechanisms of its genetic control remain poorly understood. Genetic studies of pain are complicated by the high complexity and heterogeneity of pain phenotypes. Here, we apply principal component analysis to reduce phenotype heterogeneity of chronic musculoskeletal pain at four locations: the back, neck/shoulder, hip, and knee. Using matrices of genetic covariances, we constructed four genetically independent phenotypes (GIPs) with the leading GIP (GIP1) explaining 78.4% of the genetic variance of the analyzed conditions, and GIP2-4 explain progressively less. We identified and replicated five GIP1-associated loci and one GIP2-associated locus and prioritized the most likely causal genes. For GIP1, we showed enrichment with multiple nervous system-related terms and genetic correlations with anthropometric, sociodemographic, psychiatric/personality traits and osteoarthritis. We suggest that GIP1 represents a biopsychological component of chronic musculoskeletal pain, related to physiological and psychological aspects and reflecting pain perception and processing.
Collapse
Affiliation(s)
- Yakov A Tsepilov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, 1 Pirogova Street, Novosibirsk, Russia, 630090
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Maxim B Freidin
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, SE1 7EH, UK
| | - Alexandra S Shadrina
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, 1 Pirogova Street, Novosibirsk, Russia, 630090
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Sodbo Z Sharapov
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, 1 Pirogova Street, Novosibirsk, Russia, 630090
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Elizaveta E Elgaeva
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, Russia, 630090
| | - Jan van Zundert
- Department of Anesthesiology and Pain Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
- Department of Anesthesiology and Multidisciplinary Paincentre, ZOL Genk/Lanaken, Belgium
| | | | - Pradeep Suri
- Division of Rehabilitation Care Services, VA Puget Sound Health Care System, 1660 S. Columbian Way, Seattle, WA, 98108, USA
- Seattle Epidemiologic Research and Information Center (ERIC), Department of Veterans Affairs Office of Research and Development, 1660 S. Columbian way, Seattle, WA, 98108, USA
- Department of Rehabilitation Medicine, University of Washington, 325 9th Ave, Seattle, WA, 98104, USA
- Clinical Learning, Evidence, and Research (CLEAR) Center, University of Washington, 4333 Brooklyn Ave NE, Box 359455, Seattle, WA, 98195, USA
| | - Frances M K Williams
- Department of Twin Research and Genetic Epidemiology, School of Life Course Sciences, King's College London, London, SE1 7EH, UK
| | - Yurii S Aulchenko
- Laboratory of Theoretical and Applied Functional Genomics, Novosibirsk State University, 1 Pirogova Street, Novosibirsk, Russia, 630090.
- Laboratory of Recombination and Segregation Analysis, Institute of Cytology and Genetics, 10 Lavrentiev Avenue, Novosibirsk, Russia, 630090.
- PolyOmica, 5237 PA, 's-Hertogenbosch, The Netherlands.
- Department of Complex Genetics, Care and Public Health Research Institute, Maastricht University, Maastricht, The Netherlands.
| |
Collapse
|
15
|
Genetic Screening of Plasticity Regulating Nogo-Type Signaling Genes in Migraine. Brain Sci 2019; 10:brainsci10010005. [PMID: 31861860 PMCID: PMC7016645 DOI: 10.3390/brainsci10010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/12/2019] [Accepted: 12/17/2019] [Indexed: 11/26/2022] Open
Abstract
Migraine is the sixth most prevalent disease in the world and a substantial number of experiments have been conducted to analyze potential differences between the migraine brain and the healthy brain. Results from these investigations point to the possibility that development and aggravation of migraine may include grey matter plasticity. Nogo-type signaling is a potent plasticity regulating system in the CNS and consists of ligands, receptors, co-receptors and modulators with a dynamic age- and activity-related expression in cortical and subcortical regions. Here we investigated a potential link between migraine and five key Nogo-type signaling genes: RTN4, OMGP, MAG, RTN4R and LINGO1, by screening 15 single nucleotide polymorphisms (SNPs) within these genes. In a large Swedish migraine cohort (749 migraine patients and 4032 controls), using a logistic regression with sex as covariate, we found that there was no such association. In addition, a haplotype analysis was performed which revealed three haplotype blocks. These blocks had no significant association with migraine. However, to robustly conclude that Nogo-type genotypes signaling do not influence the prevalence of migraine, further studies are encouraged.
