1
|
Putnová I, Putnová BM, Hurník P, Štembírek J, Buchtová M, Kolísková P. Primary cilia-associated signalling in squamous cell carcinoma of head and neck region. Front Oncol 2024; 14:1413255. [PMID: 39234399 PMCID: PMC11372790 DOI: 10.3389/fonc.2024.1413255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Accepted: 07/29/2024] [Indexed: 09/06/2024] Open
Abstract
Squamous cell carcinoma (SCC) of the head and neck originates from the mucosal lining of the upper aerodigestive tract, including the lip, tongue, nasopharynx, oropharynx, larynx and hypopharynx. In this review, we summarise what is currently known about the potential function of primary cilia in the pathogenesis of this disease. As primary cilia represent a key cellular structure for signal transduction and are related to cell proliferation, an understanding of their role in carcinogenesis is necessary for the design of new treatment approaches. Here, we introduce cilia-related signalling in head and neck squamous cell carcinoma (HNSCC) and its possible association with HNSCC tumorigenesis. From this point of view, PDGF, EGF, Wnt and Hh signalling are discussed as all these pathways were found to be dysregulated in HNSCC. Moreover, we review the clinical potential of small molecules affecting primary cilia signalling to target squamous cell carcinoma of the head and neck area.
Collapse
Affiliation(s)
- Iveta Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Anatomy, Histology and Embryology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Barbora Moldovan Putnová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Pathological Morphology and Parasitology, University of Veterinary Sciences Brno, Brno, Czechia
| | - Pavel Hurník
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, University Hospital Ostrava, Ostrava, Czechia
- Institute of Molecular and Clinical Pathology and Medical Genetics, Faculty of Medicine, University of Ostrava, Ostrava, Czechia
| | - Jan Štembírek
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Maxillofacial Surgery, University Hospital Ostrava, Ostrava, Czechia
| | - Marcela Buchtová
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| | - Petra Kolísková
- Laboratory of Molecular Morphogenesis, Institute of Animal Physiology and Genetics, Czech Academy of Sciences, Brno, Czechia
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czechia
| |
Collapse
|
2
|
Lian F, Li H, Ma Y, Zhou R, Wu W. Recent advances in primary cilia in bone metabolism. Front Endocrinol (Lausanne) 2023; 14:1259650. [PMID: 37886641 PMCID: PMC10598340 DOI: 10.3389/fendo.2023.1259650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 09/12/2023] [Indexed: 10/28/2023] Open
Abstract
Primary cilia are microtubule-based organelles that are widespread on the cell surface and play a key role in tissue development and homeostasis by sensing and transducing various signaling pathways. The process of intraflagellar transport (IFT), which is propelled by kinesin and dynein motors, plays a crucial role in the formation and functionality of cilia. Abnormalities in the cilia or ciliary transport system often cause a range of clinical conditions collectively known as ciliopathies, which include polydactyly, short ribs, scoliosis, thoracic stenosis and many abnormalities in the bones and cartilage. In this review, we summarize recent findings on the role of primary cilia and ciliary transport systems in bone development, we describe the role of cilia in bone formation, cartilage development and bone resorption, and we summarize advances in the study of primary cilia in fracture healing. In addition, the recent discovery of crosstalk between integrins and primary cilia provides new insights into how primary cilia affect bone.
Collapse
Affiliation(s)
- Fenfen Lian
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Hui Li
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuwei Ma
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Rui Zhou
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Wei Wu
- School of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
3
|
Chen Y, Lu C, Shang X, Wu K, Chen K. Primary cilia: The central role in the electromagnetic field induced bone healing. Front Pharmacol 2022; 13:1062119. [DOI: 10.3389/fphar.2022.1062119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 11/07/2022] [Indexed: 12/03/2022] Open
Abstract
Primary cilia have emerged as the cellular “antenna” that can receive and transduce extracellular chemical/physical signals, thus playing an important role in regulating cellular activities. Although the electromagnetic field (EMF) is an effective treatment for bone fractures since 1978, however, the detailed mechanisms leading to such positive effects are still unclear. Primary cilia may play a central role in receiving EMF signals, translating physical signals into biochemical information, and initiating various signalingsignaling pathways to transduce signals into the nucleus. In this review, we elucidated the process of bone healing, the structure, and function of primary cilia, as well as the application and mechanism of EMF in treating fracture healing. To comprehensively understand the process of bone healing, we used bioinformatics to analyze the molecular change and associated the results with other studies. Moreover, this review summarizedsummarized some limitations in EMFs-related research and provides an outlook for ongoing studies. In conclusion, this review illustrated the primary cilia and related molecular mechanisms in the EMF-induced bone healing process, and it may shed light on future research.
Collapse
|
4
|
Wang L, Lu Y, Cai G, Chen H, Li G, Liu L, Sun L, Guan Z, Sun W, Zhao C, Wang H. Polycystin-2 mediates mechanical tension-induced osteogenic differentiation of human adipose-derived stem cells by activating transcriptional co-activator with PDZ-binding motif. Front Physiol 2022; 13:917510. [PMID: 36091380 PMCID: PMC9450996 DOI: 10.3389/fphys.2022.917510] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Human adipose-derived stem cells (hASCs) have multi-directional differentiation potential including osteogenic differentiation. Mechanical stimulation is thought to be a key regulator of bone remodeling and has been proved to promote osteogenic differentiation of mesenchymal stem cells. However, the mechanism how mechanical tension-induced osteogenesis of hASCs still remains poor understood. Polycystin-2 (PC2), a member of the transient receptor potential polycystic (TRPP) family, is involved in cilia-mediated mechanical transduction. To understand the role of PC2 in osteogenic differentiation under mechanical stimuli in hASCs, PKD2 gene was stably silenced by using lentivirus-mediated shRNA technology. The results showed that mechanical tension sufficiently enhanced osteogenic differentiation but hardly affected proliferation of hASCs. Silencing PKD2 gene caused hASCs to lose the ability of sensing mechanical stimuli and subsequently promoting osteogenesis. PC2 knock-out also reduced the cilia population frequency and cilia length in hASCs. TAZ (transcriptional coactivator with PDZ-binding motif, also known as Wwtr1) could mediate the genes regulation and biological functions of mechanotransduction signal pathway. Here, mechanical tension also enhanced TAZ nuclear translocation of hASCs. PC2 knock-out blocked tension-induced upregulation of nuclear TAZ and suppress tension-induced osteogenesis. TAZ could directly interact with Runx2, and inhibiting TAZ could suppress tension-induced upregulation of Runx2 expression. In summary, our findings demonstrated that PC2 mediate mechanical tension-induced osteogenic differentiation of hASCs by activating TAZ.
Collapse
Affiliation(s)
- Liang Wang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- Department of Stomatology, Affiliated Hospital of Nantong University, Nantong, China
| | - Yahui Lu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Guanhui Cai
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Hongyu Chen
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Gen Li
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Luwei Liu
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Lian Sun
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Zhaolan Guan
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Wen Sun
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
| | - Chunyang Zhao
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- *Correspondence: Hua Wang, ; Chunyang Zhao,
| | - Hua Wang
- Jiangsu Key Laboratory of Oral Diseases, Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, China
- *Correspondence: Hua Wang, ; Chunyang Zhao,
| |
Collapse
|
5
|
Goutas A, Trachana V. Stem cells' centrosomes: How can organelles identified 130 years ago contribute to the future of regenerative medicine? World J Stem Cells 2021; 13:1177-1196. [PMID: 34630857 PMCID: PMC8474719 DOI: 10.4252/wjsc.v13.i9.1177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/03/2021] [Accepted: 08/09/2021] [Indexed: 02/06/2023] Open
Abstract
At the core of regenerative medicine lies the expectation of repair or replacement of damaged tissues or whole organs. Donor scarcity and transplant rejection are major obstacles, and exactly the obstacles that stem cell-based therapy promises to overcome. These therapies demand a comprehensive understanding of the asymmetric division of stem cells, i.e. their ability to produce cells with identical potency or differentiated cells. It is believed that with better understanding, researchers will be able to direct stem cell differentiation. Here, we describe extraordinary advances in manipulating stem cell fate that show that we need to focus on the centrosome and the centrosome-derived primary cilium. This belief comes from the fact that this organelle is the vehicle that coordinates the asymmetric division of stem cells. This is supported by studies that report the significant role of the centrosome/cilium in orchestrating signaling pathways that dictate stem cell fate. We anticipate that there is sufficient evidence to place this organelle at the center of efforts that will shape the future of regenerative medicine.
Collapse
Affiliation(s)
- Andreas Goutas
- Department of Biology, Faculty of Medicine, University of Thessaly, Larisa 41500, Biopolis, Greece
| | - Varvara Trachana
- Department of Biology, Faculty of Medicine, University of Thessaly, Larisa 41500, Biopolis, Greece.
| |
Collapse
|
6
|
Zhou S, Li G, Zhou T, Zhang S, Xue H, Geng J, Liu W, Sun Y. The role of IFT140 in early bone healing of tooth extraction sockets. Oral Dis 2021; 28:1188-1197. [PMID: 33682229 DOI: 10.1111/odi.13833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 02/28/2021] [Accepted: 03/03/2021] [Indexed: 01/10/2023]
Abstract
OBJECTIVES Primary cilium is a key organelle of regulating bone development and maintenance. The aim of this study is to investigate whether ciliary intraflagellar transporter protein 140 (IFT140) plays a positive role in extraction socket healing by promoting bone formation. MATERIALS AND METHODS A left maxillary first molar extraction model was established using 6-week-old Ift140flox/flox (Ctrl group) and Ift140flox/flox , Osx-cre (cKO group) mice. The maxillary bone samples from 1, 2, and 3 weeks were postoperatively evaluated by micro-CT, molecular biology, and histomorphometry analysis. Alveolar bone marrow stromal cells (aBMSCs) from 4-week-old mice were cultured in vitro and tested for proliferation and osteogenic ability. RESULTS Ciliated cells were predominantly observed in the early socket healing stage with highly expressed ciliary protein IFT140. Compared with the Ctrl group, the healing of extraction sockets in the cKO group was significantly delayed. The proliferation and osteogenic differentiation ability of aBMSCs were reduced in the cKO group. CONCLUSION IFT140 has a facilitating role in the early osteogenesis of extraction socket healing and is involved in regulating the proliferation and osteogenic differentiation of aBMSCs.
