1
|
Lee S, Yan S, Dey A, Laederach A, Schlick T. A Cascade of Conformational Switches in SARS-CoV-2 Frameshifting: Coregulation by Upstream and Downstream Elements. Biochemistry 2025; 64:953-966. [PMID: 39907285 PMCID: PMC11840926 DOI: 10.1021/acs.biochem.4c00641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 01/13/2025] [Accepted: 01/17/2025] [Indexed: 02/06/2025]
Abstract
Targeting ribosomal frameshifting has emerged as a potential therapeutic intervention strategy against COVID-19. In this process, a -1 shift in the ribosomal reading frame encodes alternative viral proteins. Any interference with this process profoundly affects viral replication and propagation. For SARS-CoV-2, two RNA sites associated with ribosomal frameshifting are positioned on the 5' and 3' of the frameshifting residues. Although much attention has been focused on the 3' frameshift element (FSE), the 5' stem-loop (attenuator hairpin, AH) can play a role. Yet the relationship between the two regions is unknown. In addition, multiple folds of the FSE and FSE-containing RNA regions have been discovered. To gain more insight into these RNA folds in the larger sequence context that includes AH, we apply our graph-theory-based modeling tools to represent RNA secondary structures, "RAG" (RNA-As-Graphs), to generate conformational landscapes that suggest length-dependent conformational distributions. We show that the AH region can coexist as a stem-loop with main and alternative 3-stem pseudoknots of the FSE (dual graphs 3_6 and 3_3 in our notation) but that an alternative stem 1 (AS1) can disrupt the FSE pseudoknots and trigger other folds. A critical length for AS1 of 10-bp regulates key folding transitions. Together with designed mutants and available experimental data, we present a sequential view of length-dependent folds during frameshifting and suggest their mechanistic roles. These structural and mutational insights into both ends of the FSE advance our understanding of the SARS-CoV-2 frameshifting mechanism by suggesting how alternative folds play a role in frameshifting and defining potential therapeutic intervention techniques that target specific folds.
Collapse
Affiliation(s)
- Samuel Lee
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Shuting Yan
- Department
of Chemistry, New York University, New York, New York 10003, United States
| | - Abhishek Dey
- Department
of Biotechnology, National Institute of
Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, Uttar Pradesh 226002, India
| | - Alain Laederach
- Department
of Biology, University of North Carolina
at Chapel Hill, Chapel Hill, North Carolina 27599, United States
| | - Tamar Schlick
- Department
of Chemistry, New York University, New York, New York 10003, United States
- Courant
Institute of Mathematical Sciences, New
York University, New York, New York 10012, United States
- NYU-ECNU
Center for Computational Chemistry, NYU
Shanghai, Shanghai 200062, PR China
- NYU Simons
Center for Computational Physical Chemistry, New York University, New York, New York 10003, United States
| |
Collapse
|
2
|
Huang X, Du Z. Elaborated pseudoknots that stimulate -1 programmed ribosomal frameshifting or stop codon readthrough in RNA viruses. J Biomol Struct Dyn 2025; 43:1566-1578. [PMID: 38095458 PMCID: PMC11176267 DOI: 10.1080/07391102.2023.2292296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/25/2023] [Indexed: 05/08/2024]
Abstract
Pseudoknots assume various functions including stimulation of -1 programmed ribosomal frameshifting (PRF) or stop codon readthrough (SCR) in RNA viruses. These pseudoknots vary greatly in sizes and structural complexities. Recent biochemical and structural studies confirm the three-stemmed pseudoknots as the -1 PRF stimulators in the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and related coronaviruses. We reexamined previously reported -1 PRF or SCR stimulating pseudoknots, especially those containing a relatively long connecting loop between the two pseudoknot-forming stems, for their ability to form elaborated structures. Many potential elaborated pseudoknots were identified that contain one or more of the following extra structural elements: stem-loop, embedded pseudoknot, kissing hairpins, and additional loop-loop interactions. The elaborated pseudoknots are found in several different virus families that utilize either the -1 PRF or SCR recoding mechanisms. Model-building studies were performed to not only establish the structural feasibility of the elaborated pseudoknots but also reveal potential additional structural features that cannot be readily inferred from the predicted secondary structures. Some of the structures, such as embedded double pseudoknots and compact loop-loop pseudoknots mediated by the previously established common pseudoknot motif-1 (CPK-1), represent the first of its kind in the literatures. By advancing discovery of new functional RNA structures, we significantly expand the repertoire of known elaborated pseudoknots that could potentially play a role in -1 PRF and SCR regulation. These results contribute to a better understanding of RNA structures in general, facilitating the design of engineering RNA molecules with certain desired functions.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, IL 62901, USA
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL 62901, USA
| |
Collapse
|
3
|
Dantsu Y, Zhang Y, Zhang W. Selection of a Fluorinated Aptamer Targeting the Viral RNA Frameshift Element with Different Chiralities. Biochemistry 2025; 64:448-457. [PMID: 39772548 DOI: 10.1021/acs.biochem.4c00606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2025]
Abstract
The development of RNA aptamers with high specificity and affinity for target molecules is a critical advancement in the field of therapeutic and diagnostic applications. This study presents the selection of a 2'-fluoro-modified mirror-image RNA aptamer through the in vitro SELEX process. Using a random RNA library, we performed iterative rounds of selection and amplification to enrich aptamers that bind specifically to the viral attenuator hairpin RNA containing the opposite chirality, which is an important part of the frameshift element. The unnatural chirality of the aptamer improved its enzymatic stability, and the incorporation of 2'-fluoro modifications was crucial in enhancing the binding affinity of the aptamers. After nine rounds of SELEX, the enriched RNA pool was sequenced and analyzed, revealing the dominant aptamer sequences. The selected 2'-fluoro-modified mirror-image RNA aptamer demonstrated a dissociation constant of approximately 1.6 μM, indicating moderate binding affinity with the target and exceptional stability against nuclease degradation. Our findings highlight the potential of 2'-fluoro-modified mirror-image RNA aptamers in enhancing the stability and utility of RNA-based therapeutics and diagnostics, paving the way for future applications in diverse biomedical fields.
Collapse
Affiliation(s)
- Yuliya Dantsu
- Department of Biochemistry and Molecular Biology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Ying Zhang
- Department of Biochemistry and Molecular Biology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| | - Wen Zhang
- Department of Biochemistry and Molecular Biology, Melvin and Bren Simon Cancer Center, Indiana University School of Medicine, Indianapolis, Indiana 46202, United States
| |
Collapse
|
4
|
Hernández-Marín M, Cantero-Camacho Á, Mena I, López-Núñez S, García-Sastre A, Gallego J. Sarbecovirus programmed ribosome frameshift RNA element folding studied by NMR spectroscopy and comparative analyses. Nucleic Acids Res 2024; 52:11960-11972. [PMID: 39149904 PMCID: PMC11514460 DOI: 10.1093/nar/gkae704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/24/2024] [Accepted: 08/05/2024] [Indexed: 08/17/2024] Open
Abstract
The programmed ribosomal frameshift (PRF) region is found in the RNA genome of all coronaviruses and shifts the ribosome reading frame through formation of a three-stem pseudoknot structure, allowing the translation of essential viral proteins. Using NMR spectroscopy, comparative sequence analyses and functional assays we show that, in the absence of the ribosome, a 123-nucleotide sequence encompassing the PRF element of SARS-CoV-2 adopts a well-defined two-stem loop structure that is conserved in all SARS-like coronaviruses. In this conformation, the attenuator hairpin and slippery site nucleotides are exposed in the first stem-loop and two pseudoknot stems are present in the second stem-loop, separated by an 8-nucleotide bulge. Formation of the third pseudoknot stem depends on pairing between bulge nucleotides and base-paired nucleotides of the upstream stem-loop, as shown by a PRF construct where residues of the upstream stem were removed, which formed the pseudoknot structure and had increased frameshifting activity in a dual-luciferase assay. The base-pair switch driving PRF pseudoknot folding was found to be conserved in several human non-SARS coronaviruses. The collective results suggest that the frameshifting pseudoknot structure of these viruses only forms transiently in the presence of the translating ribosome. These findings clarify the frameshifting mechanism in coronaviruses and can have a beneficial impact on antiviral drug discovery.
