1
|
Meng B, Wang Q, Leng H, Ren C, Feng C, Guo W, Feng Y, Zhang Y. Evolutionary Events Promoted Polymerase Activity of H13N8 Avian Influenza Virus. Viruses 2024; 16:329. [PMID: 38543694 PMCID: PMC10975323 DOI: 10.3390/v16030329] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
Wild birds are considered to be the natural reservoir hosts of avian influenza viruses (AIVs). Wild bird-origin AIVs may spill over into new hosts and overcome species barriers after evolutionary adaptation. H13N8 AIVs used to be considered primarily circulated in multispecies gulls but have recently been shown to possess cross-species infectivity. In this study, we analyzed the genetic changes that occurred in the process of the evolution of H13 AIVs. Phylogenetic analysis revealed that H13 AIVs underwent complex reassortment events. Based on the full genomic diversity, we divided H13 AIVs into 81 genotypes. Reassortment experiments indicated that basic polymerase 2 (PB2) and nucleoprotein (NP) genes of the H9N2 AIV significantly enhanced the polymerase activity of the H13N8 AIV. Using the replication-incompetent virus screening system, we identified two mutations, PB2-I76T and PB2-I559T, which could enhance the polymerase activity of the H13N8 AIV in mammalian cells. Notably, these mutations had been acquired by circulating H13N8 AIVs in 2015. These findings suggest that H13N8 AIVs are about to cross the host barrier. Occasional genetic reassortments with other AIVs and natural mutation events could promote this process. It is imperative to intensify monitoring efforts for H13N8 AIVs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Ying Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Liaoning Key Laboratory of Zoonosis, Laboratory of Ruminant Infectious Disease Prevention and Control (East), Ministry of Agriculture and Rural Affairs, Liaoning Panjin Wetland Ecosystem National Observation and Research Station, College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, 120 Dongling Rd., Shenyang 110866, China (C.R.)
| |
Collapse
|
2
|
Flores RA, Cammayo-Fletcher PLT, Nguyen BT, Villavicencio AGM, Lee SY, Son Y, Kim JH, Park KI, Yoo WG, Jin YB, Min W, Kim WH. Genetic Characterization and Phylogeographic Analysis of the First H13N6 Avian Influenza Virus Isolated from Vega Gull in South Korea. Viruses 2024; 16:285. [PMID: 38400060 PMCID: PMC10891532 DOI: 10.3390/v16020285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/25/2024] Open
Abstract
Avian influenza virus (AIV) is a pathogen with zoonotic and pandemic potential. Migratory birds are natural reservoirs of all known subtypes of AIVs, except for H17N10 and H18N11, and they have been implicated in previous highly pathogenic avian influenza outbreaks worldwide. This study identified and characterized the first isolate of the H13N6 subtype from a Vega gull (Larus vegae mongolicus) in South Korea. The amino acid sequence of hemagglutinin gene showed a low pathogenic AIV subtype and various amino acid substitutions were found in the sequence compared to the reference sequence and known H13 isolates. High sequence homology with other H13N6 isolates was found in HA, NA, PB1, and PA genes, but not for PB2, NP, M, and NS genes. Interestingly, various point amino acid mutations were found on all gene segments, and some are linked to an increased binding to human-type receptors, resistance to antivirals, and virulence. Evolutionary and phylogenetic analyses showed that all gene segments are gull-adapted, with a phylogeographic origin of mostly Eurasian, except for PB2, PA, and M. Findings from this study support the evidence that reassortment of AIVs continuously occurs in nature, and migratory birds are vital in the intercontinental spread of avian influenza viruses.