Collapse
Affiliation(s)
- Shuang Zhou
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Gongchen Li
- Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China.,Department of Oral and Maxillofacial Surgery, School & Hospital of Stomatology, Tongji University, Shanghai, China
| | - Tingting Zhou
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Shuai Zhang
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Hui Xue
- Department of Stomatology, The First Affiliated Hospital of Qiqihaer Medical University, Qiqihaer, China
| | - Jiangyu Geng
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Wenjing Liu
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| | - Yao Sun
- Department of Implantology, School & Hospital of Stomatology, Tongji University, Shanghai, China.,Shanghai Engineering Research Center of Tooth Restoration and Regeneration, Shanghai, China
| |
Collapse
|
7
|
Ren H, Huo F, Wang Z, Liu F, Dong X, Wang F, Fan X, Yuan M, Jiang X, Lan J. Sdccag3 Promotes Implant Osseointegration during Experimental Hyperlipidemia. J Dent Res 2020; 99:938-948. [PMID: 32339468 DOI: 10.1177/0022034520916400] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Hyperlipidemia adversely affects bone metabolism, often resulting in compromised osseointegration and implant loss. In addition, genetic networks associated with osseointegration have been proposed. Serologically defined colon cancer antigen 3 (Sdccag3) is a novel endosomal protein that functions in actin cytoskeleton remodeling, protein trafficking and secretion, cytokinesis, and apoptosis, but its roles in the osteogenic differentiation of bone marrow mesenchymal stem cells (BMSCs) and in implant osseointegration under hyperlipidemic conditions have not been uncovered. Here, we performed microarray and RNA sequencing analysis to determine the differential expression of the Sdccag3 gene and related noncoding RNAs (ncRNAs) and to assess the long noncoding RNA (lncRNA) MSTRG.97162.4-miR-193a-3p-Sdccag3 coexpression network in bone tissues within the region 0.5 mm around implants in hyperlipidemic rats. In this experiment, we found that Sdccag3 and the previously uncharacterized lncRNA-MSTRG.97162.4 were downregulated during hyperlipidemia, while miR-193a-3p was upregulated. Sdccag3 overexpression increased new trabecular formation, the bone volume/total volume (BV/TV) (1.24-fold), and bone-implant combination ratio (BIC%) (1.26-fold). An RNA pulldown experiment revealed that Sdccag3 protein targeted lncRNA-MSTRG.97162.4 nucleotides 361 to 389. In addition, lncRNA-MSTRG.97162.4 overexpression significantly enhanced Sdccag3 (2.78-fold) expression and increased BV/TV (1.45-fold) and BIC% (1.07-fold) at the bone-implant interface. Taken together, these findings indicate that Sdccag3 overexpression enhances implant osseointegration under hyperlipidemic conditions by binding to lncRNA-MSTRG.97162.4. Furthermore, miR-193a-3p overexpression inhibited lncRNA-MSTRG.97162.4 (0.63-fold) and Sdccag3 (0.88-fold) expression and induced poor implant osseointegration (BV/TV, 0.86-fold; BIC%, 0.82-fold), while miR-193a-3p downregulation produced the opposite results (lncRNA-MSTRG.97162.4, 10.69-fold; Sdccag3, 6.96-fold; BV/TV, 1.20-fold; BIC%, 1.26-fold). Therefore, our findings show that Sdccag3 promotes implant osseointegration, and its related lncRNA-MSTRG.97162.4 and miR-193a-3p play an important role in osseointegration during hyperlipidemia, which might be a promising therapeutic target for improving dental implantation success rates.
Collapse
Affiliation(s)
- H Ren
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - F Huo
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - Z Wang
- Department of Pediatric Dentistry, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - F Liu
- Central Laboratory, Peking University School and Hospital of Stomatology, Haidian District, Beijing, China
| | - X Dong
- State Key Laboratory Breeding Base of Basic Science of Stomotology (Hubei-MOST) & Key Laboratory of Oral Biomedicine Ministry of Education, School & Hospital of Stomotology, Wuhan University, Wuhan, Hubei, China
| | - F Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - X Fan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - M Yuan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - X Jiang
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| | - J Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Shandong University & Shandong Provincial Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Laboratory for Dental Materials and Oral Tissue Regeneration, Jinan, Shandong, China
| |
Collapse
|
8
|
Xiao D, Zhang J, Zhang C, Barbieri D, Yuan H, Moroni L, Feng G. The role of calcium phosphate surface structure in osteogenesis and the mechanisms involved. Acta Biomater 2020; 106:22-33. [PMID: 31926336 DOI: 10.1016/j.actbio.2019.12.034] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/11/2019] [Accepted: 12/30/2019] [Indexed: 02/07/2023]
Abstract
Calcium phosphate (CaP) ceramics have been widely used for bone regeneration because of their ability to induce osteogenesis. Surface properties, including chemical composition and surface structure, are known to play a crucial role in osteoconduction and osteoinduction. This review systematically analyzes the effects of surface properties, in particular the surface structure, of CaP scaffolds on cell behavior and new bone formation. We also summarize the possible signaling pathways involved in the osteogenic differentiation of bone-related cells when cultured on surfaces with various structures in vitro. The significant immune response initiated by surface structure involved in osteogenic differentiation of cells is also discussed in this review. Taken together, the new biological principle for advanced biomaterials is not only to directly stimulate osteogenic differentiation of bone-related cells but also to modulate the immune response in vivo. Although the reaction mechanism responsible for bone formation induced by CaP surface structure is not clear yet, the insights on surface structure-mediated osteogenic differentiation and osteoimmunomodulation could aid the optimization of CaP-based biomaterials for bone regeneration. STATEMENT OF SIGNIFICANCE: CaP ceramics have similar inorganic composition with natural bone, which have been widely used for bone tissue scaffolds. CaP themselves are not osteoinductive; however, osteoinductive properties could be introduced to CaP materials by surface engineering. This paper systematically summarizes the effects of surface properties, especially surface structure, of CaP scaffolds on bone formation. Additionally, increasing evidence has proved that the bone healing process is not only affected by the osteogenic differentiation of bone-related cells, but also relevant to the the cooperation of immune system. Thus, we further review the possible signaling pathways involved in the osteogenic differentiation and immune response of cells cultured on scaffold surface. These insights into surface structure-mediated osteogenic differentiation and osteoimmunomodulated-based strategy could aid the optimization of CaP-based biomaterials.
Collapse
|
9
|
Primary Cilia Mediate Wnt5a/β-catenin Signaling to Regulate Adipogenic Differentiation of Human Umbilical Cord Blood-Derived Mesenchymal Stem Cells Following Calcium Induction. Tissue Eng Regen Med 2020; 17:193-202. [PMID: 32008170 DOI: 10.1007/s13770-019-00237-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/17/2019] [Accepted: 12/22/2019] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Regeneration of soft tissue defects is essential for adipose tissue pathologies and disease, trauma, or injury-induced damage. Here, we show that umbilical cord blood-derived mesenchymal stem cells could potentially be tailored and used for the reconstruction of specific damaged sites. Adipogenesis can be exploited in soft tissue reconstruction. Also, primary cilia play a role in the control of adipogenesis. METHODS The adipogenic differentiation capacity of mesenchymal stem cells (MSCs) was shown to influence ciliogenesis. MSCs transfected with intraflagellar transport 88 (IFT88) small interfering RNA (siRNA), which blocks the assembly and maintenance of cilia, were examined to confirm the relationship between adipogenesis and ciliogenesis. Also, 1,2-Bis(2-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid tetrakis(acetoxymethyl ester) (BAPTA-AM), calcium chelator, inhibited the ciliogenesis of MSCs in adipogenic differentiation. RESULTS IFT88-knockdown led to decreased cilia formation and limitation of cilia elongation in adipogenesis. Additionally, intracellular calcium triggered cilia formation in MSCs adipogenesis. Interestingly, intracellular calcium cannot overcome the inhibition of adipogenesis caused by low numbers of cilia in MSCs. CONCLUSION Our data suggested that ciliogenesis was negatively regulated by Wnt5a/β-catenin signaling during adipogenesis. Thus, we suggest that calcium induction triggers adipogenesis and ciliogenesis.
Collapse
|
10
|
Li YH, Zhu D, Cao Z, Liu Y, Sun J, Tan L. Primary cilia respond to intermittent low-magnitude, high-frequency vibration and mediate vibration-induced effects in osteoblasts. Am J Physiol Cell Physiol 2020; 318:C73-C82. [PMID: 31577514 DOI: 10.1152/ajpcell.00273.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Our objective was to investigate the role of primary cilia in low-magnitude, high-frequency vibration (LMHFV) treatment of MC3T3-E1 osteoblasts (OBs). We used chloral hydrate (CH), which has a well-characterized function in chemically removing primary cilia, to elucidate the role of primary cilia in LMHFV-induced OB osteogenic responses through cell viability assay, Western blot analysis, real-time quantitative RT-PCR, and histochemical staining methods. We observed a significant, 30% decrease in the number of MC3T3-E1 OBs with primary cilia (reduced from 64.3 ± 5%) and an approximately 50% reduction in length of primary cilia (reduced from 3 ± 0.8 μm) after LMHFV stimulation. LMHFV stimulation upregulated protein expression of the bone matrix markers collagen 1 (COL-1), osteopontin (OPN), and osteoclacin(OCN) in MC3T3-E1 OBs, indicating that LMHFV induces osteogenesis. High-concentration or long-duration CH exposure resulted in inhibition of MC3T3-E1 OB survival. In addition, Western blot analysis and RT-PCR revealed that CH treatment prevented LMHFV-induced osteogenesis. Furthermore, decreased alkaline phosphate activity, reduced OB differentiation, mineralization, and maturation were observed in CH-pretreated and LMHFV-treated OBs. We showed that LMHFV induces morphological changes in primary cilia that may fine-tune their mechanosensitivity. In addition, we demonstrated the significant inhibition by CH of LMHFV-induced OB mineralization, maturation, and differentiation, which might reveal the critical role of primary cilia in the process.