Collapse
Affiliation(s)
- María Hernández-Marín
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Ángel Cantero-Camacho
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Ignacio Mena
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
| | - Sergio López-Núñez
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
- Escuela de Doctorado, Universidad Católica de Valencia, 46001 Valencia, Spain
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, NY, USA
- Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, NY, USA
- Department of Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
- Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, NY, USA
- The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, NY, USA
| | - José Gallego
- Centro de Investigación Traslacional San Alberto Magno, Universidad Católica de Valencia, 46001 Valencia, Spain
| |
Collapse
|
5
|
Huang X, Du Z. Possible involvement of three-stemmed pseudoknots in regulating translational initiation in human mRNAs. PLoS One 2024; 19:e0307541. [PMID: 39038036 PMCID: PMC11262651 DOI: 10.1371/journal.pone.0307541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 07/08/2024] [Indexed: 07/24/2024] Open
Abstract
RNA pseudoknots play a crucial role in various cellular functions. Established pseudoknots show significant variation in both size and structural complexity. Specifically, three-stemmed pseudoknots are characterized by an additional stem-loop embedded in their structure. Recent findings highlight these pseudoknots as bacterial riboswitches and potent stimulators for programmed ribosomal frameshifting in RNA viruses like SARS-CoV2. To investigate the possible presence of functional three-stemmed pseudoknots in human mRNAs, we employed in-house developed computational methods to detect such structures within a dataset comprising 21,780 full-length human mRNA sequences. Numerous three-stemmed pseudoknots were identified. A selected set of 14 potential instances are presented, in which the start codon of the mRNA is found in close proximity either upstream, downstream, or within the identified three-stemmed pseudoknot. These pseudoknots likely play a role in translational initiation regulation. The probability of their existence gains support from their ranking as the most stable pseudoknot identified in the entire mRNA sequence, structural conservation across homologous mRNAs, stereochemical feasibility as demonstrated by structural modeling, and classification as members of the CPK-1 pseudoknot family, which includes many well-established pseudoknots. Furthermore, in four of the mRNAs, two or three closely spaced or tandem three-stemmed pseudoknots were identified. These findings suggest the frequent occurrence of three-stemmed pseudoknots in human mRNAs. A stepwise co-transcriptional folding mechanism is proposed for the formation of a three-stemmed pseudoknot structure. Our results not only provide fresh insights into the structures and functions of pseudoknots but also unveil the potential to target pseudoknots for treating human diseases.
Collapse
Affiliation(s)
- Xiaolan Huang
- School of Computing, Southern Illinois University at Carbondale, IL, United States of America
| | - Zhihua Du
- School of Chemical and Biomolecular Sciences, Southern Illinois University at Carbondale, IL, United States of America
| |
Collapse
|
6
|
Lee S, Yan S, Dey A, Laederach A, Schlick T. An intricate balancing act: Upstream and downstream frameshift co-regulatory elements. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.27.599960. [PMID: 38979256 PMCID: PMC11230384 DOI: 10.1101/2024.06.27.599960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Targeting ribosomal frameshifting has emerged as a potential therapeutic intervention strategy against Covid-19. During ribosomal translation, a fraction of elongating ribosomes slips by one base in the 5' direction and enters a new reading frame for viral protein synthesis. Any interference with this process profoundly affects viral replication and propagation. For Covid-19, two RNA sites associated with ribosomal frameshifting for SARS-CoV-2 are positioned on the 5' and 3' of the frameshifting residues. Although much attention has been on the 3' frameshift element (FSE), the 5' stem-loop (attenuator hairpin, AH) can play a role. The formation of AH has been suggested to occur as refolding of the 3' RNA structure is triggered by ribosomal unwinding. However, the attenuation activity and the relationship between the two regions are unknown. To gain more insight into these two related viral RNAs and to further enrich our understanding of ribosomal frameshifting for SARS-CoV-2, we explore the RNA folding of both 5' and 3' regions associated with frameshifting. Using our graph-theory-based modeling tools to represent RNA secondary structures, "RAG" (RNA- As-Graphs), and conformational landscapes to analyze length-dependent conformational distributions, we show that AH coexists with the 3-stem pseudoknot of the 3' FSE (graph 3_6 in our dual graph notation) and alternative pseudoknot (graph 3_3) but less likely with other 3' FSE alternative folds (such as 3-way junction 3_5). This is because an alternative length-dependent Stem 1 (AS1) can disrupt the FSE pseudoknots and trigger other folds. In addition, we design four mutants for long lengths that stabilize or disrupt AH, AS1 or FSE pseudoknot to illustrate the deduced AH/AS1 roles and favor the 3_5, 3_6 or stem-loop. These mutants further show how a strengthened pseudoknot can result from a weakened AS1, while a dominant stem-loop occurs with a strengthened AS1. These structural and mutational insights into both ends of the FSE in SARS-CoV-2 advance our understanding of the SARS-CoV-2 frameshifting mechanism by suggesting a sequence of length-dependent folds, which in turn define potential therapeutic intervention techniques involving both elements. Our work also highlights the complexity of viral landscapes with length-dependent folds, and challenges in analyzing these multiple conformations.
Collapse
Affiliation(s)
- Samuel Lee
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
| | - Shuting Yan
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
| | - Abhishek Dey
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli (NIPER-R), Lucknow, 226002, Uttar Pradesh, India
| | - Alain Laederach
- Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, 27599, NC, U.S.A
| | - Tamar Schlick
- Department of Chemistry, New York University, New York, 10003, NY, U.S.A
- Courant Institute of Mathematical Sciences, New York University, New York, 10012, NY, U.S.A
- NYU-ECNU Center for Computational Chemistry, NYU Shanghai, Shanghai, 200062, P.R.China
- NYU Simons Center for Computational Physical Chemistry, New York University, New York, 10003, NY, U.S.A
| |
Collapse
|
7
|
Peterson JM, Becker ST, O'Leary CA, Juneja P, Yang Y, Moss WN. Structure of the SARS-CoV-2 Frameshift Stimulatory Element with an Upstream Multibranch Loop. Biochemistry 2024; 63:1287-1296. [PMID: 38727003 DOI: 10.1021/acs.biochem.3c00716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshift stimulatory element (FSE) is necessary for programmed -1 ribosomal frameshifting (-1 PRF) and optimized viral efficacy. The FSE has an abundance of context-dependent alternate conformations, but two of the structures most crucial to -1 PRF are an attenuator hairpin and a three-stem H-type pseudoknot structure. A crystal structure of the pseudoknot alone features three RNA stems in a helically stacked linear structure, whereas a 6.9 Å cryo-EM structure including the upstream heptameric slippery site resulted in a bend between two stems. Our previous research alluded to an extended upstream multibranch loop that includes both the attenuator hairpin and the slippery site-a conformation not previously modeled. We aim to provide further context to the SARS-CoV-2 FSE via computational and medium resolution cryo-EM approaches, by presenting a 6.1 Å cryo-EM structure featuring a linear pseudoknot structure and a dynamic upstream multibranch loop.
Collapse
Affiliation(s)
- Jake M Peterson
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Scott T Becker
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Collin A O'Leary
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Puneet Juneja
- Cryo-EM Facility, Iowa State University, Ames, Iowa 50011, United States
| | - Yang Yang
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Walter N Moss
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
8
|
Mikkelsen AA, Gao F, Carino E, Bera S, Simon A. -1 Programmed ribosomal frameshifting in Class 2 umbravirus-like RNAs uses multiple long-distance interactions to shift between active and inactive structures and destabilize the frameshift stimulating element. Nucleic Acids Res 2023; 51:10700-10718. [PMID: 37742076 PMCID: PMC10602861 DOI: 10.1093/nar/gkad744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/25/2023] Open
Abstract
Plus-strand RNA viruses frequently employ -1 programmed ribosomal frameshifting (-1 PRF) to maximize their coding capacity. Ribosomes can frameshift at a slippery sequence if progression is impeded by a frameshift stimulating element (FSE), which is generally a stable, complex, dynamic structure with multiple conformations that contribute to the efficiency of -1 PRF. As FSE are usually analyzed separate from the viral genome, little is known about cis-acting long-distance interactions. Using full-length genomic RNA of umbravirus-like (ula)RNA citrus yellow vein associated virus (CY1) and translation in wheat germ extracts, six tertiary interactions were found associated with the CY1 FSE that span nearly three-quarters of the 2.7 kb genomic RNA. All six tertiary interactions are conserved in other Class 2 ulaRNAs and two are conserved in all ulaRNAs. Two sets of interactions comprise local and distal pseudoknots that involve overlapping FSE nucleotides and thus are structurally incompatible, suggesting that Class 2 FSEs assume multiple conformations. Importantly, two long-distance interactions connect with sequences on opposite sides of the critical FSE central stem, which would unzip the stem and destabilize the FSE. These latter interactions could allow a frameshifting ribosome to translate through a structurally disrupted upstream FSE that no longer blocks ribosome progression.
Collapse
Affiliation(s)
- Anna A Mikkelsen
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Elizabeth Carino
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Sayanta Bera
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD 20742, USA
| |
Collapse
|
9
|
Lessons Learned and Yet-to-Be Learned on the Importance of RNA Structure in SARS-CoV-2 Replication. Microbiol Mol Biol Rev 2022; 86:e0005721. [PMID: 35862724 PMCID: PMC9491204 DOI: 10.1128/mmbr.00057-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
SARS-CoV-2, the etiological agent responsible for the COVID-19 pandemic, is a member of the virus family Coronaviridae, known for relatively extensive (~30-kb) RNA genomes that not only encode for numerous proteins but are also capable of forming elaborate structures. As highlighted in this review, these structures perform critical functions in various steps of the viral life cycle, ultimately impacting pathogenesis and transmissibility. We examine these elements in the context of coronavirus evolutionary history and future directions for curbing the spread of SARS-CoV-2 and other potential human coronaviruses. While we focus on structures supported by a variety of biochemical, biophysical, and/or computational methods, we also touch here on recent evidence for novel structures in both protein-coding and noncoding regions of the genome, including an assessment of the potential role for RNA structure in the controversial finding of SARS-CoV-2 integration in “long COVID” patients. This review aims to serve as a consolidation of previous works on coronavirus and more recent investigation of SARS-CoV-2, emphasizing the need for improved understanding of the role of RNA structure in the evolution and adaptation of these human viruses.