Collapse
|
16
|
Stevens AR, Ahmed U, Vigneswara V, Ahmed Z. Pigment Epithelium-Derived Factor Promotes Axon Regeneration and Functional Recovery After Spinal Cord Injury. Mol Neurobiol 2019; 56:7490-7507. [PMID: 31049830 PMCID: PMC6815285 DOI: 10.1007/s12035-019-1614-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Accepted: 04/15/2019] [Indexed: 12/14/2022]
Abstract
Although neurons in the adult mammalian CNS are inherently incapable of regeneration after injury, we previously showed that exogenous delivery of pigment epithelium-derived factor (PEDF), a 50-kDa neurotrophic factor (NTF), promoted adult retinal ganglion cell neuroprotection and axon regeneration. Here, we show that PEDF and other elements of the PEDF pathway are highly upregulated in dorsal root ganglion neurons (DRGN) from regenerating dorsal column (DC) injury paradigms when compared with non-regenerating DC injury models. Exogenous PEDF was neuroprotective to adult DRGN and disinhibited neurite outgrowth, whilst overexpression of PEDF after DC injury in vivo promoted significant DC axon regeneration with enhanced electrophysiological, sensory, and locomotor function. Our findings reveal that PEDF is a novel NTF for adult DRGN and may represent a therapeutically useful factor to promote functional recovery after spinal cord injury.
Collapse
Affiliation(s)
- Andrew R Stevens
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Umar Ahmed
- King Edward VI Camp Hill School for Boys, Vicarage Road, Kings Heath, Birmingham, B14 7QJ, UK
| | - Vasanthy Vigneswara
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, College of Medical and Dental Sciences, Robert Aitken Institute of Clinical Research, University of Birmingham, Birmingham, B15 2TT, UK.
| |
Collapse
|
17
|
da Silva B, Irving BK, Polson ES, Droop A, Griffiths HBS, Mathew RK, Stead LF, Marrison J, Williams C, Williams J, Short SC, Scarcia M, O'Toole PJ, Allison SJ, Mavria G, Wurdak H. Chemically induced neurite-like outgrowth reveals a multicellular network function in patient-derived glioblastoma cells. J Cell Sci 2019; 132:jcs.228452. [PMID: 31515278 DOI: 10.1242/jcs.228452] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
Tumor stem cells and malignant multicellular networks have been separately implicated in the therapeutic resistance of glioblastoma multiforme (GBM), the most aggressive type of brain cancer in adults. Here, we show that small-molecule inhibition of RHO-associated serine/threonine kinase proteins (ROCKi) significantly promoted the outgrowth of neurite-like cell projections in cultures of heterogeneous patient-derived GBM stem-like cells. These projections formed de novo-induced cellular network (iNet) 'webs', which regressed after withdrawal of ROCKi. Connected cells within the iNet web exhibited long range Ca2+ signal transmission, and significant lysosomal and mitochondrial trafficking. In contrast to their less-connected vehicle control counterparts, iNet cells remained viable and proliferative after high-dose radiation. These findings demonstrate a link between ROCKi-regulated cell projection dynamics and the formation of radiation-resistant multicellular networks. Our study identifies means to reversibly induce iNet webs ex vivo, and may thereby accelerate future studies into the biology of GBM cellular networks.