Collapse
Affiliation(s)
- Rochelle A. Flores
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Paula Leona T. Cammayo-Fletcher
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Binh T. Nguyen
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Andrea Gail M. Villavicencio
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Seung Yun Lee
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Yongwoo Son
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Jae-Hoon Kim
- National Park Research Institute, Korean National Park Service, Wonju 26441, Gangwon, Republic of Korea;
| | - Kwang Il Park
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Won Gi Yoo
- Department of Parasitology and Tropical Medicine, College of Medicine, Gyeongsang National University, Jinju 52727, Gyeongnam, Republic of Korea;
| | - Yeung Bae Jin
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Wongi Min
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| | - Woo H. Kim
- Institute of Animal Medicine, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Gyeongnam, Republic of Korea; (R.A.F.); (P.L.T.C.-F.); (B.T.N.); (A.G.M.V.); (S.Y.L.); (Y.S.); (K.I.P.); (Y.B.J.); (W.M.)
| |
Collapse
|
3
|
Hill NJ, Bishop MA, Trovão NS, Ineson KM, Schaefer AL, Puryear WB, Zhou K, Foss AD, Clark DE, MacKenzie KG, Gass JD, Borkenhagen LK, Hall JS, Runstadler JA. Ecological divergence of wild birds drives avian influenza spillover and global spread. PLoS Pathog 2022; 18:e1010062. [PMID: 35588106 PMCID: PMC9119557 DOI: 10.1371/journal.ppat.1010062] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 04/01/2022] [Indexed: 01/21/2023] Open
Abstract
The diversity of influenza A viruses (IAV) is primarily hosted by two highly divergent avian orders: Anseriformes (ducks, swans and geese) and Charadriiformes (gulls, terns and shorebirds). Studies of IAV have historically focused on Anseriformes, specifically dabbling ducks, overlooking the diversity of hosts in nature, including gull and goose species that have successfully adapted to human habitats. This study sought to address this imbalance by characterizing spillover dynamics and global transmission patterns of IAV over 10 years at greater taxonomic resolution than previously considered. Furthermore, the circulation of viral subtypes in birds that are either host-adapted (low pathogenic H13, H16) or host-generalist (highly pathogenic avian influenza—HPAI H5) provided a unique opportunity to test and extend models of viral evolution. Using Bayesian phylodynamic modelling we uncovered a complex transmission network that relied on ecologically divergent bird hosts. The generalist subtype, HPAI H5 was driven largely by wild geese and swans that acted as a source for wild ducks, gulls, land birds, and domestic geese. Gulls were responsible for moving HPAI H5 more rapidly than any other host, a finding that may reflect their long-distance, pelagic movements and their immuno-naïve status against this subtype. Wild ducks, long viewed as primary hosts for spillover, occupied an optimal space for viral transmission, contributing to geographic expansion and rapid dispersal of HPAI H5. Evidence of inter-hemispheric dispersal via both the Pacific and Atlantic Rims was detected, supporting surveillance at high latitudes along continental margins to achieve early detection. Both neutral (geographic expansion) and non-neutral (antigenic selection) evolutionary processes were found to shape subtype evolution which manifested as unique geographic hotspots for each subtype at the global scale. This study reveals how a diversity of avian hosts contribute to viral spread and spillover with the potential to improve surveillance in an era of rapid global change. Our study provides novel insights into the biology of influenza A virus (IAV), which is timely in view of the unusually large number of animal and human cases of highly pathogenic avian influenza (HPAI) H5 across Europe, Asia, Africa and North America. Currently we face challenges with predicting how the avian reservoir will influence IAV spread because the mechanisms by which different subtypes disperse are not well understood. Our study sought to address this knowledge gap by systematically comparing the evolutionary dynamics that drive IAV transmission across subtypes and bird hosts with the goal of identifying spillover pathways at the wild-domestic interface. By analyzing the evolution of IAV over 10 years at greater taxonomic resolution than previously considered, we uncovered a complex transmission network that relied on ecologically divergent bird hosts. Domestic birds were responsible for slow but steady range expansion of HPAI H5, while wild birds such as geese, swans, gulls and ducks contibuted to rapid but episodic dispersal via uniquely different pathways. By assessing how virus-host systems are coupled, findings from this study have the potential to refine and enhance global surveillance and outbreak prediction.
