1
|
Ravera F, Efeoglu E, Byrne HJ. A comparative analysis of stem cell differentiation on 2D and 3D substrates using Raman microspectroscopy. Analyst 2024; 149:4041-4053. [PMID: 38973486 DOI: 10.1039/d4an00315b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/09/2024]
Abstract
Chondrogenesis is a complex cellular process that involves the transformation of mesenchymal stem cells (MSCs) into chondrocytes, the specialised cells that form cartilage. In recent years, three-dimensional (3D) culture systems have emerged as a promising approach to studying cell behaviour and development in a more physiologically relevant environment compared to traditional two-dimensional (2D) cell culture. The use of these systems provided insights into the molecular mechanisms that regulate chondrogenesis and has the potential to revolutionise the development of new therapies for cartilage repair and regeneration. This study demonstrates the successful application of Raman microspectroscopy (RMS) as a label-free, non-destructive, and sensitive method to monitor the chondrogenic differentiation of bone marrow-derived rat mesenchymal stem cells (rMSCs) in a collagen type I hydrogel, and explores the potential benefits of 3D hydrogels compared to conventional 2D cell culture environments. rMSCs were cultured on 3D substrates for 3 weeks and their differentiation was monitored by measuring the spectral signatures of their subcellular compartments. Additionally, the evolution of high-density micromass cultures was investigated to provide a comprehensive understanding of the process and complex interactions between cells and their surrounding extracellular matrix. For comparison, rMSCs were induced into chondrogenesis in identical medium conditions for 21 days in monolayer culture. Raman spectra showed that rMSCs cultured in a collagen type I hydrogel are able to undergo a distinct chondrogenic differentiation pathway at a significantly higher rate than the 2D culture cells. 3D cultures expressed stronger and more homogeneous chondrogenesis-associated peaks such as collagens, glycosaminoglycans (GAGs), and aggrecan while manifesting changes in proteins and lipidic content. These results suggest that 3D type I collagen hydrogel substrates are promising for in vitro chondrogenesis studies, and that RMS is a valuable tool for monitoring chondrogenesis in 3D environments.
Collapse
Affiliation(s)
- F Ravera
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| | - E Efeoglu
- NICB (National Institute for Cellular Biotechnology) at Dublin City University, Dublin 9, Ireland
| | - H J Byrne
- FOCAS Research Institute, Technological University Dublin, City Campus, Dublin 8, Ireland.
| |
Collapse
|
2
|
Wong OWH, Lam AMW, Or BPN, Mo FYM, Shea CKS, Lai KYC, Ma SL, Hung SF, Chan S, Kwong TNY, Wong S, Leung PWL. Disentangling the relationship of gut microbiota, functional gastrointestinal disorders and autism: a case-control study on prepubertal Chinese boys. Sci Rep 2022; 12:10659. [PMID: 35739175 PMCID: PMC9225987 DOI: 10.1038/s41598-022-14785-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/10/2022] [Indexed: 12/19/2022] Open
Abstract
Emerging evidence of an altered gut microbiome in autism spectrum disorder (ASD) suggests a pathomechanism through the gut-brain axis despite the inconsistent microbiome profile reported across studies. One of the knowledge gaps in the existing ASD microbiota studies is the lack of systematic exploration of the role of comorbid functional gastrointestinal disorder (FGID) in the association of ASD and altered gut microbiome. Consequently, 92 ASD and 112 age-matched typically developing (TD) boys were profiled on general psychopathology, FGID status by Rome IV classification, and gut microbiota using 16S ribosomal RNA amplicon sequencing at the V4 hypervariable region. Compared to TD, a significant decrease in the within-sample abundance of taxa was observed in ASD, regardless of FGID status. The microbiota of ASD FGID+ and ASD FGID- clustered apart from the TD groups. The microbiota of ASD FGID+ also showed qualitative differences from that of ASD FGID- and had the highest-level Firmicutes: Bacteroidetes ratio, which was paralleled by elevated levels of anxiety and overall psychopathology. The altered gastrointestinal microbiota composition in ASD appeared to be independent of comorbid FGID. Further studies should address how FGID may mediate neuropsychiatric symptoms in ASD through inflammation along the microbiota-gut-brain axis.