Collapse
Affiliation(s)
| | | | - Euan S Polson
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Alastair Droop
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, LS2 9JT, UK
| | - Hollie B S Griffiths
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Ryan K Mathew
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
- Department of Neurosurgery, Leeds General Infirmary, Leeds, LS1 3EX, UK
| | - Lucy F Stead
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Joanne Marrison
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Courtney Williams
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | | | - Susan C Short
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | | | - Peter J O'Toole
- Department of Biology, University of York, York, YO10 5DD, UK
| | - Simon J Allison
- School of Applied Sciences, University of Huddersfield, Huddersfield, HD1 3DH, UK
| | - Georgia Mavria
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| | - Heiko Wurdak
- School of Medicine, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
18
|
Almutiri S, Berry M, Logan A, Ahmed Z. Non-viral-mediated suppression of AMIGO3 promotes disinhibited NT3-mediated regeneration of spinal cord dorsal column axons. Sci Rep 2018; 8:10707. [PMID: 30013050 PMCID: PMC6048058 DOI: 10.1038/s41598-018-29124-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Accepted: 07/05/2018] [Indexed: 01/13/2023] Open
Abstract
After injury to the mature central nervous system (CNS), myelin-derived inhibitory ligands bind to the Nogo-66 tripartite receptor complex expressed on axonal growth cones, comprised of LINGO-1 and p75NTR/TROY and induce growth cone collapse through the RhoA pathway. We have also shown that amphoterin-induced gene and open reading frame-3 (AMIGO3) substitutes for LINGO-1 and can signal axon growth cone collapse. Here, we investigated the regeneration of dorsal root ganglion neuron (DRGN) axons/neurites after treatment with a short hairpin RNA (sh) AMIGO3 plasmid delivered with a non-viral in vivo-jetPEI vector, and the pro-survival/axogenic neurotrophin (NT) 3 in vitro and in vivo. A bicistronic plasmid, containing both shAMIGO3 and NT3 knocked down >75% of AMIGO3 mRNA in cultured DRGN and significantly overexpressed NT3 production. In vivo, intra-DRG injection of in vivo-jetPEI plasmids containing shAMIGO3/gfp and shAMIGO3/nt3 both knocked down AMIGO3 expression in DRGN and, in combination with NT3 overexpression, promoted DC axon regeneration, recovery of conduction of compound action potentials across the lesion site and improvements in sensory and locomotor function. These findings demonstrate that in vivo-jetPEI is a potential non-viral, translatable DRGN delivery vehicle in vivo and that suppression of AMIGO3 disinhibits the growth of axotomised DRGN enabling NT3 to stimulate the regeneration of their DC axons and enhances functional recovery.
Collapse
Affiliation(s)
- Sharif Almutiri
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Edgbaston, Birmingham, B15 2TT, UK.
| |
Collapse
|
19
|
Yang T, Guo Q, Shi X, Wu S, Li Y, Sun Y, Zhao Y, Chai L, Gao Y, Lou L, Dong B, Zhu L. Panax notoginseng saponins promotes cerebral recovery from ischemic injury by downregulating LINGO-1 and activating the EGFR/PI3K/AKT signaling pathways in vivo. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2018. [DOI: 10.1016/j.jtcms.2018.03.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
20
|
Smedfors G, Olson L, Karlsson TE. A Nogo-Like Signaling Perspective from Birth to Adulthood and in Old Age: Brain Expression Patterns of Ligands, Receptors and Modulators. Front Mol Neurosci 2018. [PMID: 29520216 PMCID: PMC5827527 DOI: 10.3389/fnmol.2018.00042] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
An appropriate strength of Nogo-like signaling is important to maintain synaptic homeostasis in the CNS. Disturbances have been associated with schizophrenia, MS and other diseases. Blocking Nogo-like signaling may improve recovery after spinal cord injury, stroke and traumatic brain injury. To understand the interacting roles of an increasing number of ligands, receptors and modulators engaged in Nogo-like signaling, the transcriptional activity of these genes in the same brain areas from birth to old age in the normal brain is needed. Thus, we have quantitatively mapped the innate expression of 11 important genes engaged in Nogo-like signaling. Using in situ hybridization, we located and measured the amount of mRNA encoding Nogo-A, OMgp, NgR1, NgR2, NgR3, Lingo-1, Troy, Olfactomedin, LgI1, ADAM22, and MAG, in 18 different brain areas at six different ages (P0, 1, 2, 4, 14, and 104 weeks). We show gene- and area-specific activities and how the genes undergo dynamic regulation during postnatal development and become stable during adulthood. Hippocampal areas underwent the largest changes over time. We only found differences between individual cortical areas in Troy and MAG. Subcortical areas presented the largest inter-regional differences; lateral and basolateral amygdala had markedly higher expression than other subcortical areas. The widespread differences and unique expression patterns of the different genes involved in Nogo-like signaling suggest that the functional complexes could look vastly different in different areas.