Collapse
Affiliation(s)
- Yan-Hui Li
- Department of Cardiology and Echocardiography, The First Hospital of Jilin University, Changchun, China
| | - Dong Zhu
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Zongbing Cao
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Yanwei Liu
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| | - Jian Sun
- Department of Cardiology, The First Hospital of Jilin University, Changchun, China
| | - Lei Tan
- Department of Orthopedic Trauma, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Mellor LF, Nordberg RC, Huebner P, Mohiti-Asli M, Taylor MA, Efird W, Oxford JT, Spang JT, Shirwaiker RA, Loboa EG. Investigation of multiphasic 3D-bioplotted scaffolds for site-specific chondrogenic and osteogenic differentiation of human adipose-derived stem cells for osteochondral tissue engineering applications. J Biomed Mater Res B Appl Biomater 2019; 108:2017-2030. [PMID: 31880408 PMCID: PMC7217039 DOI: 10.1002/jbm.b.34542] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 08/20/2019] [Accepted: 11/29/2019] [Indexed: 12/16/2022]
Abstract
Osteoarthritis is a degenerative joint disease that limits mobility of the affected joint due to the degradation of articular cartilage and subchondral bone. The limited regenerative capacity of cartilage presents significant challenges when attempting to repair or reverse the effects of cartilage degradation. Tissue engineered medical products are a promising alternative to treat osteochondral degeneration due to their potential to integrate into the patient's existing tissue. The goal of this study was to create a scaffold that would induce site-specific osteogenic and chondrogenic differentiation of human adipose-derived stem cells (hASC) to generate a full osteochondral implant. Scaffolds were fabricated using 3D-bioplotting of biodegradable polycraprolactone (PCL) with either β-tricalcium phosphate (TCP) or decellularized bovine cartilage extracellular matrix (dECM) to drive site-specific hASC osteogenesis and chondrogenesis, respectively. PCL-dECM scaffolds demonstrated elevated matrix deposition and organization in scaffolds seeded with hASC as well as a reduction in collagen I gene expression. 3D-bioplotted PCL scaffolds with 20% TCP demonstrated elevated calcium deposition, endogenous alkaline phosphatase activity, and osteopontin gene expression. Osteochondral scaffolds comprised of hASC-seeded 3D-bioplotted PCL-TCP, electrospun PCL, and 3D-bioplotted PCL-dECM phases were evaluated and demonstrated site-specific osteochondral tissue characteristics. This technique holds great promise as cartilage morbidity is minimized since autologous cartilage harvest is not required, tissue rejection is minimized via use of an abundant and accessible source of autologous stem cells, and biofabrication techniques allow for a precise, customizable methodology to rapidly produce the scaffold.
Collapse
Affiliation(s)
- Liliana F Mellor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Rachel C Nordberg
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| | - Pedro Huebner
- Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina
| | - Mahsa Mohiti-Asli
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Michael A Taylor
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - William Efird
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Julia T Oxford
- Biomolecular Research Center, Boise State University, Boise, Idaho
| | - Jeffrey T Spang
- Department of Orthopaedics, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Rohan A Shirwaiker
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,Edward P. Fitts Department of Industrial and Systems Engineering, North Carolina State University, Raleigh, North Carolina
| | - Elizabeth G Loboa
- Department of Biomedical, Biological and Chemical Engineering, College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
12
|
Subcutaneous and Visceral Adipose-Derived Mesenchymal Stem Cells: Commonality and Diversity. Cells 2019; 8:cells8101288. [PMID: 31640218 PMCID: PMC6830091 DOI: 10.3390/cells8101288] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 10/16/2019] [Accepted: 10/17/2019] [Indexed: 12/18/2022] Open
Abstract
Adipose-derived mesenchymal stem cells (ASCs) are considered to be a useful tool for regenerative medicine, owing to their capabilities in differentiation, self-renewal, and immunomodulation. These cells have become a focus in the clinical setting due to their abundance and easy isolation. However, ASCs from different depots are not well characterized. Here, we analyzed the functional similarities and differences of subcutaneous and visceral ASCs. Subcutaneous ASCs have an extraordinarily directed mode of motility and a highly dynamic focal adhesion turnover, even though they share similar surface markers, whereas visceral ASCs move in an undirected random pattern with more stable focal adhesions. Visceral ASCs have a higher potential to differentiate into adipogenic and osteogenic cells when compared to subcutaneous ASCs. In line with these observations, visceral ASCs demonstrate a more active sonic hedgehog pathway that is linked to a high expression of cilia/differentiation related genes. Moreover, visceral ASCs secrete higher levels of inflammatory cytokines interleukin-6, interleukin-8, and tumor necrosis factor α relative to subcutaneous ASCs. These findings highlight, that both ASC subpopulations share multiple cellular features, but significantly differ in their functions. The functional diversity of ASCs depends on their origin, cellular context and surrounding microenvironment within adipose tissues. The data provide important insight into the biology of ASCs, which might be useful in choosing the adequate ASC subpopulation for regenerative therapies.
Collapse
|
13
|
Curtis KJ, Oberman AG, Niebur GL. Effects of mechanobiological signaling in bone marrow on skeletal health. Ann N Y Acad Sci 2019; 1460:11-24. [PMID: 31508828 DOI: 10.1111/nyas.14232] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/09/2019] [Accepted: 08/15/2019] [Indexed: 01/27/2023]
Abstract
Bone marrow is a cellular tissue that forms within the pore space and hollow diaphysis of bones. As a tissue, its primary function is to support the hematopoietic progenitor cells that maintain the populations of both erythroid and myeloid lineage cells in the bone marrow, making it an essential element of normal mammalian physiology. However, bone's primary function is load bearing, and deformations induced by external forces are transmitted to the encapsulated marrow. Understanding the effects of these mechanical inputs on marrow function and adaptation requires knowledge of the material behavior of the marrow at multiple scales, the loads that are applied, and the mechanobiology of the cells. This paper reviews the current state of knowledge of each of these factors. Characterization of the marrow mechanical environment and its role in skeletal health and other marrow functions remains incomplete, but research on the topic is increasing, driven by interest in skeletal adaptation and the mechanobiology of cancer metastasis.
Collapse
Affiliation(s)
- Kimberly J Curtis
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana.,Advanced Diagnostics and Therapeutics Initiative, University of Notre Dame, Notre Dame, Indiana
| | - Alyssa G Oberman
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana
| | - Glen L Niebur
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, Indiana.,Harper Cancer Research Institute, University of Notre Dame, Notre Dame, Indiana.,Department of Aerospace and Mechanical Engineering, University of Notre Dame, Notre Dame, Indiana
| |
Collapse
|
14
|
Karlsson T, Rask-Andersen M, Pan G, Höglund J, Wadelius C, Ek WE, Johansson Å. Contribution of genetics to visceral adiposity and its relation to cardiovascular and metabolic disease. Nat Med 2019; 25:1390-1395. [DOI: 10.1038/s41591-019-0563-7] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/29/2019] [Indexed: 12/17/2022]
|
15
|
Ritter A, Kreis NN, Roth S, Friemel A, Jennewein L, Eichbaum C, Solbach C, Louwen F, Yuan J. Restoration of primary cilia in obese adipose-derived mesenchymal stem cells by inhibiting Aurora A or extracellular signal-regulated kinase. Stem Cell Res Ther 2019; 10:255. [PMID: 31412932 PMCID: PMC6694567 DOI: 10.1186/s13287-019-1373-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 07/23/2019] [Accepted: 08/05/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Obesity impairs a variety of cell types including adipose-derived mesenchymal stem cells (ASCs). ASCs are indispensable for tissue homeostasis/repair, immunomodulation, and cell renewal. It has been demonstrated that obese ASCs are defective in differentiation, motility, immunomodulation, and replication. We have recently reported that some of these defects are linked to impaired primary cilia, which are unable to properly convey and coordinate a variety of signaling pathways. We hypothesized that the rescue of the primary cilium in obese ASCs would restore their functional properties. METHODS Obese ASCs derived from subcutaneous and visceral adipose tissues were treated with a specific inhibitor against Aurora A or with an inhibitor against extracellular signal-regulated kinase 1/2 (Erk1/2). Multiple molecular and cellular assays were performed to analyze the altered functionalities and their involved pathways. RESULTS The treatment with low doses of these inhibitors extended the length of the primary cilium, restored the invasion and migration potential, and improved the differentiation capacity of obese ASCs. Associated with enhanced differentiation ability, the cells displayed an increased expression of self-renewal/stemness-related genes like SOX2, OCT4, and NANOG, mediated by reduced active glycogen synthase kinase 3 β (GSK3β). CONCLUSION This work describes a novel phenomenon whereby the primary cilium of obese ASCs is rescuable by the low-dose inhibition of Aurora A or Erk1/2, restoring functional ASCs with increased stemness. These cells might be able to improve tissue homeostasis in obese patients and thereby ameliorate obesity-associated diseases. Additionally, these functionally restored obese ASCs could be useful for novel autologous mesenchymal stem cell-based therapies.
Collapse
Affiliation(s)
- Andreas Ritter
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany.
| | - Nina-Naomi Kreis
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Susanne Roth
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Alexandra Friemel
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Lukas Jennewein
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Christine Eichbaum
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Christine Solbach
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Frank Louwen
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany
| | - Juping Yuan
- Department of Gynecology and Obstetrics, School of Medicine, J. W. Goethe-University, Theodor-Stern-Kai 7, D-60590, Frankfurt, Germany.
| |
Collapse
|
16
|
Bodle J, Hamouda MS, Cai S, Williams RB, Bernacki SH, Loboa EG. Primary Cilia Exhibit Mechanosensitivity to Cyclic Tensile Strain and Lineage-Dependent Expression in Adipose-Derived Stem Cells. Sci Rep 2019; 9:8009. [PMID: 31142808 PMCID: PMC6541635 DOI: 10.1038/s41598-019-43351-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 04/23/2019] [Indexed: 02/06/2023] Open
Abstract
Non-motile primary cilia are dynamic cellular sensory structures and are expressed in adipose-derived stem cells (ASCs). We have previously shown that primary cilia are involved in chemically-induced osteogenic differentiation of human ASC (hASCs) in vitro. Further, we have reported that 10% cyclic tensile strain (1 Hz, 4 hours/day) enhances hASC osteogenesis. We hypothesize that primary cilia respond to cyclic tensile strain in a lineage dependent manner and that their mechanosensitivity may regulate the dynamics of signaling pathways localized to the cilium. We found that hASC morphology, cilia length and cilia conformation varied in response to culture in complete growth, osteogenic differentiation, or adipogenic differentiation medium, with the longest cilia expressed in adipogenically differentiating cells. Further, we show that cyclic tensile strain both enhances osteogenic differentiation of hASCs while it suppresses adipogenic differentiation as evidenced by upregulation of RUNX2 gene expression and downregulation of PPARG and IGF-1, respectively. This study demonstrates that hASC primary cilia exhibit mechanosensitivity to cyclic tensile strain and lineage-dependent expression, which may in part regulate signaling pathways localized to the primary cilium during the differentiation process. We highlight the importance of the primary cilium structure in mechanosensing and lineage specification and surmise that this structure may be a novel target in manipulating hASC for in tissue engineering applications.