Collapse
Affiliation(s)
- Nichola J. Hill
- Department of Biology, University of Massachusetts, Boston, Massachusetts, United States of America
- * E-mail:
| | - Mary Anne Bishop
- Prince William Sound Science Center, Cordova, Alaska, United States of America
| | - Nídia S. Trovão
- Division of International Epidemiology and Population Studies, Fogarty International Center, National Institutes of Health, Bethesda, Maryland, United States of America
| | - Katherine M. Ineson
- U.S. Fish and Wildlife Service, Hadley, Massachusetts, United States of America
| | - Anne L. Schaefer
- Prince William Sound Science Center, Cordova, Alaska, United States of America
| | - Wendy B. Puryear
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Katherine Zhou
- College of Veterinary Medicine, Cornell University, Ithaca, New York, United States of America
| | - Alexa D. Foss
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Daniel E. Clark
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, United States of America
| | - Kenneth G. MacKenzie
- Division of Water Supply Protection, Massachusetts Department of Conservation and Recreation, West Boylston, Massachusetts, United States of America
| | - Jonathon D. Gass
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Laura K. Borkenhagen
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| | - Jeffrey S. Hall
- U.S. Geological Survey, National Wildlife Health Center, Madison, Wisconsin, United States of America
| | - Jonathan A. Runstadler
- Department of Infectious Disease and Global Health, Cummings School of Veterinary Medicine Tufts University, North Grafton, Massachusetts, United States of America
| |
Collapse
|
4
|
Hubálek Z. Pathogenic microorganisms associated with gulls and terns (Laridae). JOURNAL OF VERTEBRATE BIOLOGY 2021. [DOI: 10.25225/jvb.21009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Zdeněk Hubálek
- Institute of Vertebrate Biology of the Czech Academy of Sciences, Brno, Czech Republic; e-mail:
| |
Collapse
|
5
|
Verhagen JH, Poen M, Stallknecht DE, van der Vliet S, Lexmond P, Sreevatsan S, Poulson RL, Fouchier RAM, Lebarbenchon C. Phylogeography and Antigenic Diversity of Low-Pathogenic Avian Influenza H13 and H16 Viruses. J Virol 2020; 94:e00537-20. [PMID: 32321814 PMCID: PMC7307148 DOI: 10.1128/jvi.00537-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 04/13/2020] [Indexed: 11/20/2022] Open
Abstract
Low-pathogenic avian influenza viruses (LPAIVs) are genetically highly variable and have diversified into multiple evolutionary lineages that are primarily associated with wild-bird reservoirs. Antigenic variation has been described for mammalian influenza viruses and for highly pathogenic avian influenza viruses that circulate in poultry, but much less is known about antigenic variation of LPAIVs. In this study, we focused on H13 and H16 LPAIVs that circulate globally in gulls. We investigated the evolutionary history and intercontinental gene flow based on the hemagglutinin (HA) gene and used representative viruses from genetically distinct lineages to determine their antigenic properties by hemagglutination inhibition assays. For H13, at least three distinct genetic clades were evident, while for H16, at least two distinct genetic clades were evident. Twenty and ten events of intercontinental gene flow were identified for H13 and H16 viruses, respectively. At least two antigenic variants of H13 and at least one antigenic variant of H16 were identified. Amino acid positions in the HA protein that may be involved in the antigenic variation were inferred, and some of the positions were located near the receptor binding site of the HA protein, as they are in the HA protein of mammalian influenza A viruses. These findings suggest independent circulation of H13 and H16 subtypes in gull populations, as antigenic patterns do not overlap, and they contribute to the understanding of the genetic and antigenic variation of LPAIVs naturally circulating in wild birds.IMPORTANCE Wild birds play a major role in the epidemiology of low-pathogenic avian influenza viruses (LPAIVs), which are occasionally transmitted-directly or indirectly-from them to other species, including domestic animals, wild mammals, and humans, where they can cause subclinical to fatal disease. Despite a multitude of genetic studies, the antigenic variation of LPAIVs in wild birds is poorly understood. Here, we investigated the evolutionary history, intercontinental gene flow, and antigenic variation among H13 and H16 LPAIVs. The circulation of subtypes H13 and H16 seems to be maintained by a narrower host range, in particular gulls, than the majority of LPAIV subtypes and may therefore serve as a model for evolution and epidemiology of H1 to H12 LPAIVs in wild birds. The findings suggest that H13 and H16 LPAIVs circulate independently of each other and emphasize the need to investigate within-clade antigenic variation of LPAIVs in wild birds.