Collapse
|
10
|
Hua L, Zhang Q, Zhu X, Wang R, You Q, Wang L. Beyond Proteolysis-Targeting Chimeric Molecules: Designing Heterobifunctional Molecules Based on Functional Effectors. J Med Chem 2022; 65:8091-8112. [PMID: 35686733 DOI: 10.1021/acs.jmedchem.2c00316] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In recent years, with the successful development of proteolysis-targeting chimeric molecules (PROTACs), the potential of heterobifunctional molecules to contribute to reenvisioning drug design, especially small-molecule drugs, has been increasingly recognized. Inspired by PROTACs, diverse heterobifunctional molecules have been reported to simultaneously bind two or more molecules and bring them into proximity to interaction, such as ribonuclease-recruiting, autophagy-recruiting, lysosome-recruiting, kinase-recruiting, phosphatase-recruiting, glycosyltransferase-recruiting, and acetyltransferase-recruiting chimeras. On the basis of the heterobifunctional principle, more opportunities for advancing drug design by linking potential effectors to a protein of interest (POI) have emerged. Herein, we introduce heterobifunctional molecules other than PROTACs, summarize the limitations of existing molecules, list the main challenges, and propose perspectives for future research directions, providing insight into alternative design strategies based on substrate-proximity-based targeting.
Collapse
Affiliation(s)
- Liwen Hua
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Qiuyue Zhang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Xinyue Zhu
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Ruoning Wang
- College of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, P. R. China
| | - Qidong You
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| | - Lei Wang
- State Key Laboratory of Natural Medicines and Jiangsu Key Laboratory of Drug Design and Optimization, China Pharmaceutical University, Nanjing 210009, P. R. China.,Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, P. R.China
| |
Collapse
|
11
|
Abstract
The constrained nature of viral genomes has allowed a translational sleight of hand known as −1 Programmed Ribosomal Frameshifting (−1 PRF) to flourish. Numerous studies have sought to tease apart the mechanisms and implications of −1PRF utilizing a few techniques. The dual-luciferase assay and ribosomal profiling have driven the PRF field to make great advances; however, the use of these assays means that the full impact of the genomic and cellular context on −1 PRF is often lost. Here, we discuss how the Minimal Frameshifting Element (MFE) and its constraints can hide contextual effects on −1 PRF. We review how sequence elements proximal to the traditionally defined MFE, such as the coronavirus attenuator sequence, can affect the observed rates of −1 PRF. Further, the MFE-based approach fully obscured −1 PRF in Barley yellow dwarf virus and would render the exploration of −1 PRF difficult in Porcine reproductive and respiratory syndrome virus, Encephalomyocarditis virus, Theiler’s murine encephalomyelitis virus, and Sindbis virus. Finally, we examine how the cellular context of tRNA abundance, miRNAs, and immune response elements can affect −1 PRF. The use of MFE was instrumental in establishing the basic foundations of PRF; however, it has become clear that the contextual impact on −1 PRF is no longer the exception so much as it is the rule and argues for new approaches to study −1PRF that embrace context. We therefore urge our field to expand the strategies and methods used to explore −1 PRF.
Collapse
|
12
|
Jones CP, Ferré-D'Amaré AR. Crystal structure of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) frameshifting pseudoknot. RNA (NEW YORK, N.Y.) 2022; 28:239-249. [PMID: 34845084 PMCID: PMC8906546 DOI: 10.1261/rna.078825.121] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 11/04/2021] [Indexed: 05/30/2023]
Abstract
SARS-CoV-2 produces two long viral protein precursors from one open reading frame using a highly conserved RNA pseudoknot that enhances programmed -1 ribosomal frameshifting. The 1.3 Å-resolution X-ray structure of the pseudoknot reveals three coaxially stacked helices buttressed by idiosyncratic base triples from loop residues. This structure represents a frameshift-stimulating state that must be deformed by the ribosome and exhibits base-triple-adjacent pockets that could be targeted by future small-molecule therapeutics.
Collapse
Affiliation(s)
- Christopher P Jones
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| | - Adrian R Ferré-D'Amaré
- Biochemistry and Biophysics Center, National Heart, Lung and Blood Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
13
|
Tickner ZJ, Farzan M. Riboswitches for Controlled Expression of Therapeutic Transgenes Delivered by Adeno-Associated Viral Vectors. Pharmaceuticals (Basel) 2021; 14:ph14060554. [PMID: 34200913 PMCID: PMC8230432 DOI: 10.3390/ph14060554] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/28/2021] [Accepted: 06/04/2021] [Indexed: 11/16/2022] Open
Abstract
Vectors developed from adeno-associated virus (AAV) are powerful tools for in vivo transgene delivery in both humans and animal models, and several AAV-delivered gene therapies are currently approved for clinical use. However, AAV-mediated gene therapy still faces several challenges, including limited vector packaging capacity and the need for a safe, effective method for controlling transgene expression during and after delivery. Riboswitches, RNA elements which control gene expression in response to ligand binding, are attractive candidates for regulating expression of AAV-delivered transgene therapeutics because of their small genomic footprints and non-immunogenicity compared to protein-based expression control systems. In addition, the ligand-sensing aptamer domains of many riboswitches can be exchanged in a modular fashion to allow regulation by a variety of small molecules, proteins, and oligonucleotides. Riboswitches have been used to regulate AAV-delivered transgene therapeutics in animal models, and recently developed screening and selection methods allow rapid isolation of riboswitches with novel ligands and improved performance in mammalian cells. This review discusses the advantages of riboswitches in the context of AAV-delivered gene therapy, the subsets of riboswitch mechanisms which have been shown to function in human cells and animal models, recent progress in riboswitch isolation and optimization, and several examples of AAV-delivered therapeutic systems which might be improved by riboswitch regulation.
Collapse
Affiliation(s)
- Zachary J. Tickner
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Correspondence:
| | - Michael Farzan
- Department of Immunology and Microbiology, the Scripps Research Institute, Jupiter, FL 33458, USA;
- Emmune, Inc., Jupiter, FL 33458, USA
| |
Collapse
|
14
|
Huston NC, Wan H, Strine MS, de Cesaris Araujo Tavares R, Wilen CB, Pyle AM. Comprehensive in vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. Mol Cell 2021; 81:584-598.e5. [PMID: 33444546 PMCID: PMC7775661 DOI: 10.1016/j.molcel.2020.12.041] [Citation(s) in RCA: 183] [Impact Index Per Article: 45.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/06/2020] [Accepted: 12/21/2020] [Indexed: 02/07/2023]
Abstract
Severe-acute-respiratory-syndrome-related coronavirus 2 (SARS-CoV-2) is the positive-sense RNA virus that causes coronavirus disease 2019 (COVID-19). The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form RNA structures, yet as much as 97% of its 30 kilobases have not been structurally explored. Here, we apply a novel long amplicon strategy to determine the secondary structure of the SARS-CoV-2 RNA genome at single-nucleotide resolution in infected cells. Our in-depth structural analysis reveals networks of well-folded RNA structures throughout Orf1ab and reveals aspects of SARS-CoV-2 genome architecture that distinguish it from other RNA viruses. Evolutionary analysis shows that several features of the SARS-CoV-2 genomic structure are conserved across β-coronaviruses, and we pinpoint regions of well-folded RNA structure that merit downstream functional analysis. The native, secondary structure of SARS-CoV-2 presented here is a roadmap that will facilitate focused studies on the viral life cycle, facilitate primer design, and guide the identification of RNA drug targets against COVID-19.