Collapse
Affiliation(s)
| | - Lars Olson
- Department of Neuroscience, Karolinska Institute, Stockholm, Sweden
| | | |
Collapse
|
21
|
Hillen AEJ, Burbach JPH, Hol EM. Cell adhesion and matricellular support by astrocytes of the tripartite synapse. Prog Neurobiol 2018; 165-167:66-86. [PMID: 29444459 DOI: 10.1016/j.pneurobio.2018.02.002] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 07/25/2017] [Accepted: 02/07/2018] [Indexed: 12/18/2022]
Abstract
Astrocytes contribute to the formation, function, and plasticity of synapses. Their processes enwrap the neuronal components of the tripartite synapse, and due to this close interaction they are perfectly positioned to modulate neuronal communication. The interaction between astrocytes and synapses is facilitated by cell adhesion molecules and matricellular proteins, which have been implicated in the formation and functioning of tripartite synapses. The importance of such neuron-astrocyte integration at the synapse is underscored by the emerging role of astrocyte dysfunction in synaptic pathologies such as autism and schizophrenia. Here we review astrocyte-expressed cell adhesion molecules and matricellular molecules that play a role in integration of neurons and astrocytes within the tripartite synapse.
Collapse
Affiliation(s)
- Anne E J Hillen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Department of Pediatrics/Child Neurology, VU University Medical Center, 1081 HV Amsterdam, The Netherlands
| | - J Peter H Burbach
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands
| | - Elly M Hol
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, 3584 CG Utrecht, The Netherlands; Swammerdam Institute for Life Sciences, Center for Neuroscience, University of Amsterdam, 1098 XH Amsterdam, The Netherlands; Department of Neuroimmunology, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, 1105 BA Amsterdam, The Netherlands.
| |
Collapse
|
22
|
p75NTR and TROY: Uncharted Roles of Nogo Receptor Complex in Experimental Autoimmune Encephalomyelitis. Mol Neurobiol 2018; 55:6329-6336. [PMID: 29294247 DOI: 10.1007/s12035-017-0841-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 12/14/2017] [Indexed: 12/11/2022]
Abstract
Multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE), have been on the forefront of drug discovery for most of the myelin inhibitory molecules implicated in axonal regenerative process. Nogo-A along with its putative receptor NgR and co-receptor LINGO-1 has paved the way for the production of pharmaceutical agents such as monoclonal antibodies, which are already put into handful of clinical trials. On the other side, little progress has been made towards clarifying the role of neurotrophin receptor p75 (p75NTR) and TROY in disease progression, other key players of the Nogo receptor complex. Previous work of our lab has shown that their exact location and type of expression is harmonized in a phase-dependent manner. Here, in this review, we outline their façade in normal and diseased central nervous system (CNS) and suggest a role for p75NTR in chronic axonal regeneration whereas TROY in acute inflammation of EAE intercourse.