Collapse
Affiliation(s)
- Josanne H Verhagen
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
- Linnaeus University, Department of Biology and Environmental Science, Kalmar, Sweden
| | - Marjolein Poen
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - David E Stallknecht
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, USA
| | | | - Pascal Lexmond
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Srinand Sreevatsan
- Michigan State University, College of Veterinary Medicine, Department of Pathobiology and Diagnostic Investigation, East Lansing, Michigan, USA
| | - Rebecca L Poulson
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, USA
| | - Ron A M Fouchier
- Erasmus Medical Center, Department of Viroscience, Rotterdam, The Netherlands
| | - Camille Lebarbenchon
- Southeastern Cooperative Wildlife Disease Study, College of Veterinary Medicine, Department of Population Health, University of Georgia, Athens, Georgia, USA
- Université de La Réunion, UMR Processus Infectieux en Milieu Insulaire Tropical, INSERM 1187, CNRS 9192, IRD 249, Sainte-Clotilde, La Réunion, France
| |
Collapse
|
6
|
Li Y, Li M, Tian J, Zhang Y, Bai X, Wang X, Shi J, Wang Y, Ma L, Yang C, Li Y. Characteristics of the first H16N3 subtype influenza A viruses isolated in western China. Transbound Emerg Dis 2020; 67:1677-1687. [PMID: 32266788 PMCID: PMC7384121 DOI: 10.1111/tbed.13511] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Revised: 01/17/2020] [Accepted: 02/04/2020] [Indexed: 11/29/2022]
Abstract
The first documented avian influenza virus subtype H16N3 was isolated in 1975 and is currently detectable in many countries worldwide. However, the prevalence, biological characteristics and threat to humans of the avian influenza virus H16N3 subtype in China remain poorly understood. We performed avian influenza surveillance in major wild bird gatherings across the country from 2017 to 2019, resulting in the isolation of two H16N3 subtype influenza viruses. Phylogenetic analysis showed these viruses belong to the Eurasian lineage, and both viruses presented the characteristics of inter-species reassortment. In addition, the two viruses exhibited limited growth capacity in MDCK and A549 cells. Receptor-binding assays indicated that the two H16N3 viruses presented dual receptor-binding profiles, being able to bind to both human and avian-type receptors, where GBHG/NX/2/2018(H16N3) preferentially bound the avian-type receptor, while GBHG/NX/1/2018(H16N3) showed greater binding to the human-type receptor, even the mice virulence data showed the negative results. Segments from other species have been introduced into the H16N3 avian influenza virus, which may alter its pathogenicity and host tropism, potentially posing a threat to animal and human health in the future. Consequently, it is necessary to increase monitoring of the emergence and spread of avian influenza subtype H16N3 in wild birds.
Collapse
Affiliation(s)
- Yulei Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Minghui Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Jingman Tian
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yaping Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoli Bai
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Xiaoliang Wang
- Preventive and Control Center for Animal Disease of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Jianzhong Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yumei Wang
- Preventive and Control Center for Animal Disease of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Long Ma
- Preventive and Control Center for Animal Disease of Ningxia Hui Autonomous Region, Yinchuan, China
| | - Cen Yang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | - Yanbing Li
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
7
|
Differential Modulation of Innate Immune Responses in Human Primary Cells by Influenza A Viruses Carrying Human or Avian Nonstructural Protein 1. J Virol 2019; 94:JVI.00999-19. [PMID: 31597767 PMCID: PMC6912104 DOI: 10.1128/jvi.00999-19] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 09/29/2019] [Indexed: 12/22/2022] Open
Abstract
Influenza A viruses (IAVs) cause seasonal epidemics which result in an important health and economic burden. Wild aquatic birds are the natural host of IAV. However, IAV can infect diverse hosts, including humans, domestic poultry, pigs, and others. IAVs circulating in animals occasionally cross the species barrier, infecting humans, which results in mild to very severe disease. In some cases, these viruses can acquire the ability to be transmitted among humans and initiate a pandemic. The nonstructural 1 (NS1) protein of IAV is an important antagonist of the innate immune response. In this study, using recombinant viruses and primary human cells, we show that NS1 proteins from human and avian hosts show intrinsic differences in the modulation of the innate immunity in human dendritic cells and epithelial cells, as well as different cellular localization dynamics