Collapse
Affiliation(s)
- Nicholas C Huston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Madison S Strine
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | | | - Craig B Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Department of Immunobiology, Yale School of Medicine, New Haven, CT 06519, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06511, USA; Department of Chemistry, Yale University, New Haven, CT 06511, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
15
|
Kelly JA, Woodside MT, Dinman JD. Programmed -1 Ribosomal Frameshifting in coronaviruses: A therapeutic target. Virology 2021; 554:75-82. [PMID: 33387787 PMCID: PMC7833279 DOI: 10.1016/j.virol.2020.12.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 01/15/2023]
Abstract
Human population growth, climate change, and globalization are accelerating the emergence of novel pathogenic viruses. In the past two decades alone, three such members of the coronavirus family have posed serious threats, spurring intense efforts to understand their biology as a way to identify targetable vulnerabilities. Coronaviruses use a programmed -1 ribosomal frameshift (-1 PRF) mechanism to direct synthesis of their replicase proteins. This is a critical switch in their replication program that can be therapeutically targeted. Here, we discuss how nearly half a century of research into -1 PRF have provided insight into the virological importance of -1 PRF, the molecular mechanisms that drive it, and approaches that can be used to manipulate it towards therapeutic outcomes with particular emphasis on SARS-CoV-2.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Michael T Woodside
- Department of Physics, University of Alberta, Edmonton, AB, T6G 2E1, Canada
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| |
Collapse
|
16
|
Wacker A, Weigand JE, Akabayov SR, Altincekic N, Bains JK, Banijamali E, Binas O, Castillo-Martinez J, Cetiner E, Ceylan B, Chiu LY, Davila-Calderon J, Dhamotharan K, Duchardt-Ferner E, Ferner J, Frydman L, Fürtig B, Gallego J, Grün JT, Hacker C, Haddad C, Hähnke M, Hengesbach M, Hiller F, Hohmann KF, Hymon D, de Jesus V, Jonker H, Keller H, Knezic B, Landgraf T, Löhr F, Luo L, Mertinkus KR, Muhs C, Novakovic M, Oxenfarth A, Palomino-Schätzlein M, Petzold K, Peter SA, Pyper DJ, Qureshi NS, Riad M, Richter C, Saxena K, Schamber T, Scherf T, Schlagnitweit J, Schlundt A, Schnieders R, Schwalbe H, Simba-Lahuasi A, Sreeramulu S, Stirnal E, Sudakov A, Tants JN, Tolbert BS, Vögele J, Weiß L, Wirmer-Bartoschek J, Wirtz Martin MA, Wöhnert J, Zetzsche H. Secondary structure determination of conserved SARS-CoV-2 RNA elements by NMR spectroscopy. Nucleic Acids Res 2020; 48:12415-12435. [PMID: 33167030 PMCID: PMC7736788 DOI: 10.1093/nar/gkaa1013] [Citation(s) in RCA: 119] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 09/08/2020] [Accepted: 10/14/2020] [Indexed: 12/24/2022] Open
Abstract
The current pandemic situation caused by the Betacoronavirus SARS-CoV-2 (SCoV2) highlights the need for coordinated research to combat COVID-19. A particularly important aspect is the development of medication. In addition to viral proteins, structured RNA elements represent a potent alternative as drug targets. The search for drugs that target RNA requires their high-resolution structural characterization. Using nuclear magnetic resonance (NMR) spectroscopy, a worldwide consortium of NMR researchers aims to characterize potential RNA drug targets of SCoV2. Here, we report the characterization of 15 conserved RNA elements located at the 5' end, the ribosomal frameshift segment and the 3'-untranslated region (3'-UTR) of the SCoV2 genome, their large-scale production and NMR-based secondary structure determination. The NMR data are corroborated with secondary structure probing by DMS footprinting experiments. The close agreement of NMR secondary structure determination of isolated RNA elements with DMS footprinting and NMR performed on larger RNA regions shows that the secondary structure elements fold independently. The NMR data reported here provide the basis for NMR investigations of RNA function, RNA interactions with viral and host proteins and screening campaigns to identify potential RNA binders for pharmaceutical intervention.
Collapse
Affiliation(s)
- Anna Wacker
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Julia E Weigand
- Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Sabine R Akabayov
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nadide Altincekic
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Jasleen Kaur Bains
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Elnaz Banijamali
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Oliver Binas
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Erhan Cetiner
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Betül Ceylan
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Liang-Yuan Chiu
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | | | - Jan Ferner
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Lucio Frydman
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - José Gallego
- School of Medicine, Catholic University of Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - J Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Carolin Hacker
- Signals GmbH & Co. KG, Graf-von-Stauffenberg-Allee 83, 60438 Frankfurt/M, Germany
| | - Christina Haddad
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Martin Hähnke
- Signals GmbH & Co. KG, Graf-von-Stauffenberg-Allee 83, 60438 Frankfurt/M, Germany
| | - Martin Hengesbach
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Fabian Hiller
- Signals GmbH & Co. KG, Graf-von-Stauffenberg-Allee 83, 60438 Frankfurt/M, Germany
| | - Katharina F Hohmann
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Daniel Hymon
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Vanessa de Jesus
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Henry Jonker
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Bozana Knezic
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Tom Landgraf
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Frank Löhr
- Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-University Frankfurt, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Le Luo
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Klara R Mertinkus
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Christina Muhs
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Mihajlo Novakovic
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Andreas Oxenfarth
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Katja Petzold
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Stephen A Peter
- Department of Biology, Technical University of Darmstadt, Schnittspahnstrasse 10, 64287 Darmstadt, Germany
| | - Dennis J Pyper
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Nusrat S Qureshi
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Magdalena Riad
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | - Christian Richter
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Krishna Saxena
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Tatjana Schamber
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Tali Scherf
- Faculty of Chemistry, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Judith Schlagnitweit
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Biomedicum 9B, Solnavägen 9, 17177 Stockholm, Sweden
| | | | - Robbin Schnieders
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Alvaro Simba-Lahuasi
- School of Medicine, Catholic University of Valencia, C/Quevedo 2, 46001 Valencia, Spain
| | - Sridhar Sreeramulu
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Elke Stirnal
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Alexey Sudakov
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Blanton S Tolbert
- Department of Chemistry, Case Western Reserve University, Cleveland, OH 44106, USA
| | | | | | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | - Maria A Wirtz Martin
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| | | | - Heidi Zetzsche
- Institute for Organic Chemistry and Chemical Biology, Max-von-Laue-Strasse 7, 60438 Frankfurt/M., Germany
| |
Collapse
|
17
|
Haniff H, Tong Y, Liu X, Chen JL, Suresh BM, Andrews RJ, Peterson JM, O’Leary CA, Benhamou RI, Moss WN, Disney MD. Targeting the SARS-CoV-2 RNA Genome with Small Molecule Binders and Ribonuclease Targeting Chimera (RIBOTAC) Degraders. ACS CENTRAL SCIENCE 2020; 6:1713-1721. [PMID: 33140033 PMCID: PMC7553039 DOI: 10.1021/acscentsci.0c00984] [Citation(s) in RCA: 137] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Indexed: 05/07/2023]
Abstract
COVID-19 is a global pandemic, thus requiring multiple strategies to develop modalities against it. Herein, we designed multiple bioactive small molecules that target a functional structure within the SARS-CoV-2's RNA genome, the causative agent of COVID-19. An analysis to characterize the structure of the RNA genome provided a revised model of the SARS-CoV-2 frameshifting element, in particular its attenuator hairpin. By studying an RNA-focused small molecule collection, we identified a drug-like small molecule (C5) that avidly binds to the revised attenuator hairpin structure with a K d of 11 nM. The compound stabilizes the hairpin's folded state and impairs frameshifting in cells. The ligand was further elaborated into a ribonuclease targeting chimera (RIBOTAC) to recruit a cellular ribonuclease to destroy the viral genome (C5-RIBOTAC) and into a covalent molecule (C5-Chem-CLIP) that validated direct target engagement and demonstrated its specificity for the viral RNA, as compared to highly expressed host mRNAs. The RIBOTAC lead optimization strategy improved the bioactivity of the compound at least 10-fold. Collectively, these studies demonstrate that the SARS-CoV-2 RNA genome should be considered druggable.
Collapse
Affiliation(s)
- Hafeez
S. Haniff
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Yuquan Tong
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Xiaohui Liu
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Jonathan L. Chen
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Blessy M. Suresh
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Ryan J. Andrews
- Roy
J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Jake M. Peterson
- Roy
J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Collin A. O’Leary
- Roy
J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Raphael I. Benhamou
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| | - Walter N. Moss
- Roy
J. Carver Department of Biophysics, Biochemistry and Molecular Biology, Iowa State University, Ames, Iowa 50011, United States
| | - Matthew D. Disney
- The
Scripps Research Institute, Department of Chemistry, Jupiter, Florida 33458, United States
| |
Collapse
|
18
|
Maranon DG, Anderson JR, Maranon AG, Wilusz J. The interface between coronaviruses and host cell RNA biology: Novel potential insights for future therapeutic intervention. WILEY INTERDISCIPLINARY REVIEWS. RNA 2020; 11:e1614. [PMID: 32638509 PMCID: PMC7361139 DOI: 10.1002/wrna.1614] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 12/17/2022]
Abstract
Coronaviruses, including SARS-Cov-2, are RNA-based pathogens that interface with a large variety of RNA-related cellular processes during infection. These processes include capping, polyadenylation, localization, RNA stability, translation, and regulation by RNA binding proteins or noncoding RNA effectors. The goal of this article is to provide an in-depth perspective on the current state of knowledge of how various coronaviruses interact with, usurp, and/or avoid aspects of these cellular RNA biology machineries. A thorough understanding of how coronaviruses interact with RNA-related posttranscriptional processes in the cell should allow for new insights into aspects of viral pathogenesis as well as identify new potential avenues for the development of anti-coronaviral therapeutics. This article is categorized under: RNA in Disease and Development > RNA in Disease.