Collapse
Affiliation(s)
- Josephine Bodle
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA.
| | - Mehdi S Hamouda
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Shaobo Cai
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Ramey B Williams
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Susan H Bernacki
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina, 27695, USA.
- College of Engineering at University of Missouri, W1051 Thomas & Nell Lafferre Hall, Columbia, MO, 65211, USA.
| |
Collapse
|
17
|
Nordberg RC, Wang H, Wu Q, Loboa EG. Corin is a key regulator of endochondral ossification and bone development via modulation of vascular endothelial growth factor A expression. J Tissue Eng Regen Med 2018; 12:2277-2286. [PMID: 30352487 DOI: 10.1002/term.2760] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2017] [Revised: 08/21/2018] [Accepted: 10/18/2018] [Indexed: 01/06/2023]
Abstract
Corin has been studied extensively within the vascular system and is known to regulate blood pressure. We have shown that corin is one of the most highly upregulated genes during osteogenic differentiation of human adipose-derived stem cells (hASCs). This study tested the hypothesis that, through modulation of angiogenic signalling pathways, corin is a critical regulator of osteogenic differentiation and endochondral ossification. In vitro, corin expression in hASC was suppressed via siRNA knockdown and vascular endothelial growth factor A (VEGF-A) expression was quantified via reverse transcription polymerase chain reaction. In vivo, a murine corin knockout model (female, 10 weeks) was used to determine the effect of corin deficiency on long bone development. Wild-type and corin knockout long bones were compared via haematoxylin and eosin staining to assess tissue characteristics and cellular organization, three-point bending to assess mechanical characteristics, and immunohistochemistry to visualize VEGF-A expression patterns. Corin knockdown significantly (p < 0.05) increased VEGF-A mRNA expression during osteogenic differentiation. In vivo, corin knockout reduced tibial growth plate thickness (p < 0.01) and severely diminished the hypertrophic region. Corin knockout femurs had significantly increased stiffness (p < 0.01) and maximum loads (p < 0.01) but reduced postyield deflections (p < 0.01). In corin knockout mice, VEGF-A expression was increased near the growth plate but was reduced throughout the tibial shaft and distal head of the tibiae. This is the first study to show that corin is a key regulator of bone development by modulation of VEGF-A expression. Further elucidation of this mechanism will aid in the development of optimized bone tissue engineering and regenerative medicine therapies.
Collapse
Affiliation(s)
- Rachel C Nordberg
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina
| | - Hao Wang
- Molecular Cardiology, Cleveland Clinic, Ohio
| | - Qingyu Wu
- Molecular Cardiology, Cleveland Clinic, Ohio
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at University of North Carolina at Chapel Hill and North Carolina State University, Raleigh, North Carolina.,College of Engineering, University of Missouri, Columbia, Missouri
| |
Collapse
|
18
|
Ritter A, Louwen F, Yuan J. Deficient primary cilia in obese adipose-derived mesenchymal stem cells: obesity, a secondary ciliopathy? Obes Rev 2018; 19:1317-1328. [PMID: 30015415 DOI: 10.1111/obr.12716] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/24/2018] [Accepted: 05/09/2018] [Indexed: 12/14/2022]
Abstract
Obesity alters the composition, structure and function of adipose tissue, characterized by chronic inflammation, insulin resistance and metabolic dysfunction. Adipose-derived mesenchymal stem cells (ASCs) are responsible for cell renewal, spontaneous repair and immunomodulation in adipose tissue. Increasing evidence highlights that ASCs are deficient in obesity, and the underlying mechanisms are not well understood. We have recently shown that obese ASCs have defective primary cilia, which are shortened and unable to properly respond to stimuli. Impaired cilia compromise ASC functions. This work suggests an intertwined connection of obesity, defective cilia and dysfunctional ASCs. We have here discussed the current data regarding defective cilia in various cell types in obesity. Based on these observations, we hypothesize that obesity, a systemic chronic metainflammation, could impair cilia in diverse ciliated cells, like pancreatic islet cells, stem cells and hypothalamic neurons, making these critical cells dysfunctional by shutting down their signal sensors and transducers. In this context, obesity may represent a secondary form of ciliopathy induced by obesity-related inflammation and metabolic dysfunction. Reactivation of ciliated cells might be an alternative strategy to combat obesity and its associated diseases.
Collapse
Affiliation(s)
- A Ritter
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - F Louwen
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| | - J Yuan
- Department of Gynecology and Obstetrics, University Hospital, Goethe University Frankfurt, Frankfurt, Germany
| |
Collapse
|
19
|
Barba M, Di Pietro L, Massimi L, Geloso MC, Frassanito P, Caldarelli M, Michetti F, Della Longa S, Romitti PA, Di Rocco C, Arcovito A, Parolini O, Tamburrini G, Bernardini C, Boyadjiev SA, Lattanzi W. BBS9 gene in nonsyndromic craniosynostosis: Role of the primary cilium in the aberrant ossification of the suture osteogenic niche. Bone 2018; 112:58-70. [PMID: 29674126 PMCID: PMC5970090 DOI: 10.1016/j.bone.2018.04.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 04/12/2018] [Accepted: 04/14/2018] [Indexed: 12/26/2022]
Abstract
Nonsyndromic craniosynostosis (NCS) is the premature ossification of skull sutures, without associated clinical features. Mutations in several genes account for a small number of NCS patients; thus, the molecular etiopathogenesis of NCS remains largely unclear. Our study aimed at characterizing the molecular signaling implicated in the aberrant ossification of sutures in NCS patients. Comparative gene expression profiling of NCS patient sutures identified a fused suture-specific signature, including 17 genes involved in primary cilium signaling and assembly. Cells from fused sutures displayed a reduced potential to form primary cilia compared to cells from control patent sutures of the same patient. We identified specific upregulated splice variants of the Bardet Biedl syndrome-associated gene 9 (BBS9), which encodes a structural component of the ciliary BBSome complex. BBS9 expression increased during in vitro osteogenic differentiation of suture-derived mesenchymal cells of NCS patients. Also, Bbs9 expression increased during in vivo ossification of rat sutures. BBS9 functional knockdown affected the expression of primary cilia on patient suture cells and their osteogenic potential. Computational modeling of the upregulated protein isoforms (observed in patients) predicted that their binding affinity within the BBSome may be affected, providing a possible explanation for the aberrant suture ossification in NCS.
Collapse
Affiliation(s)
- Marta Barba
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Lorena Di Pietro
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Luca Massimi
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Maria Concetta Geloso
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Paolo Frassanito
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Massimo Caldarelli
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Fabrizio Michetti
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Stefano Della Longa
- Department of Life, Health and Environmental Sciences, University of L'Aquila, 67100, L'Aquila, Italy
| | - Paul A Romitti
- Department of Epidemiology, College of Public Health, University of Iowa, Iowa City, 52242, IA, USA
| | - Concezio Di Rocco
- Department of Neurosurgery, International Neuroscience Institute, 30625 Hannover, Germany
| | - Alessandro Arcovito
- Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Istituto di Biochimica e Biochimica Clinica, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Ornella Parolini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Centro di Ricerca E. Menni, Fondazione Poliambulanza-Istituto Ospedaliero, 25124 Brescia, Italy
| | - Gianpiero Tamburrini
- Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy; Istituto di Neurochirurgia, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Camilla Bernardini
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy
| | - Simeon A Boyadjiev
- Section of Genomics, Department of Pediatrics, University of California, 95817 Sacramento, CA, USA
| | - Wanda Lattanzi
- Istituto di Anatomia Umana e Biologia Cellulare, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; Fondazione Policlinico Universitario "Agostino Gemelli", 00168 Rome, Italy.
| |
Collapse
|
20
|
Katsianou MA, Skondra FG, Gargalionis AN, Piperi C, Basdra EK. The role of transient receptor potential polycystin channels in bone diseases. ANNALS OF TRANSLATIONAL MEDICINE 2018; 6:246. [PMID: 30069448 DOI: 10.21037/atm.2018.04.10] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Transient receptor potential (TRP) channels are cation channels which act as molecular sensors that enable cells to detect and respond to a plethora of mechanical and environmental cues. TRPs are involved in various physiological processes, such as mechanosensation, non-inception and thermosensation, while mutations in genes encoding them can lead to pathological conditions, called "channelopathies". The subfamily of transient receptor potential polycystins (TRPPs), Polycystin 1 (PC1, TRPP1) and Polycystin 2 (PC2, TRPP2), act as mechanoreceptors, sensing external mechanical forces, including strain, stretch and fluid shear stress, triggering a cascade of signaling pathways involved in osteoblastogenesis and ultimately bone formation. Both in vitro studies and research on animal models have already identified their implications in bone homeostasis. However, uncertainty veiling the role of polycystins (PCs) in bone disease urges studies to elucidate further their role in this field. Mutations in TRPPs have been related to autosomal polycystic kidney disease (ADKPD) and research groups try to identify their role beyond their well-established contribution in kidney disease. Such an elucidation would be beneficial for identifying signaling pathways where polycystins are involved in bone diseases related to exertion of mechanical forces such as osteoporosis, osteopenia and craniosynostosis. A better understanding of the implications of TRPPs in bone diseases would possibly lay the cornerstone for effective therapeutic schemes.
Collapse
Affiliation(s)
- Maria A Katsianou
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Foteini G Skondra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antonios N Gargalionis
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Christina Piperi
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthimia K Basdra
- Cellular and Molecular Biomechanics Unit, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
21
|
Wall M, Butler D, El Haj A, Bodle JC, Loboa EG, Banes AJ. Key developments that impacted the field of mechanobiology and mechanotransduction. J Orthop Res 2018; 36:605-619. [PMID: 28817244 DOI: 10.1002/jor.23707] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/10/2017] [Indexed: 02/04/2023]
Abstract
Advances in mechanobiology have evolved through insights from multiple disciplines including structural engineering, biomechanics, vascular biology, and orthopaedics. In this paper, we reviewed the impact of key reports related to the study of applied loads on tissues and cells and the resulting signal transduction pathways. We addressed how technology has helped advance the burgeoning field of mechanobiology (over 33,600 publications from 1970 to 2016). We analyzed the impact of critical ideas and then determined how these concepts influenced the mechanobiology field by looking at the citation frequency of these reports as well as tracking how the overall number of citations within the field changed over time. These data allowed us to understand how a key publication, idea, or technology guided or enabled the field. Initial observations of how forces acted on bone and soft tissues stimulated the development of computational solutions defining how forces affect tissue modeling and remodeling. Enabling technologies, such as cell and tissue stretching, compression, and shear stress devices, allowed more researchers to explore how deformation and fluid flow affect cells. Observation of the cell as a tensegrity structure and advanced methods to study genetic regulation in cells further advanced knowledge of specific mechanisms of mechanotransduction. The future of the field will involve developing gene and drug therapies to simulate or augment beneficial load regimens in patients and in mechanically conditioning organs for implantation. Here, we addressed a history of the field, but we limited our discussions to advances in musculoskeletal mechanobiology, primarily in bone, tendon, and ligament tissues. © 2017 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 36:605-619, 2018.