Collapse
Affiliation(s)
- Oscar W H Wong
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China.
| | - Angela M W Lam
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Brian P N Or
- Department of Psychiatry, Tai Po Hospital, Hong Kong, China
| | - Flora Y M Mo
- Department of Psychiatry, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China
| | - Caroline K S Shea
- Department of Psychiatry, Alice Ho Miu Ling Nethersole Hospital, Hong Kong, China
| | - Kelly Y C Lai
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Suk Ling Ma
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Se Fong Hung
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Sandra Chan
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong, China
| | - Thomas N Y Kwong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Sunny Wong
- Department of Medicine and Therapeutics, The Chinese University of Hong Kong, Hong Kong, China
| | - Patrick W L Leung
- Department of Psychology, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
3
|
Trabecular Bone Parameters, TIMP-2, MMP-8, MMP-13, VEGF Expression and Immunolocalization in Bone and Cartilage in Newborn Offspring Prenatally Exposed to Fumonisins. Int J Mol Sci 2021; 22:ijms222212528. [PMID: 34830409 PMCID: PMC8623786 DOI: 10.3390/ijms222212528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 01/13/2023] Open
Abstract
Fumonisins are protein serine/threonine phosphatase inhibitors and potent inhibitors of sphingosine N-acyltransferase (ceramide synthase) disrupting de novo sphingolipid biosynthesis. The experiment was conducted to evaluate the effects of fumonisins (FB) exposure from the 7th day of pregnancy to parturition on offspring bone development. The rats were randomly allocated to either a control group (n = 6), not treated with FBs, or to one of the two groups intoxicated with FBs (either at 60 mg FB/kg b.w. or at 90 mg FB/kg b.w. Numerous negative, offspring sex-dependent effects of maternal FB exposure were observed with regards to the histomorphometry of trabecular bone. These effects were due to FB-inducted alterations in bone metabolism, as indicated by changes in the expression of selected proteins involved in bone development: tissue inhibitor of metalloproteinases 2 (TIMP-2), matrix metalloproteinase 8 (MMP-8), matrix metalloproteinase 13 (MMP-13), and vascular endothelial growth factor (VEGF). The immunolocalization of MMPs and TIMP-2 was performed in trabecular and compact bone, as well as articular and growth plate cartilages. Based on the results, it can be concluded that the exposure of pregnant dams to FB negatively affected the expression of certain proteins responsible for bone matrix degradation in newborns prenatally exposed to FB in a dose- and sex-dependent manner.
Collapse
|
4
|
Inhibition of sphingosine 1-phosphate protects mice against chondrocyte catabolism and osteoarthritis. Osteoarthritis Cartilage 2021; 29:1335-1345. [PMID: 34144150 DOI: 10.1016/j.joca.2021.06.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 05/18/2021] [Accepted: 06/07/2021] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Cartilage loss observed in osteoarthritis (OA) is prevented when osteoclasts in the subchondral bone are inhibited in mice. Here, we investigated the role of the osteoclast secretome and of the lipid mediator sphingosine 1-phosphate (S1P) in chondrocyte metabolism and OA. MATERIALS AND METHODS We used SphK1LysMCre and wild type mice to assess the effect of murine osteoclast secretome in chondrocyte metabolism. Gene and protein expressions of matrix metalloproteinase (Mmp) were quantified in chondrocytes and explants by RT-qPCR and Western blots. SphK1LysMCre mice or wild type mice treated with S1P2 receptor inhibitor JTE013 or anti-S1P neutralizing antibody sphingomab are analyzed by OA score and immunohistochemistry. RESULTS The osteoclast secretome increased the expression of Mmp3 and Mmp13 in murine chondrocytes and cartilage explants and activated the JNK signaling pathway, which led to matrix degradation. JTE013 reversed the osteoclast-mediated chondrocyte catabolism and protected mice against OA, suggesting that osteoclastic S1P contributes to cartilage damage in OA via S1P/S1P2 signaling. The activity of sphingosine kinase 1 (SphK1) increased with osteoclast differentiation, and its expression was enhanced in subchondral bone of mice with OA. The expression of Mmp3 and Mmp13 in chondrocytes was low upon stimulation with the secretome of Sphk1-lacking osteoclasts. Cartilage damage was significantly reduced in SphK1LysMCre mice, but not the synovial inflammation. Finally, intra-articular administration of sphingomab inhibited the cartilage damage and synovial inflammation. CONCLUSIONS Lack of S1P in myeloid cells and local S1P neutralization alleviates from osteoarthritis in mice. These data identify S1P as a therapeutic target in OA.