Collapse
Affiliation(s)
- David G. Maranon
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - John R. Anderson
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Abril G. Maranon
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| | - Jeffrey Wilusz
- Department of Microbiology, Immunology and PathologyColorado State UniversityFort CollinsColoradoUSA
| |
Collapse
|
19
|
Kelly JA, Olson AN, Neupane K, Munshi S, San Emeterio J, Pollack L, Woodside MT, Dinman JD. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS coronavirus 2 (SARS-CoV-2). J Biol Chem 2020; 295:10741-10748. [PMID: 32571880 PMCID: PMC7397099 DOI: 10.1074/jbc.ac120.013449] [Citation(s) in RCA: 140] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Revised: 06/19/2020] [Indexed: 12/17/2022] Open
Abstract
Approximately 17 years after the severe acute respiratory syndrome coronavirus (SARS-CoV) epidemic, the world is currently facing the COVID-19 pandemic caused by SARS corona virus 2 (SARS-CoV-2). According to the most optimistic projections, it will take more than a year to develop a vaccine, so the best short-term strategy may lie in identifying virus-specific targets for small molecule-based interventions. All coronaviruses utilize a molecular mechanism called programmed -1 ribosomal frameshift (-1 PRF) to control the relative expression of their proteins. Previous analyses of SARS-CoV have revealed that it employs a structurally unique three-stemmed mRNA pseudoknot that stimulates high -1 PRF rates and that it also harbors a -1 PRF attenuation element. Altering -1 PRF activity impairs virus replication, suggesting that this activity may be therapeutically targeted. Here, we comparatively analyzed the SARS-CoV and SARS-CoV-2 frameshift signals. Structural and functional analyses revealed that both elements promote similar -1 PRF rates and that silent coding mutations in the slippery sites and in all three stems of the pseudoknot strongly ablate -1 PRF activity. We noted that the upstream attenuator hairpin activity is also functionally retained in both viruses, despite differences in the primary sequence in this region. Small-angle X-ray scattering analyses indicated that the pseudoknots in SARS-CoV and SARS-CoV-2 have the same conformation. Finally, a small molecule previously shown to bind the SARS-CoV pseudoknot and inhibit -1 PRF was similarly effective against -1 PRF in SARS-CoV-2, suggesting that such frameshift inhibitors may be promising lead compounds to combat the current COVID-19 pandemic.
Collapse
Affiliation(s)
- Jamie A Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Alexandra N Olson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| | - Krishna Neupane
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Sneha Munshi
- Department of Physics, University of Alberta, Edmonton, Alberta, Canada
| | - Josue San Emeterio
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, New York, USA
| | | | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, USA
| |
Collapse
|
20
|
Huston NC, Wan H, de Cesaris Araujo Tavares R, Wilen C, Pyle AM. Comprehensive in-vivo secondary structure of the SARS-CoV-2 genome reveals novel regulatory motifs and mechanisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.07.10.197079. [PMID: 32676598 PMCID: PMC7359520 DOI: 10.1101/2020.07.10.197079] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
SARS-CoV-2 is the positive-sense RNA virus that causes COVID-19, a disease that has triggered a major human health and economic crisis. The genome of SARS-CoV-2 is unique among viral RNAs in its vast potential to form stable RNA structures and yet, as much as 97% of its 30 kilobases have not been structurally explored in the context of a viral infection. Our limited knowledge of SARS-CoV-2 genomic architecture is a fundamental limitation to both our mechanistic understanding of coronavirus life cycle and the development of COVID-19 RNA-based therapeutics. Here, we apply a novel long amplicon strategy to determine for the first time the secondary structure of the SARS-CoV-2 RNA genome probed in infected cells. In addition to the conserved structural motifs at the viral termini, we report new structural features like a conformationally flexible programmed ribosomal frameshifting pseudoknot, and a host of novel RNA structures, each of which highlights the importance of studying viral structures in their native genomic context. Our in-depth structural analysis reveals extensive networks of well-folded RNA structures throughout Orf1ab and reveals new aspects of SARS-CoV-2 genome architecture that distinguish it from other single-stranded, positive-sense RNA viruses. Evolutionary analysis of RNA structures in SARS-CoV-2 shows that several features of its genomic structure are conserved across beta coronaviruses and we pinpoint individual regions of well-folded RNA structure that merit downstream functional analysis. The native, complete secondary structure of SAR-CoV-2 presented here is a roadmap that will facilitate focused studies on mechanisms of replication, translation and packaging, and guide the identification of new RNA drug targets against COVID-19.
Collapse
Affiliation(s)
- Nicholas C. Huston
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT, USA
| | - Han Wan
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
| | | | - Craig Wilen
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA
- Department of Immunobiology, Yale School of Medicine, New Haven, CT, USA
| | - Anna Marie Pyle
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT, USA
- Department of Chemistry, Yale University, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| |
Collapse
|
21
|
Penn WD, Harrington HR, Schlebach JP, Mukhopadhyay S. Regulators of Viral Frameshifting: More Than RNA Influences Translation Events. Annu Rev Virol 2020; 7:219-238. [PMID: 32600156 DOI: 10.1146/annurev-virology-012120-101548] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Programmed ribosomal frameshifting (PRF) is a conserved translational recoding mechanism found in all branches of life and viruses. In bacteria, archaea, and eukaryotes PRF is used to downregulate protein production by inducing a premature termination of translation, which triggers messenger RNA (mRNA) decay. In viruses, PRF is used to drive the production of a new protein while downregulating the production of another protein, thus maintaining a stoichiometry optimal for productive infection. Traditionally, PRF motifs have been defined by the characteristics of two cis elements: a slippery heptanucleotide sequence followed by an RNA pseudoknot or stem-loop within the mRNA. Recently, additional cis and new trans elements have been identified that regulate PRF in both host and viral translation. These additional factors suggest PRF is an evolutionarily conserved process whose function and regulation we are just beginning to understand.
Collapse
Affiliation(s)
- Wesley D Penn
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | - Haley R Harrington
- Department of Chemistry, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
22
|
Kelly JA, Olson AN, Neupane K, Munshi S, Emeterio JS, Pollack L, Woodside MT, Dinman JD. Structural and functional conservation of the programmed -1 ribosomal frameshift signal of SARS-CoV-2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2020:2020.03.13.991083. [PMID: 32587971 PMCID: PMC7310627 DOI: 10.1101/2020.03.13.991083] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
17 years after the SARS-CoV epidemic, the world is facing the COVID-19 pandemic. COVID-19 is caused by a coronavirus named SARS-CoV-2. Given the most optimistic projections estimating that it will take over a year to develop a vaccine, the best short-term strategy may lie in identifying virus-specific targets for small molecule interventions. All coronaviruses utilize a molecular mechanism called -1 PRF to control the relative expression of their proteins. Prior analyses of SARS-CoV revealed that it employs a structurally unique three-stemmed mRNA pseudoknot to stimulate high rates of -1 PRF, and that it also harbors a -1 PRF attenuation element. Altering -1 PRF activity negatively impacts virus replication, suggesting that this molecular mechanism may be therapeutically targeted. Here we present a comparative analysis of the original SARS-CoV and SARS-CoV-2 frameshift signals. Structural and functional analyses revealed that both elements promote similar rates of -1 PRF and that silent coding mutations in the slippery sites and in all three stems of the pseudoknot strongly ablated -1 PRF activity. The upstream attenuator hairpin activity has also been functionally retained. Small-angle x-ray scattering indicated that the pseudoknots in SARS-CoV and SARS-CoV-2 had the same conformation. Finally, a small molecule previously shown to bind the SARS-CoV pseudoknot and inhibit -1 PRF was similarly effective against -1 PRF in SARS-CoV-2, suggesting that such frameshift inhibitors may provide promising lead compounds to counter the current pandemic.
Collapse
Affiliation(s)
- Jamie A. Kelly
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742 USA
| | - Alexandra N. Olson
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742 USA
| | - Krishna Neupane
- Department of Physics, University of Alberta, Edmonton AB T6G2E1 Canada
| | - Sneha Munshi
- Department of Physics, University of Alberta, Edmonton AB T6G2E1 Canada
| | - Josue San Emeterio
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | - Lois Pollack
- School of Applied and Engineering Physics, Cornell University, Ithaca, NY 14853 USA
| | | | - Jonathan D. Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park MD 20742 USA
| |
Collapse
|
23
|
Xu Z, Hu L, Shi B, Geng S, Xu L, Wang D, Lu ZJ. Ribosome elongating footprints denoised by wavelet transform comprehensively characterize dynamic cellular translation events. Nucleic Acids Res 2019; 46:e109. [PMID: 29945224 PMCID: PMC6182183 DOI: 10.1093/nar/gky533] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Accepted: 05/31/2018] [Indexed: 02/06/2023] Open
Abstract
Translation is dynamically regulated during cell development and stress response. In order to detect actively translated open reading frames (ORFs) and dynamic cellular translation events, we have developed a computational method, RiboWave, to process ribosome profiling data. RiboWave utilizes wavelet transform to denoise the original signal by extracting 3-nt periodicity of ribosomes and precisely locate their footprint denoted as Periodic Footprint P-site (PF P-site). Such high-resolution footprint is found to capture the full track of actively elongating ribosomes, from which translational landscape can be explicitly characterized. We compare RiboWave with several published methods, like RiboTaper, ORFscore and RibORF, and found that RiboWave outperforms them in both accuracy and usage when defining actively translated ORFs. Moreover, we show that PF P-site derived by RiboWave shows superior performance in characterizing the dynamics and complexity of cellular translatome by accurately estimating the abundance of protein levels, assessing differential translation and identifying dynamic translation frameshift.