Collapse
Affiliation(s)
- Michelle Wall
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, North Carolina
| | - David Butler
- Department of Biomedical, Chemical, and Environmental Engineering, University of Cincinnati, Cincinnati, Ohio
| | - Alicia El Haj
- Institute for Science & Technology in Medicine, Keele University, Staffordshire, UK
| | | | | | - Albert J Banes
- Flexcell International Corp., 2730 Tucker St., Suite 200, Burlington, 27215, North Carolina.,Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, North Carolina
| |
Collapse
|
22
|
Shi W, Gao Y, Wang Y, Zhou J, Wei Z, Ma X, Ma H, Xian CJ, Wang J, Chen K. The flavonol glycoside icariin promotes bone formation in growing rats by activating the cAMP signaling pathway in primary cilia of osteoblasts. J Biol Chem 2017; 292:20883-20896. [PMID: 29089388 PMCID: PMC5743065 DOI: 10.1074/jbc.m117.809517] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 10/29/2017] [Indexed: 11/06/2022] Open
Abstract
Icariin, a prenylated flavonol glycoside isolated from the herb Epimedium, has been considered as a potential alternative therapy for osteoporosis. Previous research has shown that, unlike other flavonoids, icariin is unlikely to act via the estrogen receptor, but its exact mechanism of action is unknown. In this study, using rat calvarial osteoblast culture and rat bone growth models, we demonstrated that icariin promotes bone formation by activating the cAMP/protein kinase A (PKA)/cAMP response element-binding protein (CREB) pathway requiring functional primary cilia of osteoblasts. We found that icariin increases the peak bone mass attained by young rats and promotes the maturation and mineralization of rat calvarial osteoblasts. Icariin activated cAMP/PKA/CREB signaling of the osteoblasts by increasing intracellular cAMP levels and facilitating phosphorylation of both PKA and CREB. Blocking cAMP/PKA/CREB signaling with inhibitors of the cAMP-synthesizing adenylyl cyclase (AC) and PKA inhibitors significantly inhibited the osteogenic effect of icariin in the osteoblasts. Icariin-activated cAMP/PKA/CREB signaling was localized to primary cilia, as indicated by localization of soluble AC and phosphorylated PKA. Furthermore, blocking ciliogenesis via siRNA knockdown of a cilium assembly protein, IFT88, inhibited icariin-induced PKA and CREB phosphorylation and also abolished icariin's osteogenic effect. Finally, several of these outcomes were validated in icariin-treated rats. Together, these results provide new insights into icariin function and its mechanisms of action and strengthen existing ties between cAMP-mediated signaling and osteogenesis.
Collapse
Affiliation(s)
| | - Yuhai Gao
- From the Institute of Orthopaedics and
| | | | - Jian Zhou
- From the Institute of Orthopaedics and
| | | | - Xiaoni Ma
- From the Institute of Orthopaedics and
| | - Huiping Ma
- the Department of Pharmacy, Lanzhou General Hospital of CPLA, Lanzhou 730050, China
| | - Cory J Xian
- the Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia, and
| | - Jufang Wang
- the Key Laboratory of Space Radiobiology of Gansu Province, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| | | |
Collapse
|
23
|
Zhou H, Zhu J, Liu M, Wu Q, Dong N. Role of the protease corin in chondrogenic differentiation of human bone marrow-derived mesenchymal stem cells. J Tissue Eng Regen Med 2017; 12:973-982. [PMID: 28714548 DOI: 10.1002/term.2514] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2017] [Revised: 05/30/2017] [Accepted: 07/11/2017] [Indexed: 01/03/2023]
Abstract
Mesenchymal stem cells (MSCs) have the potency to differentiate into chondrocytes, osteocytes and adipocytes. Corin is a cardiac protease that activates the natriuretic peptides, thereby regulating blood volume and pressure. In addition to the heart, corin gene upregulation was reported in bone marrow- and adipose tissue-derived MSCs that underwent osteogenic differentiation. To date, the biological significance of corin expression in MSC differentiation remains unknown. In this study we isolated and cultured human bone marrow-derived MSCs that were capable of undergoing chondrogenic, osteogenic and adipogenic lineage differentiation. By reverse transcription polymerase chain reaction (RT-PCR) and immunostaining, we found that corin expression was upregulated when these MSCs underwent chondrogenic, osteogenic and adipogenic differentiation. The upregulation of corin expression was most significant in the cells undergoing chondrogenic lineage differentiation. Silencing corin gene expression by small hairpin RNA in the MSCs inhibited chondrogenic, but not osteogenic and adipogenic, differentiation. These results suggest a novel function of corin in MSC differentiation and chondrocyte development.
Collapse
Affiliation(s)
- Haibin Zhou
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Jinsong Zhu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Department of Orthopedics, Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Liu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
| | - Qingyu Wu
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
| | - Ningzheng Dong
- Cyrus Tang Hematology Center, Soochow University, Suzhou, China
- Collaborative Innovation Center of Hematology, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou, China
- Jiangsu Institute of Hematology, First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
24
|
Zhang J, Dalbay MT, Luo X, Vrij E, Barbieri D, Moroni L, de Bruijn JD, van Blitterswijk CA, Chapple JP, Knight MM, Yuan H. Topography of calcium phosphate ceramics regulates primary cilia length and TGF receptor recruitment associated with osteogenesis. Acta Biomater 2017; 57:487-497. [PMID: 28456657 PMCID: PMC5489417 DOI: 10.1016/j.actbio.2017.04.004] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 03/09/2017] [Accepted: 04/05/2017] [Indexed: 12/26/2022]
Abstract
The surface topography of synthetic biomaterials is known to play a role in material-driven osteogenesis. Recent studies show that TGFβ signalling also initiates osteogenic differentiation. TGFβ signalling requires the recruitment of TGFβ receptors (TGFβR) to the primary cilia. In this study, we hypothesize that the surface topography of calcium phosphate ceramics regulates stem cell morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation. We developed a 2D system using two types of tricalcium phosphate (TCP) ceramic discs with identical chemistry. One sample had a surface topography at micron-scale (TCP-B, with a bigger surface structure dimension) whilst the other had a surface topography at submicron scale (TCP-S, with a smaller surface structure dimension). In the absence of osteogenic differentiation factors, human bone marrow stromal cells (hBMSCs) were more spread on TCP-S than on TCP-B with alterations in actin organization and increased primary cilia prevalence and length. The cilia elongation on TCP-S was similar to that observed on glass in the presence of osteogenic media and was followed by recruitment of transforming growth factor-β RII (p-TGFβ RII) to the cilia axoneme. This was associated with enhanced osteogenic differentiation of hBMSCs on TCP-S, as shown by alkaline phosphatase activity and gene expression for key osteogenic markers in the absence of additional osteogenic growth factors. Similarly, in vivo after a 12-week intramuscular implantation in dogs, TCP-S induced bone formation while TCP-B did not. It is most likely that the surface topography of calcium phosphate ceramics regulates primary cilia length and ciliary recruitment of p-TGFβ RII associated with osteogenesis and bone formation. This bioengineering control of osteogenesis via primary cilia modulation may represent a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery applications. STATEMENT OF SIGNIFICANCE The surface topography of synthetic biomaterials plays important roles in material-driven osteogenesis. The data presented herein have shown that the surface topography of calcium phosphate ceramics regulates mesenchymal stromal cells (e.g., human bone marrow mesenchymal stromal cells, hBMSCs) with respect to morphology, primary cilia structure and TGFβR recruitment to the cilium associated with osteogenic differentiation in vitro. Together with bone formation in vivo, our results suggested a new type of biomaterial-based ciliotherapy for orthopedic, dental and maxillofacial surgery by the bioengineering control of osteogenesis via primary cilia modulation.
Collapse
|
25
|
Ivanova AA, Caspary T, Seyfried NT, Duong DM, West AB, Liu Z, Kahn RA. Biochemical characterization of purified mammalian ARL13B protein indicates that it is an atypical GTPase and ARL3 guanine nucleotide exchange factor (GEF). J Biol Chem 2017; 292:11091-11108. [PMID: 28487361 PMCID: PMC5491791 DOI: 10.1074/jbc.m117.784025] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 05/02/2017] [Indexed: 12/11/2022] Open
Abstract
Primary cilia play central roles in signaling during metazoan development. Several key regulators of ciliogenesis and ciliary signaling are mutated in humans, resulting in a number of ciliopathies, including Joubert syndrome (JS). ARL13B is a ciliary GTPase with at least three missense mutations identified in JS patients. ARL13B is a member of the ADP ribosylation factor family of regulatory GTPases, but is atypical in having a non-homologous, C-terminal domain of ∼20 kDa and at least one key residue difference in the consensus GTP-binding motifs. For these reasons, and to establish a solid biochemical basis on which to begin to model its actions in cells and animals, we developed preparations of purified, recombinant, murine Arl13b protein. We report results from assays for solution-based nucleotide binding, intrinsic and GTPase-activating protein-stimulated GTPase, and ARL3 guanine nucleotide exchange factor activities. Biochemical analyses of three human missense mutations found in JS and of two consensus GTPase motifs reinforce the atypical properties of this regulatory GTPase. We also discovered that murine Arl13b is a substrate for casein kinase 2, a contaminant in our preparation from human embryonic kidney cells. This activity, and the ability of casein kinase 2 to use GTP as a phosphate donor, may be a source of differences between our data and previously published results. These results provide a solid framework for further research into ARL13B on which to develop models for the actions of this clinically important cell regulator.