Collapse
|
23
|
Neural Glycosylphosphatidylinositol-Anchored Proteins in Synaptic Specification. Trends Cell Biol 2017; 27:931-945. [PMID: 28743494 DOI: 10.1016/j.tcb.2017.06.007] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2017] [Revised: 06/27/2017] [Accepted: 06/29/2017] [Indexed: 12/15/2022]
Abstract
Glycosylphosphatidylinositol (GPI)-anchored proteins are a specialized class of lipid-associated neuronal membrane proteins that perform diverse functions in the dynamic control of axon guidance, synaptic adhesion, cytoskeletal remodeling, and localized signal transduction, particularly at lipid raft domains. Recent studies have demonstrated that a subset of GPI-anchored proteins act as critical regulators of synapse development by modulating specific synaptic adhesion pathways via direct interactions with key synapse-organizing proteins. Additional studies have revealed that alteration of these regulatory mechanisms may underlie various brain disorders. In this review, we highlight the emerging role of GPI-anchored proteins as key synapse organizers that aid in shaping the properties of various types of synapses and circuits in mammals.
Collapse
|
24
|
Foale S, Berry M, Logan A, Fulton D, Ahmed Z. LINGO-1 and AMIGO3, potential therapeutic targets for neurological and dysmyelinating disorders? Neural Regen Res 2017; 12:1247-1251. [PMID: 28966634 PMCID: PMC5607814 DOI: 10.4103/1673-5374.213538] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Leucine rich repeat proteins have gained considerable interest as therapeutic targets due to their expression and biological activity within the central nervous system. LINGO-1 has received particular attention since it inhibits axonal regeneration after spinal cord injury in a RhoA dependent manner while inhibiting leucine rich repeat and immunoglobulin-like domain-containing protein 1 (LINGO-1) disinhibits neuron outgrowth. Furthermore, LINGO-1 suppresses oligodendrocyte precursor cell maturation and myelin production. Inhibiting the action of LINGO-1 encourages remyelination both in vitro and in vivo. Accordingly, LINGO-1 antagonists show promise as therapies for demyelinating diseases. An analogous protein to LINGO-1, amphoterin-induced gene and open reading frame-3 (AMIGO3), exerts the same inhibitory effect on the axonal outgrowth of central nervous system neurons, as well as interacting with the same receptors as LINGO-1. However, AMIGO3 is upregulated more rapidly after spinal cord injury than LINGO-1. We speculate that AMIGO3 has a similar inhibitory effect on oligodendrocyte precursor cell maturation and myelin production as with axogenesis. Therefore, inhibiting AMIGO3 will likely encourage central nervous system axonal regeneration as well as the production of myelin from local oligodendrocyte precursor cell, thus providing a promising therapeutic target and an area for future investigation.
Collapse
Affiliation(s)
- Simon Foale
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Martin Berry
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Ann Logan
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Daniel Fulton
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| | - Zubair Ahmed
- Neuroscience and Ophthalmology, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK
| |
Collapse
|
25
|
Theotokis P, Touloumi O, Lagoudaki R, Nousiopoulou E, Kesidou E, Siafis S, Tselios T, Lourbopoulos A, Karacostas D, Grigoriadis N, Simeonidou C. Nogo receptor complex expression dynamics in the inflammatory foci of central nervous system experimental autoimmune demyelination. J Neuroinflammation 2016; 13:265. [PMID: 27724971 PMCID: PMC5057208 DOI: 10.1186/s12974-016-0730-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 09/22/2016] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Nogo-A and its putative receptor NgR are considered to be among the inhibitors of axonal regeneration in the CNS. However, few studies so far have addressed the issue of local NgR complex multilateral localization within inflammation in an MS mouse