Collapse
|
5
|
Liu J, Guan L, Wang E, Schuchman EH, He X, Zeng M. SiO 2 stimulates macrophage stress to induce the transformation of lung fibroblasts into myofibroblasts and its relationship with the sphingomyelin metabolic pathway. J Appl Toxicol 2021; 41:1584-1597. [PMID: 33559204 DOI: 10.1002/jat.4148] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 01/22/2021] [Accepted: 01/28/2021] [Indexed: 11/11/2022]
Abstract
Silicosis is a serious occupational disease with the highest incidence in China. However, its pathogenesis has not been fully elucidated. Studies have shown that the sphingomyelin signaling pathway may play an important role in different fibrotic diseases but its role in silicosis-mediated fibrosis is still unclear. In this study, the supernatant of human peripheral blood mononuclear cell line (THP-1)-derived macrophages exposed to silica (SiO2 ) was used to stimulate the transformation of human embryonic lung fibroblast cell line (HFL-1) into myofibroblasts, and the intervention effect of recombinant human acid ceramidase (rAC) was observed. The results showed that SiO2 stimulated the production of reactive oxygen species and malondialdehyde in the supernatant of THP-1-derived macrophages and increased the secretion of TGF-β1, TNF-α, and IL-8. In addition, we found that the expression levels of α-SMA, FN, Col I, and Col III in HFL-1 cells increased. Meanwhile, the activities of ASMase and ACase and the expression levels of Cer, Sph, and S1P were increased. Intervention by rAC can suppress these changes to different degrees. In conclusion, the present study shows that SiO2 dust poisoning may stimulate HFL-1 cell differentiation into myofibroblasts by inducing oxidative stress in THP-1-derived macrophages, thereby promoting the secretion of a variety of inflammatory factors and activating the sphingolipid signaling pathway in HFL-1 cells. Exogenous rAC can effectively interfere with the stimulation of HFL-1 cells by silica in vitro.
Collapse
Affiliation(s)
- Jing Liu
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lan Guan
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| | - Erjin Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Edward H Schuchman
- Department of Human Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Xingxuan He
- Department of Human Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ming Zeng
- Department of Health Toxicology, Xiangya School of Public Health, Central South University, Changsha, China
| |
Collapse
|
6
|
Ravera F, Efeoglu E, Byrne HJ. Monitoring stem cell differentiation using Raman microspectroscopy: chondrogenic differentiation, towards cartilage formation. Analyst 2021; 146:322-337. [PMID: 33155580 DOI: 10.1039/d0an01983f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Mesenchymal Stem Cells (MSCs) have the ability to differentiate into chondrocytes, the only cellular components of cartilage and are therefore ideal candidates for cartilage and tissue repair technologies. Chondrocytes are surrounded by cartilage-like extracellular matrix (ECM), a complex network rich in glycosaminoglycans, proteoglycans, and collagen, which, together with a multitude of intracellular signalling molecules, trigger the chondrogenesis and allow the chondroprogenitor to acquire the spherical morphology of the chondrocytes. However, although the mechanisms of the differentiation of MSCs have been extensively explored, it has been difficult to provide a holistic picture of the process, in situ. Raman Micro Spectroscopy (RMS) has been demonstrated to be a powerful analytical tool, which provides detailed label free biochemical fingerprint information in a non-invasive way, for analysis of cells, tissues and body fluids. In this work, RMS is explored to monitor the process of Mesenchymal Stem Cell (MSC) differentiation into chondrocytes in vitro, providing a holistic molecular picture of cellular events governing the differentiation. Spectral signatures of the subcellular compartments, nucleolus, nucleus and cytoplasm were initially probed and characteristic molecular changes between differentiated and undifferentiated were identified. Moreover, high density cell micromasses were cultured over a period of three weeks, and a systematic monitoring of cellular molecular components and the progress of the ECM formation, associated with the chondrogenic differentiation, was performed. This study shows the potential applicability of RMS as a powerful tool to monitor and better understand the differentiation pathways and process.