in infected cells. The influenza A virus (IAV) nonstructural protein 1 (NS1) contributes to disease pathogenesis through the inhibition of host innate immune responses. Dendritic cells (DCs) release interferons (IFNs) and proinflammatory cytokines and promote adaptive immunity upon viral infection. In order to characterize the strain-specific effects of IAV NS1 on human DC activation, we infected human DCs with a panel of recombinant viruses with the same backbone (A/Puerto Rico/08/1934) expressing different NS1 proteins from human and avian origin. We found that these viruses induced a clearly distinct phenotype in DCs. Specifically, viruses expressing NS1 from human IAV (either H1N1 or H3N2) induced higher levels of expression of type I (IFN-α and IFN-β) and type III (IFN-λ1 to IFNλ3) IFNs than viruses expressing avian IAV NS1 proteins (H5N1, H7N9, and H7N2), but the differences observed in the expression levels of proinflammatory cytokines like tumor necrosis factor alpha (TNF-α) or interleukin-6 (IL-6) were not significant. In addition, using imaging flow cytometry, we found that human and avian NS1 proteins segregate based on their subcellular trafficking dynamics, which might be associated with the different innate immune profile induced in DCs by viruses expressing those NS1 proteins. Innate immune responses induced by our panel of IAV recombinant viruses were also characterized in normal human bronchial epithelial cells, and the results were consistent with those in DCs. Altogether, our results reveal an increased ability of NS1 from avian viruses to antagonize innate immune responses in human primary cells compared to the ability of NS1 from human viruses, which could contribute to the severe disease induced by avian IAV in humans. IMPORTANCE Influenza A viruses (IAVs) cause seasonal epidemics which result in an important health and economic burden. Wild aquatic birds are the natural host of IAV. However, IAV can infect diverse hosts, including humans, domestic poultry, pigs, and others. IAVs circulating in animals occasionally cross the species barrier, infecting humans, which results in mild to very severe disease. In some cases, these viruses can acquire the ability to be transmitted among humans and initiate a pandemic. The nonstructural 1 (NS1) protein of IAV is an important antagonist of the innate immune response. In this study, using recombinant viruses and primary human cells, we show that NS1 proteins from human and avian hosts show intrinsic differences in the modulation of the innate immunity in human dendritic cells and epithelial cells, as well as different cellular localization dynamics in infected cells.
Collapse
|
8
|
Mine J, Uchida Y, Sharshov K, Sobolev I, Shestopalov A, Saito T. Phylogeographic evidence for the inter- and intracontinental dissemination of avian influenza viruses via migration flyways. PLoS One 2019; 14:e0218506. [PMID: 31242207 PMCID: PMC6594620 DOI: 10.1371/journal.pone.0218506] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/04/2019] [Indexed: 01/31/2023] Open
Abstract
Genetically related highly pathogenic avian influenza viruses (HPAIVs) of H5N6 subtype caused outbreaks simultaneously in East Asia and Europe—geographically distinct regions—during winter 2017–2018. This situation prompted us to consider whether the application of phylogeographic analysis to a particular gene segment of AIVs could provide clues for understanding how AIV had been disseminated across the continent. Here, the N6 NA genes of influenza viruses isolated across the world were subjected to phylogeographic analysis to illustrate the inter- and intracontinental dissemination of AIVs. Those isolated in East Asia during winter and in Mongolia/Siberia during summer were comingled within particular clades of the phylogeographic tree. For AIVs in one clade, their dissemination in eastern Eurasia extended from Yakutia, Russia, in the north to East Asia in the south. AIVs in western Asia, Europe, and Mongolia were also comingled within other clades, indicating that Mongolia/Siberia plays an important role in the dissemination of AIVs across the Eurasian continent. Mongolia/Siberia may therefore have played a role in the simultaneous outbreaks of H5N6 HPAIVs in Europe and East Asia during the winter of 2017–2018. In addition to the long-distance intracontinental disseminations described above, intercontinental disseminations of AIVs between Eurasia and Africa and between Eurasia and North America were also observed. Integrating these results and known migration flyways suggested that the migration of wild birds and the overlap of flyways, such as that observed in Mongolia/Siberia and along the Alaskan Peninsula, contributed to the long-distance intra- and intercontinental dissemination of AIVs. These findings highlight the importance of understanding the movement of migratory birds and the dynamics of AIVs in breeding areas—especially where several migration flyways overlap—in forecasting outbreaks caused by HPAIVs.