Collapse
Affiliation(s)
| | - Tamara Caspary
- Human Genetics, Emory University School of Medicine, Atlanta, Georgia 30322 and
| | | | | | - Andrew B West
- the Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | - Zhiyong Liu
- the Center for Neurodegeneration and Experimental Therapeutics, University of Alabama at Birmingham, Birmingham, Alabama 35294
| | | |
Collapse
|
26
|
van Esterik FAS, Ghazanfari S, Zandieh-Doulabi B, Semeins CM, Kleverlaan CJ, Klein-Nulend J. Mechanoresponsiveness of human adipose stem cells on nanocomposite and micro-hybrid composite. J Biomed Mater Res A 2017. [PMID: 28639404 DOI: 10.1002/jbm.a.36149] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Resin-based composites are used for bone repair applications and comprise resin matrix and different sized filler particles. Nanometer-sized filler particles improve composite's mechanical properties compared with micrometer-sized filler particles, but whether differences exist in the biological response to these composites is unknown. Natural bone comprises a nanocomposite structure, and nanoscale interactions with extracellular matrix components influence stem cell differentiation. Therefore we hypothesized that nanometer-sized filler particles in resin-based composites enhance osteogenic differentiation of stem cells showing a more bone cell-like response to mechanical loading compared with micrometer-sized filler particles. Pulsating fluid flow (PFF; 5 Hz, mean shear stress: 0.7 Pa; 1 h) rapidly, within 5 min, increased nitric oxide production in human adipose stem cells (hASCs) on nanocomposite, but not on micro-hybrid composite. PFF increased RUNX2 expression in hASCs on micro-hybrid composite, but not on nanocomposite after 2 h post-incubation. PFF did not affect mean cell orientation and shape index of hASCs on both composites. In conclusion, the PFF-increased nitric oxide production in hASCs on nanocomposite, and increased osteogenic differentiation of hASCs on micro-hybrid composite suggest different responses to mechanical loading of hASCs on composite with nanometer-sized and micrometer-sized filler particles. This might have important implications for bone tissue engineering. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 105A: 2986-2994, 2017.
Collapse
Affiliation(s)
- Fransisca A S van Esterik
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands.,Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Samaneh Ghazanfari
- Department of Orthopedic Surgery, VU University Medical Center, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Behrouz Zandieh-Doulabi
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Cornelis M Semeins
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Cornelis J Kleverlaan
- Department of Dental Materials Science, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| | - Jenneke Klein-Nulend
- Department of Oral Cell Biology, Academic Centre for Dentistry Amsterdam (ACTA), University of Amsterdam and Vrije Universiteit Amsterdam, MOVE Research Institute Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
27
|
Xie YF, Shi WG, Zhou J, Gao YH, Li SF, Fang QQ, Wang MG, Ma HP, Wang JF, Xian CJ, Chen KM. Pulsed electromagnetic fields stimulate osteogenic differentiation and maturation of osteoblasts by upregulating the expression of BMPRII localized at the base of primary cilium. Bone 2016; 93:22-32. [PMID: 27622883 DOI: 10.1016/j.bone.2016.09.008] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 09/06/2016] [Accepted: 09/09/2016] [Indexed: 12/21/2022]
Abstract
Pulsed electromagnetic fields (PEMFs) have been considered as a potential candidate for the prevention and treatment of osteoporosis, however, the mechanism of its action is still elusive. We have previously reported that 50Hz 0.6mT PEMFs stimulate osteoblastic differentiation and mineralization in a primary cilium- dependent manner, but did not know the reason. In the current study, we found that the PEMFs promoted osteogenic differentiation and maturation of rat calvarial osteoblasts (ROBs) by activating bone morphogenetic protein BMP-Smad1/5/8 signaling on the condition that primary cilia were normal. Further studies revealed that BMPRII, the primary binding receptor of BMP ligand, was readily and strongly upregulated by PEMF treatment and localized at the bases of primary cilia. Abrogation of primary cilia with small interfering RNA sequence targeting IFT88 abolished the PEMF-induced upregulation of BMPRII and its ciliary localization. Knockdown of BMPRII expression level with RNA interference had no effects on primary cilia but significantly decreased the promoting effect of PEMFs on osteoblastic differentiation and maturation. These results indicated that PEMFs stimulate osteogenic differentiation and maturation of osteoblast by primary cilium-mediated upregulation of BMPRII expression and subsequently activation of BMP-Smad1/5/8 signaling, and that BMPRII is the key component linking primary cilium and BMP-Smad1/5/8 pathway. This study has thus revealed the molecular mechanism for the osteogenic effect of PEMFs.
Collapse
Affiliation(s)
- Yan-Fang Xie
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Wen-Gui Shi
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Jian Zhou
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Yu-Hai Gao
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Shao-Feng Li
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Qing-Qing Fang
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Ming-Gang Wang
- School of life science and engineering, Lanzhou University of Technology, Lanzhou 730050, People's Republic of China.
| | - Hui-Ping Ma
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| | - Ju-Fang Wang
- Gansu Key laboratory of Space Radiobiology, Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, People's Republic of China.
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia.
| | - Ke-Ming Chen
- Institute of Orthopaedics, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, People's Republic of China.
| |
Collapse
|
28
|
Lyu R, Zhou J. The Multifaceted Roles of Primary Cilia in the Regulation of Stem Cell Properties and Functions. J Cell Physiol 2016; 232:935-938. [PMID: 27861880 DOI: 10.1002/jcp.25683] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 11/09/2016] [Indexed: 12/13/2022]
Abstract
Stem cells are a unique class of cells that are capable of self-renewal and differentiation into multiple lineages. An increasing number of studies have suggested that both embryonic and adult stem cells possess primary cilia, antenna-like structures protruding from cell surfaces that are critical for sensing and transducing environmental cues. The primary cilium appears to regulate stem cells in multiple aspects, such as lineage specification and stemness maintenance. Understanding the role of primary cilia in the control of stem cell behavior could lead to the identification of new targets for regenerative therapies. Here, we discuss recent studies investigating the diverse roles of primary cilia in the regulation of stem cell properties and functions. We also propose potential new avenues for exploration in this promising field. J. Cell. Physiol. 232: 935-938, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Rui Lyu
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China
| | - Jun Zhou
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, College of Life Sciences, Nankai University, Tianjin, China.,Institute of Biomedical Sciences, Key Laboratory of Animal Resistance Biology of Shandong Province, College of Life Sciences, Shandong Normal University, Jinan, Shandong, China
| |
Collapse
|
29
|
Cai S, Bodle JC, Mathieu PS, Amos A, Hamouda M, Bernacki S, McCarty G, Loboa EG. Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells. FASEB J 2016; 31:346-355. [PMID: 27825103 DOI: 10.1096/fj.201600560r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/28/2016] [Indexed: 12/28/2022]
Abstract
In this study, we report for the first time that the primary cilium acts as a crucial sensor for electrical field stimulation (EFS)-enhanced osteogenic response in osteoprogenitor cells. In addition, primary cilia seem to functionally modulate effects of EFS-induced cellular calcium oscillations. Primary cilia are organelles that have recently been implicated to play a crucial sensor role for many mechanical and chemical stimuli on stem cells. Here, we investigate the role of primary cilia in EFS-enhanced osteogenic response of human adipose-derived stem cells (hASCs) by knocking down 2 primary cilia structural proteins, polycystin-1 and intraflagellar protein-88. Our results indicate that structurally integrated primary cilia are required for detection of electrical field signals in hASCs. Furthermore, by measuring changes of cytoplasmic calcium concentration in hASCs during EFS, our findings also suggest that primary cilia may potentially function as a crucial calcium-signaling nexus in hASCs during EFS.-Cai, S., Bodle, J. C., Mathieu, P. S., Amos, A., Hamouda, M., Bernacki, S., McCarty, G., Loboa, E. G. Primary cilia are sensors of electrical field stimulation to induce osteogenesis of human adipose-derived stem cells.
Collapse
Affiliation(s)
- Shaobo Cai
- Department of Materials Science and Engineering, North Carolina State University, Raleigh, North Carolina, USA
| | - Josephine C Bodle
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Pattie S Mathieu
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Alison Amos
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Mehdi Hamouda
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Susan Bernacki
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Greg McCarty
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, North Carolina State University and University of North Carolina at Chapel Hill, Raleigh, North Carolina, USA; and .,College of Engineering, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
30
|
TGFβ1 - induced recruitment of human bone mesenchymal stem cells is mediated by the primary cilium in a SMAD3-dependent manner. Sci Rep 2016; 6:35542. [PMID: 27748449 PMCID: PMC5066273 DOI: 10.1038/srep35542] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/30/2016] [Indexed: 12/22/2022] Open
Abstract
The recruitment of mesenchymal stem cells (MSCs) is a crucial process in the development, maintenance and repair of tissues throughout the body. Transforming growth factor-β1 (TGFβ1) is a potent chemokine essential for the recruitment of MSCs in bone, coupling the remodelling cycle. The primary cilium is a sensory organelle with important roles in bone and has been associated with cell migration and more recently TGFβ signalling. Dysregulation of TGFβ signalling or cilia has been linked to a number of skeletal pathologies. Therefore, this study aimed to determine the role of the primary cilium in TGFβ1 signalling and associated migration in human MSCs. In this study we demonstrate that low levels of TGFβ1 induce the recruitment of MSCs, which relies on proper formation of the cilium. Furthermore, we demonstrate that receptors and downstream signalling components in canonical TGFβ signalling localize to the cilium and that TGFβ1 signalling is associated with activation of SMAD3 at the ciliary base. These findings demonstrate a novel role for the primary cilium in the regulation of TGFβ signalling and subsequent migration of MSCs, and highlight the cilium as a target to manipulate this key pathway and enhance MSC recruitment for the treatment of skeletal diseases.
Collapse
|
31
|
Yuan X, Yang S. Primary Cilia and Intraflagellar Transport Proteins in Bone and Cartilage. J Dent Res 2016; 95:1341-1349. [PMID: 27250654 DOI: 10.1177/0022034516652383] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Primary cilia, present on most mammalian cells, function as a sensor to sense the environment change and transduce signaling. Loss of primary cilia causes a group of human pleiotropic syndromes called Ciliopathies. Some of the ciliopathies display skeletal dysplasias, implying the important role of primary cilia in skeletal development and homeostasis. Emerging evidence has shown that loss or malfunction of primary cilia or ciliary proteins in bone and cartilage is associated with developmental and function defects. Intraflagellar transport (IFT) proteins are essential for cilia formation and/or function. In this review, we discuss the role of primary cilia and IFT proteins in the development of bone and cartilage, as well as the differentiation and mechanotransduction of mesenchymal stem cells, osteoblasts, osteocytes, and chondrocytes. We also include the role of primary cilia in tooth development and highlight the current advance of primary cilia and IFT proteins in the pathogenesis of cartilage diseases, including osteoarthritis, osteosarcoma, and chondrosarcoma.