Collapse
Affiliation(s)
- Francesca Ravera
- School of Physics and Clinical and Optometric Sciences, TU Dublin, City Campus, Dublin 8, Ireland.
| | | | | |
Collapse
|
7
|
Bakker B, Eijkel GB, Heeren RMA, Karperien M, Post JN, Cillero-Pastor B. Oxygen-Dependent Lipid Profiles of Three-Dimensional Cultured Human Chondrocytes Revealed by MALDI-MSI. Anal Chem 2017; 89:9438-9444. [PMID: 28727417 PMCID: PMC5588094 DOI: 10.1021/acs.analchem.7b02265] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
![]()
Articular
cartilage is exposed to a gradient of oxygen levels ranging
from 5% at the surface to 1% in the deepest layers. While most cartilage
research is performed in supraphysiological oxygen levels (19–21%),
culturing chondrocytes under hypoxic oxygen levels (≤8%) promotes
the chondrogenic phenotype. Exposure of cells to various oxygen levels
alters their lipid metabolism, but detailed studies examining how
hypoxia affects lipid metabolism in chondrocytes are lacking. To better
understand the chondrocyte’s behavior in response to oxygen,
we cultured 3D pellets of human primary chondrocytes in normoxia (20%
oxygen) and hypoxia (2.5% oxygen) and employed matrix-assisted laser
desorption ionization mass spectrometry imaging (MALDI-MSI) in order
to characterize the lipid profiles and their spatial distribution.
In this work we show that chondrocytes cultured in hypoxia and normoxia
can be differentiated by their lipid profiles. Among other species,
phosphatidylglycerol species were increased in normoxic pellets, whereas
phosphatidylinositol species were the most prominent lipids in hypoxic
pellets. Moreover, spatial mapping revealed that phospahtidylglyycerol
species were less prominent in the center of pellets where the oxygen
level is lower. Additional analysis revealed a higher abundance of
the mitochondrial-specific lipids, cardiolipins, in normoxic conditions.
In conclusion MALDI-MSI described specific lipid profiles that could
be used as sensors of oxygen level changes and may especially be relevant
for retaining the chondrogenic phenotype, which has important implications
for the treatment of bone and cartilage diseases.
Collapse
Affiliation(s)
- Brenda Bakker
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , 7522 NB Enschede, The Netherlands
| | - Gert B Eijkel
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , 6229 ER Maastricht, The Netherlands
| | - Ron M A Heeren
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , 6229 ER Maastricht, The Netherlands
| | - Marcel Karperien
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , 7522 NB Enschede, The Netherlands
| | - Janine N Post
- Developmental BioEngineering, MIRA Institute for Biomedical Technology and Technical Medicine, Faculty of Science and Technology, University of Twente , 7522 NB Enschede, The Netherlands
| | - Berta Cillero-Pastor
- The Maastricht Multimodal Molecular Imaging Institute (M4I), Division of Imaging Mass Spectrometry, Maastricht University , 6229 ER Maastricht, The Netherlands
| |
Collapse
|
8
|
He X, Dworski S, Zhu C, DeAngelis V, Solyom A, Medin JA, Simonaro CM, Schuchman EH. Enzyme replacement therapy for Farber disease: Proof-of-concept studies in cells and mice. BBA CLINICAL 2017; 7:85-96. [PMID: 28275553 PMCID: PMC5338723 DOI: 10.1016/j.bbacli.2017.02.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2017] [Accepted: 02/06/2017] [Indexed: 11/22/2022]
Abstract
A series of studies were carried out in Farber disease (OMIM #228000) cells and mice to evaluate the feasibility of enzyme replacement therapy (ERT) for this disorder. Media from Chinese hamster ovary (CHO) cells overexpressing human recombinant acid ceramidase (rhAC) was used to treat fibroblasts from a Farber disease patient, leading to significantly reduced ceramide. We also found that chondrocytes from Farber disease mice had a markedly abnormal chondrogenic phenotype, and this was corrected by rhAC as well. Acute dosing of rhAC in Farber mice confirmed the enzyme's bioactivity in vivo, and showed that it could be safely administered at doses up to 50 mg/kg. These studies also revealed little or no re-accumulation of ceramide in tissues for at least 7 days after enzyme administration. Once weekly administration of rhAC moderately improved survival of the mice, which could be enhanced by starting enzyme administration at an earlier age (3 days vs. 3 weeks). Repeat administration of the enzyme also led to normalization of spleen size, significantly reduced plasma levels of monocyte chemoattractant protein 1 (MCP-1), reduced infiltration of macrophages into liver and spleen, and significantly reduced ceramide and sphingosine in tissues. Overall, we conclude that ERT should be further developed for this debilitating and life-threatening disorder.