Collapse
Affiliation(s)
- Junki Mine
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Yuko Uchida
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
| | - Kirill Sharshov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Ivan Sobolev
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Alexander Shestopalov
- Federal Research Center of Fundamental and Translational Medicine, Novosibirsk, Russia
| | - Takehiko Saito
- Division of Transboundary Animal Disease, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
- Thailand–Japan Zoonotic Diseases Collaboration Center, Kasetklang, Chatuchak, Bangkok, Thailand
- United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
- * E-mail:
| |
Collapse
|
9
|
Eriksson P, Lindskog C, Lorente-Leal V, Waldenström J, González-Acuna D, Järhult JD, Lundkvist Å, Olsen B, Jourdain E, Ellström P. Attachment Patterns of Human and Avian Influenza Viruses to Trachea and Colon of 26 Bird Species - Support for the Community Concept. Front Microbiol 2019; 10:815. [PMID: 31057520 PMCID: PMC6482220 DOI: 10.3389/fmicb.2019.00815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/01/2019] [Indexed: 12/23/2022] Open
Abstract
Avian influenza A viruses (AIVs) have a broad host range, but are most intimately associated with waterfowl (Anseriformes) and, in the case of the H13 and H16 subtypes, gulls (Charadriiformes). Host associations are multifactorial, but a key factor is the ability of the virus to bind host cell receptors and thereby initiate infection. The current study aims at investigating the tissue attachment pattern of a panel of AIVs, comprising H3N2, H6N1, H12N5, and H16N3, to avian trachea and colon tissue samples obtained from host species of different orders. Virus attachment was not restricted to the bird species or order from which the virus was isolated. Instead, extensive virus attachment was observed to several distantly related avian species. In general, more virus attachment and receptor expression were observed in trachea than in colon samples. Additionally, a human seasonal H3N2 virus was studied. Unlike the studied AIVs, this virus mainly attached to tracheae from Charadriiformes and a very limited set of avian cola. In conclusion, the reported results highlight the importance of AIV attachment to trachea in many avian species. Finally, the importance of chickens and mallards in AIVs dynamics was illustrated by the abundant AIV attachment observed.
Collapse
Affiliation(s)
- Per Eriksson
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Cecilia Lindskog
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Victor Lorente-Leal
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jonas Waldenström
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University, Kalmar, Sweden
| | | | - Josef D Järhult
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Åke Lundkvist
- Zoonosis Science Center, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Björn Olsen
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Elsa Jourdain
- UMR0346 - EPIA, INRA, VetAgro Sup, Saint-Genès-Champanelle, France
| | - Patrik Ellström
- Zoonosis Science Center, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| |
Collapse
|
10
|
Avian Influenza Viruses in Wild Birds: Virus Evolution in a Multihost Ecosystem. J Virol 2018; 92:JVI.00433-18. [PMID: 29769347 PMCID: PMC6052287 DOI: 10.1128/jvi.00433-18] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Accepted: 05/12/2018] [Indexed: 01/17/2023] Open
Abstract