model of autoimmune demyelination. METHODS Chronic experimental autoimmune encephalomyelitis (EAE) was induced in C57BL/6 mice. Analyses were performed on acute (days 18-22) and chronic (day 50) time points and compared to controls. The temporal and spatial expression of the Nogo receptor complex (NgR and coreceptors) was studied at the spinal cord using epifluorescent and confocal microscopy or real-time PCR. Data are expressed as cells/mm2, as mean % ± SEM, or as arbitrary units of integrated density. RESULTS Animals developed a moderate to severe EAE without mortality, followed by a progressive, chronic clinical course. NgR complex spatial expression varied during the main time points of EAE. NgR with coreceptors LINGO-1 and TROY was increased in the spinal cord in the acute phase whereas LINGO-1 and p75 signal seemed to be dominant in the chronic phase, respectively. NgR was detected on gray matter NeuN+ neurons of the spinal cord, within the white matter inflammatory foci (14.2 ± 4.3 % NgR+ inflammatory cells), and found to be colocalized with GAP-43+ axonal growth cones while no β-TubIII+, SMI-32+, or APP+ axons were found as NgR+. Among the NgR+ inflammatory cells, 75.6 ± 9.0 % were microglial/macrophages (lectin+), 49.6 ± 14.2 % expressed CD68 (phagocytic ED1+ cells), and no cells were Mac-3+. Of these macrophages/monocytes, only Arginase-1+/NgR+ but not iNOS+/NgR+ were present in lesions both in acute and chronic phases. CONCLUSIONS Our data describe in detail the expression of the Nogo receptor complex within the autoimmune inflammatory foci and suggest a possible immune action for NgR apart from the established inhibitory one on axonal growth. Its expression by inflammatory macrophages/monocytes could signify a possible role of these cells on axonal guidance and clearance of the lesioned area during inflammatory demyelination.
Collapse
MESH Headings
- Animals
- Antigens, Differentiation/metabolism
- Arginase/metabolism
- Central Nervous System/metabolism
- Central Nervous System/pathology
- Disease Models, Animal
- Encephalomyelitis, Autoimmune, Experimental/chemically induced
- Encephalomyelitis, Autoimmune, Experimental/complications
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Female
- Freund's Adjuvant/immunology
- Freund's Adjuvant/toxicity
- Gene Expression Regulation/drug effects
- Gene Expression Regulation/immunology
- Mice
- Mice, Inbred C57BL
- Myelin-Oligodendrocyte Glycoprotein/immunology
- Myelin-Oligodendrocyte Glycoprotein/toxicity
- Nerve Tissue Proteins/metabolism
- Nogo Proteins/genetics
- Nogo Proteins/metabolism
- Nogo Receptors/genetics
- Nogo Receptors/metabolism
- Peptide Fragments/immunology
- Peptide Fragments/toxicity
- Receptors, Nerve Growth Factor/genetics
- Receptors, Nerve Growth Factor/metabolism
- Receptors, Tumor Necrosis Factor/genetics
- Receptors, Tumor Necrosis Factor/metabolism
- Signal Transduction/drug effects
- Signal Transduction/immunology
- Signal Transduction/physiology
- Statistics, Nonparametric
Collapse
Affiliation(s)
- Paschalis Theotokis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Olga Touloumi
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Roza Lagoudaki
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Evangelia Nousiopoulou
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Evangelia Kesidou
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Spyridon Siafis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Theodoros Tselios
- Department of Chemistry, University of Patras, Rion, 265 04 Patras, Greece
| | - Athanasios Lourbopoulos
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
- Institute for Stroke and Dementia Research (ISD), Feodor-Lynen-Strasse 17, 81377 Munich, Germany
| | - Dimitrios Karacostas
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Nikolaos Grigoriadis
- B’ Department of Neurology, Laboratory of Experimental Neurology and Neuroimmunology, AHEPA University Hospital, Aristotle University of Thessaloniki, Stilponos Kiriakides str. 1, 546 36 Thessaloniki, Central Macedonia Greece