Collapse
Affiliation(s)
- Xingxuan He
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Shaalee Dworski
- Institute of Medical Science, University of Toronto, Toronto, Canada
| | - Changzhi Zhu
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Victor DeAngelis
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | | | - Jeffrey A Medin
- Institute of Medical Science, University of Toronto, Toronto, Canada; Departments of Pediatrics and Biochemistry, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Calogera M Simonaro
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Edward H Schuchman
- Department of Genetics & Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, USA
| |
Collapse
|
9
|
Schuchman EH. Acid ceramidase and the treatment of ceramide diseases: The expanding role of enzyme replacement therapy. Biochim Biophys Acta Mol Basis Dis 2016; 1862:1459-71. [PMID: 27155573 DOI: 10.1016/j.bbadis.2016.05.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/18/2016] [Accepted: 05/03/2016] [Indexed: 01/20/2023]
Abstract
Ceramides are a diverse group of sphingolipids that play important roles in many biological processes. Acid ceramidase (AC) is one key enzyme that regulates ceramide metabolism. Early research on AC focused on the fact that it is the enzyme deficient in the rare genetic disorder, Farber Lipogranulomatosis. Recent research has revealed that deficiency of the same enzyme is responsible for a rare form of spinal muscular atrophy associated with myoclonic epilepsy (SMA-PME). Due to their diverse role in biology, accumulation of ceramides also has been implicated in the pathobiology of many other common diseases, including infectious lung diseases, diabetes, cancers and others. This has revealed the potential of AC as a therapy for many of these diseases. This review will focus on the biology of AC and the potential role of this enzyme in the treatment of human disease.
Collapse
Affiliation(s)
- Edward H Schuchman
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
10
|
Frohbergh ME, Guevara JM, Grelsamer RP, Barbe MF, He X, Simonaro CM, Schuchman EH. Acid ceramidase treatment enhances the outcome of autologous chondrocyte implantation in a rat osteochondral defect model. Osteoarthritis Cartilage 2016; 24:752-62. [PMID: 26524412 PMCID: PMC4799741 DOI: 10.1016/j.joca.2015.10.016] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 10/14/2015] [Accepted: 10/22/2015] [Indexed: 02/02/2023]
Abstract
OBJECTIVE The overall aim of this study was to evaluate how supplementation of chondrocyte media with recombinant acid ceramidase (rhAC) influenced cartilage repair in a rat osteochondral defect model. METHODS Primary chondrocytes were grown as monolayers in polystyrene culture dishes with and without rhAC (added once at the time of cell plating) for 7 days, and then seeded onto Bio-Gide® collagen scaffolds and grown for an additional 3 days. The scaffolds were then introduced into osteochondral defects created in Sprague-Dawley rat trochlea by a microdrilling procedure. Analysis was performed 6 weeks post-surgery macroscopically, by micro-CT, histologically, and by immunohistochemistry. RESULTS Treatment with rhAC led to increased cell numbers and glycosaminoglycan (GAG) production (∼2 and 3-fold, respectively) following 7 days of expansion in vitro. Gene expression of collagen 2, aggrecan and Sox-9 also was significantly elevated. After seeding onto Bio-Gide®, more rhAC treated cells were evident within 4 h. At 6 weeks post-surgery, defects containing rhAC-treated cells exhibited more soft tissue formation at the articular surface, as evidenced by microCT, as well as histological evidence of enhanced cartilage repair. Notably, collagen 2 immunostaining revealed greater surface expression in animals receiving rhAC treated cells as well. Collagen 10 staining was not enhanced. CONCLUSION The results further demonstrate the positive effects of rhAC treatment on chondrocyte growth and phenotype in vitro, and reveal for the first time the in vivo effects of the treated cells on cartilage repair.