Collapse
Affiliation(s)
- X Yuan
- 1 Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA
| | - S Yang
- 1 Department of Oral Biology, School of Dental Medicine, University at Buffalo, The State University of New York, Buffalo, NY, USA.,2 Developmental Genomics Group, New York State Center of Excellence in Bioinformatics and Life Sciences, University at Buffalo, The State University of New York, Buffalo, NY, USA
| |
Collapse
|
32
|
Bodle JC, Loboa EG. Concise Review: Primary Cilia: Control Centers for Stem Cell Lineage Specification and Potential Targets for Cell-Based Therapies. Stem Cells 2016; 34:1445-54. [PMID: 26866419 DOI: 10.1002/stem.2341] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Accepted: 08/07/2015] [Indexed: 01/08/2023]
Abstract
Directing stem cell lineage commitment prevails as the holy grail of translational stem cell research, particularly to those interested in the application of mesenchymal stem cells and adipose-derived stem cells in tissue engineering. However, elucidating the mechanisms underlying their phenotypic specification persists as an active area of research. In recent studies, the primary cilium structure has been intimately associated with defining cell phenotype, maintaining stemness, as well as functioning in a chemo, electro, and mechanosensory capacity in progenitor and committed cell types. Many hypothesize that the primary cilium may indeed be another important player in defining and controlling cell phenotype, concomitant with lineage-dictated cytoskeletal dynamics. Many of the studies on the primary cilium have emerged from disparate areas of biological research, and crosstalk amongst these areas of research is just beginning. To date, there has not been a thorough review of how primary cilia fit into the current paradigm of stem cell differentiation and this review aims to summarize the current cilia work in this context. The goal of this review is to highlight the cilium's function and integrate this knowledge into the working knowledge of stem cell biologists and tissue engineers developing regenerative medicine technologies. Stem Cells 2016;34:1445-1454.
Collapse
Affiliation(s)
- Josephine C Bodle
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering, University of North Carolina, Chapel Hill and North Carolina State University, Raleigh, North Carolina, USA.,College of Engineering University of Missouri, Columbia Columbia, Missouri, USA
| |
Collapse
|
33
|
Cell Signaling in Tenocytes: Response to Load and Ligands in Health and Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 920:79-95. [DOI: 10.1007/978-3-319-33943-6_7] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
34
|
Chen JC, Hoey DA, Chua M, Bellon R, Jacobs CR. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism. FASEB J 2015; 30:1504-11. [PMID: 26675708 DOI: 10.1096/fj.15-276402] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/08/2015] [Indexed: 01/21/2023]
Abstract
It has long been suspected, but never directly shown, that bone formed to accommodate an increase in mechanical loading is related to the creation of osteoblasts from skeletal stem cells. Indeed, biophysical stimuli potently regulate osteogenic lineage commitmentin vitro In this study, we transplanted bone marrow cells expressing green fluorescent protein, to enable lineage tracing, and subjected mice to a biophysical stimulus, to elicit a bone-forming response. We detected cells derived from transplanted progenitors embedded within the bone matrix near active bone-forming surfaces in response to loading, demonstrating for the first time, that mechanical signals enhance the homing and attachment of bone marrow cells to bone surfaces and the commitment to an osteogenic lineage of these cellsin vivo Furthermore, we used an inducible Cre/Lox recombination system to delete kinesin family member 3A (Kif3a), a gene that is essential for primary cilia formation, at will in transplanted cells and their progeny, regardless of which tissue may have incorporated them. Disruption of the mechanosensing organelle, the primary cilium in a progenitor population, significantly decreased the amount of bone formed in response to mechanical stimulation. The collective results of our study directly demonstrate that, in a novel experimental stem cell mechanobiology model, mechanical signals enhance osteogenic lineage commitmentin vivoand that the primary cilium contributes to this process.-Chen, J. C., Hoey, D. A., Chua, M., Bellon, R., Jacobs, C. R. Mechanical signals promote osteogenic fate through a primary cilia-mediated mechanism.
Collapse
Affiliation(s)
- Julia C Chen
- *Department of Biomedical Engineering and Department of Chemical Engineering, Columbia University, New York, New York, USA; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, and Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Aeronautical, and Biomedical Engineering, Centre for Applied Biomedical Engineering Research, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; and Department of Biotechnology, University of British Columbia, Vancouver, British Columbia, Canada
| | - David A Hoey
- *Department of Biomedical Engineering and Department of Chemical Engineering, Columbia University, New York, New York, USA; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, and Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Aeronautical, and Biomedical Engineering, Centre for Applied Biomedical Engineering Research, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; and Department of Biotechnology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mardonn Chua
- *Department of Biomedical Engineering and Department of Chemical Engineering, Columbia University, New York, New York, USA; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, and Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Aeronautical, and Biomedical Engineering, Centre for Applied Biomedical Engineering Research, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; and Department of Biotechnology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Raymond Bellon
- *Department of Biomedical Engineering and Department of Chemical Engineering, Columbia University, New York, New York, USA; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, and Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Aeronautical, and Biomedical Engineering, Centre for Applied Biomedical Engineering Research, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; and Department of Biotechnology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher R Jacobs
- *Department of Biomedical Engineering and Department of Chemical Engineering, Columbia University, New York, New York, USA; Trinity Centre for Bioengineering, Trinity Biomedical Sciences Institute, and Department of Mechanical and Manufacturing Engineering, School of Engineering, Trinity College Dublin, Dublin, Ireland; Department of Mechanical, Aeronautical, and Biomedical Engineering, Centre for Applied Biomedical Engineering Research, Materials and Surface Science Institute, University of Limerick, Limerick, Ireland; and Department of Biotechnology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
35
|
Dalbay MT, Thorpe SD, Connelly JT, Chapple JP, Knight MM. Adipogenic Differentiation of hMSCs is Mediated by Recruitment of IGF-1r Onto the Primary Cilium Associated With Cilia Elongation. Stem Cells 2015; 33:1952-61. [PMID: 25693948 PMCID: PMC4737234 DOI: 10.1002/stem.1975] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2014] [Revised: 12/26/2014] [Accepted: 01/20/2015] [Indexed: 12/19/2022]
Abstract
Primary cilia are single non-motile organelles that provide a highly regulated compartment into which specific proteins are trafficked as a critical part of various signaling pathways. The absence of primary cilia has been shown to prevent differentiation of human mesenchymal stem cells (hMSCs). Changes in primary cilia length are crucial for regulating signaling events; however it is not known how alterations in cilia structure relate to differentiation. This study tested the hypothesis that changes in primary cilia structure are required for stem cell differentiation. hMSCs expressed primary cilia that were labeled with acetylated alpha tubulin and visualized by confocal microscopy. Chemically induced differentiation resulted in lineage specific changes in cilia length and prevalence which were independent of cell cycle. In particular, adipogenic differentiation resulted in cilia elongation associated with the presence of dexamethasone, while insulin had an inhibitory effect on cilia length. Over a 7-day time course, adipogenic differentiation media resulted in cilia elongation within 2 days followed by increased nuclear PPARγ levels; an early marker of adipogenesis. Cilia elongation was associated with increased trafficking of insulin-like growth factor-1 receptor β (IGF-1Rβ) into the cilium. This was reversed on inhibition of elongation by IFT-88 siRNA transfection, which also decreased nuclear PPARγ. This is the first study to show that adipogenic differentiation requires primary cilia elongation associated with the recruitment of IGF-1Rβ onto the cilium. This study may lead to the development of cilia-targeted therapies for controlling adipogenic differentiation and associated conditions such as obesity.
Collapse
Affiliation(s)
- Melis T. Dalbay
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of LondonLondonUnited Kingdom
| | - Stephen D. Thorpe
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of LondonLondonUnited Kingdom
| | - John T. Connelly
- Institute of Bioengineering and Institute of Cellular and Molecular Sciences, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary, University of LondonLondon, UK
| | - J. Paul Chapple
- Centre for EndocrinologyWilliam Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary, University of LondonLondonUK
| | - Martin M. Knight
- Institute of Bioengineering and School of Engineering and Materials Science, Queen Mary University of LondonLondonUnited Kingdom
| |
Collapse
|
36
|
Yan JL, Zhou J, Ma HP, Ma XN, Gao YH, Shi WG, Fang QQ, Ren Q, Xian CJ, Chen KM. Pulsed electromagnetic fields promote osteoblast mineralization and maturation needing the existence of primary cilia. Mol Cell Endocrinol 2015; 404:132-40. [PMID: 25661534 DOI: 10.1016/j.mce.2015.01.031] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 01/08/2015] [Accepted: 01/20/2015] [Indexed: 11/30/2022]
Abstract
Although pulsed electromagnetic fields (PEMFs) have been approved as a therapy for osteoporosis, action mechanisms and optimal parameters are elusive. To determine the optimal intensity, exposure effects of 50 Hz PEMFs of 0.6-3.6 mT (0.6 interval at 90 min/day) were investigated on proliferation and osteogenic differentiation of cultured calvarial osteoblasts. All intensity groups stimulated proliferation significantly with the highest effect at 0.6 mT. The 0.6 mT group also obtained the optimal osteogenic effect as demonstrated by the highest ALP activity, ALP(+) CFU-f colony formation, nodule mineralization, and expression of COL-1 and BMP-2. To verify our hypothesis that the primary cilia are the cellular sensors for PEMFs, osteoblasts were also transfected with IFT88 siRNA or scrambled control, and osteogenesis-promoting effects of 0.6 mT PEMFs were found abrogated when primary cilia were inhibited by IFT88 siRNA. Thus primary cilia of osteoblasts play an indispensable role in mediating PEMF osteogenic effect in vitro.
Collapse
Affiliation(s)
- Juan-Li Yan
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Jian Zhou
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Hui-Ping Ma
- Department of Pharmacy, Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Xiao-Ni Ma
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Yu-Hai Gao
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Wen-Gui Shi
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Qing-Qing Fang
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Qian Ren
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China
| | - Cory J Xian
- Sansom Institute for Health Research, School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, SA 5001, Australia
| | - Ke-Ming Chen
- Institute of Orthopaedics,Lanzhou General Hospital, Lanzhou Command of CPLA, Lanzhou 730050, China.
| |
Collapse
|
37
|
Sánchez-Duffhues G, de Vinuesa AG, Lindeman JH, Mulder-Stapel A, DeRuiter MC, Van Munsteren C, Goumans MJ, Hierck BP, ten Dijke P. SLUG Is Expressed in Endothelial Cells Lacking Primary Cilia to Promote Cellular Calcification. Arterioscler Thromb Vasc Biol 2015; 35:616-27. [DOI: 10.1161/atvbaha.115.305268] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Objective—
Arterial calcification is considered a major cause of death and disabilities worldwide because the associated vascular remodeling leads to myocardial infarction, stroke, aneurysm, and pulmonary embolism. This process occurs via poorly understood mechanisms involving a variety of cell types, intracellular mediators, and extracellular cues within the vascular wall. An inverse correlation between endothelial primary cilia and vascular calcified areas has been described although the signaling mechanisms involved remain unknown. We aim to investigate the signaling pathways regulated by the primary cilium that modulate the contribution of endothelial cells to vascular calcification.