Wild ducks and gulls are the major reservoirs for avian influenza A viruses (AIVs). The mechanisms that drive AIV evolution are complex at sites where various duck and gull species from multiple flyways breed, winter, or stage. The Republic of Georgia is located at the intersection of three migratory flyways: the Central Asian flyway, the East Africa/West Asia flyway, and the Black Sea/Mediterranean flyway. For six complete study years (2010 to 2016), we collected AIV samples from various duck and gull species that breed, migrate, and overwinter in Georgia. We found a substantial subtype diversity of viruses that varied in prevalence from year to year. Low-pathogenic AIV (LPAIV) subtypes included H1N1, H2N3, H2N5, H2N7, H3N8, H4N2, H6N2, H7N3, H7N7, H9N1, H9N3, H10N4, H10N7, H11N1, H13N2, H13N6, H13N8, and H16N3, and two highly pathogenic AIVs (HPAIVs) belonging to clade 2.3.4.4, H5N5 and H5N8, were found. Whole-genome phylogenetic trees showed significant host species lineage restriction for nearly all gene segments and significant differences in observed reassortment rates, as defined by quantification of phylogenetic incongruence, and in nucleotide sequence diversity for LPAIVs among different host species. Hemagglutinin clade 2.3.4.4 H5N8 viruses, which circulated in Eurasia during 2014 and 2015, did not reassort, but analysis after their subsequent dissemination during 2016 and 2017 revealed reassortment in all gene segments except NP and NS. Some virus lineages appeared to be unrelated to AIVs in wild bird populations in other regions, with maintenance of local AIVs in Georgia, whereas other lineages showed considerable genetic interrelationships with viruses circulating in other parts of Eurasia and Africa, despite relative undersampling in the area. IMPORTANCE Waterbirds (e.g., gulls and ducks) are natural reservoirs of avian influenza viruses (AIVs) and have been shown to mediate the dispersal of AIVs at intercontinental scales during seasonal migration. The segmented genome of influenza viruses enables viral RNA from different lineages to mix or reassort when two viruses infect the same host. Such reassortant viruses have been identified in most major human influenza pandemics and several poultry outbreaks. Despite their importance, we have only recently begun to understand AIV evolution and reassortment in their natural host reservoirs. This comprehensive study illustrates AIV evolutionary dynamics within a multihost ecosystem at a stopover site where three major migratory flyways intersect. Our analysis of this ecosystem over a 6-year period provides a snapshot of how these viruses are linked to global AIV populations. Understanding the evolution of AIVs in the natural host is imperative to mitigating both the risk of incursion into domestic poultry and the potential risk to mammalian hosts, including humans.
Collapse
|
11
|
Mok BWY, Liu H, Chen P, Liu S, Lau SY, Huang X, Liu YC, Wang P, Yuen KY, Chen H. The role of nuclear NS1 protein in highly pathogenic H5N1 influenza viruses. Microbes Infect 2017; 19:587-596. [PMID: 28903072 DOI: 10.1016/j.micinf.2017.08.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/31/2017] [Accepted: 08/31/2017] [Indexed: 11/28/2022]
Abstract
The non-structural protein (NS1) of influenza A viruses (IAV) performs multiple functions during viral infection. NS1 contains two nuclear localization signals (NLS): NLS1 and NLS2. The NS1 protein is located predominantly in the nucleus during the early stages of infection and subsequently exported to the cytoplasm. A nonsense mutation that results in a large deletion in the carboxy-terminal region of the NS1 protein that contains the NLS2 domain was found in some IAV subtypes, including highly pathogenic avian influenza (HPAI) H7N9 and H5N1 viruses. We introduced different mutations into the NLS domains of NS1 proteins in various strains of IAV, and demonstrated that mutation of the NLS2 region in the NS1 protein of HPAI H5N1 viruses severely affects its nuclear localization pattern. H5N1 viruses expressing NS1 protein that is unable to localize to the nucleus are less potent in antagonizing cellular antiviral responses than viruses expressing wild-type NS1. However, no significant difference was observed with respect to viral replication and pathogenesis. In contrast, the replication and antiviral defenses of H1N1 viruses are greatly attenuated when nuclear localization of the NS1 protein is blocked. Our data reveals a novel functional plasticity for NS1 proteins among different IAV subtypes.