Collapse
Affiliation(s)
- Zhiyu Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Long Hu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Binbin Shi
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - SiSi Geng
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Longchen Xu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Dong Wang
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Zhi J Lu
- MOE Key Laboratory of Bioinformatics, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China
| |
Collapse
|
24
|
mRNA-Mediated Duplexes Play Dual Roles in the Regulation of Bidirectional Ribosomal Frameshifting. Int J Mol Sci 2018; 19:ijms19123867. [PMID: 30518074 PMCID: PMC6321510 DOI: 10.3390/ijms19123867] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 11/17/2022] Open
Abstract
In contrast to -1 programmed ribosomal frameshifting (PRF) stimulation by an RNA pseudoknot downstream of frameshifting sites, a refolding upstream RNA hairpin juxtaposing the frameshifting sites attenuates -1 PRF in human cells and stimulates +1 frameshifting in yeast. This eukaryotic functional mimicry of the internal Shine-Dalgarno (SD) sequence-mediated duplex was confirmed directly in the 70S translation system, indicating that both frameshifting regulation activities of upstream hairpin are conserved between 70S and 80S ribosomes. Unexpectedly, a downstream pseudoknot also possessed two opposing hungry codon-mediated frameshifting regulation activities: attenuation of +1 frameshifting and stimulation of a non-canonical -1 frameshifting within the +1 frameshift-prone CUUUGA frameshifting site in the absence of release factor 2 (RF2) in vitro. However, the -1 frameshifting activity of the downstream pseudoknot is not coupled with its +1 frameshifting attenuation ability. Similarly, the +1 frameshifting activity of the upstream hairpin is not required for its -1 frameshifting attenuation function Thus, each of the mRNA duplexes flanking the two ends of a ribosomal mRNA-binding channel possesses two functions in bi-directional ribosomal frameshifting regulation: frameshifting stimulation and counteracting the frameshifting activity of each other.
Collapse
|
25
|
Dever TE, Dinman JD, Green R. Translation Elongation and Recoding in Eukaryotes. Cold Spring Harb Perspect Biol 2018; 10:cshperspect.a032649. [PMID: 29610120 DOI: 10.1101/cshperspect.a032649] [Citation(s) in RCA: 141] [Impact Index Per Article: 20.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
In this review, we highlight the current understanding of translation elongation and recoding in eukaryotes. In addition to providing an overview of the process, recent advances in our understanding of the role of the factor eIF5A in both translation elongation and termination are discussed. We also highlight mechanisms of translation recoding with a focus on ribosomal frameshifting during elongation. We see that the balance between the basic steps in elongation and the less common recoding events is determined by the kinetics of the different processes as well as by specific sequence determinants.
Collapse
Affiliation(s)
- Thomas E Dever
- Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland 20742
| | - Rachel Green
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
26
|
Penno C, Kumari R, Baranov PV, van Sinderen D, Atkins JF. Stimulation of reverse transcriptase generated cDNAs with specific indels by template RNA structure: retrotransposon, dNTP balance, RT-reagent usage. Nucleic Acids Res 2017; 45:10143-10155. [PMID: 28973469 PMCID: PMC5737552 DOI: 10.1093/nar/gkx689] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 07/24/2017] [Indexed: 01/03/2023] Open
Abstract
RNA dependent DNA-polymerases, reverse transcriptases, are key enzymes for retroviruses and retroelements. Their fidelity, including indel generation, is significant for their use as reagents including for deep sequencing. Here, we report that certain RNA template structures and G-rich sequences, ahead of diverse reverse transcriptases can be strong stimulators for slippage at slippage-prone template motif sequence 3′ of such ‘slippage-stimulatory’ structures. Where slippage is stimulated, the resulting products have one or more additional base(s) compared to the corresponding template motif. Such structures also inhibit slippage-mediated base omission which can be more frequent in the absence of a relevant stem–loop. Slippage directionality, base insertion and omission, is sensitive to the relative concentration ratio of dNTPs specified by the RNA template slippage-prone sequence and its 5′ adjacent base. The retrotransposon-derived enzyme TGIRT exhibits more slippage in vitro than the retroviral enzymes tested including that from HIV. Structure-mediated slippage may be exhibited by other polymerases and enrich gene expression. A cassette from Drosophila retrotransposon Dme1_chrX_2630566, a candidate for utilizing slippage for its GagPol synthesis, exhibits strong slippage in vitro. Given the widespread occurrence and importance of retrotransposons, systematic studies to reveal the extent of their functional utilization of RT slippage are merited.
Collapse
Affiliation(s)
- Christophe Penno
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - Romika Kumari
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Pavel V Baranov
- School of Biochemistry, University College Cork, Cork, Ireland
| | - Douwe van Sinderen
- School of Microbiology, University College Cork, Cork, Ireland.,Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland
| | - John F Atkins
- School of Biochemistry, University College Cork, Cork, Ireland.,School of Microbiology, University College Cork, Cork, Ireland.,Department of Human Genetics, University of Utah, Salt Lake City, UT 84112-5330, USA
| |
Collapse
|
27
|
Atypical RNA Elements Modulate Translational Readthrough in Tobacco Necrosis Virus D. J Virol 2017; 91:JVI.02443-16. [PMID: 28148800 DOI: 10.1128/jvi.02443-16] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 01/27/2017] [Indexed: 12/13/2022] Open
Abstract
Tobacco necrosis virus, strain D (TNV-D), is a positive-strand RNA virus in the genus Betanecrovirus and family Tombusviridae The production of its RNA-dependent RNA polymerase, p82, is achieved by translational readthrough. This process is stimulated by an RNA structure that is positioned immediately downstream of the recoding site, termed the readthrough stem-loop (RTSL), and a sequence in the 3' untranslated region of the TNV-D genome, called the distal readthrough element (DRTE). Notably, a base pairing interaction between the RTSL and the DRTE, spanning ∼3,000 nucleotides, is required for enhancement of readthrough. Here, some of the structural features of the RTSL, as well as RNA sequences and structures that flank either the RTSL or DRTE, were investigated for their involvement in translational readthrough and virus infectivity. The results revealed that (i) the RTSL-DRTE interaction cannot be functionally replaced by stabilizing the RTSL structure, (ii) a novel tertiary RNA structure positioned just 3' to the RTSL is required for optimal translational readthrough and virus infectivity, and (iii) these same activities also rely on an RNA stem-loop located immediately upstream of the DRTE. Functional counterparts for the RTSL-proximal structure may also be present in other tombusvirids. The identification of additional distinct RNA structures that modulate readthrough suggests that regulation of this process by genomic features may be more complex than previously appreciated. Possible roles for these novel RNA elements are discussed.IMPORTANCE The analysis of factors that affect recoding events in viruses is leading to an ever more complex picture of this important process. In this study, two new atypical RNA elements were shown to contribute to efficient translational readthrough of the TNV-D polymerase and to mediate robust viral genome accumulation in infections. One of the structures, located close to the recoding site, could have functional equivalents in related genera, while the other structure, positioned 3' proximally in the viral genome, is likely limited to betanecroviruses. Irrespective of their prevalence, the identification of these novel RNA elements adds to the current repertoire of viral genome-based modulators of translational readthrough and provides a notable example of the complexity of regulation of this process.