| | - Constantina Simeonidou
- Department of Experimental Physiology, Faculty of Medicine, Aristotle University of Thessaloniki, 546 36 Thessaloniki, Central Macedonia Greece
| |
Collapse
|
26
|
Ledda F, Paratcha G. Assembly of Neuronal Connectivity by Neurotrophic Factors and Leucine-Rich Repeat Proteins. Front Cell Neurosci 2016; 10:199. [PMID: 27555809 PMCID: PMC4977320 DOI: 10.3389/fncel.2016.00199] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Accepted: 07/29/2016] [Indexed: 11/13/2022] Open
Abstract
Proper function of the nervous system critically relies on sophisticated neuronal networks interconnected in a highly specific pattern. The architecture of these connections arises from sequential developmental steps such as axonal growth and guidance, dendrite development, target determination, synapse formation and plasticity. Leucine-rich repeat (LRR) transmembrane proteins have been involved in cell-type specific signaling pathways that underlie these developmental processes. The members of this superfamily of proteins execute their functions acting as trans-synaptic cell adhesion molecules involved in target specificity and synapse formation or working in cis as cell-intrinsic modulators of neurotrophic factor receptor trafficking and signaling. In this review, we will focus on novel physiological mechanisms through which LRR proteins regulate neurotrophic factor receptor signaling, highlighting the importance of these modulatory events for proper axonal extension and guidance, tissue innervation and dendrite morphogenesis. Additionally, we discuss few examples linking this set of LRR proteins to neurodevelopmental and psychiatric disorders.
Collapse
Affiliation(s)
- Fernanda Ledda
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| | - Gustavo Paratcha
- Division of Molecular and Cellular Neuroscience, Institute of Cell Biology and Neuroscience (IBCN)-CONICET, School of Medicine-University of Buenos Aires (UBA) Buenos Aires, Argentina
| |
Collapse
|
27
|
Haque A, Adnan N, Motazedian A, Akter F, Hossain S, Kutsuzawa K, Nag K, Kobatake E, Akaike T. An Engineered N-Cadherin Substrate for Differentiation, Survival, and Selection of Pluripotent Stem Cell-Derived Neural Progenitors. PLoS One 2015; 10:e0135170. [PMID: 26244942 PMCID: PMC4526632 DOI: 10.1371/journal.pone.0135170] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 07/18/2015] [Indexed: 11/18/2022] Open
Abstract
For stem cell-based treatment of neurodegenerative diseases a better understanding of key developmental signaling pathways and robust techniques for producing neurons with highest homogeneity are required. In this study, we demonstrate a method using N-cadherin-based biomimetic substrate to promote the differentiation of mouse embryonic stem cell (ESC)- and induced pluripotent stem cell (iPSC)-derived neural progenitor cells (NPCs) without exogenous neuro-inductive signals. We showed that substrate-dependent activation of N-cadherin reduces Rho/ROCK activation and β-catenin expression, leading to the stimulation of neurite outgrowth and conversion into cells expressing neural/glial markers. Besides, plating dissociated cells on N-cadherin substrate can significantly increase the differentiation yield via suppression of dissociation-induced Rho/ROCK-mediated apoptosis. Because undifferentiated ESCs and iPSCs have low affinity to N-cadherin, plating dissociated cells on N-cadherin-coated substrate increase the homogeneity of differentiation by purging ESCs and iPSCs (~30%) from a mixture of undifferentiated cells with NPCs. Using this label-free cell selection approach we enriched differentiated NPCs plated as monolayer without ROCK inhibitor. Therefore, N-cadherin biomimetic substrate provide a powerful tool for basic study of cell—material interaction in a spatially defined and substrate-dependent manner. Collectively, our approach is efficient, robust and cost effective to produce large quantities of differentiated cells with highest homogeneity and applicable to use with other types of cells.