Collapse
Affiliation(s)
- Bobo Wing-Yee Mok
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Honglian Liu
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Pin Chen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Siwen Liu
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Siu-Ying Lau
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Xiaofeng Huang
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Yen-Chin Liu
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Pui Wang
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Kwok-Yung Yuen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China
| | - Honglin Chen
- State Key Laboratory for Emerging Infectious Diseases and Department of Microbiology, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
12
|
GENETIC CHARACTERIZATION OF H13 AND H16 INFLUENZA A VIRUSES IN GULLS (LARUS SPP.) WITH CLINICALLY SEVERE DISEASE AND CONCURRENT CIRCOVIRUS INFECTION. J Wildl Dis 2017; 53:561-571. [PMID: 28384060 DOI: 10.7589/2016-09-212] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Influenza A viruses (IAVs) of the subtypes H13 and H16 are primarily found in gulls ( Larus spp., order Charadriiformes). Although the gull-adapted subtypes replicate efficiently during infection, gulls usually remain apparently healthy during infection. Avian influenza virus isolates are generally separated into two distinct populations, North American and Eurasian, because of the limited gene flow between the continents. Reassortment between these lineages does occur occasionally; however, direct intercontinental transmission of all eight gene segments is rare. Extensive research has been done to understand the ecology of IAV subtypes that naturally circulate in ducks (order Anseriformes), but the ecology of H13 and H16 IAVs in gulls remains far less studied. In Finland, gulls were screened for IAVs for passive (dead and diseased gulls) and active (clinically healthy gulls) surveillance purposes during the years 2005-10. During that period, 11 H13, two H16 viruses, and one H3N8 IAV were detected. We sequenced partial and full-length hemagglutinin genes of these gull-origin IAVs for phylogenetic assessments. All but one of the H13 genes clustered together with northern European and northeastern Asian viruses, whereas one virus clustered with North American viruses. Interestingly, a high rate (10/14) of these low-pathogenic IAVs was detected in dead or diseased gulls. The atypical clinical status of the IAV-positive gulls and previous observations of circovirus-like inclusion bodies in diseased gulls during autopsies, led us to screen for concurrent circovirus infections in our samples. The DNA of circovirus, an immunosuppressive pathogen of both birds and mammals, was detected in 54% (7/13) of the tested IAV-positive gulls, whereas only 25% (14/56) of our panel of IAV-negative gulls tested positive by circovirus PCR.
Collapse
|
13
|
Arnal A, Vittecoq M, Pearce-Duvet J, Gauthier-Clerc M, Boulinier T, Jourdain E. Laridae: A neglected reservoir that could play a major role in avian influenza virus epidemiological dynamics. Crit Rev Microbiol 2015; 41:508-19. [DOI: 10.3109/1040841x.2013.870967] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
14
|
Babar MM, Zaidi NUSS, Tahir M. Global geno-proteomic analysis reveals cross-continental sequence conservation and druggable sites among influenza virus polymerases. Antiviral Res 2014; 112:120-31. [DOI: 10.1016/j.antiviral.2014.10.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 12/23/2022]
|
15
|
Fereidouni SR, Harder TC, Globig A, Starick E. Failure of productive infection of Mallards (Anas platyrhynchos) with H16 subtype of avian influenza viruses. Influenza Other Respir Viruses 2014; 8:613-6. [PMID: 25205059 PMCID: PMC4262275 DOI: 10.1111/irv.12275] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2014] [Indexed: 11/28/2022] Open
Abstract
Background Mallard ducks and other waterfowl represent the most important reservoirs of low pathogenic avian influenza viruses (LPAIV). In addition, mallards are the most abundant duck species in Eurasia that migrate over long distances. Despite extended wild bird monitoring studies over the past decade in many Eurasian countries and investigating hundreds of thousands of wild bird samples, no mallard duck was found to be positive for avian influenza virus of subtype H16 in faecal, cloacal or oropharyngeal samples. Just three cases of H16 infections in Anseriformes species were described worldwide. In contrast, H16 viruses have been repeatedly isolated from birds of the Laridae family. Objective Here, we tested the hypothesis that mallards are less permissive to infection with H16 viruses. Methods Groups of mallard ducks of different age were inoculated via the oculo-nasal-oral route with different infectious doses of an H16N3 AIV. Results The ducks did not show any clinical symptoms, and no virus shedding was evident from cloacal and respiratory routes after experimental infection as shown by negative RT-qPCR results. In addition, all serum samples taken on days 8, 21 and 24 post-inoculation were negative by competitive NP-ELISA. Conclusions This study provided evidence that mallards are resistant to infection with H16N3 LPAIV.
Collapse
|
16
|
Abdelwhab EM, Veits J, Mettenleiter TC. Avian influenza virus NS1: A small protein with diverse and versatile functions. Virulence 2013; 4:583-8. [PMID: 24051601 PMCID: PMC3906290 DOI: 10.4161/viru.26360] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- E M Abdelwhab
- Friedrich-Loeffler-Institut; Federal Research Institute for Animal Health; Institute of Molecular Biology; Insel Riems, Germany
| | | | | |
Collapse
|