Collapse
|
28
|
An RNA Element That Facilitates Programmed Ribosomal Readthrough in Turnip Crinkle Virus Adopts Multiple Conformations. J Virol 2016; 90:8575-91. [PMID: 27440887 DOI: 10.1128/jvi.01129-16] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2016] [Accepted: 07/12/2016] [Indexed: 01/01/2023] Open
Abstract
UNLABELLED Ribosome recoding is used by RNA viruses for translational readthrough or frameshifting past termination codons for the synthesis of extension products. Recoding sites, along with downstream recoding stimulatory elements (RSEs), have long been studied in reporter constructs, because these fragments alone mediate customary levels of recoding and are thus assumed to contain complete instructions for establishment of the proper ratio of termination to recoding. RSEs from the Tombusviridae and Luteoviridae are thought to be exceptions, since they contain a long-distance RNA-RNA connection with the 3' end. This interaction has been suggested to substitute for pseudoknots, thought to be missing in tombusvirid RSEs. We provide evidence that the phylogenetically conserved RSE of the carmovirus Turnip crinkle virus (TCV) adopts an alternative, smaller structure that extends an upstream conserved hairpin and that this alternative structure is the predominant form of the RSE within nascent viral RNA in plant cells and when RNA is synthesized in vitro The TCV RSE also contains an internal pseudoknot along with the long-distance interaction, and the pseudoknot is not compatible with the phylogenetically conserved structure. Conserved residues just past the recoding site are important for recoding, and these residues are also conserved in the RSEs of gammaretroviruses. Our data demonstrate the dynamic nature of the TCV RSE and suggest that studies using reporter constructs may not be effectively recapitulating RSE-mediated recoding within viral genomes. IMPORTANCE Ribosome recoding is used by RNA viruses to enable ribosomes to extend translation past termination codons for the synthesis of longer products. Recoding sites and a downstream recoding stimulatory element (RSE) mediate expected levels of recoding when excised and placed in reporter constructs and thus are assumed to contain complete instructions for the establishment of the proper ratio of termination to recoding. We provide evidence that most of the TCV RSE adopts an alternative structure that extends an upstream conserved hairpin and that this alternative structure, and not the phylogenetically conserved structure, is the predominant form of the RSE in RNA synthesized in vitro and in plant cells. The TCV RSE also contains an internal pseudoknot that is not compatible with the phylogenetically conserved structure and an RNA bridge to the 3' end. These data suggest that the TCV RSE is structurally dynamic and that multiple conformations are likely required to regulate ribosomal readthrough.
Collapse
|
29
|
Lin YH, Chang KY. Rational design of a synthetic mammalian riboswitch as a ligand-responsive -1 ribosomal frame-shifting stimulator. Nucleic Acids Res 2016; 44:9005-9015. [PMID: 27521370 PMCID: PMC5062990 DOI: 10.1093/nar/gkw718] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Accepted: 08/03/2016] [Indexed: 12/18/2022] Open
Abstract
Metabolite-responsive RNA pseudoknots derived from prokaryotic riboswitches have been shown to stimulate −1 programmed ribosomal frameshifting (PRF), suggesting −1 PRF as a promising gene expression platform to extend riboswitch applications in higher eukaryotes. However, its general application has been hampered by difficulty in identifying a specific ligand-responsive pseudoknot that also functions as a ligand-dependent -1 PRF stimulator. We addressed this problem by using the −1 PRF stimulation pseudoknot of SARS-CoV (SARS-PK) to build a ligand-dependent −1 PRF stimulator. In particular, the extra stem of SARS-PK was replaced by an RNA aptamer of theophylline and designed to couple theophylline binding with the stimulation of −1 PRF. Conformational and functional analyses indicate that the engineered theophylline-responsive RNA functions as a mammalian riboswitch with robust theophylline-dependent −1 PRF stimulation activity in a stable human 293T cell-line. Thus, RNA–ligand interaction repertoire provided by in vitro selection becomes accessible to ligand-specific −1 PRF stimulator engineering using SARS-PK as the scaffold for synthetic biology application.
Collapse
Affiliation(s)
- Ya-Hui Lin
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung, 402 Taiwan
| | - Kung-Yao Chang
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung, 402 Taiwan
| |
Collapse
|
30
|
Qiao Q, Yan Y, Guo J, Du S, Zhang J, Jia R, Ren H, Qiao Y, Li Q. A review on architecture of the gag-pol ribosomal frameshifting RNA in human immunodeficiency virus: a variability survey of virus genotypes. J Biomol Struct Dyn 2016; 35:1629-1653. [PMID: 27485859 DOI: 10.1080/07391102.2016.1194231] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Programmed '-1' ribosomal frameshifting is necessary for expressing the pol gene overlapped from a gag of human immunodeficiency virus. A viral RNA structure that requires base pairing across the overlapping sequence region suggests a mechanism of regulating ribosome and helicase traffic during expression. To get precise roles of an element around the frameshift site, a review on architecture of the frameshifting RNA is performed in combination of reported information with augments of a representative set of 19 viral samples. In spite of a different length for the viral RNAs, a canonical comparison on the element sequence allocation is performed for viewing variability associations between virus genotypes. Additionally, recent and historical insights recognized in frameshifting regulation are looked back as for indel and single nucleotide polymorphism of RNA. As specially noted, structural changes at a frameshift site, the spacer sequence, and a three-helix junction element, as well as two Watson-Crick base pairs near a bulge and a C-G pair close a loop, are the most vital strategies for the virus frameshifting regulations. All of structural changes, which are dependent upon specific sequence variations, facilitate an elucidation about the RNA element conformation-dependent mechanism for frameshifting. These facts on disrupting base pair interactions also allow solving the problem of competition between ribosome and helicase on a same RNA template, common to single-stranded RNA viruses. In a broad perspective, each new insight of frameshifting regulation in the competition systems introduced by the RNA element construct changes will offer a compelling target for antiviral therapy.
Collapse
Affiliation(s)
- Qi Qiao
- a School of Pharmaceutical Sciences, Xiamen University , Fujian 361102 , P.R. China
| | - Yanhua Yan
- b Department of Bioscience , Luliang University , Shanxi 033001 , P.R. China
| | - Jinmei Guo
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Shuqiang Du
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Jiangtao Zhang
- b Department of Bioscience , Luliang University , Shanxi 033001 , P.R. China
| | - Ruyue Jia
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Haimin Ren
- c Department of Chemistry & Chemical Engineering , Luliang University , Shanxi 033001 , P.R. China
| | - Yuanbiao Qiao
- d Graduate Institute of Pharmaceutical Chemistry, Luliang University , Shanxi 033001 , P.R. China
| | - Qingshan Li
- e School of Pharmaceutical Sciences , Shanxi Medical University , Shanxi 030001 , P.R. China
| |
Collapse
|
31
|
Advani VM, Dinman JD. Reprogramming the genetic code: The emerging role of ribosomal frameshifting in regulating cellular gene expression. Bioessays 2015; 38:21-6. [PMID: 26661048 PMCID: PMC4749135 DOI: 10.1002/bies.201500131] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Reading frame maintenance is a critical property of ribosomes. However, a number of genetic elements have been described that can induce ribosomes to shift on mRNAs, the most well understood of which are a class that directs ribosomal slippage by one base in 5' (‐1) direction. This is referred to as programmed ‐1 ribosomal frameshifting (‐1 PRF). Recently, a new ‐1 PRF promoting element was serendipitously discovered in a study examining the effects of stretches of adenosines in the coding sequences of mRNAs. Here, we discuss this finding, recent studies describing how ‐1 PRF is used to control gene expression in eukaryotes, and how ‐1 PRF is itself regulated. The implications of dysregulation of ‐1 PRF on human health are examined, as are possible new areas in which novel ‐1 PRF promoting elements might be discovered. Also watch the https://youtu.be/1mPXIINCRcY.
Collapse
Affiliation(s)
- Vivek M Advani
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| | - Jonathan D Dinman
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, USA
| |
Collapse
|
32
|
Hu HT, Cho CP, Lin YH, Chang KY. A general strategy to inhibiting viral -1 frameshifting based on upstream attenuation duplex formation. Nucleic Acids Res 2015; 44:256-66. [PMID: 26612863 PMCID: PMC4705660 DOI: 10.1093/nar/gkv1307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Accepted: 11/09/2015] [Indexed: 11/25/2022] Open
Abstract
Viral −1 programmed ribosomal frameshifting (PRF) as a potential antiviral target has attracted interest because many human viral pathogens, including human immunodeficiency virus (HIV) and coronaviruses, rely on −1 PRF for optimal propagation. Efficient eukaryotic −1 PRF requires an optimally placed stimulator structure downstream of the frameshifting site and different strategies targeting viral −1 PRF stimulators have been developed. However, accessing particular −1 PRF stimulator information represents a bottle-neck in combating the emerging epidemic viral pathogens such as Middle East respiratory syndrome coronavirus (MERS-CoV). Recently, an RNA hairpin upstream of frameshifting site was shown to act as a cis-element to attenuate −1 PRF with mechanism unknown. Here, we show that an upstream duplex formed in-trans, by annealing an antisense to its complementary mRNA sequence upstream of frameshifting site, can replace an upstream hairpin to attenuate −1 PRF efficiently. This finding indicates that the formation of a proximal upstream duplex is the main determining factor responsible for −1 PRF attenuation and provides mechanistic insight. Additionally, the antisense-mediated upstream duplex approach downregulates −1 PRF stimulated by distinct −1 PRF stimulators, including those of MERS-CoV, suggesting its general application potential as a robust means to evaluating viral −1 PRF inhibition as soon as the sequence information of an emerging human coronavirus is available.