Collapse
Affiliation(s)
- Amranul Haque
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Nihad Adnan
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Ali Motazedian
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Farhima Akter
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | - Sharif Hossain
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Koichi Kutsuzawa
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Kakon Nag
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
| | - Eiry Kobatake
- Department of Biological Information, Tokyo Institute of Technology, Yokohama, Japan
| | - Toshihiro Akaike
- Department of Biomolecular Engineering, Tokyo Institute of Technology, Yokohama, Japan
- * E-mail:
| |
Collapse
|
28
|
Pepinsky RB, Arndt JW, Quan C, Gao Y, Quintero-Monzon O, Lee X, Mi S. Structure of the LINGO-1-anti-LINGO-1 Li81 antibody complex provides insights into the biology of LINGO-1 and the mechanism of action of the antibody therapy. J Pharmacol Exp Ther 2014; 350:110-23. [PMID: 24756303 DOI: 10.1124/jpet.113.211771] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2025] Open
Abstract
Multiple sclerosis (MS) is an autoimmune-inflammatory disease of the central nervous system (CNS) with prominent demyelination and axonal injury. While most MS therapies target the immunologic response, there is a large unmet need for treatments that can promote CNS repair. LINGO-1 (leucine-rich repeat and Ig-containing Nogo receptor interacting protein-1) is a membrane protein selectively expressed in the CNS that suppresses myelination, preventing the repair of damaged axons. We are investigating LINGO-1 antagonist antibodies that lead to remyelination as a new paradigm for treatment of individuals with MS. The anti-LINGO-1 Li81 antibody,BIIB033, is currently in clinical trials and is the first MS treatment targeting CNS repair. Here, to elucidate the mechanism of action of the antibody, we solved the crystal structure of the LINGO-1-Li81 Fab complex and used biochemical and functional studies to investigate structure-function relationships. Li81 binds to the convex surface of the leucine-rich repeat domain of LINGO-1 within repeats 4-8. Fab binding blocks contact points used in the oligomerization of LINGO-1 and produces a stable complex containing two copies each of LINGO-1 and Fab that results from a rearrangement of contacts stabilizing the quaternary structure of LINGO-1. The formation of the LINGO-1-Li81 Fab complex masks functional epitopes within the Ig domain of LINGO-1 that are important for its biologic activity in oligodendrocyte differentiation. These studies provide new insights into the structure and biology of LINGO-1 and how Li81 monoclonal antibody can block its function.
Collapse
Affiliation(s)
- R Blake Pepinsky
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Joseph W Arndt
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Chao Quan
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Yan Gao
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Omar Quintero-Monzon
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Xinhua Lee
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| | - Sha Mi
- Departments of Drug and Molecular Discovery, Biogen Idec, Inc., Cambridge, Massachusetts
| |
Collapse
|
29
|
Structural features of the Nogo receptor signaling complexes at the neuron/myelin interface. Neurosci Res 2014; 87:1-7. [PMID: 24956133 DOI: 10.1016/j.neures.2014.06.003] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 05/23/2014] [Accepted: 06/13/2014] [Indexed: 11/22/2022]
Abstract
Upon spinal cord injury, the central nervous system axons are unable to regenerate, partially due to the repulsive action of myelin inhibitors, such as the myelin-associated glycoprotein (MAG), Nogo-A and the oligodendrocyte myelin glycoprotein (OMgp). These inhibitors bind and signal through a single receptor/co-receptor complex that comprises of NgR1/LINGO-1 and either p75 or TROY, triggering intracellular downstream signaling that impedes the re-growth of axons. Structure-function analysis of myelin inhibitors and their neuronal receptors, particularly the NgRs, have provided novel information regarding the molecular details of the inhibitor/receptor/co-receptor interactions. Structural and biochemical studies have revealed the architecture of many of these proteins and identified the molecular regions important for assembly of the inhibitory signaling complexes. It was also recently shown that gangliosides, such as GT1b, mediate receptor/co-receptor binding. In this review, we highlight these studies and summarize our current understanding of the multi-protein cell-surface complexes mediating inhibitory signaling events at the neuron/myelin interface.
Collapse
|