Collapse
Affiliation(s)
- Michael E. Frohbergh
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Johana M. Guevara
- Institute for the Study of Inborn Errors of Metabolism, Pontificia Universidad Javeriana, Bogota, Colombia
| | - Ronald P. Grelsamer
- Department of Orthopedic Surgery, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Mary F. Barbe
- Department of Anatomy and Cell Biology, Temple University, Philadelphia, PA
| | - Xingxuan He
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Calogera M. Simonaro
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Edward H. Schuchman
- Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, New York, NY,Corresponding Author: Edward H. Schuchman, PhD, Department of Genetics and Genomic Science, Icahn School of Medicine at Mount Sinai, 1425 Madison Avenue, Rm. 14-20A, New York, NY 10029, Tel: 212-659-6711; Fax: 212-849-2447,
| |
Collapse
|
11
|
Zhao M, Pan W, Shi RZ, Bai YP, You BY, Zhang K, Fu QM, Schuchman EH, He XX, Zhang GG. Acid Sphingomyelinase Mediates Oxidized-LDL Induced Apoptosis in Macrophage via Endoplasmic Reticulum Stress. J Atheroscler Thromb 2016; 23:1111-25. [PMID: 26923251 PMCID: PMC5090817 DOI: 10.5551/jat.32383] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: Macrophage apoptosis is a vital event in advanced atherosclerosis, and oxidized low-density lipoprotein (ox-LDL) is a major contributor to this process. Acid sphingomyelinase (ASM) and ceramide are also involved in the induction of apoptosis, particularly in macrophages. Our current study focuses on ASM and investigates its role in ox-LDL-induced macrophage apoptosis. Methods: Human THP-1 and mouse peritoneal macrophages were cultured in vitro and treated with ox-LDL. ASM activity and ceramide levels were quantified using ultra performance liquid chromatography. Protein and mRNA levels were analyzed using Western blot analysis and quantitative realtime PCR, respectively. Cell apoptosis was determined using Hoechst staining and flow cytometry. Results: Ox-LDL-induced macrophage apoptosis was triggered by profound endoplasmic reticulum (ER) stress, leading to an upregulation of ASM activity and ceramide levels at an early stage. ASM was inhibited by siRNA or desipramine (DES), and/or ceramide was degraded by recombinant acid ceramidase (AC). These events attenuated the effect of ox-LDL on ER stress. In contrast, recombinant ASM upregulated ceramide and ER stress. ASM siRNA, DES, recombinant AC, and ER stress inhibitor 4-phenylbutyric acid were blocked by elevated levels of C/EBP homologous protein (CHOP); ox-LDL induced elevated levels of CHOP. These events attenuated macrophage apoptosis. Conclusion: These results indicate that ASM/ceramide signaling pathway is involved in ox-LDL-induced macrophage apoptosis via ER stress pathway.
Collapse
Affiliation(s)
- Min Zhao
- Departments of Nuclear Medicine, Xiangya Hospital, Central South University
| | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Georgi N, Cillero-Pastor B, Eijkel GB, Periyasamy PC, Kiss A, van Blitterswijk C, Post JN, Heeren RMA, Karperien M. Differentiation of Mesenchymal Stem Cells under Hypoxia and Normoxia: Lipid Profiles Revealed by Time-of-Flight Secondary Ion Mass Spectrometry and Multivariate Analysis. Anal Chem 2015; 87:3981-8. [DOI: 10.1021/acs.analchem.5b00114] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nicole Georgi
- Developmental
BioEngineering, MIRA Institute for Biomedical Technology
and Technical Medicine, Faculty of Science and Technology, University of Twente, 7522
NB Enschede, The Netherlands
| | - Berta Cillero-Pastor
- Biomolecular
Imaging
Mass Spectrometry, FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands
- The Maastricht Multimodal
Molecular Imaging Institute, M4I, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Gert B. Eijkel
- Biomolecular
Imaging
Mass Spectrometry, FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Parthiban C. Periyasamy
- Developmental
BioEngineering, MIRA Institute for Biomedical Technology
and Technical Medicine, Faculty of Science and Technology, University of Twente, 7522
NB Enschede, The Netherlands
| | - Andras Kiss
- Biomolecular
Imaging
Mass Spectrometry, FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands
| | - Clemens van Blitterswijk
- Department
of Tissue Regeneration, MIRA Institute for Biomedical
Technology and Technical Medicine, Faculty of Science and Technology, University of Twente, 7522
NB Enschede, The Netherlands
| | - Janine N. Post
- Developmental
BioEngineering, MIRA Institute for Biomedical Technology
and Technical Medicine, Faculty of Science and Technology, University of Twente, 7522
NB Enschede, The Netherlands
| | - Ron M. A. Heeren
- Biomolecular
Imaging
Mass Spectrometry, FOM Institute AMOLF, 1098 XG Amsterdam, The Netherlands
- The Maastricht Multimodal
Molecular Imaging Institute, M4I, Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Marcel Karperien
- Developmental
BioEngineering, MIRA Institute for Biomedical Technology
and Technical Medicine, Faculty of Science and Technology, University of Twente, 7522
NB Enschede, The Netherlands