Collapse
Affiliation(s)
- Hao-Teng Hu
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung, 402 Taiwan
| | - Che-Pei Cho
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung, 402 Taiwan
| | - Ya-Hui Lin
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung, 402 Taiwan
| | - Kung-Yao Chang
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung, 402 Taiwan
| |
Collapse
|
33
|
Gao F, Simon AE. Multiple Cis-acting elements modulate programmed -1 ribosomal frameshifting in Pea enation mosaic virus. Nucleic Acids Res 2015; 44:878-95. [PMID: 26578603 PMCID: PMC4737148 DOI: 10.1093/nar/gkv1241] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Accepted: 11/02/2015] [Indexed: 11/13/2022] Open
Abstract
Programmed -1 ribosomal frameshifting (-1 PRF) is used by many positive-strand RNA viruses for translation of required products. Despite extensive studies, it remains unresolved how cis-elements just downstream of the recoding site promote a precise level of frameshifting. The Umbravirus Pea enation mosaic virus RNA2 expresses its RNA polymerase by -1 PRF of the 5'-proximal ORF (p33). Three hairpins located in the vicinity of the recoding site are phylogenetically conserved among Umbraviruses. The central Recoding Stimulatory Element (RSE), located downstream of the p33 termination codon, is a large hairpin with two asymmetric internal loops. Mutational analyses revealed that sequences throughout the RSE and the RSE lower stem (LS) structure are important for frameshifting. SHAPE probing of mutants indicated the presence of higher order structure, and sequences in the LS may also adapt an alternative conformation. Long-distance pairing between the RSE and a 3' terminal hairpin was less critical when the LS structure was stabilized. A basal level of frameshifting occurring in the absence of the RSE increases to 72% of wild-type when a hairpin upstream of the slippery site is also deleted. These results suggest that suppression of frameshifting may be needed in the absence of an active RSE conformation.
Collapse
Affiliation(s)
- Feng Gao
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| | - Anne E Simon
- Department of Cell Biology and Molecular Genetics, University of Maryland College Park, College Park, MD 20742, USA
| |
Collapse
|
34
|
Hsu HT, Lin YH, Chang KY. Synergetic regulation of translational reading-frame switch by ligand-responsive RNAs in mammalian cells. Nucleic Acids Res 2014; 42:14070-82. [PMID: 25414357 PMCID: PMC4267651 DOI: 10.1093/nar/gku1233] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Distinct translational initiation mechanisms between prokaryotes and eukaryotes limit the exploitation of prokaryotic riboswitch repertoire for regulatory RNA circuit construction in mammalian application. Here, we explored programmed ribosomal frameshifting (PRF) as the regulatory gene expression platform for engineered ligand-responsive RNA devices in higher eukaryotes. Regulation was enabled by designed ligand-dependent conformational rearrangements of the two cis-acting RNA motifs of opposite activity in -1 PRF. Particularly, RNA elements responsive to trans-acting ligands can be tailored to modify co-translational RNA refolding dynamics of a hairpin upstream of frameshifting site to achieve reversible and adjustable -1 PRF attenuating activity. Combined with a ligand-responsive stimulator, synthetic RNA devices for synergetic translational-elongation control of gene expression can be constructed. Due to the similarity between co-transcriptional RNA hairpin folding and co-translational RNA hairpin refolding, the RNA-responsive ligand repertoire provided in prokaryotic systems thus becomes accessible to gene-regulatory circuit construction for synthetic biology application in mammalian cells.
Collapse
Affiliation(s)
- Hsiu-Ting Hsu
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| | - Ya-Hui Lin
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| | - Kung-Yao Chang
- Institute of Biochemistry, National Chung-Hsing University, 250 Kuo-Kung Road, Taichung 402, Taiwan
| |
Collapse
|
35
|
Wang G, Yang Y, Huang X, Du Z. Possible involvement of coaxially stacked double pseudoknots in the regulation of −1 programmed ribosomal frameshifting in RNA viruses. J Biomol Struct Dyn 2014; 33:1547-57. [DOI: 10.1080/07391102.2014.956149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
36
|
Huang X, Yang Y, Wang G, Cheng Q, Du Z. Highly conserved RNA pseudoknots at the Gag-Pol junction of HIV-1 suggest a novel mechanism of -1 ribosomal frameshifting. RNA (NEW YORK, N.Y.) 2014; 20:587-93. [PMID: 24671765 PMCID: PMC3988561 DOI: 10.1261/rna.042457.113] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
-1 programmed ribosomal frameshifting (PRF) is utilized by many viruses to synthesize their enzymatic (Pol) and structural (Gag) proteins at a defined ratio. For efficient -1 PRF, two cis-acting elements are required: a heptanucleotide frameshift site and a downstream stimulator such as a pseudoknot. We have analyzed the gag-pol junction sequences from 4254 HIV-1 strains. Approximately ninety-five percent of the sequences can form four pseudoknots PK1-PK4 (∼ 97% contain PK1, PK3, and PK4), covering ∼ 72 nt including the frameshift site. Some pseudoknots are mutually excluded due to sequence overlap. PK1 and PK3 arrange tandemly. Their stems form a quasi-continuous helix of ∼ 22 bp. We propose a novel mechanism for possible roles of these pseudoknots. Multiple alternative structures may exist at the gag-pol junction. In most strains, the PK1-PK3 tandem pseudoknots may dominate the structurally heterogeneous pool of RNA due to their greater overall stability. The tandem pseudoknots may function as a breaking system to slow down the ribosome. The ribosome unwinds PK1 and stem 1 of PK3 before it can reach the frameshift site. Then, PK4 can form rapidly because the intact stem 2 of PK3 makes up a large part of the stem 1 of PK4. The newly formed PK4 jams the entrance of the mRNA tunnel. The process then proceeds as in a typical case of -1 PRF. This mechanism incorporates several exquisite new features while still being consistent with the current paradigm of pseudoknot-dependent -1 PRF.
Collapse
Affiliation(s)
| | - Yang Yang
- Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, USA
| | - Guan Wang
- Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, USA
| | | | - Zhihua Du
- Department of Chemistry and Biochemistry, Southern Illinois University at Carbondale, Carbondale, Illinois 62901, USA
- Corresponding authorE-mail
| |
Collapse
|
37
|
Arnsburg K, Kirstein-Miles J. Interrelation between protein synthesis, proteostasis and life span. Curr Genomics 2014; 15:66-75. [PMID: 24653664 PMCID: PMC3958960 DOI: 10.2174/1389202915666140210210542] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 02/06/2014] [Accepted: 02/06/2014] [Indexed: 12/15/2022] Open
Abstract
The production of newly synthesized proteins is a key process of protein homeostasis that initiates the biosynthetic flux of proteins and thereby determines the composition, stability and functionality of the proteome. Protein synthesis is highly regulated on multiple levels to adapt the proteome to environmental and physiological challenges such as aging and proteotoxic conditions. Imbalances of protein folding conditions are sensed by the cell that then trigger a cascade of signaling pathways aiming to restore the protein folding equilibrium. One regulatory node to rebalance proteostasis upon stress is the control of protein synthesis itself. Translation is reduced as an immediate response to perturbations of the protein folding equilibrium that can be observed in the cytosol as well as in the organelles such as the endoplasmatic reticulum and mitochondria. As reduction of protein synthesis is linked to life span increase, the signaling pathways regu-lating protein synthesis might be putative targets for treatments of age-related diseases. Eukaryotic cells have evolved a complex system for protein synthesis regulation and this review will summarize cellular strategies to regulate mRNA translation upon stress and its impact on longevity.
Collapse
Affiliation(s)
- Kristin Arnsburg
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. Robert-Rössle-Straße 10; 13125 Berlin, Germany
| | - Janine Kirstein-Miles
- Leibniz-Institut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V. Robert-Rössle-Straße 10; 13125 Berlin, Germany
| |
Collapse
|
38
|
A genome-wide analysis of RNA pseudoknots that stimulate efficient -1 ribosomal frameshifting or readthrough in animal viruses. BIOMED RESEARCH INTERNATIONAL 2013; 2013:984028. [PMID: 24298557 PMCID: PMC3835772 DOI: 10.1155/2013/984028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Accepted: 08/21/2013] [Indexed: 02/01/2023]
Abstract
Programmed −1 ribosomal frameshifting (PRF) and stop codon readthrough are two translational recoding mechanisms utilized by some RNA viruses to express their structural and enzymatic proteins at a defined ratio. Efficient recoding usually requires an RNA pseudoknot located several nucleotides downstream from the recoding site. To assess the strategic importance of the recoding pseudoknots, we have carried out a large scale genome-wide analysis in which we used an in-house developed program to detect all possible H-type pseudoknots within the genomic mRNAs of 81 animal viruses. Pseudoknots are detected downstream from ~85% of the recoding sites, including many previously unknown pseudoknots. ~78% of the recoding pseudoknots are the most stable pseudoknot within the viral genomes. However, they are not as strong as some designed pseudoknots that exhibit roadblocking effect on the translating ribosome. Strong roadblocking pseudoknots are not detected within the viral genomes. These results indicate that the decoding pseudoknots have evolved to possess optimal stability for efficient recoding. We also found that the sequence at the gag-pol frameshift junction of HIV1 harbors potential elaborated pseudoknots encompassing the frameshift site. A novel mechanism is proposed for possible involvement of the elaborated pseudoknots in the HIV1 PRF event.
Collapse
|