Approach and Results—
We found that human and murine endothelial cells lacking primary cilia are prone to undergo mineralization in response to bone morphogenetic proteins stimulation in vitro. Using the Tg737
orpk/orpk
cillium-defective mouse model, we show that nonciliated aortic endothelial cells acquire the ability to transdifferentiate into mineralizing osteogenic cells, in a bone morphogenetic protein–dependent manner. We identify β-CATENIN–induced SLUG as a key transcription factor controlling this process. Moreover, we show that the endothelial expression of SLUG is restricted to atheroprone areas in the aorta of LDLR
−/−
mice. Finally, we demonstrate that SLUG and phospho-homolog of the Drosophila protein, mothers against decapentaplegic (MAD) and the
Caenorhabditis elegans
protein SMA (from gene sma for small body size)-1/5/8 expression increases in endothelial cells constituting the vasa vasorum in the human aorta during the progression toward atherosclerosis.
Conclusions—
We demonstrated that the lack of primary cilia sensitizes the endothelium to undergo bone morphogenetic protein–dependent-osteogenic differentiation. These data emphasize the role of the endothelial cells on the vascular calcification and uncovers SLUG as a key target in atherosclerosis.
Collapse
Affiliation(s)
- Gonzalo Sánchez-Duffhues
- From the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands (G.S.-D., A.G.d.V., M.-J.G., P.t.D.), Department of Vascular Surgery (J.H.L., A.M.-S.) and Department of Anatomy and Embryology (M.C.D., C.V.M., B.P.H.), Leiden University Medical Center, Leiden, The Netherlands
| | - Amaya García de Vinuesa
- From the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands (G.S.-D., A.G.d.V., M.-J.G., P.t.D.), Department of Vascular Surgery (J.H.L., A.M.-S.) and Department of Anatomy and Embryology (M.C.D., C.V.M., B.P.H.), Leiden University Medical Center, Leiden, The Netherlands
| | - Jan H. Lindeman
- From the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands (G.S.-D., A.G.d.V., M.-J.G., P.t.D.), Department of Vascular Surgery (J.H.L., A.M.-S.) and Department of Anatomy and Embryology (M.C.D., C.V.M., B.P.H.), Leiden University Medical Center, Leiden, The Netherlands
| | - Adri Mulder-Stapel
- From the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands (G.S.-D., A.G.d.V., M.-J.G., P.t.D.), Department of Vascular Surgery (J.H.L., A.M.-S.) and Department of Anatomy and Embryology (M.C.D., C.V.M., B.P.H.), Leiden University Medical Center, Leiden, The Netherlands
| | - Marco C. DeRuiter
- From the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands (G.S.-D., A.G.d.V., M.-J.G., P.t.D.), Department of Vascular Surgery (J.H.L., A.M.-S.) and Department of Anatomy and Embryology (M.C.D., C.V.M., B.P.H.), Leiden University Medical Center, Leiden, The Netherlands
| | - Conny Van Munsteren
- From the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands (G.S.-D., A.G.d.V., M.-J.G., P.t.D.), Department of Vascular Surgery (J.H.L., A.M.-S.) and Department of Anatomy and Embryology (M.C.D., C.V.M., B.P.H.), Leiden University Medical Center, Leiden, The Netherlands
| | - Marie-José Goumans
- From the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands (G.S.-D., A.G.d.V., M.-J.G., P.t.D.), Department of Vascular Surgery (J.H.L., A.M.-S.) and Department of Anatomy and Embryology (M.C.D., C.V.M., B.P.H.), Leiden University Medical Center, Leiden, The Netherlands
| | - Beerend P. Hierck
- From the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands (G.S.-D., A.G.d.V., M.-J.G., P.t.D.), Department of Vascular Surgery (J.H.L., A.M.-S.) and Department of Anatomy and Embryology (M.C.D., C.V.M., B.P.H.), Leiden University Medical Center, Leiden, The Netherlands
| | - Peter ten Dijke
- From the Department of Molecular Cell Biology, Cancer Genomics Centre Netherlands (G.S.-D., A.G.d.V., M.-J.G., P.t.D.), Department of Vascular Surgery (J.H.L., A.M.-S.) and Department of Anatomy and Embryology (M.C.D., C.V.M., B.P.H.), Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
38
|
Coughlin TR, Voisin M, Schaffler MB, Niebur GL, McNamara LM. Primary cilia exist in a small fraction of cells in trabecular bone and marrow. Calcif Tissue Int 2015; 96:65-72. [PMID: 25398598 PMCID: PMC5773105 DOI: 10.1007/s00223-014-9928-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Accepted: 10/29/2014] [Indexed: 10/24/2022]
Abstract
Primary cilia are potent mechanical and chemical sensory organelles in cells of bone lineage in tissue culture. Cell culture experiments suggest that primary cilia sense fluid flow and this stimulus is translated through biochemical signaling into an osteogenic response in bone cells. Moreover, in vivo, primary cilia knockout in bone cells attenuates bone formation in response to loading. However, understanding the role of the primary cilium in bone mechanotransduction requires knowledge of its incidence and location in vivo. We used immunohistochemistry to quantify the number of cells with primary cilia within the trabecular bone tissue and the enclosed marrow of ovine cervical vertebrae. Primary cilia were identified in osteocytes, bone lining cells, and in cells within the marrow, but were present in only a small fraction of cells. Approximately 4% of osteocytes and 4.6% of bone lining cells expressed primary cilia. Within the marrow space, only approximately 1% of cells presented primary cilia. The low incidence of primary cilia may indicate that cilia either function as mechanosensors in a selected number of cells, function in concert with other mechanosensing mechanisms, or that the role of primary cilia in mechanosensing is secondary to its role in chemosensing or cellular attachment.
Collapse
Affiliation(s)
- Thomas R Coughlin
- Tissue Mechanics Laboratory, Bioengineering Graduate Program, University of Notre Dame, Notre Dame, IN, USA
| | | | | | | | | |
Collapse
|
39
|
Mathieu PS, Bodle JC, Loboa EG. Primary cilium mechanotransduction of tensile strain in 3D culture: Finite element analyses of strain amplification caused by tensile strain applied to a primary cilium embedded in a collagen matrix. J Biomech 2014; 47:2211-7. [PMID: 24831236 DOI: 10.1016/j.jbiomech.2014.04.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2013] [Revised: 03/28/2014] [Accepted: 04/05/2014] [Indexed: 01/22/2023]
Abstract
Human adipose-derived stem cells (hASC) exhibit multilineage differentiation potential with lineage specification that is dictated by both the chemical and mechanical stimuli to which they are exposed. We have previously shown that 10% cyclic tensile strain increases hASC osteogenesis and cell-mediated calcium accretion. We have also recently shown that primary cilia are present on hASC and that chemically-induced lineage specification of hASC concurrently results in length and conformation changes of the primary cilia. Further, we have observed cilia length changes in hASC cultured within a collagen I gel in response to 10% cyclic tensile strain. We therefore hypothesize that primary cilia may play a key mechanotransduction role for hASC exposed to tensile strain. The goal of this study was to use finite element analysis (FEA) to determine strains occurring within the ciliary membrane in response to 10% tensile strain applied parallel, or perpendicular, to cilia orientation. To elucidate the mechanical environment experienced by the cilium, several lengths were modeled and evaluated based on cilia lengths measured on hASC grown under varied culture conditions. Principal tensile strains in both hASC and ciliary membranes were calculated using FEA, and the magnitude and location of maximum principal tensile strain determined. We found that maximum principal tensile strain was concentrated at the base of the cilium. In the linear elastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane from 150% to 200%, while applying strain parallel to the cilium resulted in much higher strains, approximately 400%. In the hyperelastic model, applying strain perpendicular to the cilium resulted in maximum strains within the ciliary membrane around 30%, while applying strain parallel to the cilium resulted in much higher strains ranging from 50% to 70%. Interestingly, FEA results indicated that primary cilium length was not directly related to ciliary membrane strain. Rather, it appears that cilium orientation may be more important than cilium length in determining sensitivity of hASC to tensile strain. This is the first study to model the effects of tensile strain on the primary cilium and provides newfound insight into the potential role of the primary cilium as a mechanosensor, particularly in tensile strain and potentially a multitude of other mechanical stimuli beyond fluid shear.
Collapse
Affiliation(s)
- Pattie S Mathieu
- Joint Department of Biomedical Engineering at North Carolina State University and University of North Carolina-Chapel Hill, Engineering Building III (EB3) 4208B, Box 7115, NCSU Campus, Raleigh, NC 27695, USA
| | - Josephine C Bodle
- Joint Department of Biomedical Engineering at North Carolina State University and University of North Carolina-Chapel Hill, Engineering Building III (EB3) 4208B, Box 7115, NCSU Campus, Raleigh, NC 27695, USA
| | - Elizabeth G Loboa
- Joint Department of Biomedical Engineering at North Carolina State University and University of North Carolina-Chapel Hill, Engineering Building III (EB3) 4208B, Box 7115, NCSU Campus, Raleigh, NC 27695, USA; Department of Materials Science & Engineering, North Carolina State University, USA.
| |
Collapse
|
40
|
Nathwani BB, Miller CH, Yang TLT, Solimano JL, Liao JC. Morphological Differences of Primary Cilia Between Human Induced Pluripotent Stem Cells and Their Parental Somatic Cells. Stem Cells Dev 2014; 23:115-23. [DOI: 10.1089/scd.2013.0162] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Bhavik B. Nathwani
- Department of Mechanical Engineering, Columbia University, New York, New York
| | - Christine H. Miller
- Department of Biomedical Engineering, Columbia University, New York, New York
| | - Tung-Lin Tony Yang
- Department of Mechanical Engineering, Columbia University, New York, New York
| | | | - Jung-Chi Liao
- Department of Mechanical Engineering, Columbia University, New York, New York
- Department of Biomedical Engineering, Columbia University, New York, New York
| |
Collapse
|