| |
Collapse
|
13
|
Rocha B, Cillero-Pastor B, Eijkel G, Bruinen AL, Ruiz-Romero C, Heeren RMA, Blanco FJ. Characterization of lipidic markers of chondrogenic differentiation using mass spectrometry imaging. Proteomics 2015; 15:702-13. [PMID: 25346268 DOI: 10.1002/pmic.201400260] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2014] [Revised: 09/05/2014] [Accepted: 10/20/2014] [Indexed: 12/27/2022]
Abstract
Mesenchymal stem cells (MSC) are an interesting alternative for cell-based therapy of cartilage defects attributable to their capacity to differentiate toward chondrocytes in the process termed chondrogenesis. The metabolism of lipids has recently been associated with the modulation of chondrogenesis and also with the development of pathologies related to cartilage degeneration. Information about the distribution and modulation of lipids during chondrogenesis could provide a panel of putative chondrogenic markers. Thus, the discovery of new lipid chondrogenic markers could be highly valuable for improving MSC-based cartilage therapies. In this work, MS imaging was used to characterize the spatial distribution of lipids in human bone marrow MSCs during the first steps of chondrogenic differentiation. The analysis of MSC micromasses at days 2 and 14 of chondrogenesis by MALDI-MSI led to the identification of 20 different lipid species, including fatty acids, sphingolipids, and phospholipids. Phosphocholine, several sphingomyelins, and phosphatidylcholines were found to increase during the undifferentiated chondrogenic stage. A particularly detected lipid profile was verified by TOF secondary ion MS. Using this technology, a higher intensity of phosphocholine-related ions was observed in the peripheral region of the micromasses collected at day 14.
Collapse
Affiliation(s)
- Beatriz Rocha
- Rheumatology Division, ProteoRed/ISCIII Proteomics Group, INIBIC - Hospital Universitario de A Coruña, A Coruña, Spain
| | | | | | | | | | | | | |
Collapse
|
14
|
Wang RY, Aminian A, McEntee MF, Kan SH, Simonaro CM, Lamanna WC, Lawrence R, Ellinwood NM, Guerra C, Le SQ, Dickson PI, Esko JD. Intra-articular enzyme replacement therapy with rhIDUA is safe, well-tolerated, and reduces articular GAG storage in the canine model of mucopolysaccharidosis type I. Mol Genet Metab 2014; 112:286-93. [PMID: 24951454 PMCID: PMC4122635 DOI: 10.1016/j.ymgme.2014.05.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2014] [Accepted: 05/31/2014] [Indexed: 10/25/2022]
Abstract
BACKGROUND Treatment with intravenous enzyme replacement therapy and hematopoietic stem cell transplantation for mucopolysaccharidosis (MPS) type I does not address joint disease, resulting in persistent orthopedic complications and impaired quality of life. A proof-of-concept study was conducted to determine the safety, tolerability, and efficacy of intra-articular recombinant human iduronidase (IA-rhIDUA) enzyme replacement therapy in the canine MPS I model. METHODS Four MPS I dogs underwent monthly rhIDUA injections (0.58 mg/joint) into the right elbow and knee for 6 months. Contralateral elbows and knees concurrently received normal saline. No intravenous rhIDUA therapy was administered. Monthly blood counts, chemistries, anti-rhIDUA antibody titers, and synovial fluid cell counts were measured. Lysosomal storage of synoviocytes and chondrocytes, synovial macrophages and plasma cells were scored at baseline and 1 month following the final injection. RESULTS All injections were well-tolerated without adverse reactions. One animal required prednisone for spinal cord compression. There were no clinically significant abnormalities in blood counts or chemistries. Circulating anti-rhIDUA antibody titers gradually increased in all dogs except the prednisone-treated dog; plasma cells, which were absent in all baseline synovial specimens, were predominantly found in synovium of rhIDUA-treated joints at study-end. Lysosomal storage in synoviocytes and chondrocytes following 6 months of IA-rhIDUA demonstrated significant reduction compared to tissues at baseline, and saline-treated tissues at study-end. Mean joint synovial GAG levels in IA-rhIDUA joints were 8.62 ± 5.86 μg/mg dry weight and 21.6 ± 10.4 μg/mg dry weight in control joints (60% reduction). Cartilage heparan sulfate was also reduced in the IA-rhIDUA joints (113 ± 39.5 ng/g wet weight) compared to saline-treated joints (142 ± 56.4 ng/g wet weight). Synovial macrophage infiltration, which was present in all joints at baseline, was abolished in rhIDUA-treated joints only. CONCLUSIONS Intra-articular rhIDUA is well-tolerated and safe in the canine MPS I animal model. Qualitative and quantitative assessments indicate that IA-rhIDUA successfully reduces tissue and cellular GAG storage in synovium and articular cartilage, including cartilage deep to the articular surface, and eliminates inflammatory macrophages from synovial tissue. CLINICAL RELEVANCE The MPS I canine IA-rhIDUA results suggest that clinical studies should be performed to determine if IA-rhIDUA is a viable approach to ameliorating refractory orthopedic disease in human MPS I.
Collapse
Affiliation(s)
- Raymond Y Wang
- Division of Metabolic Disorders, CHOC Children's, Orange, CA, USA.
| | | | - Michael F McEntee
- Department of Biomedical and Diagnostic Sciences, University of Tennessee, Knoxville, TN, USA
| | - Shih-Hsin Kan
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Calogera M Simonaro
- Departments of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - William C Lamanna
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | - Roger Lawrence
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| | | | - Catalina Guerra
- Biological Resource Center, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Steven Q Le
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Patricia I Dickson
- Division of Medical Genetics, Los Angeles Biomedical Research Institute at Harbor-UCLA, Torrance, CA, USA
| | - Jeffrey D Esko
- Department of Cellular and Molecular Medicine, Glycobiology Research and Training Center, University of California-San Diego, La Jolla, CA, USA
| |
Collapse
|
15
|
Man Z, Yin L, Shao Z, Zhang X, Hu X, Zhu J, Dai L, Huang H, Yuan L, Zhou C, Chen H, Ao Y. The effects of co-delivery of BMSC-affinity peptide and rhTGF-β1 from coaxial electrospun scaffolds on chondrogenic differentiation. Biomaterials 2014; 35:5250-60. [DOI: 10.1016/j.biomaterials.2014.03.031] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2014] [Accepted: 03/14/2014] [Indexed: 01/03/2023]
|
16
|
Villalvilla A, Gómez R, Largo R, Herrero-Beaumont G. Lipid transport and metabolism in healthy and osteoarthritic cartilage. Int J Mol Sci 2013; 14:20793-808. [PMID: 24135873 PMCID: PMC3821643 DOI: 10.3390/ijms141020793] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2013] [Revised: 10/08/2013] [Accepted: 10/08/2013] [Indexed: 12/22/2022] Open
Abstract
Cartilage is an avascular tissue and cartilage metabolism depends on molecule diffusion from synovial fluid and subchondral bone. Thus, nutrient availability is limited by matrix permeability according to the size and charge of the molecules. Matrix composition limits the access of molecules to chondrocytes, determining cell metabolism and cartilage maintenance. Lipids are important nutrients in chondrocyte metabolism and are available for these cells through de novo synthesis but also through diffusion from surrounding tissues. Cartilage status and osteoarthritis development depend on lipid availability. This paper reviews lipid transport and metabolism in cartilage. We also analyze signalling pathways directly mediated by lipids and those that involve mTOR pathways, both in normal and osteoarthritic cartilage.
Collapse
Affiliation(s)
- Amanda Villalvilla
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +34-915-504-800; Fax: +34-915-442-636
| | - Rodolfo Gómez
- Musculoskeletal Research Group, Institute of Cellular Medicine, Newcastle University, Newcastle upon Tyne NE2 4HH, UK; E-Mail:
| | - Raquel Largo
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
| | - Gabriel Herrero-Beaumont
- Osteoarticular Pathology Laboratory, IIS Fundación Jiménez Díaz, Madrid 28040, Spain; E-Mails: (R.L.); (G.H.-B.)
| |
Collapse
|